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Abstract

Given a convex body K C R" and p € R, we introduce and study the extremal
inner and outer affine surface areas

IS,(K) = sup (asp(K')) and osp(K)= inf (asp(K")),

K'CK K'DOK

where as, (K') denotes the L,-affine surface area of K’, and the supremum is taken
over all convex subsets of K and the infimum over all convex compact subsets
containing K.

The convex body that realizes 1.51(K) in dimension 2 was determined in [3] where
it was also shown that this body is the limit shape of lattice polytopes in K. In
higher dimensions no results are known about the extremal bodies.

We use a thin shell estimate of [23] and the Lowner ellipsoid to give asymptotic
estimates on the size of IS,(K) and os,(K). Surprisingly, it turns out that both
quantities are proportional to a power of volume.

1 Introduction

F. John proved in [32] that among all ellipsoids contained in a convex body K € R™,
there is a unique ellipsoid of maximal volume, now called the John ellipsoid of K. Dual
to the John ellipsoid is the Lowner ellipsoid, the ellipsoid of minimal volume containing
K. These ellipsoids play fundamental roles in asymptotic convex geometry. They are
related to the isotropic position, to the study of volume concentration, volume ratio,
reverse isoperimetric inequalities, Banach-Mazur distance of normed spaces, and many
more, including the hyperplane conjecture, one of the major open problems in asymp-
totic geometric analysis. We refer to e.g., the books [1, 12] for the details and more
information.

In this paper, we introduce the analogue to John’s theorem, when volume is replaced
by affine surface area. In parallel to John’s maximal volume ellipsoid, respectively the
minimal volume Lowner ellipsoid, we investigate these convex bodies contained in K,
respectively containing K, that have the largest, respectively smallest, L,-affine surface
areas,

IS,(K) = Sup (asp(K')) and os,(K) = Ki%fK (asp(K")). (1.1)
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By compactness and continuity, the supremum and infimum are in fact a maximum and
minimum, i.e., IS,(K) = as,(Ky) for some convex body Ky C K and o0s,(K) = asp (K1)
for some convex body K; D K.

For p > 1, the L,-affine surface area was introduced by E. Lutwak in his ground breaking
paper [38] in the context of the L,-Brunn-Minkowski theory and in [53] for all other p,
(see also [30, 43]). Lj-affine surface area is classical and goes back to W. Blaschke [7].
The definition of L,-affine surface area is given below in (2.1), where we also list some of
its properties. Due to its remarkable properties, this notion is important in many areas
of mathematics and applications. We only quote characterizations of L,-affine surface
areas by M. Ludwig and M. Reitzner [36], the L,-affine isoperimetric inequalities, proved
by E. Lutwak [38] for p > 1 and for all other p in [60]. The classical case p = 1 goes
back to W. Blaschke [7]. These inequalities are related to various other inequalities, see
e.g., E. Lutwak, D. Yang and G. Zhang [39, 41]. In particular, the affine isoperimetric
inequality implies the Blaschke-Santalé inequality and it proved to be the key ingredient
in the solution of many problems, see e.g. the books by R. Gardner [17] and R. Schneider
[48] and also [31, 35, 37, 54, 55, 56, 60]. Recent developments include extensions to an
Orlicz theory, e.g., [18, 28, 35, 61], to a functional setting [13, 14] and to the spherical
and hyperbolic setting [5, 6].

Applications of affine surface areas have been manifold. For instance, affine surface area
appears in best and random approximation of convex bodies by polytopes, see, e.g., K.
Boroezky [8, 9], P. Gruber [21, 22], M. Ludwig [34], M. Reitzner [46, 47] and also [19, 20,
27, 49, 52] and has connections to, e.g., concentration of volume, [15, 35, 41], differential
equations [10, 24, 28, 56, 57, 62], and information theory, e.g., [2, 14, 40, 42, 45, 59].

In dimension 2 and for p = 1, .51 (K) was determined exactly by I. Bardny [3]. Moreover,
he showed in [3] that the extremal body Ky of (1.1) is unique and that K is the limit
shape of lattice polygons contained in K.

In higher dimensions and for p # 1, there are no results available on I.S,(K), 0s,(K)
and related notions OS,(K) and is,(K), defined in (2.2) and (2.3) below. We observe
that only certain p-ranges are meaningful for the various notions.

We use a thin shell estimate by Guédon and E. Milman [23], see also G. Paouris [44]
and Y. T. Lee and S. S. Vempala [33], on concentration of volume to show in our main
theorem that I.S,(K) is proportional to a power of the volume |K| of K for fixed p, up
to a constant depending only on n. It involves the Euclidean unit ball B centered at 0,
and the isotropic constant L%- of K, defined by

nL3 = min{ |z||?dz : a € R", T € GL(n)} . (1.2)
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Theorem 3.4. There is a constant C > 0 such that for alln € N, all 0 < p <n and all
convex bodies K C R"™,
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Equality holds trivially in the right inequality if p = 0,n. If p # 0,n, equality holds in
the right inequality iff K is a centered ellipsoid.
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Since |B:|n£p = n|BY|~+7, which is asymptotically equivalent to o= with an
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absolute constant ¢, the theorem shows that for a fixed p, I5,(K) is proportional to a
power of | K|, up to a constant depending on n only.

We use the Lowner ellipsoid of K (e.g., [1, 12] or the survey [26]), to give asymptotic
estimates on the size of 0s,(K) and OS,(K), also in terms of powers of |K|, in Theorem
3.6. For instance, we show that for —n < p <0,

0sp(BY) < 0sp(K) < n

n% OSP(BS)
n—p = n—p = P n—p*
|By | K| | By | v

Equality holds trivially in the left inequality if p = 0. If p # 0, equality holds in the left
inequality iff K is a centered ellipsoid.

If K is centrally symmetric, n"%7r can be replaced by R

We refer to Theorem 3.6 for the details.

2 Background and definitions

Throughout the paper, ¢, C' etc., denote absolute constants that may change from line
to line. The center of gravity g(K) of K is defined by

g(K):% /Ka:dac.

When the center of gravity of K is at 0, then, for real p # —n, the L,-affine surface areas
are defined as [38, 43, 53]

k()T

asp(K) = /8K Wd#(x)» (2.1)

where k() is the (generalized) Gauss-Kronecker curvature at € 0K, N(x) is the outer
unit normal vector at = to K, the boundary of K, and (-, ) is the standard inner product
on R™ which induces the Euclidean norm || - ||. When the center of gravity of K is not
at 0, we shift K so that it is. The case p = 1 is the classical affine surface area whose
definition goes back to Blaschke [7].

We denote by Kx the collection of all compact convex subsets of K and by KX the
collection of all compact convex sets containing K.
For —co < p < 00, p # —n, we then define the inner and outer mazimal affine surface
areas by
IS,(K) = sup (asy(C)), OS,(K)= sup (as,(C)), (2.2)
Cekk CekKK

and the inner and outer mininal affine surface areas by

isp(K) = C%en’CfK (asp(C)), osp(K) = CigngK (asp(C)). (2.3)

We show in section 3.1 that is, is identically equal to 0 for all p and all K and that the
only meaningful p-range for 1.5, is [0, n], for OS, it is [n, oo] and for os,, it is (—n, 0].

By Blaschke’s selection theorem, g is compact with respect to the Hausdorff metric.
Proposition 3.3 below, proved in [38], shows that the functional K +— as,(K) is upper



semicontinuous with respect to the Hausdorff metric, if 0 < p < oo, respectively lower
semicontinuous if —n < p < 0. We show in Lemma 3.2 that the suprema in (2.2) are in
fact maxima for the relevant p-ranges 0 < p < n, respectively, n < p < oo,

IS, (K) = as,(Kp) and OS,(K) = as,(K;)

for some convex body Ky C K, respectively K C Kj, and that the second infimum
in (2.3) is in fact a minimum for —n < p <0,

0sp(K) = asp(Ka2),

for some K» in ICK.

It was shown [38, 53] that for all p # —n and for all invertible linear transformations
T:R*—=R" -

asp(T(K)) = |det(T)|»+r as,(K). (2.4)
It then follows immediately from the definitions (2.2) and (2.3) that the same holds,
replacing as, with 1.5, 0Sy, is, and osy,.

For a general convex body K in R"™, a particularly useful way to define as;(K) is the
following. For u € R™ and t > 0, define the half-spaces

H*(t,u) = {z e R" | (z,u) >t}, H (t,u)={zeR" ’ (z,u) <t}

For a convex body K C R™ and § > 0, the (convex) floating body Ks was introduced
independently by Bérédny and Larman [4] and Schiitt and Werner [51],

Ks = N H™(t,u). (2.5)
|H+ (t,u) K| <5] K|

It was shown in [51] that for any convex body K in R,

2
asy(K) =2 7|Bgil| n+1 lim 7‘K| — K]

Here, and in what follows, By denotes the unit Euclidean ball in R™.

Geometric descriptions in the sense of (2.5) and (2.6) of Ly-affine surface area also exist.
We refer to e.g., [29, 52, 53, 58, 60].

3 Main results

Our main results give quantitative estimates for the inner and outer extremal affine
surface areas. We observe first that for some p, the values for the extremal affine surface
areas can can be given explicitly and the p-ranges can be restricted accordingly in the
quantitive estimates of Theorems 3.5 and 3.6 below.

3.1 The relevant p-ranges

(i) The case IS,(K)



If p =0, then for all K,

ISo(K)= sup (aso(K'))=n sup |K'|=n|K]|
K'eKk K'eKk

If p = n, then for all K,
1S,(K) =n|Bj|.

Indeed, on the one hand, we have by (2.4),

I8,(K)> sup (asu(pBy)) = sup (asa(B3)) = n|Bg|.

pB3eRK pB3 XK
The equi-affine isoperimetric inequality [38] says that as,(K) < as,(BY). Therefore,

IS, (K)= sup (as,(K')) < sup (as,(Bj)) =n|By|.
K'eKk K'eKk

If n < p < oo, then IS,(K) = co. This holds as by (2.4),

IS,(K) > sup (asy(eBY)) = supe™ " n|B}| = oo,
eBYeEXK 5

. n—p
since =2 < 0.

If —n < p <0, then for all K, IS,(K) = co. Indeed, we have for all polytopes P

k()7
IS,(K) > sup (asy(P)) = sup / %du(w) = 00,
Pekk PeKkk JoP <.T,N($)> n+p

since k(x) = 0 almost everywhere.

If —oo < p < —n, then for all K, I.5,(K) = co. Indeed, as above,

IS,(K) > sup (asy(eBY)) = sup " s n|BY| = oo,
eBy ek €

. n—p
since 77 < 0.

Conclusion. The relevant p-range for 1.5, is p € [0, n].
We note also that for p € [0,n],

15,(B3) = n|B3| = asp(By). (3.1)

(ii) The case OS,(K) .
If p = n, then for all K, OS,,(K) = n|B%|. Similarly, to (i) above,

OS,(K)> sup (as,(RB}))= sup (as,(Bj}))=n|Bj|
RBpckK RByekK

and again by the equi-affine isoperimetric inequality,

08, (K) = sup (asy(K')) < sup (asn(BE)) =n|By|.
K’'ekKK K’'ekKK



If 0 < p < n, then, OS,(K) = oco. This holds as

OS,(K)> sup (asy(RBY)) = sup R n|BY|,
RByeKK RByeKK

and R can be made arbitrarily large.

If —n < p <0, then, OS,(K) = oco.
This holds as we can again take polytopes P that contain K.

If —0o < p < —n, then for all K, OS,(K) = cc.

Let C. be a rounded cube centered at 0 containing K and such that each vertex is
rounded by replacing it by a Euclidean ball with radius €. More specifically, C. is the
convex hull of the 2" Euclidean balls

B2(t- 4, ¢) §=(61s....00)

where §; = £1 for alli = 1,...,n and ¢ is sufficiently big so that the convex hull contains
K. The boundary of C. contains all the 2"-tants of the boundary of BY. Therefore,
in order to estimate as, (C) from below it suffices to restrict the integration over the
boundary of C. to those 2"-tants of the boundary of By. The curvature there equals
et while

(z,N(z)) < 2t-v/n.
Then

n(n—1)
g n+p

—_—n
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which can be made arbitrarily large for € arbitrarily small.

08,(K) > as, (C2) >

B2,

Conclusion. The relevant p-range for OS, is p € [n, c0].
We note also that for p € [n, oo,

0S,(B3) = n|B3| = asy(By). (3-2)

(iii) The case os,(K) .
If p =0, then for all K,

oso(K) = inf (aso(K')) =n inf |K'| = n|K]

If 0 <p<ooorif —oo <p < —n, then for all K, 0s,(K) = 0. Indeed, for polytopes
P € KX, we have for those p-ranges

isp(K) < Pien}CfK as,(P) = 0.
Conclusion. The relevant p-range for os, is p € (—n,0].
We note also that for p € (—n, 0],

0sp(By) = n|By| = asy(B3). (3-3)

(iv) The case is,(K).



We have that is,(K) = 0 for all p and for all K.
If0<p<ooorif —oo <p< —n we get for polytopes P € Kg,

isp(K) < leen}CfK as,(P) = 0.

If —n < p <0, then for all K,

isp(K) < aB%“IgICK (asp(eB3)) = n|BY| irelfes"m =0.

Conclusion. There is no interesting p-range for the inner minimal affine surface area
isp.

3.2 Continuity, monotonicity and isoperimetricity

It was proved by Lutwak [38] that for p > 1, L,-affine surface area is an upper semicon-
tinuous functional with respect to the Hausdorff metric. In fact, it follows from Lutwak’s
proof that the same holds for all 0 < p < 1 (aside from the case p = 0, which is just
volume and hence continuous). For —n < p < 0, the functional is lower semicontinuous.

Proposition 3.1. [38] Let 0 < p < co. Then the functional K +— as,(K) is upper
semicontinuous with respect to the Hausdorff metric on R™. For —n < p < 0, the
functional is lower semicontinuous.

For the proof of the next lemma, we use Proposition 3.1 and the L,-affine isoperimetric
inequalities which were proved by Lutwak [38] for p > 1 and for all other p by Werner
and Ye [60]. The case p =1 is the classical case.

For p >0,

asp(K) ( K| )1145
< : 3.4
asy(B7) |B| (34)

and for —n < p <0,

n—p

as,(K) (K| \ 55
asp<Bg>><|Bg> ' (3.5)

Equality holds in both inequalities iff K is an ellipsoid. Equality holds trivially in both
inequalities if p = 0.

Lemma 3.2. Let K be a convex body in R™.

(i) Let 0 < p < m. Then there exists a convex body Ky C K such that

IS,(K) = sup (asy(C)) = asy(Ko).
CeKk
(i) Let n < p < oco. Then there exists a convex body Ko D K such that

0S,(K) = Cseuch (asp(C)) = asy(Ko).



(i4i) Let —n < p < 0. Then there exists a convex body Ky D K such that

0sp(K) = Cien}CfK (asp(C)) = asy(Ko).

Proof. (1) When p =0, I55(K) = n|K| and we take Ky = K and when p = n, I5,(K) =
n|B%| and we can take again Ky = K. Let now 0 < p < n. By the L,-affine isoperimetric
inequality (3.4), as,(K) <n |K| "> |B§\%, and in particular, the supremum is finite.
There is a sequence (Cy)ren of convex bodies such that for all k, Cy, C K

1
asp(Cr) + — > sup (asy(C)),
k CeKk
or
lim as,(Cx) = sup (as,(C)).
Jim as, Sup (as(C))
By the Blaschke selection principle, see e.g., [48], there is a subsequence (C,);cn that
converges in Hausdorff distance to a convex set Ky. We claim that Ky is a convex body
in R™, i.e., Ky has an interior point. Suppose not. Then lim; ;o |Ck,| = |Ko| = 0. By
the Ly-affine isoperimetric inequality (3.4),

== |Bg|n2Tpp —0.

lim as,(Cy,) < lim n |Cy,
1—00 11— 00
Therefore
0= lim as,(Ck,) = sup (as,(C)) >0,
=0 Cekk
which is a contradiction. The last inequality holds since there is p > 0 such that a ball
with radius p is contained in K. By the upper semi continuity of the L,-affine surface

area,

sup (as,(C)) = limsup as,(Ck,) < asy(Ko)
Cekk i—00

and thus 1.5,(K) = asp(Ky).

(ii) We can assume that g(K) = 0. There is R > 0 such that K C RBj. For all convex
bodies C such that C' > K and |C| > (nR)"|B%| there is a convex body C such that
C > K, C C nRBY and as,(C) < as,(C). We now show the latter. There is an affine
map A with determinant 1 and p > 0 such that pB% is the ellipsoid of maximal volume

is contained in A(C). Then by F. John’s theorem
pBy C A(C) C npBY.

Therefore, (nR)"|By| < |C| < (np)™|B%| and thus R < p. This yields

R R

We pick C' = %A(C). Then as,(C) = (%) " 4, (C) > asy(C), as (%) >, s
p>n. If C O K is such that |C| < (nR)™|B%|, we proceed as follows. As K is a convex

body, there is r > 0 such that rBY} C K and thus rB} C C. For every x € C, let 2+ be
the hyperplane through the origin and orthogonal to . We consider the cone with base




xt NrBY and apex x. Let h, denote the height of the cone. Then we have for all z € C
that “er"=1|BP~!| < (nR)"|B| and thus C C B3] nt R By.

‘B;—1| prn—1

Hence, altogether we can assume that the relevant (for the supremum) convex bodies

. . B” n+l pn
C € KX are contained in RyBY, where Ry = max {nR, l;,f_ll‘ A } We then
2

proceed as above. By the L,-affine isoperimetric inequality (3.4), we have for all relevant
C € KX that
n—p n| =22 n—p n| =22
asp(C) < n |C["F |By|mr <n |K|"F |By|"7,
and in particular the supremum is finite. Then, as above, there is a sequence (Cy)ren of
convex bodies such that we have for all £ that C;, C K and that

asp(Cy) + -~ > sup (asp(c))’

CekkK

El e

or

li Cy) = s 3,(C)).

Jim asy(Cr) = sup (as,(C))
By the Blaschke selection principle, see e.g., [48], there is a subsequence (C,);en that
converges in Hausdorff distance to a convex set Ky. Ky is a convex body as K C C}, for
all 4 and thus K C Ky. We conclude as in (i).

(iii) The proof is similar to (ii). We include it for completeness. We can again assume
that g(K) = 0 and that there is R > 0 such that K C RB%. As in (ii), we claim that
for all convex bodies C such that C O K and |C| > (nR)"™|B%| there is a convex body
C such that C D K, C' C nRBY and as,(C) > as,(C). We now show this. There is an
affine map A with determinant 1 and p > 0 such that pBY is the ellipsoid of maximal
volume is contained in A(C). Then by F. John’s theorem

pBy C A(C) C npB3.
Therefore, (nR)"|BY| < |C| < (np)™|BY| and thus R < p. This yields

R R

~ - no2 no Lt
We pick C' = %A(C). Then as,(C) = (%) i asp(C) < asp(C), as (%) <,
as —n < p < 0. If C D K is such that |C| < (nR)"|B%|, we proceed as follows. As
K is a convex body, there is 7 > 0 such that rBY C K and thus rBf C C. For every
x € C, consider the cone with base * N 7By and apex x. Let h, denote the height

of the cone. Then we have for all z € C that “er"~1|B}~'| < (nR)"|BY| and thus

[BY| n"t'R™ pn
C c L 2 By

Hence, altogether we can assume that the relevant (for the infimum) convex bodies
C € KX are contained in RyBY, where Ry = max {nR, 1551 ""HRH}. We then

|B; = Tt
proceed as above. By the L,-affine isoperimetric inequality (3.5), we have for all relevant
C € KX that

n—

P n| =22 n—p ny| =22
asp(C) 2 n |C|Fr |By |7 2 n |[K|"Tr |By|™,
and in particular the infimum is finite. Then, as above, there is a sequence (Cf)ren of
convex bodies such that Cy, C K for all k and such that

1

asp(Cr) < Cien)ch (asp(C)) + T



for all k, and hence
k—oc0

lim as,(Ck) = Cienlch (asp(C)).

By the Blaschke selection principle, see e.g., [48], there is a subsequence (C,);en that
converges in Hausdorff distance to a convex set Ky. Ky is a convex body as K C CY, for
all 4 and thus K C Ky. Again, we conclude as in (i). O

It is natural to ask about the continuity properties of inner and outer maximal, respec-
tively minimal, affine surface areas in the p-ranges that are not already settled by the
above considerations.

Proposition 3.3. Let the set of convex bodies in R™ be endowed with the Hausdorff
metric.

For 0 < p <n, the functional K — IS,(K) is continuous.
Forn <p < oo, the functional K — OS,(K) is continuous.

For —n < p <0, the functional K — 0s,(K) is continuous.

The next proposition lists affine isoperimetric inequalities and monotonicity properties
for the the functionals 1.5, OS, and os,.

Proposition 3.4. Let K be a convex body in R™.

(i) Let 0 < p <n. Then IS,(K) < IS,(B%) (‘g?l)W .
Equality holds trivially if p =10 or p =n.
Letn < p < 0. Then OS,(K) < 08,(B3) (1) ™

Equality holds trivially if p=n.

Let —n < p < 0. Then 0s,(K) > 0s,(B%) (\%H)m '

Equality holds trivially if p = 0.
For all other p, equality holds in all inequalities iff K is an ellipsoid.

n+p

(ii) p — (IiTl(gl()) " s strictly increasing in p € (0,n].

n+p
p— ( AR ) " is strictly decreasing in p € [n, 00).

is strictly decreasing in p € (—n,0).

3.3 Asymptotic estimates

The next theorems provide estimates for the inner and outer extremal affine surface areas
in the p-ranges that are not already settled above. There, L is the isotropic constant
of K as defined in (1.2).

10



Theorem 3.5. There is an absolute constant C' > 0 such that for alln € N, all0 < p<n
and all convex bodies K C R"™,

(3.6)

n—p p =

By (K|

L (O ISyBY) _ IS,(K) _ IS,(BY)
nb/6 Lx s ‘Bg|%5

Equality holds trivially in the right inequality if p = 0,n. If p # 0,n, equality holds in
the right inequality iff K is a centered ellipsoid.

B 1Sp(B3) _ 1 pn|wks
y (3.1), =325 = n|By|»+r. Therefore, Theorem 3.5 states that

n—p
|By|n¥p

2np
1 nEp 1S, (K

T/G <C> S ‘S;I;( ) n—p < L
" Lx n By | K|

Stirling’s formula yields that with absolute constants, c1, cs,

np np
n+p n n+p
c 1S,(B 2p c
27 _ S P( 3) :’n|B£L|"+P S 17 —
n(p—1)—p n| =L n(p—1)—p
n n+p |32 | n+p n ntp

As noted, the upper bound is sharp when e.g., K is BY. However, in general we have
IS,(K) > asp(K). For example, for the n-dimensional cube BY, centered at 0 with
sidelength 2, as,(B%) = 0, but By C B2 and so IS,(BL) > as(Bj§) > 0.

Theorem 3.6. Let K C R” be a convexr body.

(i) Let n < p < oo. Then there are absolute constants ¢ and C such that

2n?
max { n~%/6c" vn (C )nﬂ) n"wir OSp(nBiﬁ:)) < OSpg(p) < OSP(E€)7
Lo By |K[»E Byl
(3.7)

where s(K) is the Santald point of K. Equality holds trivially in the right inequality if
p =n. If p £ n, equality holds in the right inequality iff K is a centered ellipsoid.

(i) Let —n < p < 0. Then

OSP(BEL) < OS;D(K) < nnZlZ OSZD(BSI). (38)

B IR gl

Equality holds trivially in the left inequality if p = 0. If p # 0, equality holds in the left
inequality iff K is a centered ellipsoid.

If p = n, then the maximum in the lower bound of (i) is achieved for the second term

and is 1. If p = oo, the maximum is achieved for the first term and it is equal to n=5/6¢".

If K is centrally symmetric, n"*Fr can be replaced by R

11



3.4 Relation to quermassintegrals

Finally, we turn to the relation of the extremal affine surface areas to quermassintegrals.
While some of the (trivial) extremal affine surface areas are quermassintegrals, we will
see that in general this is not the case.

Given a convex body K C R™ and ¢ > 0, the Steiner formula (see, for example [48]) says
that there exist non-negative numbers Wy (K), ..., W, (K), such that

K+t BE| = Wo(K) + (?) Wi (Kt + (;‘) Wo(K)E2 + - + W ()™

The numbers Wy(K), ..., W, (K) are called the quermassintegrals. In particular, Wy(K) =
|K| and W,,(K) = |B%|. Therefore, by section 3.1, I55(K) = 0so(K) = n|K| = nWy(K)
and 1.5, (K) = OS,(K) = n|BY| = nW,(K) are (multiples of) quermassintegrals. How-
ever, as shown in the next proposition, in general the extremal affine surface areas are
not (multiples, or powers of) quermassintegrals.

We only treat the cases 151, os_1 and OS,2. The other relevant p-cases are treated
similarly.

Proposition 3.7. (i) If 8 > 0, then ISlB and os_1 are not equal to Wy, for any 0 <i < n,
and if 5 <0, then OSS2 is not equal to Wy, for any 0 <1 < n.

(i) The quantities 151, 0s_1 and OS2 are not a linear combination of quermassintegrals.
In particular, those quantities are not valuations.

Remark 3.1. From [50] it is known that affine surface area is a valuation, that is, for
every K, L C R" convex,

asi(KNL)4as)(KUL)=as;(K) 4+ as;(L).

It is also known by Hadwiger’s characterization theorem [25], that every continuous
rigid motion invariant valuation on the set of convex bodies is a linear combination of
quermassintegrals. Thus, Proposition 3.7 (ii) shows in particular that 157, os_; and
08,2 are not valuations.

4 Proofs

Proof of Proposition 3.3. By section (3.1) (i), IS0(K) = n|K]| is just volume, which is
continuous and ISy(K) = n|BY|, which is constant and hence continuous. Thus for
15,(K) we only need to consider p € (0,n). We may assume that 0 is the center of

gravity of K, that is,
/ xdr = 0.
K
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Hence, there exists p > 0 such that pBy C K. Let {K;}7°, be a sequence of convex
bodies, all having center of gravity at the origin, that converges to K in the Hausdorff
metric. That is, for every € > 0, there exists Iy € N such that for all [ > [,

K CK+eBY and K C K;+¢Bj.

If € > 0 is sufficiently small, then we can assume that for all [ > ly, {5 By C K;. Thus,
for all I > I,

Kng+aB§gK+€K:<1+8)K, (4.1)
p p
and 10 10
KCK +eBy CK + K = (1+6> K. (4.2)
p p
Hence,
A= c (4.1)
e 15,(K) = 18, ( {1+ 2 ) K ) = 18,(k),
and

106\ " e 1 (4.2)
(1 ¥ 05) 18,(K) = IS, <(1 ¥ OE) Kl> 2 15,(5).
p p

In the last two lines above, we have also used (2.4), resp. the remark after it. Altogether,
for all [ >y,

P

e\ " 102\ "7
(1 + p> 18,(K)) < IS,(K) < <1 n p) 18, (K)).

Since € > 0 is arbitrary, the result follows.

Continuity for outer maximal affine surface area O.S),, and outer minimal surface area os,
is treated similarly. O

For the proof of Proposition 3.4 and Theorem 3.5, we use the above quoted L,-affine
isoperimetric inequalities.

Proof of Proposition 3.4. (i) When 0 < p <n and K’ C K, we use (3.4) and (3.1),

: LA w (1KLY
IS,(K) = sup (asy(K')) < sup asy(BY) | 5ot <asy(By) | 75t
K'eKx K'eKx | B | B3|
n—p
[K]\
= IS (B”)( a .
7By

From the equality characterization of (3.4) it follows that equality holds iff K is an
ellipsoid.
Similarly, we get for OS, when p € (n, o0, also using (3.2),

: o (K1) w (KL
0S,(K) sup (asy(K')) < sup asy(BY) — < as,(By) -
K’'eKK K'eKK |Bz | |Bz |

n

K n+p
- os,mp ()
2

s

13



From the equality characterization of (3.4) it follows that equality holds iff K is an
ellipsoid.
In the same way, using (3.5) and (3.3) when —n < p < 0, we have

. o (YT
oK) = inf (a5, () = s, (59) it ([

oy (LKLY
0sp(By) (|B§| .

Equality characterization follows from the equality characterization of (3.5).

Y

ntp
(i) It was shown in [60] (see also [45]) that the function p — (afﬁg‘{)) " s strictly
increasing in p € (0,00). Therefore we get for 0 < p < g < n,

ntp ntp n_n ntq
(I&(K)) P s (83 (K)) _ supge, (nE)E T (msy (K)T)
n|K| (n|K])*5" (n|K[)*"
K n_n ntq IS K ntq
(nl )P~ (Sup asq(K,)> _< o >) |
(n|K[)" \K'ekx n| K|

n+p
It was also shown in [60] (see also [45]) that the function p — (iff}fﬁ) is strictly

decreasing in p € (0,00). Therefore we get for n < p < ¢ < o0,

< ‘o L - n\n+q
0S,(K) n+p _ SUPgrekK (asp(K')"tP) - SUPK/excK <n|K |) (asy (K")"H9)
n|Ke| (n|Ke|)mtp (n|Ke|)m+r
(supserercr sy ()" (osquf))"*q
- (n Ke[)™ " n|K®|
and for —n <p < q <0,
in K" (asy(K")nta
0s,(K)\"? _infrrepen (asp(K)"TP) - Il g ercx (n| |) (asq(K7)"+9)
n|Ke| - (n|Ke|)m+p (n|Ke|)n+p

L (infpepn as,(K)™ (osqu())”*q
- (n] K] Wl K°]
]

In part of the proof below it is most convenient to work with a body which is in isotropic
position. A body K C R™ is said to be in isotropic position if |K| = 1 and there exists
Ly > 0 such that for all € S*~1,

/ (z,0)dx =0, / (x,0)%dr = L%.
K K

Here and in what follows, S*~! denotes the unit Euclidean sphere in R”. It is known
that for every convex body K C R”, there exists T : R™ — R affine and invertible such
that TK is isotropic. See for example [12] for this and other facts on isotropic position
used here.

14



Proof of Theorem 3.5. The upper bound, together with the equality characterizations,
follows immediately from Proposition 3.4 (i).

Now we turn to the lower bound in the case (i). Asnoted above, I.5,(TK) = det(T) %ISI,(K)
for any invertible linear map 7. Therefore, to prove the lower bound for 0 < p < oo, it

is sufficient to consider K in isotropic position. Let Lx be the isotropic constant of K.

By the thin shell estimate of O. Guédon and E.Milman [23] (see also [16, 33, 44]), we
have with universal constants ¢ and C, that for all ¢ > 0,

|KNn{zeR": ||z - Lgv/n| < tLgvn}| >1- Cexp(—cn'/?min(t%, t)).

Taking t = O(n~1/%), there is a a new universal constant ¢ > 0 such that for all n € N,

‘K N {x ER™: ||z - Lv/n| < cLKnl/?’}‘ > (4.3)

N

This set consists of all x € K for which

Lk (n1/2 - cn1/3) <|lz|| < Lx (n1/2 +cn1/3> .

We consider those n € N for which n!/6 > ¢.
We will truncate the above set. For : =0, 1, 2, ... k, = [nlog,
sets

n/2penl/3

WJ, consider the

Li:=Kn{zeR" : 2/"(Lg(n'/? —cn'/?)) < |lz]| < 20D/ (Lg(n/? — ent/3))}.

Then
1/2 1/3
ot < gowa ittty _ W2+ en')?
= nl/2 — enl/3

and thus
KN {ac ER” : [[|z]| — L/ < cLKn1/3} c Uk, L. (4.4)

Moreover, with a new absolute constant Cy,

kn < nlog, % = nlog, 1“#1//2 < Cy no/6

By (4.3) and (4.4), there exists ig € {1, 2, ..., [Con®¢]} such that

|Li| > __ (4.5)

2 | Con®/6]
We set R = 20/"(Lg (n'/? — en!/3)). In particular, we have
Li,=Kn{zeR": R<|z|| <2Y"R}.
Let
O={0eS" " :pxk(0)>R},and So ={rf : 6 € Oandr € [0, R]} C K,
where pg (f) = max{r >0 : rf € K} is the radial function of K.
Now we claim that
L, € 21/"S5. (4.6)
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Indeed, let y € L;,. We express y = rf in polar coordinates. By definition, we have
R <r < 2Y"R and 70 € K. Thus, pg(f) > r > R and hence § € O. Therefore,
r6 € 21/" S5 because r € [0, 2/ R]. By (4.5) and (4.6) we conclude that

n 1
—1/n
|SO‘ > (2 / ) |Li0| > W. (4'7)

Now, we consider as, (K N RBY). For § € O, Rf is a boundary point of KN RB%. Thus,

P _ _ p
K nt+p R (n 1) n+p

as, (KRB > [ — i) = [ du)
RO <x, N(x)> n+p RO R n+p

(n=1)p+n(p—1) 2np g
—amo) (L)Y T —uwmo (L)
e ( 7 j 7 ,

where p is the surface area measure of RS™~!. We can compare surface area and volume,

RO)-R
1(RO)- R = [So].
n
Hence,
1 %_1 n 1 721%11)7
2np
1\ »te n
> (= S —
B <R> 4 [Cond/6]
Since R < 24/nLg, this finishes the proof for the lower bound. O

Proof of Theorem 3.6. The upper bound of (i) and the lower bound of (ii), together with
the equality characterizations, follow immediately from Proposition 3.4 (i).

For the other estimates, we will rely on the dual body of K. Recall that the Santald
point s(K) of a convex body K is the unique point s(K) for which the origin is the
barycenter of (K — s(K))°. Without loss of generality, we may assume s(K) = 0 and
K° is in isotropic position.

Following the proof of Theorem 3.5, there exists R € [§1/nLge,2y/nLke] such that
O:={0ecS" " pgo(0) > R}

satisfies
n 1
R Cn5/6’

1

1 (RO) =

where p is the surface area measure of RS™~

We consider the following convex hull conv{R?K, RB%}. Recall that the support func-
tion of a convex body L is hp(f) := max,er(x,0). Furthermore, we have the identity
hr(0) = m. Thus, for § € O

hpei(0) = R?h(0) = R? e (@
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Therefore, RO € d(conv{R*K, RB}}). Now, we have

D

0S,(R*K) > R R s [ BT ey = (L)
n( ) > asp(conv{ ) 2}) > ROW p(z) = onils \ R’ .

Using the fact that |K°| = 1 and the volume product estimate |L||L°| > ¢*|B%|? from
Theorem 1 of [11], we have
RK]| > "B | B
for some constant ¢ > 0.
Alltogether we conclude

2np 2n2

OS,(RPK) _ n (1IN®5 o e om o (INFE
wr s Sown k) CRIBIT - grs(g) @mp

With the identity %f_%) = n|BY

|By |+

_2p_ .
»+r  we obtain

2n2

OS,(FPK) , OSp(Bf) 1_ nc ( . >+

[R2K|FT|By |5 n

lq(o

Furthermore, we can derive a different bound using Léwner position. We will assume
that K is in Lowner position, i.e., the Lowner ellipsoid L(K), which is the ellipsoid of

“‘:](3? |)| BZ'. We also have that

minimal volume containing K, is the Euclidean ball
KCL(K)CnK, (4.8)
and that for a 0-symmetric convex body K,

K CL(K)C+vn K. (4.9)

(i) We get with (2.4), (3.2) and (4.8),

n—p n—p

LU\ i e (K] ) ™ .
08,(K) > as,y(L(K)) = (' ]gn)') n |By| > n"iw < ‘BJ > 08,(B5),
|| B3

which finishes the lower estimate of (i).

(ii) Similarly, we get with (2.4), (3.2) and (4.8),

LK)\ " nep [ |K|\ 7P
osp(K) < asp(L(K)) = (BN 0 gy <t (LELY™ oy,
B3] B3]

In the 0 -symmetric case we use (4.9) to get the estimate with n"= 7 instead of n"n s .
O
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Proof of Proposition 3.7. We only give the proofs for I.S;. The proofs for os_; and
08,2 are the same with the obvious modifications.

(i) To prove the first assertion, note that by (the remark after) (2.4), I5? is homogeneous

%fgl). Also, it is known that W; is homogeneous of degree n — i. Hence, if

ISf = W; for some i, then % € N and in particular § € Q. On the other hand, it
is known that W;(Bs) = |B¥|. Thus, we must also have

of degree

|By| = 155(32) = ”ﬂ|Bz |’8»
where in (*) we used (3.1). Therefore, we have |B§’\1?Tﬁ € N. Now, it is known that

n T2
Br= " _ )@ 2ln,

T (2+1) 2<<n—1>/i)l!<4w>”% 24,

In other words, for every n € N, we have |B}| = Q,n% or |B}| = n7r"T_1, where
y 2 2

-8
Q@n € Q. Therefore, if \B’21|1T € N with g € Q, that would imply that 7 is an algebraic
number, which is not the case. This proves the first assertion.

(ii) Suppose that 1.5; is a linear combination of quermassintegrals. Then, for K given,

there exist A;, 0 < i < n, not all of them equal to 0, such that 1.5, (K) = Y1, MW, (K).
The respective homogeneity properties then imply that for all « € R,

QHIS(K) = Y Na" T W(K),
=0
and in particular, for K = B%, that for all a € R,
n Q" = Z A" = Xga + A" N, (4.10)
i=0
Letting o = 0 in (4.10) shows that A, = 0. This means that for all o € R,
. n—1
n ot = Z "= dpa™ F M+ A
i=0

Differentiation gives

n

—1 —1
n (”n + 1) " T = nXga" T 4+ (n— DA™ TR 4 A (4.11)
n

Letting o = 0 in (4.11) shows that A,,—1 = 0. We continue differentiating till the largest
k € N for which the exponent nZ—ﬁ — k of a on the left hand side of the equality is
strictly larger than 0. We can take k = n — 2 and get that A, = A\,_1 =--- = Ao = 0.
Thus equality (4.10) reduces to the following: there exist Ao and A; such that for all

a € R,
n

o1 — )\OO[ + A17
Qntl
which is not possible. The proof is therefore complete. O
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