
Separations and Equivalences between Turnstile Streaming and

Linear Sketching

John Kallaugher∗

UT Austin

Eric Price∗

UT Austin

April 16, 2020

Abstract

A longstanding observation, which was partially proven in [LNW14, AHLW16], is that any
turnstile streaming algorithm can be implemented as a linear sketch (the reverse is trivially
true). We study the relationship between turnstile streaming and linear sketching algorithms in
more detail, giving both new separations and new equivalences between the two models.

It was shown in [LNW14] that, if a turnstile algorithm works for arbitrarily long streams with
arbitrarily large coordinates at intermediate stages of the stream, then the turnstile algorithm
is equivalent to a linear sketch. We show separations of the opposite form: if either the stream
length or the maximum value of the stream are substantially restricted, there exist problems
where linear sketching is exponentially harder than turnstile streaming.

A further limitation of the [LNW14] equivalence is that the turnstile sketching algorithm is
neither explicit nor uniform, but requires an exponentially long advice string. We show how to
remove this limitation for deterministic streaming algorithms: we give an explicit small-space
algorithm that takes the streaming algorithm and computes an equivalent module.

∗This work was done in part while the authors were visiting the Simons Institute for the Theory of Computing.

ar
X

iv
:1

9
0
5
.0

2
3
5
8
v
2

[c

s.
D

S
]

 1
4
 A

p
r

2
0
2
0

1 Introduction

The study of streaming algorithms is concerned with the following question: given a very large
dataset that appears over time, what questions can one answer about it without ever storing it in
its entirety? Formally, one receives x ∈ Z

n (e.g, the indicator vector for the set of edges in a graph)
as a series of updates xi ← xi +∆ (e.g., edge insertions and deletions). One would like to estimate
properties of the final vector x while only ever using o(n) space, ideally poly(log n). The space used
by the algorithm is the primary quantity of interest; other parameters such as update or recovery
time are often well-behaved as a matter of course for small-space algorithms. In this paper we
focus on ‘turnstile’ streams, where ∆ can be negative, as opposed to insertion-only streams, where
it must be positive.

The study of turnstile streaming has been very successful at revealing new algorithmic tech-
niques and insights. It has found wide applicability, with algorithms for a huge variety of problems.
Examples include norm estimation in ℓ2 [AMS96] or other ℓp [Ind06, CDIM03]; ℓ0 sampling [FIS08];
heavy hitters [CCF02, CM05]; coresets for k-median [FS05, IP11]; and graph problems such as find-
ing spanning forests [AGM12], spectral sparsifiers [KLM+14], matchings [AKLY16], and triangle
counting [TKMF09, PT12, KP17].

Remarkably, for every single problem described above, the best known algorithm is a linear
sketch, where the state of the algorithm at time t is given by a linear function of the updates seen
to x before time t. And for most of these problems, we know that the linear sketch is optimal.

Linear sketches have a number of other nice properties. Their additivity means that one can,
for example, split a data stream across multiple routers and sketch the pieces independently. This
has also made such sketches useful in non-streaming applications such as distributed comput-
ing [KKM13]. Their output depends only on the final value of x, so they will work regardless of the
length of the stream, the order in which the stream arrives, and the intermediate states reached
by the stream. Their indifference to stream order means the randomness they use can often be
implemented with Nisan’s PRG [Nis92, Ind06].

They are also easier to prove lower bounds against, either using the simultaneous message
passing (SMP) model (e.g., [Kon15, AKLY16, KKP18]) or additional properties of linearity [PW12].

So it would be nice if every turnstile streaming algorithm could be implemented as a linear
sketch. And this is true, as shown in [LNW14], but only subject to fairly strong limitations. In
this paper, we explore the relationship in more detail. First, we show that some of the [LNW14]
limitations are necessary: we present natural problems with large, exponential separations between
turnstile streaming and linear sketching with the limitations removed. Second, we show how to
remove other [LNW14] limitations for deterministic functions.

Separations between turnstile streaming and linear sketching. The result in [LNW14]
requires that, in order for a turnstile streaming algorithm to be equivalent to a linear sketch, the
streaming algorithm must be able to tolerate extremely long streams (longer than 22

n

) that reach
correspondingly large intermediate states. In [AHLW16], it was shown that this equivalence can
be extended to ‘strict’ turnstile streams, where the intermediate states never become negative but
must still be allowed to become extremely large in the positive direction. However, the result
still leaves open the possibility of problems that require poly(n) space in linear sketching, but
in turnstile streaming can be solved in O(poly(log n, log logL)) space for length-L streams, or in
O(poly(log n, logM)) space for streams whose intermediate state never leave [−M,M]n (a ‘box

1

constraint’).

Such a box constraint is particularly natural in graph streaming: if the stream represents

insertions and deletions of edges in a graph, then the intermediate states x should lie in {0, 1}(
n

2
).

At the same time, graph streaming is where a theorem on equivalence between streaming and
sketching would be most useful: most of the problems for which we have lower bounds on linear
sketches but not turnstile streaming involve graphs. The [LNW14] equivalence gives lower bounds
for these problems, but only for turnstile algorithms that are indifferent to stream length and
tolerate multigraphs at intermediate stages.

The conjunction here, where the box constraint is most relevant in precisely the situations where
we have no alternative lower bounds to [LNW14], suggests an opportunity: perhaps we have not
found direct turnstile streaming lower bounds for these problems because no such lower bounds
exist that respect the natural constraints of graphs. Maybe better algorithms exist, and we just
haven’t found them because they require substantially different, nonlinear approaches to turnstile
sketching.

In this paper, we show that this can in fact be the case, presenting natural assumptions on
adversarially ordered turnstile streams for which we can prove exponential separations between
turnstile streaming and linear sketching. We give several different settings in which there are
problems that can be solved with an O(log n) space streaming algorithm, but for which any linear
sketch requires Ω̃(n1/3) space.

We first consider binary streams: the data stream can have arbitrary length, but must lie in
{0, 1}n at all times. We present a problem that can be solved over such streams in O(log n) space,
but requires Ω(n1/3/ log1/3 n) space to solve in linear sketching.

We then consider short streams: the data stream can have arbitrary intermediate states, but
only L = O(n) updates. We show that for a natural problem—triangle counting on bounded degree
graphs with many triangles—an O(log n) space streaming algorithm is possible, while any linear
sketching algorithm takes Ω(n1/3) space. The streaming algorithm depends polynomially on L, and
a separation remains for any L = o(n7/6).

The only previously known separation between turnstile streaming and linear sketching is due
to Jayaram and Woodruff [JW18], which for ℓ1 estimation with L = O(n) gives a separation of
O(log log n) vs Θ(log n). While that is also an exponential separation, it would be consistent with,
for instance, turnstile algorithms being convertible to linear sketches with an additive O(log n) loss.

Section 1.2 describes these results more formally, as well as two other similar results.

An explicit, computable reduction for deterministic algorithms. Another limitation
of [LNW14], as well as the earlier work [Gan08] that applies to deterministic streaming algorithms,
is that the reduction is not explicit. These reductions show the existence of a linear sketch, and
corresponding recovery algorithm, that are equivalent to the streaming algorithm; they do not show
that the sketch and recovery algorithm can be computed at all, much less computed in small space.
The distinction is analogous to that of L/poly and L: they are linear sketching algorithms with
a very long advice string. For an s-bit linear sketching algorithm, the advice string needs ns bits
for the sketch and 2s bits for the recovery. This is typically referred to as a “nonuniform” result,
but note that the advice string is much longer than the algorithm is supposed to store: there does
not necessarily exist an O(s)-bit machine that computes the linear sketch for each input size n and
space-s streaming algorithm.

2

We show for deterministic streaming algorithms how to perform an explicit reduction: given an
s-bit streaming algorithm, our algorithm computes an equivalent s-bit linear sketching algorithm
in O(s log n) bits of space. To do so, we generalize what a “linear sketch” means from prior work:

Definition 1. A linear sketch consists of a Z-module homomorphism φ from Z
n to a module M .

The “standard” linear sketch is φ(x) = Ax mod q for some matrix A ∈ Z
m×n and set of moduli

q ∈ Z
m
+ ; the corresponding module M is Zq1 × · · · × Zqm

1. But Definition 1 captures the ways
in which standard linear sketching is useful: the sketch is linear (φ(x + y) = φ(x) + φ(y))), and
therefore mergeable and indifferent to stream length and order.

In fact, according to the structure theorem for finitely generated Z-modules, every linear sketch
to a finite module M is equivalent to a standard linear sketch with q1|q2| · · · |qm using the same
space (i.e., log |M | = log

∏
qi). However, we do not know how to compute this transformation

efficiently, and our algorithm creates a linear sketch with φ and M of a different form.

Theorem 2. Suppose there is a deterministic algorithm solving a streaming problem P that works
on streams of all lengths, uses S space during updates and recovery, and uses s space between
updates. Then there is a linear sketching algorithm for P that uses O(S + s log n) space during
updates and recovery, and stores an s space sketch.

This reduction still has the stream length and box constraint limitations discussed in the previ-
ous section, but they are actually somewhat weaker than [LNW14, AHLW16]—the length required
is exponential in s, not doubly exponential. As with these works, the above theorem applies to
streaming problems representing general binary relations: any given input may have multiple valid
outputs (as in approximation algorithms) or even consider every output to be valid (as in promise
problems, where some inputs are invalid). For the more restrictive setting of total functions, where
every input has a single valid output, we can remove the restriction on stream length: the same
result holds for algorithms that work on streams of length n+O(s).

Another advantage we believe our reduction has over prior ones is that, because it is explicit,
it is easier to understand—and to understand the limitations of. We hope that this makes it easier
to develop new turnstile algorithms that circumvent the limitations of these lower bounds.

We now present the definitions required to state our results more formally.

1.1 Definitions

Definition 3. A data stream problem is defined by a relation Pn ⊆ Z
n × Z. A turnstile data

stream σ of length L is a sequence of updates σ1, . . . , σL ∈ [n]×Z. The state of a stream at time t
is given by

x(t) := freqσ(t) :=
∑

(i,∆)∈{σ1,...,σt}

∆ · ei.

and the final state is x = freqσ(L).

We will also write len(σ) for L.

1Some descriptions of linear sketches, such as the introduction of [LNW14], omit the moduli qi. But then the
sketch would not have bounded space on all streams, so these works end up introducing moduli either explicitly
(as in [LNW14]) or implicitly (by storing coordinates as O(log n)-bit words with overflow). Other authors, such
as [AHLW16], include the moduli.

3

Definition 4. A data stream algorithm A is defined by a random distribution on initial states y;
a transition function that takes a state y and a stream update σi and returns a new state y′; and
a (possibly randomized) post-processing function g that takes the final state A(σ) and returns an
output g(A(σ)).

We say that A solves a problem Pn under condition C if, for all streams σ ∈ C, with 2/3
probability, (freqσ, g(y)) ∈ Pn. We say that A uses s space between updates if all states reached
by A while processing σ can be represented in S bits of space; we say it uses S ≥ s space during
updates and recovery if the transition function and post-processing function use S space.

One very common stream condition considered in the literature is that of ‘strict’ turnstile

streams, where x
(t)
i ≥ 0 for all i and t. The goal of our separations is to describe relatively mild

stream conditions under which turnstile streaming is much easier than linear sketching. The goal
of our equivalences is to bound S as well as s in the reduction.

For the explicit problems we consider, which are decision and counting problems, the set of
valid outputs for each input forms an interval. Therefore the success probability can always be
amplified to 1− δ by taking the median of O(log 1/δ) repetitions.

Definition 5. A linear sketching algorithm is a data stream algorithm where the state is φ(freqσ),
where φ is a linear sketch, along with the randomness used to choose φ.

We will at times need some “standard” streams constructed from vectors or from other streams:

Definition 6. For any x ∈ Z
n, the “canonical” stream κ(x) is the stream that inserts each of its

coordinates in order, skipping any zero coordinates, so len(κ(x)) = ||x||0.

For any stream σ, σ is the stream with the same sequence of updates but the opposite sign on
each update, so if σt = (i,∆), σt = (i,−∆).

For certain reductions we will need to iterate through (subsets of) N
n in “little-endian” order,

that is, x < y if xn < yn, or xn = yn and xn−1 < yn−1, and so on.

1.2 Our Results: Separations

Box-constrained streams. Our first result concerns binary streams, in which we are promised
that the partial stream states x(t) lie in {0, 1}n at all times.

Definition 7 (Box constraint). ΓM is the set of streams such that for all times t,
∥∥x(t)

∥∥
∞
≤ M .

Γ0,1 is the set of streams such that for all times t, x(t) ∈ {0, 1}n.

Theorem 8. For every n ∈ N, there exists a data stream problem Pn ⊆ {0, 1}
n × {0, 1} such that:

1. Any linear sketching algorithm solving Pn requires Ω(n1/3/ log1/3 n) bits of space.

2. There exists a turnstile streaming algorithm that solves Pn on Γ0,1 in O(log n) space.

Note that as the final state of a linear sketching algorithm depends only on the final state of the
stream, any linear sketching algorithm solving Pn on Γ0,1 would also solve Pn for arbitrary streams.

One property of binary streams is that every update to a coordinate i uniquely identifies the
value of xi after the update. Over larger domains, this is no longer true. We can still show a similar
result for inputs of size m, as long as intermediate results never exceed 2M − 1:

4

Theorem 9. For every M,n ∈ N, there exists a data stream problem Pn ⊆ {−M, . . . ,M}n×{0, 1}
such that:

1. Any linear sketching algorithm solving Pn requires Ω(n1/3/ log1/3 n) bits of space.

2. There exists a turnstile streaming algorithm that solves Pn on Γ2M−1 in O(log n logM) space.

Interestingly, this 2M threshold matches one of the results in [AHLW16]. Recall that one
requirement for [LNW14] to show an equivalence between linear sketching and streaming is that
the streaming algorithm tolerate intermediate states of (more than) doubly exponential size, i.e.,
Γ22

n . One result in [AHLW16] shows that this can be relaxed to Γ2M—as long as M > 2ns, where
s is the algorithm space. That additional requirement is very strong (e.g., one cannot store a single
coordinate of the input) but if it did not exist, the result would imply that our 2M − 1 threshold
cannot be increased.

Graph streams Our separations for binary and box-constrained streams are based on a some-
what unnatural problem. We also present separations for a more natural problem, that of counting
triangles in bounded-degree graphs.

In this problem, the final state x ∈ {0, 1}(
n

2
) represents a graph of maximum degree d. In the

counting version of the problem, one would like to estimate the number of triangles T in the graph
to within a multiplicative 1± ε factor with probability 2/3; in the decision version, one would like
to determine whether the number of triangles is zero or at least T .

In the insertion-only model of computation, the counting problem can be solved in O(d m
ε2T

log n)
space [PTTW13], where m ≤ nd/2 is the number of edges in the graph, while in the linear sketching
model it requires Ω(n/T 2/3) space even for the decision version with d = 2 [KKP18]. This leaves
a natural question: for constant d and linear T , do turnstile streaming algorithms require log n or
n1/3 space? We show, under natural conditions on the stream, that it is the former.

In our first result on this problem, we suppose that the stream represents a bounded degree
graph at all times, not just at the end of the stream. In this model, we can match the best known
complexity in the insertion-only model for constant-degree graphs [JG05, PTTW13].

Theorem 10. There is a streaming algorithm for triangle counting in max-degree d graphs, over

streams with intermediate states of max degree d, that uses O
(
d2m
ε2T

log n
)

bits.

When T is Θ(n), this is O(d3 log n): exponentially smaller than the Ω(n1/3) lower bound for
linear sketching for constant degree graphs, and still separable up to small polynomial degrees.

In our second result on this problem, we suppose that the total length of the stream is L, but
allow the intermediate states to be arbitrary multigraphs.

Theorem 11. There is a streaming algorithm for triangle counting in max-degree d graphs of

length-L streams using O
(
d3L2

ε2T 2 log n
)

bits of space.

For constant degree graphs with L and T both Θ(n), this is again O(log n) rather than the
Ω(n1/3) required by linear sketching. Note that in the graph setting, n is the number of vertices
(equivalently edges, as the degree is constant), and so L = O(n) is equivalent to saying that at least
a constant fraction of the insertions in the stream are never followed by a corresponding deletion;
this is a reasonable assumption for real world graph streams such as the Facebook friends graph.

5

1.3 Our Results: Equivalences

Our main equivalence result is Theorem 2. We also have a slightly stronger theorem for total
functions:

Theorem 12. Suppose there is a deterministic algorithm solving a streaming problem P that works
on streams of length n+2s+2, uses S space during updates and recovery, and uses s space between
updates. If P corresponds to a total function on Z

n, there is a linear sketching algorithm for P
that uses O(S + s log n) space during updates and recovery, and stores an s space sketch.

The advantage of this over Theorem 2 is that the stream length is short (i.e., (1 + o(1))n).
The downside is that total functions are much more restrictive than binary relations, excluding
approximation and promise problems.

Relative to [LNW14, AHLW16], the main benefit of Theorem 2 is that the reduction is explic-
itly computable in small space. The downside is that it only applies to deterministic streaming
algorithms, not randomized ones. But note that even those reductions are limited in the extent to
which they apply to randomized algorithms: they assume that the randomness is stored in the s
space used by the algorithm. As a result, they do not apply to algorithms that flip a coin on every
update, or even ones that sample a random update from the data stream: such algorithms use L
and logL bits of randomness, respectively, which are much more than s for the streams considered
in the reduction.

2 Related Work

Equivalences between streaming and linear sketching. As described above, [LNW14],
building on [Gan08], proved that any turnstile streaming algorithm can be implemented as a linear
sketch, assuming the streaming algorithm can tolerate arbitrarily long streams that feature arbi-
trarily complicated intermediate states. The followup work [AHLW16] removed or relaxed some of
the restrictions on this equivalence: for example, they show that it still holds if the algorithm only
works in the ‘strict’ turnstile model where all intermediate states are non-negative. They also show
that it holds if the algorithm only tolerates exponentially large (in the space usage of the algorithm
and the dimension of the problem) intermediate values, rather than doubly exponentially large
ones.

Another line of work on the problem has considered XOR streams or other modular up-
dates [KMY18, HLY19]. XOR streams are like binary streams, except that insert and delete
updates are indistinguishable. For such streams, [HLY19] shows that for total functions the equiva-
lence between streaming and linear sketching holds under much more mild assumptions: as long as
the algorithm works on streams of length Õ(n2). As with all the other existing equivalences, these
are nonuniform: they do not show that the linear sketching algorithm is efficiently computable2.

Lower bounds for linear sketches. The most common lower bound technique in streaming
algorithms is the construction of reductions to one-way communication complexity. One encodes
a hard one-way communication complexity problem into a stream by encoding Alice’s input into
the first half of the stream, and Bob’s input into the second half. If a solution to the streaming

2There is some discussion in [HLY19] of generating the linear functions in small space, but this only refers to the
space used to store the randomness; even in the deterministic setting, the construction is nonuniform.

6

problem yields a solution to the communication problem, this yields a lower bound on the streaming
algorithm’s space. The hard instances created by this approach tend to be fairly nice: the stream
length is never more than 2n, for example.

For linear sketching, lower bounds may also be proved by reductions to the more restrictive
simultaneous message passing (SMP) model. Rather than Alice sending a short message to Bob,
Alice and Bob must both send a short message to a referee, who adds their sketches to solve the
problem. (One may also have more than two parties, which is typically more fruitful in the SMP
model than in the one-way communication model.)

These lower bounds translate into turnstile streaming lower bounds using [LNW14, AHLW16],
but the instances become horrible, leading to weak implications. In particular, this approach can
never rule out algorithms using either O(log logL) or O(logM) space, for length-L streams with
intermediate states that never leave the [−M,M]n box.

Still, for a number of problems we only know how to get strong lower bounds via linear sketch-
ing. Examples include finding approximate maximum matchings [Kon15, AKLY16], estimating
the size of the maximum matching [AKL17], subgraph counting [KKP18], and finding spanning
forests [NY19]. Most such problems are graph problems, but the translation of the lower bound
from linear sketching to streaming only applies if intermediate states are allowed to be multigraphs.

Non-linear turnstile algorithms. We are aware of one case of a turnstile streaming algorithm
that is not implementable in linear sketching.

Jayaram and Woodruff [JW18] consider problems on data streams with a bounded ratio of
deletions to insertions (this is similar to our condition in Theorem 11, as a long stream requires a
large ratio of deletions to insertions and vice versa). The precise result depends on the problem,
but roughly speaking: if the final magnitude of the vector is at least α < 1/2 times the sum of
the magnitudes of all the updates, the space complexity can be improved over linear sketches by
a factor of logα n. In particular, for ℓ1 estimation, an exponential separation can be obtained, but
this is O(log n) vs. O(log log n), so even the harder case requires very little space.

Furthermore, these results do not rule out [LNW14] being extended to short streams, as [LNW14]
requires the algorithm to store all the random bits it ever uses (in contrast to the normal setting
where only random bits that are to be reused have to be stored). The algorithms in [JW18] use
(non-reused) randomness to sample from the updates they see, and so under this constraint they
would end up needing substantially larger space. By contrast, our algorithms use only a small
amount of randomness relative to their space, so they do show that a length constraint is necessary
for [LNW14].

3 Overview of Techniques

3.1 Turnstile-Sketching Separations

3.1.1 Binary and Box-Constrained Streams

Binary streams. To prove Theorem 8, we embed a hard communication problem from [KKP18]
into a binary stream. In this communication problem, which we call TrianglePromise(n) and
illustrate in Figure 1, there are three players and O(n) vertices, each of which is shared between
two players. Each player receives a set of O(n) edges, connecting the two sets of vertices shared

7

The lower bound in [KKP18] can be seen as proving that optimal algorithms for this problem
in the SMP model must be based on sampling, where the players each choose a subset of their
edges/bit labels to send, and succeed if there is some triangle such that each of the three players
choose the edge they hold from it. What makes the problem hard, then, is the fact that it is difficult
for all three players to simultaneously coordinate their sampling. Any two players can coordinate:
they can use shared randomness to sample a shared vertex, and each keep their edge incident to
that vertex. But they can’t tell the third player which edge to keep.

The idea behind our algorithm is that for any stream, for each triangle some player’s input will
finish updating last. As soon as the first two players’ inputs have finished updating, the algorithm
will know which of their edges it sampled, and therefore know what parts of the third player’s input
ar. If the third player’s input hasn’t finished yet, the algorithm will learn at least one bit when it
is updated. And to solve TrianglePromise(n), we only need one bit.

For this to work, we need an encoding of the players’ inputs that satisfies a few properties. We
need to be able to sample a vertex, and learn the incident edges if we pay attention for the whole
stream. If this vertex is incident to two edges of a triangle, then once we learn one of these edges,
we need to know where in the vector to find the encoding of the third edge, and if we learn at least
one bit of the third edge’s encoding, we need to be able to be able to compute its bit label z at
the end of the stream. This last point might seem tricky, but at the end of the stream the sampled
edges tell us both endpoints of the third edge, so z is the only bit we don’t know; it will therefore
suffice to store an edge (u, v, z) as (u ⊕ zB, v ⊕ zB) for a slightly larger word size B. The precise
encoding and recovery algorithm are presented in Sections 4 and 4.3, respectively.

Box-constrained streams. For Theorem 9, we take the same instance as for binary streams but
place it on {−M,M}3k. It is no longer the case that, once we start tracking a given coordinate, we
can learn its value after a single update. But we can still track the coordinate relative to its initial
value, and if the coordinate’s final value is M more than the smallest value seen, or M less than
the largest value seen, then we will know the coordinate’s value at the end of the stream, as there
will be only one of {−M,M} for which this is consistent with staying within Γ2M−1.

Now, optimistically decoding based on the sign pattern of each word, we define the ‘last’ player
for a triangle as being the player whose input’s decoding achieves its final value last, i.e. the last
player to have every coordinate of their input within M − 1 of its final value. At the time the
first two players’ inputs’ decodings achieve their final value, these players will know their sampled
edges, and there will be at least one coordinate of the third player’s input that can be learned with
the remaining stream.

3.1.2 Bounded Degree Triangle Counting

At a high level, both of our algorithms for bounded-degree triangle counting seek to emulate the
insertion-only algorithm of [JG05]. The insertion-only algorithm is as follows: sample edges with
probability p, and keep all edges incident to sampled edges. Count the number of triangles using
sampled edges (with multiplicity if multiple edges of a triangle are sampled), and divide by p. This
is an unbiased estimator, using O(pmd log n) space, in a graph with m edges, n vertices, and max
degree d. The expected number of triangles sampled is pT . If all the triangles were disjoint, the
triangles would be sampled independently and so one could set p = O(1/(ε2T)) and get a (1 + ε)-
approximation with 2/3 probability. Even though the triangles are not disjoint, the degree bound
keeps the estimator’s variance small; one only needs p = O(d/(ε2T)).

9

So what happens in turnstile streams? One can run essentially the same algorithm, dealing
with edge deletions by removing both the edge deleted and any neighbors that were tracked on its
account. This works, but can use too much space if not done carefully.

Bounded-degree intermediate states. If every intermediate state is a bounded-degree graph,
then the expected amount of space used at any point in the stream is still O(pmd log n). However,
if the stream is extremely long, the maximum amount of space used will be too large. The natural
solution is to have a hard cap of O(pm) on the number of edges sampled, and to stop sampling
edges when at the cap. One might worry that this creates a bias in the estimator. However, the
only times this can affect the output of the algorithm are the m points in time when edges in the
final graph are inserted for the last time. At each such time, with high probability, the hard cap will
not have been reached. The output of the algorithm will thus be the same as in the insertion-only
case.

Length-constrained streams. In this model, the intermediate states may be multigraphs with
very high degree; call the maximum degree a vertex ever reaches its ‘stream degree.’ One cannot,
in general, keep the entire neighborhood of a sampled edge. However, the Ω(T/d) edges involved in
triangles in the final graph have average stream degree at most O(LdT). Therefore we can restrict to

considering edges of stream degree O(Ld
2

εT): this loses us at most an ε/3d fraction of triangle-involved
edges, which are involved in at most an ε fraction of triangles.

Using the same p = O(d/(ε2T)) as in the insertion-only case, we get an algorithm with space

p · L ·
Ld2

εT
· log n = O(

d3L2

ε3T 2
log n).

3.2 Deterministic Turnstile-Sketching Equivalence

Our strategy for reducing deterministic turnstile streaming to linear sketching will be to take a
turnstile streaming algorithm and give it various streams as input until we find vectors that can
be safely “quotiented out”. By repeatedly doing this we can find a linear map (a homomorphism of
Z-modules) from Z

n to a module of size at most 2s, whose elements can be represented as sparse
vectors in Z

n.

In each case, the existence of these vectors will be guaranteed by the fact that A can have
at most 2s different states, and we will be able to find them by looking for “collisions” in these
states—streams which result in different vectors but the same state of A. How we find them, and
the length of streams we will need A to tolerate, will depend on whether A calculates some total
function on Z

n exactly, or whether it solves a general “streaming problem”—that is, each input
has multiple valid outputs, e.g., a counting problem where only (1 ± ε) multiplicative accuracy is
needed.

Total functions. For total functions f , we will consider streams that are the “canonical rep-
resentation” κ(x) of some vector x, defined as the stream that inserts every coordinate of x. If
we can find some pair of vectors x, y such that the algorithm reaches the same state on κ(x) and
κ(y), then for any vector z, the algorithm will reach the same result on κ(x) · κ(−y) · κ(z) and
κ(y) · κ(−y) · κ(z), and so f(z) = f(z + (x− y)). It is therefore safe to “quotient” out x− y.

10

A(∅)

κ(x)

κ(y)

A(κ(x))

A(κ(y))

κ(z − y)

A(κ(x) · κ(z − y))

A(κ(y) · κ(z − y))

Figure 2: For total functions, we need to find pairs of streams which cause A to reach the same
state. Here we find x and y such that their canonical representations κ(x) and κ(y) reach the same
state. This means that for any z there are streams with frequency z and z+(x− y) that reach the
same state, so f(z) = f(z + (x− y)).

A(∅)

A(π1 · ρ1)

A(π1)

A(π2 · ρ2)

A(π2)

π2 = τ
xj′

2 = π1 · ψ2

Loop i has frequency aiei − oi

A(π3 · ρ3)

A(π3) σ

Figure 3: For general streaming problems, we generate one very long stream which iterates though
a sequence of vectors xi in Z

n, looking for “loops” that change the value of the vector without
changing the state of A. Whatever the postfix σ is, the output will be indifferent to the number of
loops ρi added.

11

By repeatedly performing this procedure, we find a submodule of Zn such that f is constant on
the submodule and all its cosets—our sketch can be seen as a map from Z

n to the corresponding
quotient module.

As any vector in Z
n can be inserted in at most n updates, this means we only need A to work

on length O(n) streams. In fact, it will prove possible to guarantee x and y are length no more
than s, so provided A is sublinear the required stream length is (1 + o(1))n.

At the end of the stream, having stored a “reduced” vector, we recover f by presenting this
vector to A in its canonical form—as we know f takes the same value on the reduced vector as it
does on the full input vector we will recover the correct answer.

General streaming problems. The above approach fails, however, if A has multiple valid
outputs for any given input. To see this, consider the case whereA calculates a (1±ε) approximation
to f . Then the proof above would guarantee only that f(z) and f(z + (x − y)) were within
ε(f(z) + f(z + (x− y)) of one another, and so repeatedly quotienting out vectors could still bring
us very far from the correct answer.

So instead of finding a submodule such that f is constant on cosets of the submodule, we find a
submodule such that there is a mapping from vectors in Z

n to streams such that for each coset of
the submodule, the output of A on the corresponding streams is constant. We can then quotient
out the vectors that generate this submodule, and then once we are finished processing the stream,
map our “reduced” vector to an appropriate stream and give that stream as input to A.

To do so we will consider a sequence of vectors xi that iterates through Z in some appropriate
way, and the corresponding “covering streams” τxi = κ(x1) · κ(x2 − x1) . . . κ(xi − xi−1). As A only
has 2s states, at some point when processing this stream it will return to a state already visited.
This gives us a “loop”, a sequence of updates that takes us from one state to the same state. As
the xi are distinct, we can find a loop that has non-zero frequency, and therefore we can quotient
out that loop.

We repeat this process to find a sequence of streams πi (each a prefix of the next) and loops ρi
such that the algorithm is the same after processing πi · ρi as πi, but freq ρi is a different non-zero
vector each time

For recovery, we will again insert the reduced vector in its canonical form in A, but we will need
to prefix it with the stream built up in the reduction (without loops). We then subtract off the
original stream to preserve the final value of the vector. That ensures that there is some stream
which corresponds to the original vector such that A would reach the same state it does on this
one (by inserting loops3), and so whatever output our algorithm gives is some valid output for this
vector.

Constructing a sketch. In both cases, we have described a method of finding vectors to “reduce”
our input vector by—in other words, we have found a way to produce vectors that generate a
submodule N of Zn such that we only care which coset of N our vector is in (i.e. which element
of the quotient module Z

n/N it maps to). However, we still need to find a consistent method to
take an element x of Zn to a representative element of N +x that can be computed in small space.

3It may be noted that this will not work if taking the original vector to the reduced vector requires subtracting

our “quotiented out” vectors. To compensate for this, our mapping from vectors to streams will include subtracting a
large number of each quotient vector (outside of the loops), so that we only need to add loops. It is possible to show
that there is a sufficiently large number of quotients to subtract independent of the true value of the vector.

12

Moreover, we need to be able, for any pair of representative elements x, y to find the representative
element of N + (x + y), so that we can apply module operations (i.e., maintain the sketch under
updates to the stream and merge sketches of different streams).

The representative element we choose is the lexicographically first element with all non-negative
coordinates in N + x. This can be computed in small space by repeatedly subtracting off our
“quotient vectors” until it is no longer possible to do so (we will choose these vectors in a way that
guarantees this eventually happens). The set of these elements will turn out to be

∏n
i=1 Zai for

positive integers ai, and we will call the map from Z
n to this set φ. For any pair of representative

elements x, y, the representative element of N +(x+ y) will be φ(x+ y), so this defines a Z-module
M ∼= Z

n/N with addition operator ⋆ given by x ⋆ y = φ(x + y) and φ a homomorphism between
these modules.

To actually calculate this homomorphism, we need to calculate the vectors to be quotiented out
in O(s log n) space. As even storing all of them would require more space than that, we generate
them sequentially whenever needed, storing only enough information about vectors generated earlier
to calculate later vectors.

The proof of these results lies in Section 7.

4 Box-Constrained Streaming: Problem and lower bound

4.1 Streaming Triangle Game

Our problem is based on encoding an instance of the PromiseCounting(H,n, T, ε) communication
problem from [KKP18] as a binary vector. We will only use the special case where H is the
triangle K3, T = n/10, and ε = 1. We refer to this PromiseCounting(K3, n, n/10, 1) instance as
TrianglePromise(n), which we describe in Figure 4 and illustrate in Figure 1.

Theorem 13 (Implication of Corollary 15 of [KKP18]). Let n ≥ 1. Suppose that, for every instance
of TrianglePromise(n), no player sends a message of more than c bits. There exists a universal
constant γ such that, if c ≤ γn1/3, the probability the referee succeeds is at most 51%.

We note that our TrianglePromise problem is written somewhat differently from
the PromiseCounting problem as defined in [KKP18]. Our description is equivalent, however,
as suggested in Figure 2 of [KKP18].

Both Theorem 8 and Theorem 9 involve encoding the player’s inputs to TrianglePromise(n)
as a frequency vector. The outer encoding, from instances of TrianglePromise(n) to strings from
an alphabet Σ, is the same for both. The inner encoding will differ, taking strings from Σ to strings
from {0, 1} and {−M,M} for Theorem 8 and Theorem 9 respectively.

For both, the frequency vector will have dimension Θ(n log n). Theorems 8 and 9 then follow
by considering an encoding of TrianglePromise(Θ(n/ log n)).

TrianglePromise is defined in Figure 4. When there is no ambiguity about which instance
of TrianglePromise is being referenced, we will implicitly use the variable names from this defini-
tion to refer to the corresponding variables for that instance.

Outer Encoding. We define the alphabet Σ = ([N] × {0, 1}) ∪ {⊥}. We encode an instance of
TrianglePromise(n) into Σ6N as follows. For each e ∈ E∆ and a ∈ e, we create a vector ye,a ∈ ΣN ;

13

TrianglePromise(n)

Parties: Let V ∆ and E∆ be the vertex and edge sets, respectively, of a triangle K3. There are
three players, one associated with each edge e ∈ E∆. There is one referee, who receives messages
from the three players. No other communication takes place.

Constants: Let N = 30n. We define N vertices Va associated with each of the three vertices
a ∈ V ∆.

Inputs: Each player e = ab receives a list of N/3 triples (u, v, zuv) ∈ Va × Vb × {0, 1}.

Promise: The instance satisfies the following promise:

1. No u or v appears more than once in any single player’s input. Thus the set of all edges (u, v)
in player inputs can be viewed as a graph G over

⋃
a∈V ∆ Va, and this graph has N edges and

3N vertices.

2. G contains n triangles. All 27n other edges are isolated.

3. There exists a τ ∈ {0, 1} such that for every triangle uvw in G,

zuv ⊕ zvw ⊕ zwu = τ.

Goal: Given the messages received from the players, the referee’s task is to determine whether
τ = 0 or τ = 1.

Figure 4: Definition of a TrianglePromise instance.

14

the full encoding is the concatenation of the six ye,a.

As illustrated in Figure 1c, the input of player e = ab consists of a list of N/3 edges (u, v, zuv),
where each u ∈ Va and v ∈ Vb. Since |Va| = |Vb| = N , we can define a canonical bijection from each
of Va and Vb into [N]; call these fa, fb.

Then for every (u, v, zuv) in player e’s list, we set

ye,afa(u)
:= (fb(v), zuv)

ye,bfb(v)
:= (fa(u), zuv)

Since each u appears at most once in e’s list, this is well defined. This sets N/3 of the N coordinates
in each of ye,a and ye,b; every other coordinate is set to ⊥.

This encoding of the players’ inputs is injective; in fact, either one of ye,a or ye,b suffices to
recover player e’s input.

Inner Encoding. Let B = 1+ ⌈lgN +1⌉. For Theorem 8, we encode Σ into {0, 1}B. We encode
⊥ as 0B. To encode (l, z) ∈ [N] × {0, 1} we first take the standard binary encoding l(bin) of l into
{0, 1}B. This is nonzero, since l > 0; and its highest bit is zero, since l ≤ N . Then we output the
bitwise XOR x = l(bin) ⊕ zB.

This encoding is injective, because the highest bit will equal z, after which z can be removed
and l recovered. Concatenating the outer and inner code gives an injection from the players’ inputs
to {0, 1}6NB.

For Theorem 9, we use the same encoding, and then replace every instance of 1 with M , and
every instance of 0 with −M .

The streaming problem. We can now define the streaming problem Pn. For any vector x such
that x is not an encoding of an instance of TrianglePromise(n), (x, 0) and (x, 1) are in Pn, i.e.,
any output is acceptable on such an input. For any vector x such that x is an encoding of an
instance with τ = 0, (x, 0) ∈ Pn, and for any vector x such that x is an encoding of an instance
with τ = 1, (x, 1) ∈ Pn.

4.2 Linear Sketching Lower Bound

By Theorem 13, any protocol for the communication problem that succeeds with probability at
least 2/3 requires Ω(n1/3) bits of communication by at least one player. Furthermore, the model
of [KKP18] allows the players access to an unlimited amount of shared randomness.

Now suppose we have a linear sketching algorithm for Pn. Note that the outer code encodes
each player’s input into separate coordinates. The inner code, of course, preserves this property.
Therefore player e could encode their part of the problem with the other coordinates set to zero,
sketch it, and send it to the referee. The referee can add up these sketches to get a sketch for the
full vector x, then determine τ . Since each player only sends a message of size equal to the space
usage of the linear sketching algorithm, the space used must be Ω(n1/3).

Therefore, Pn satisfies criterion 1 of Theorems 8 and 9. To prove that it satisfies criterion 2, we
construct a turnstile algorithm for Pn.

15

4.3 Algorithm for TrianglePromise over Γ0,1

This section will describe an algorithm that either outputs the correct answer or ⊥, and outputs the
correct answer with a small positive constant probability. Straightforward probability amplification
then can increase the success probability to 2/3.

We start by noting that, for any coordinate i, we can establish xi given any non-empty postfix
of the updates to xi, as any increase proves it was previously 0 and any decrease proves it was
previously 1.

Recall that any player e ∈ E∆, side a ∈ e, and vertex u ∈ Va has an associated symbol ye,afa(u)
∈ Σ.

We use xe,a,u ∈ {0, 1}B to denote the inner encoding of this symbol. The final frequency vector x
has xe,a,u placed in a contiguous block, at a position that is easy to find from (e, a, u).

We state the algorithm in Algorithm 1.

Algorithm 1: Low-probability TrianglePromise over {0, 1}

1. Let (a, b, c) be a uniformly chosen random labeling of V ∆. Choose u ∈ Va uniformly at
random.

2. While passing through the stream:

(a) Track all updates to xab,a,u and xac,a,u.

(b) While doing so, keep checking whether xab,a,u is a valid inner encoding of Σ; if it
is, and it doesn’t decode to ⊥, then it is an encoding of (fb(v

′), z) for some v′ ∈ Vb
and z′. Let (v′, z′) be those values, if they exist.

(c) As soon as (v′, z′) is set, track all updates to xbc,b,v
′

. Discard these updates
whenever (v′, z) changes.

3. After the stream finishes:

(a) Decode xab,a,u and xac,a,u to Σ.

(b) If either is ⊥, output ⊥.

(c) Otherwise, let their decodings be (fb(v), zuv) and (fc(w), zuw) for v ∈ Vb and
w ∈ Vc.

(d) If the algorithm has not tracked any updates to xbc,b,v, output ⊥.

(e) Otherwise, it knows xbc,b,vi for some index i ∈ [B]. Let zvw = xbc,b,vi ⊕ fc(w)
(bin)
i .

(f) Output zuv ⊕ zvw ⊕ zuw.

Lemma 14. The space complexity of Algorithm 1 is O(log n) bits.

Proof. The randomness in step 1 uses log(6N) bits. After that, the algorithm tracks three length-B
vectors; the total space usage is O(log n).

Lemma 15. Algorithm 1 outputs either ⊥ or τ . If u is part of a triangle in the underlying
TrianglePromise(n) graph G, and the last stream update to xab,a,u is before the last stream update
to xbc,b,v, then the algorithm outputs τ .

16

Proof. Note that xab,a,u and xac,a,u are tracked completely, so their final decodings into Σ are
correct. If u is not part of a triangle, at most one edge is incident to u in the full graph G, so at
least one of the decodings is ⊥ and the algorithm returns ⊥.

Otherwise, if u is part of a triangle, the algorithm correctly deduces (v, zuv) and (w, zuw). If the
algorithm has not seen an update to xbc,b,v, it will output ⊥; otherwise, since it tracks a postfix of
the stream, it correctly identifies xbc,b,vi . Since uvw is a triangle, we know player bc has the input
(v, w, zvw) for some vw, and the inner encoding is

xbc,b,vi = zvw ⊕ fc(w)
(bin)
i .

Thus the algorithm correctly identifies zvw, and the TrianglePromise(n) promise says

τ = zuv ⊕ zvw ⊕ zuw.

Hence the algorithm outputs either ⊥ or τ . Moreover, it will have deduced v correctly upon the
last update to xab,a,u; if this is before the last update to xbc,b,v then it will see at least one update
there and output τ .

Lemma 16. Algorithm 1 outputs τ with at least 1
180 probability.

Proof. There is a n/N = 1/30 chance that u lies in a triangle, independent of the choice of (a, b, c).
Furthermore, if it does, which triangle it lies in is independent of the choice of (a, b, c).

Suppose u lies in the triangle uvw with u ∈ Va′ , v ∈ Vb′ , w ∈ Vc′ . One of the three blocks

xa
′b′,a′,u, xb

′c′,b′,v, xc
′a′,c′,w

will be the first to finish being updated in the stream. WLOG this is a′. Then Lemma 15 says
that if (a, b, c) = (a′, b′, c′), Algorithm 1 will output τ . This choice happens with 1/6 probability;
combined with the 1/30 chance that u lies in a triangle, we get at least a 1/180 chance of outputting
τ .

Lemma 17. There is a turnstile streaming algorithm that solves Pn on Γ0,1 with probability 2/3
using O(log n) bits of space.

Proof. Run Algorithm 1 in parallel 360 times and output any non-⊥ result. By Lemma 15 any
non-⊥ result will be correct. By Lemma 16 the failure probability is at most (1 − 1/180)360 <
1/e2 < 1/3.

4.4 Algorithm for TrianglePromise over Γ2M−1

We write σ(t) for the prefix of σ consisting of its first t updates. Define the error correction function
ζ by

ζ(z)i =





M zi > 0

−M zi < 0

0 zi = 0

and define the decoding function η : {−M,M}∗ → {0, 1} by:

η(z)i =

{
1 zi =M

0 zi = −M

We will use the following decoding lemma in our algorithm:

17

Lemma 18. Let σ be a stream in Γ2M−1 such that freqσ ∈ {−M,M}∗. Then for any i, and for
any split of the stream σ = σ1 · σ2,

1. mint(freqσ
(t)
2)i ≤ (freqσ2)i −M ⇒ η(freqσ)i = 1

2. maxt(freqσ
(t)
2)i ≥ (freqσ2)i +M ⇒ η(freqσ)i = 0

and one of these conditions holds iff ∃t such that ζ(freqσ1 · σ
(t)
2)i 6= ζ(freqσ)i.

Proof. Suppose mint(freqσ
(t)
2)i ≤ (freqσ2)i −M . Then if η(freqσ)i = 0, (freqσ)i = −M . Let t be

a minimizer of (freqσ
(t)
2)i, so

(freqσ(|σ1|+t))i = (freqσ1)i + (freqσ
(t)
2)i

≤ (freqσ1)i + (freqσ2)i −M

= (freqσ)i −M

= −2M

but by the box constraint (freqσ(t))i ≥ −2M + 1, giving a contradiction. So η(freqσ)i = 1.

Likewise, if maxt(freqσ
(t)
2)i ≥ (freqσ2)i+M , there exists t such that if η(freqσ)i = 1, (freqσ(|σ1|+t))i ≥

2M , so it must be the case that η(freqσ)i = 0.

For the final part of the lemma, note that one of the conditions holds iff

max
t
|(freqσ

(t)
2)i − (freqσ2)i| ≥M

or equivalently iff
max
t≥|σ1|

|(freqσ(t))i − (freqσ)i| ≥M

which as (freqσ)i = ±M , holds iff there is a t ≥ |σ1| such that either (freqσ(t))i ≤ 0 and (freqσ)i =
M , or (freqσ(t))i ≥ 0 and (freqσ)i = −M , and in turn one of these holds iff ζ(freqσ(t)) 6= ζ(freqσ).

The algorithm is described in Algorithm 2.

Lemma 19. The space complexity of Algorithm 2 is O(log n logM) bits.

Proof. The randomness in step 1 uses log(6N) bits. After that, the algorithm tracks three length-B
vectors with entries in {−M,M}; the total space usage is O(log n logM).

Lemma 20. Algorithm 2 outputs either ⊥ or τ . If u is part of a triangle in the underlying
TrianglePromise(n) graph G, and the last time ζ(xab,a,u) differs from its final value is before the
last time ζ(xbc,b,v) differs from its final value, then the algorithm outputs τ .

Proof. Note that xab,a,u and xac,a,u are tracked completely, so their final decodings into Σ are
correct. If u is not part of a triangle, at most one edge is incident to u in the full graph G, so at
least one of the decodings is ⊥ and the algorithm returns ⊥.

Otherwise, if u is part of a triangle, the algorithm correctly deduces (v, zuv) and (w, zuw). If the
last time ζ(xab,a,u) differs from its final value is after the last time ζ(xbc,b,v) differs from its final

18

Algorithm 2: Low-probability TrianglePromise over Γ2M−1

1. Let (a, b, c) be a uniformly chosen random labeling of V ∆. Choose u ∈ Va uniformly at
random.

2. While passing through the stream:

(a) Track all updates to xab,a,u and xac,a,u.

(b) While doing so, keep checking whether ζ(xab,a,u) is a valid inner encoding of Σ; if
it is, and it doesn’t decode to ⊥, then it is an encoding of (fb(v

′), z) for some
v′ ∈ Vb and z′. Let (v′, z′) be those values, if they exist.

(c) As soon as (v′, z′) is set, track all updates to xbc,b,v
′

, recording the current,
minimum, and maximum value of each of its coordinates. Discard these updates
whenever (v′, z) changes.

3. After the stream finishes:

(a) Decode ζ(xab,a,u) and ζ(xac,a,u) to Σ.

(b) If either is ⊥, output ⊥.

(c) Otherwise, let their decodings be (fb(v), zuv) and (fc(w), zuw) for v ∈ Vb and
w ∈ Vc.

(d) If the final observed value for xbc,b,v is within M − 1 of all the values the algorithm
has observed for it, output ⊥.

(e) Otherwise, by Lemma 18 it knows η(xbc,b,v)i for some index i ∈ [B]. Let

zvw = η(xbc,b,v)i ⊕ fc(w)
(bin)
i .

(f) Output zuv ⊕ zvw ⊕ zuw.

19

value, then at the time the algorithm starts tracking xbc,b,v, ζ(xbc,b,v) has already its final value,
and so by Lemma 18, the final observed value for xbc,b,v is within M − 1 of all the values observed
for it, and so the algorithm outputs ⊥. Otherwise, by Lemma 18, the algorithm correctly identifies
η(xbc,b,v)i.

Since uvw is a triangle, we know player bc has the input (v, w, zvw) for some vw, and we know

η(xbc,b,v)i = zvw ⊕ fc(w)
(bin)
i .

Thus the algorithm correctly identifies zvw, and the TrianglePromise(n) promise says

τ = zuv ⊕ zvw ⊕ zuw.

Hence the algorithm outputs either ⊥ or τ , and the last time ζ(xab,a,u) differs from its final value
is before the last time ζ(xbc,b,v) differs from its final value, then the algorithm outputs τ .

Lemma 21. Algorithm 2 outputs τ with at least 1
180 probability.

Proof. There is a n/N = 1/30 chance that u lies in a triangle, independent of the choice of (a, b, c).
Furthermore, if it does, which triangle it lies in is independent of the choice of (a, b, c).

Suppose u lies in the triangle uvw with u ∈ Va′ , v ∈ Vb′ , w ∈ Vc′ . WLOG, let ζ(xa
′b′,a′,u) stop

changing before ζ(xb
′c′,b′,v) or ζ(xc

′a′,c′,w).

Then Lemma 20 says that if (a, b, c) = (a′, b′, c′), Algorithm 2 will output τ . This choice happens
with 1/6 probability; combined with the 1/30 chance that u lies in a triangle, we get at least a
1/180 chance of outputting τ .

Lemma 22. There is a turnstile streaming algorithm that solves Pn on Γ2M−1 with probability 2/3
using O(log n logM) bits of space.

Proof. Run Algorithm 2 in parallel 360 times and output any non-⊥ result. By Lemma 20 any
non-⊥ result will be correct. By Lemma 21 the failure probability is at most (1 − 1/180)360 <
1/e2 < 1/3.

5 Restricted Intermediate State Triangle Counting

5.1 Problem

Valid inputs to our problem will be as follows (for invalid inputs, any output is accepted): x will
be a binary string indexed by E(Kn), the set of all possible edges on an n-vertex graph. We will
associate it with a graph G on n vertices with edge set {e ∈ E(Kn) : xe = 1}. We will use m to
denote the size of this edge set. Finally, G has max degree d.

Instead of bounding the length of the stream, we will require that x(t) correspond to a graph G
with max degree d for all t. One consequence of this is that all updates will be in [−1, 1].

Our problem will be to estimate T , the number of triangles in the graph, up to some multi-
plicative precision ε. Our algorithm will succeed in doing this if the space allocated to it is large
enough in terms of T . This space requirement is decreasing in T , so we may express this as a data
stream problem in the sense of Definition 3 by choosing a lower bound T ′ and making any answer
acceptable for an input vector x that does not correspond to a valid input or results in T < T ′, and

20

making all outputs in [(1 − ε)T, (1 + ε)T] acceptable for input vectors that correspond to a valid
graph with T ≥ T ′.

5.2 Linear Sketching Lower Bound

By Theorem 7 of [KKP18], any sketching algorithm for this problem requires Ω(m/T 1/3) bits. The
requirement that d be constant does not affect this, as the [KKP18] reduction is on graphs of max
degree 2. Neither does the intermediate state requirement, as the output of a sketching algorithm
depends only on the final state of the stream.

5.3 Algorithm

1. Initialize our set of seed edges S = ∅. Let h : E → {0, 1} be a threewise independent hash
function where h(e) = 1 with probability p.

2. While passing through the stream:

(a) On receiving an update (e,+1):

• If h(e) = 1 and |S| ≤ 2pm, add e to S, and initialize Se as ∅.

• If ∃f ∈ S such that e is incident to f , add e to Sf .

(b) On receiving an update (e,−1):

• Remove it from any of S and the sets Sf that contain it.

• Delete the set Se if it exists.

3. For each e = uv, set

T̃e =

{
p−1|{w : uw, vw ∈ Se}| if e ∈ S

0 otherwise.

4. Return T̃ =
∑

e T̃e.

5.4 Space Complexity

Lemma 23. This algorithm requires O(pdm log n) bits of space.

Proof. The set S has size at most 2pm at any point in time, and for each element e in S at most
2d− 1 edges are kept (as each endpoint of e has degree at most d at all times), and each edge takes
O(log n) bits of space to store.

5.5 Correctness

Definition 24. G(t) and S(t) denote the state of G and S respectively after the first t updates, so
that G(L) = G and S(L) = S.

Definition 25. For any edge e ∈ G, let te denote the time of the last update made to e. For any
triangle τ ∈ G, let ρ(τ) denote the edge e ∈ τ that minimizes te. Then:

Te = |{τ : ρ(τ) = e}|

21

Note that as each triangle τ has exactly one e such that ρ(τ) = e, T =
∑

e Te.

Definition 26. Let Q(t) = {e ∈ E(G(t)) : h(e) = 1}, Q = Q(L), and Qe = {f incident to e : tf >
te}. Then:

T̃+
e =

{
p−1|{w : uw, vw ∈ Qe}| if e ∈ Q

0 otherwise.

T̃+ =
∑

e

T̃+
e

Lemma 27.

E

[
T̃+
]
= T

Var(T̃+) ≤ p−1dT

Proof. For each e ∈ E(G), T̃+
e = p−1Te if h(e) = 1 and 0 otherwise. So

E

[
T̃+
e

]
= Te

Var(T̃+
e) ≤ T 2

e /p

≤ dTe/p

and as h is threewise independent:

E

[
T̃+
]
=
∑

e

Te

= T

Var(T̃+) =
∑

e

Var(T̃+
e)

≤ dT/p.

Lemma 28. For any e ∈ Q, if |S(te−1)| < 2pm, T̃e = T̃+
e . Otherwise, T̃e = 0.

Proof. If e ∈ Q, it will be in S unless S is size 2pm at the final time it would be added (if it is
added earlier, it will be deleted before time te, so only the size of S(te) matters). Furthermore, if it
is added, the edges in Se will be precisely those edges of G that have their final update after Se is
created for the last time, that is, after te. So if |S(te−1)| < 2pm, T̃e = T̃+

e .

On the other hand, if |S(te−1)| = 2pm, then e 6∈ S(te−1), as it will have been deleted since the
last time it might have been added, e 6∈ S(te), as it will not be added, and so e 6∈ S, as there are no
more updates to e.

Lemma 29. For all e ∈ E(G):

P

[
|S(te−1)| = 2pm

∣∣∣h(e) = 1
]
≤ 1/pm

22

Proof. By the intermediate state condition on G(te−1), it has at most m edges. Then as S(te−1) ⊆
Q(te−1), and as h is threewise independent and h(e) = 1 with probability p,

E

[
|Q(te−1)|

∣∣∣h(e) = 1
]
≤ pm

Var
(
|Q(te−1)|

∣∣∣h(e) = 1
)
≤ (p− p2)m

so by Chebyshev’s inequality:

P

[
|S(te−1)| = 2pm

∣∣∣h(e) = 1
]
≤ P

[
|Q(te−1)| ≥ 2pm

∣∣∣h(e) = 1
]
|

≤ 1/pm

Lemma 30.

E

[
|T̃ − T̃+|

]
≤ T/pm

Proof. By Lemma 28, |T̃e − T̃
+
e | = p−1Te if h(e) = 1 and |S(te−1)| = 2pm, and 0 otherwise. So,

Lemma 29:

E

[
|T̃ − T̃+|

]
≤
∑

e

E

[
|T̃e − T̃

+
e |
]

≤
∑

e

p−1Te P
[
|S(te−1)| = 2pm ∧ h(e) = 1

]

≤
∑

e

(Te/p
2m)P [h(e) = 1]

= T/pm

Theorem 10. There is a streaming algorithm for triangle counting in max-degree d graphs, over

streams with intermediate states of max degree d, that uses O
(
d2m
ε2T

log n
)

bits.

Proof. Let the algorithm be run with p = 32d/ε2T . Then by Lemma 30,

E

[
|T̃ − T̃+|

]
≤ T 2/32dm

≤ T/32 as T ≤ dm.

Therefore, by Markov’s inequality:

P

[
|T̃ − T̃+| ≥ εT/2

]
≤ 1/16

Then, by Lemma 27,

E

[
T̃+
]
= T

Var(T̃+) ≤ T 2/8

23

and so by Chebyshev’s inequality,

P

[
|T̃+ − T | ≥ εT/2

]
≤ 1/4

so:
P

[
|T̃ − T | ≥ εT

]
≤ 5/16

Therefore, by running O(log 1/δ) copies of the algorithm in parallel and taking the median, we can
output a (1± ε) multiplicative approximation to T with probability 1− δ.

6 Bounded-Length Triangle Counting

6.1 Problem

We will work in the strict turnstile model, so our input vector x = freqσ(L) is non-negative at all
intermediate steps.

Valid inputs to our problem will be as follows (for invalid inputs, any output is accepted): x
will be indexed by E(Kn), the set of all possible edges on an n-vertex graph. We will associate it
with a graph G on n vertices with edge set {e ∈ E(Kn) : xe = 1}. x is binary, but its intermediate
states may not be. We will use m to denote the size of this edge set. Finally, G has max degree d.

Our problem will be to estimate T , the number of triangles in the graph, up to some multi-
plicative precision ε. Our algorithm will succeed in doing this if the space allocated to it is large
enough in terms of T . This space requirement is decreasing in T , so we may express this as a data
stream problem in the sense of Definition 3 by choosing a lower bound T ′ and making any answer
acceptable for an input vector x that does not correspond to a valid input or results in T < T ′, and
making all outputs in [(1 − ε)T, (1 + ε)T] acceptable for input vectors that correspond to a valid
graph with T ≥ T ′.

6.2 Linear Sketching Lower Bound

By Theorem 7 of [KKP18], any sketching algorithm for this problem requires Ω(m/T 1/3) bits. The
requirement that d be constant does not affect this, as the [KKP18] reduction is on graphs of max
degree 2, and neither do the stream length and strict turnstile requirements, as they will not affect
the output of any linear sketch.

6.3 Algorithm

1. Initialize our set of seed edges S = ∅. Let h : E → {0, 1} be a pairwise independent hash
function where h(e) = 1 with probability p.

2. While passing through the stream, on receiving an update (e, χ):

• If h(e) = 1, and there is no tuple (e, γ) ∈ S, add (e, χ) to S.

• If h(e) = 1, and (e, γ) ∈ S, replace it with (e, χ+ γ).

• If (e, χ) has been added to S for some χ > 0, initialize the set Se = ∅.

• If (e, 0) is now in S, delete Se.

24

• Then, for each f incident to e such that (f, z) ∈ S:

– If (e, γ) ∈ Sf , replace it with (e,max(χ+ γ, 0)).

– Otherwise, insert (e,max(χ, 0)) into Sf , unless |Sf | ≥
2d2L
εT .

3. For each edge e = uv, set:

T̃e =

{
p−1|{w : (uw, 1), (vw, 1) ∈ Se}| If (e, 1) ∈ S.

0 Otherwise.

4. Return T̃ =
∑

e T̃e.

6.4 Space Complexity

Lemma 31. The expected space complexity of this algorithm is at most O
(
pd2L2

εT log n
)

bits.

Proof. Each edge in the stream is independently included in S with probability p, so the expected
maximum size of S is at most pL. For each element of S we keep an integer of size poly(n), requiring

O(log n) bits, and a set of size no more than 2d2L
εT . The elements of these sets are edges of an n-vertex

graph, and integers of size poly(n), and therefore require O(log n) bits each to represent.

6.5 Correctness

Consider some fixed (strict) turnstile stream of length L. Let G be the graph with vertex set [n]
and edge set {e ∈ E : xe = 1}, and let T be the number of triangles in G. We will seek to show
that this algorithm can approximate T .

Definition 32. For any edge e ∈ G, let te be the largest t ∈ [L] such that:

x(t−1)
e = 0

x(t)e > 0

For any triangle τ ∈ G, let ρ(τ) ∈ τ be the edge of τ that maximizes tρ(τ). Then, define:

Te = |{τ ∈ G : ρ(τ) = e}|

Note that as each triangle τ has exactly one edge e such that ρ(τ) = e,
∑

e Te = T .

Definition 33. For any edge e ∈ G and t ≥ te, Q
(t)
e is the set generated by the following procedure:

• For t′ = te, . . . , t, and (f, χ) = σt′, if f is incident to e:

– If (f, γ) ∈ Q
(t)
e , replace it with (e,max(χ+ γ, 0)).

– Otherwise, insert (f,max(χ, 0)) into Q
(t)
e .

Lemma 34. For any e such that h(e) = 1,

Q(L)
e ⊇ Se

with equality when

|Q(L)
e | ≤

2d2L

ε
.

25

Proof. As h(e) = 1, Se will be deleted and recreated for the final time at te. After this point, the

procedures for creating Se and Q
(L)
e are identical as long as |Se| (and therefore Q

(L)
e) never reaches

size 2d2L
ε . If it does, the only difference is that some edges may be excluded from Se.

For any (f, z) such that f ∈ Q
(t)
e we will also write f ∈ Q

(t)
e , and Q

(t)
e [f] = z. Note that Q

(r)
e [f] is

well-defined whenever f ∈ Q
(t)
e (as no edge is added to Q

(t)
e more than once) and f ∈ Q

(t)
e ⇒ f ∈

Q
(t+1)
e (as no edges are ever removed from Q

(r)
e .

Lemma 35. For all edges f incident to e and integers t ∈ [te, L],

Q(t)
e [f] = x

(t)
f − min

r=te,...,t
x
(r)
f

Proof. We proceed by induction on t. If t = te, as the update at time te was to e, Q
(t)
e [f] = 0 and

so the result holds. Now suppose t > te and Q
(t−1)
e [f] = x

(t−1)
f −minr=te,...,t−1 x

(r)
f .

Then, let σt = (f ′, χ). If f ′ 6= f both sides of the equation are unchanged and we are done. So
suppose the update is (t, f, χ). We will consider two cases.

Q
(t−1)
e [f] + χ ≥ 0 Then Q

(t)
e = Q

(t−1)
e [f] + χ and x

(t)
f = x

(t−1)
f + χ. Furthermore, χ ≥ −Q

(t−1)
e [f],

so we have:

x
(t)
f = x

(t−1)
f + χ

≥ x
(t−1)
f −Q(t−1)

e [f]

= min
r=te,...,t−1

x
(r)
f

So minr=te,...,t x
(r)
f = minr=te,...,t−1 x

(r)
f , completing the proof.

Q
(t−1)
e [f] + χ < 0 Then Q

(t)
e = 0, and:

x
(t)
f = x

(t−1)
f + χ

< x
(t−1)
f −Q(t−1)

e

= min
r=te,...,t−1

x
(r)
f

So minr=te,...,t x
(r)
f = x

(t)
f , and so x

(t)
f −minr=te,...,t x

(r)
f = 0, completing the proof.

Definition 36. For any vertex x, let the ‘stream degree’ lv be the number of edges e incident to x
such that there is some update σt = (e, χ), regardless of whether e is in the final graph G.

Lemma 37. Let e = uv be an edge. Then

T̃e =

{
T e/p with probability p

0 otherwise.

where T e = Te if lu + lv ≤
2d2L
εT , and T e ∈ [0, Te] otherwise.

26

Proof. Let e be an edge. If h(e) = 0, (e, 1) 6∈ S, and so T̃e = 0. This event happens with probability
1− p. If h(e) = 1 but e 6∈ G, xe = 0, and so (e, 1) 6∈ S, so T̃e = 0 = Te = T̃e.

Now consider the case where h(e) = 1 and e in G. Then xe = 1, so (e, 1) ∈ S . T̃e will then be

p−1 times the number of triangles uvw, where e = uv and (uw, 1), (vw, 1) ∈ Se. If lu + lv ≤
2d2L
εT ,

then |Q
(L)
e | ≤

2d2L
εT and so by Lemma 34, Q

(L)
e = Se, and otherwise Q

(L)
e ⊇ Se.

So it will suffice to show that

|{w : (uw, 1), (vw, 1) ∈ Q(L)
e }| = |{τ ∈ G : ρ(τ) = e}|

. We will show that

{f : (f, 1) ∈ Q(L)
e } = {f ∈ G : tf > te, e incident to f}

which implies our result, as it means that w ∈ {w : (uw, 1), (vw, 1) ∈ Q
(L)
e } iff the triangle uvw has

tuv < tuw, tvw.

For any f ∈ E incident to e, by Lemma 35, (f, 1) ∈ Q
(L)
e iff x

(L)
f − minr=te,...,L x

(r)
f = 1. If

f 6∈ G, then x
(L)
f = 0 and so this cannot hold, as x

(r)
f ≥ 0 for all r. If f ∈ G, then x

(L)
f = 1 and

so this holds iff minr=te,...,L x
(r)
f = 0, that is, iff tf > te. So (f, 1) ∈ Q

(L)
e iff f ∈ G and tf > te,

concluding the proof.

Lemma 38.

E

[
T̃
]
∈ [(1− ε/2)T, T]

Proof. By Lemma 37, E
[
T̃
]
=
∑

e T e, where T e = Te if lu + lv ≤
2d2L
εT and T e ∈ [0, Te] otherwise.

Recalling that Te = |{τ ∈ G : ρ(τ) = e}|, this gives us

E

[
T̃
]
≤ T

and
E

[
T̃
]
≥

∑

uv:

lu+lv≤
2d2L
εT

Tuv.

The right-hand side of the second expression is precisely the number of triangles τ in G such that
ρ(τ) = uv with lu + lu ≤

2d2L
εT . So let T− be the number of triangles that do not satisfy this

criterion. For each such triangle τ , there are at least lu + lv updates in Σ to edges incident to ρ(τ).
Furthermore, as the final graph has max degree d, at most

(
d
2

)
≤ d2/2 triangles use any vertex. So

we have:

L ≥
1

2

∑

v

lv

≥
1

d2

∑

τ,uv:
ρ(τ)=uv

lu + lv

≥
1

d2
T− 2d2L

εT

So T− ≤ εT/2, and the result follows.

27

Lemma 39.

Var(T̃) ≤ p−1dT

Proof. For any fixed stream Σ, each T̃e depends only on whether h(e) = 1, and so as h is pairwise
independent, so are the T̃e, and so:

Var(T̃) =
∑

e

Var(T̃e)

≤
∑

e

E

[
T̃ 2
e

]

≤
∑

e

P [h(e) = 1] p−2T 2
e

≤
∑

e

p−1dTe

= p−1dT

Theorem 11. There is a streaming algorithm for triangle counting in max-degree d graphs of

length-L streams using O
(
d3L2

ε2T 2 log n
)

bits of space.

Proof. By Lemma 39, we may set p in the above algorithm to be 16d
ε2T

, so that the algorithm requires

O
(
d3L2

ε2T 2 log n
)

space and Var(T̃) = ε2T 2

16 . Then, by Chebyshev’s inequality, the probability that

|T̃ − E

[
T̃
]
| ≥ εT/2 is at most 1/4.

We may then repeat the algorithm O(log 1/δ) times in parallel, taking the median, so that our

final output is within εT/2 of E
[
T̃
]

with probability 1− δ. By Lemma 38, this implies it is within

εT of T .

7 Deterministic Turnstile-Sketching Equivalence

7.1 Overview

We will show that deterministic turnstile streaming algorithms can be expressed as linear sketches.
Here these sketches will take the form of linear functions φ from Z

n to a module M whose elements
can be stored in s space, where s is the space used by the turnstile streaming algorithm A.

M and φ will be characterized by “moduli” ai and “overflow vectors” oi supported on indices
smaller than i. A vector x in M is simply a vector in

∏n
i=1 Zai , but instead of addition being

coordinatewise mod (ai)n, a coordinate i which becomes larger than ai will “overflow”, with oi
added to x for every time aiei has to be subtracted. This can cause repeated overflows, but as oi
is only supported on indices smaller than i, eventually these will stop.

By the structure theorem for Z-modules, M is isomorphic to some direct product of cyclic
modules, but this isomorphism is not (to our knowledge) necessarily calculable in small space.
However, because our sketch φ represents a module, it has all the desirable properties of linear

28

sketches: it is mergeable, automatically allows deletions, and is indifferent to stream length and
order.

We will start by defining M in terms of the parameters ai and oi, showing that if the parameters
can be calculated in small space then the homomorphism can also be calculated in small space.
We will then give two methods of generating these parameters, and show that the corresponding
sketches can be used to solve stream problems, proving equivalence first for total functions:

Theorem 12. Suppose there is a deterministic algorithm solving a streaming problem P that works
on streams of length n+2s+2, uses S space during updates and recovery, and uses s space between
updates. If P corresponds to a total function on Z

n, there is a linear sketching algorithm for P
that uses O(S + s log n) space during updates and recovery, and stores an s space sketch.

Then, for algorithms that can tolerate very long stream lengths, we prove equivalence for general
stream problems:

Theorem 2. Suppose there is a deterministic algorithm solving a streaming problem P that works
on streams of all lengths, uses S space during updates and recovery, and uses s space between
updates. Then there is a linear sketching algorithm for P that uses O(S + s log n) space during
updates and recovery, and stores an s space sketch.

7.2 Our Module

7.2.1 Definition of M

Let (ai)
n
i=1 be positive integers, and let at most m of them be greater than 1. Let (oi)

n
i=1 be vectors

such that for all i, oi ∈
∏i−1

j=1 Zaj × {0}
n−i+1. We will define

M =

(
n∏

i=1

Zai , ⋆

)

a Z-module with ⋆ as its addition operation. We will now recursively define a homomorphism
φ : Zn →M , and then use this to define ⋆.

• φ(0) = 0

• For i ∈ [n], and any vector x + rei where xj = 0 for all j ≥ i, φ(x + rei) = (r mod ai)ei +
φ(x+ (⌊r/ai⌋)oi).

This is well-defined because x+ (⌊r/ai⌋)oi is zero on all coordinates greater than i− 1.

We can now define ⋆ in terms of φ, using the fact that every vector in M is also a vector in Z
n:

x ⋆ y = φ(x+ y)

7.2.2 Algebraic Properties of M and φ

In this section we will prove that M is in fact a Z-module, and φ is a homomorphism from Z
n to

it.

Lemma 40. φ is idempotent.

29

Proof. As for any vector x in Z
n that is also in M , φ(x) = x.

Lemma 41. ⋆ is commutative.

Proof. By the symmetry of the definition.

Lemma 42. ⋆ is associative.

Proof. We need to prove that for any x, y, z, (x ⋆ y) ⋆ z = x ⋆ (y ⋆ z). As x ⋆ y = φ(x + y)
and we have already shown that ⋆ is commutative, it will suffice to prove that for all x, y, z,
φ(φ(x + y) + z) = φ(x + y + z). We will prove this by induction on i, the smallest non-negative
integer such that for all j > i, xj = yj = zj = 0.

If i = 0, x = y = z = 0 and so as φ(0) = 0 the result follows immediately. Otherwise, suppose
the result holds for i− 1 and let x, y, z be such that for all j > i, xj = yj = zj = 0. Then we may
write

x = x′ + r1ei

y = y′ + r2ei

z = z′ + r3ei

where x′j , y
′
j , z

′
j are zero for all j > i− 1. Then, by the inductive hypothesis,

φ(φ(x+ y) + z) = φ(φ(x′ + r1ei + y′ + r2ei) + z′ + r3ei)

= φ(φ(x′ + y′ +

⌊
r1 + r2
ai

⌋
oi) + (r1 + r2 mod ai)ei + z′ + r3ei)

= φ(φ(x′ + y′ +

⌊
r1 + r2
ai

⌋
oi) + z′ +

⌊
(r1 + r2 mod ai) + r3

ai

⌋
oi)

+ (r1 + r2 + r3 mod ai)ei

= φ(φ(x′ + y′ +

⌊
r1 + r2
ai

⌋
oi + z′ +

⌊
(r1 + r2 mod ai) + r3

ai

⌋
oi))

+ (r1 + r2 + r3 mod ai)ei

= φ(x′ + y′ +

⌊
r1 + r2
ai

⌋
oi + z′ +

⌊
(r1 + r2 mod ai) + r3

ai

⌋
oi) + (r1 + r2 + r3 mod ai)ei

= φ(x′ + y′ + z′ +

⌊
r1 + r2 + r3

ai

⌋
oi) + (r1 + r2 + r3 mod ai)ei

= φ(x′ + y′ + z′ + (r1 + r2 + r3)ei)

= φ(x+ y + z)

as

x′ + y′ +

⌊
r1 + r2
ai

⌋
oi + z′ +

⌊
(r1 + r2 mod ai) + r3

ai

⌋
oi

has zeros at every coordinate greater than i− 1.

Lemma 43. ∀x, y ∈ Z
n, φ(x+ y) = φ(x) ⋆ φ(y)

30

Proof. We proceed by induction on i, the smallest non-negative integer such that xj = yj = 0 for
all j > i. If i = 0, then x = y = 0 and so the result follows immediately. So suppose i > 0 and the
result holds for all smaller i. Let x = x′ + r1ei, y = y′ + r2ei, where x′j = y′j = 0 for all j ≥ i.

φ(x+ y) = φ(x′ + y′ + (r1 + r2)ei)

= φ(x′ + y′ +

⌊
r1 + r2
ai

⌋
oi) + (r1 + r2 mod ai)ei

On the other hand:

φ(x) ⋆ φ(y) = φ(φ(x) + φ(y))

= φ(φ(x′ + ⌊r1/ai⌋oi) + φ(y′ + ⌊r2/ai⌋oi) + ((r1 mod ai) + (r2 mod ai))ei)

= φ(φ(x′ + ⌊r1/ai⌋oi) + φ(y′ + ⌊r2/ai⌋oi) +

⌊
(r1 mod ai) + (r2 mod ai)

ai

⌋
oi)

+ ((r1 mod ai) + (r2 mod ai) mod ai)ei

= φ(x′ + ⌊r1/ai⌋oi) + φ(y′ + ⌊r2/ai⌋oi) + φ(

⌊
(r1 mod ai) + (r2 mod ai)

ai

⌋
oi)

+ (r1 + r2 mod ai)ei

= φ(x′ + y′ + (⌊r1/ai⌋+ ⌊r2/ai⌋+

⌊
(r1 mod ai) + (r2 mod ai)

ai

⌋
)oi)

+ (r1 + r2 mod ai)ei

= φ(x′ + y′ +

⌊
r1 + r2
ai

⌋
oi) + (r1 + r2 mod ai)ei

= φ(x+ y)

Lemma 44. ⋆ is invertible, with φ(−x) being the inverse of φ(x) for all x ∈ Z
n.

Proof. By the previous lemma,

φ(x) ⋆ φ(−x) = φ(x+−x)

= φ(0)

= 0

Therefore, M is an abelian group and so forms a Z-module under the natural definition of
integer multiplication.

Lemma 45. φ : Zn →M is a homomorphism of Z-modules.

Proof. We already have that φ preserves addition and multiplication by −1, so it must also preserve
multiplication by elements of Z.

31

7.2.3 Space

In this section, we will prove that, provided the moduli ai are small enough and can be generated
along with the oi in sufficiently small space, the sketch may be maintained in small space.

Theorem 46. Suppose
∏n

i=1 ai ≤ 2s, and for each i, ai and oi can be calculated in O(S+s+m log n)
space. Then the sketch φ(x) can be stored in s space and maintained under updates to x using only
O(S + s+m log n+ log r) space for updates to z of size r.

We now present an algorithm for calculating φ(x). All vectors are stored as a list of indices and
values.

Algorithm 3: Calculating φ(x)

Calculate the moduli ai.
z ← x
while ∃i, zi ≥ ai do

Let i be the smallest index such that zi ≥ ai.
Calculate oi.
zi ← zi − ai
z ← z + oi
Discard oi.

end

return z

Lemma 47. Algorithm 3 terminates.

Proof. First note that, as oi is only supported on indices smaller than i, for any j, zj will not
increase unless i > j, where i is the smallest index such that zi ≥ ai (or ∞ if there is no such
index).

Now, we we prove that for any j from 0 to n, and any starting value of z, it will only take a
finite number of iterations of the inner loop of the algorithm until the first time i > j. We will
prove this by a double induction on j and zj .

Suppose j = 0. Then i > j at the start of the stream.

Suppose j > 0 and zj < aj , and the result holds for all smaller values of j. By the inductive
hypothesis, after some finite number of iterations we reach the first time that i > j − 1. As this is
the first time, zj remains unchanged and so i > j.

Finally suppose j > 0, zj ≥ aj , and the result holds for all j, zj where at least one of j and zj
is smaller. By the inductive hypothesis, after some finite number of iterations we reach the first
time that i > j − 1. At the next iteration, zj is reduced by aj and oj is added to z. By applying
the inductive hypothesis with this new value of z, a finite number more steps will bring us to the
first time that i < j.

Therefore, by considering j = n the algorithm will eventually terminate.

Lemma 48. When Algorithm 3 terminates, it returns φ(x).

Proof. At the end of the algorithm, the output is z = φ(z), as ∀i, zi < ai. At the start of the
algorithm z = x and so φ(z) = φ(x). So it will suffice to show that each iteration of the algorithm
leaves φ(z) unchanged.

32

An iteration picks some i such that zi ≥ ai and replaces z with z + oi − aiei. So we need to
show that φ(z + oi − aiei). By Lemma 45, φ is a homomorphism of Z-modules. Therefore,

φ(z + oi − aiei) = φ(z) ⋆ φ(aiei − oi)
−1

= φ(z) ⋆ ((ai mod ai)ei + φ(⌊ai/ai⌋oi − oi))
−1

= φ(z) ⋆ (0)−1

= φ(z)

concluding the proof.

We now analyze the space complexity of updating this sketch. For the following lemmas, we
will assume that the conditions of Theorem 46 hold. First we show that it is possible to store all
the ai simultaneously.

Lemma 49. The moduli ai can be stored in O(s+m log n) space.

Proof. We can store the non-1 moduli as pairs (i, ai). The indices take O(log n) bits to store, and
the total space used by storing the values ai is at most

∑n
i=1 log ai = log

∏n
i=1 ai ≤ s.

Lemma 50. Algorithm 3 uses O(S + s+m log n+
∑

i∈[n]:xi>0 log xi + ||x||0 log n) space.

Proof. The space cost of the algorithm comes from calculating the moduli (which takes O(S + s+
m log n) space), calculating oi (which takes O(S + s +m log n) space), storing z, and performing
addition on coordinates of z (with the things to be added of size at most that of a coordinate of oi
or ai, and therefore always smaller than the size of some modulus aj for j ≤ i).

Therefore, it will suffice to show that storing z never requires more thanO(m log n+
∑

i∈[n]:xi>0 log xi+
||x||0 log n) space. First, note that a coordinate of z only increases when oi is added to z, and this
only happens when zj < aj for every j < i. As each oi is in

∏n
j=1 Zaj , this has two implications:

1. At most m+ ||x||0 coordinates of z are ever non-zero.

2. Every non-zero coordinate zj is either no larger than xj , or is at most twice aj .

The first of these two implies that we can store the indices j such that zj > 0 in at most O((m+
||x||0) log n) space, while the second implies that we can store the list of values associated with
these indices in at most O(

∑n
i=1 log(2ai) +

∑
i∈[n]:xi>0 log xi) = O(s+

∑
i∈[n]:xi>0 log xi) space.

Lemma 51. For any x, y in M , x ⋆ y can be calculated in O(S + s+m log n) space.

Proof. x ⋆ y = φ(x+ y), so as x and y are both in
∏n

i=1 Zai , this follows directly from the previous
lemma.

We are now ready to prove that, for suitably generated ai and oi, we may maintain our sketch
in small space.

Theorem 46. Suppose
∏n

i=1 ai ≤ 2s, and for each i, ai and oi can be calculated in O(S+s+m log n)
space. Then the sketch φ(x) can be stored in s space and maintained under updates to x using only
O(S + s+m log n+ log r) space for updates to z of size r.

33

Proof. We may store the sketch in only s space by only storing the indices i where ai > 1. We
can then query it in O(S + s +m log n) space by calculating the moduli, and update it in space
O(S + s +m log n + log r) for updates of size r to z by calculating φ(φ(x) + rei), where i is the
coordinate updated.

7.3 Sketching Total Functions

7.3.1 Overview

In order to prove an equivalence between linear sketches and turnstile algorithms for total functions,
we need to define parameters ai and oi to instantiate the linear sketch φ→ Z

n.

Once we have defined these parameters we will prove the sketch is “correct” — for every x ∈ Z
n,

there is a stream with frequency x on which A outputs the same thing as it does on κ(φ(x)). We
will then show that it is possible to generate the parameters ai and oi in O(s+m log n) space, and
therefore by Theorem 46 we may maintain the sketch in this space.

Finally, we will show that, using the streams described in the correctness section, it is possible
to recover a solution to any stream problem solved by A using the sketch.

7.3.2 Defining the Parameters

The ai and oi will be defined as the output of the following procedure, which proceeds through the
indices i with backtracking.

For i = 1, . . . , n:

• Let xj be defined as the jth vector in x ∈
∏i−1

j=1 Zaj × Z× {0}n−i in little-endian order.

Let j2 be the smallest integer such that there exists j1 < j2 such that A(κ(xj2)) = A(κ(xj1)).
Choose ai, oi so that xj2 − xj1 = aiei − oi. Note that ai ≥ 0 as xj2 is later than xj1 in
little-endian order. If ai > 0, move on to the next i.

If ai = 0, let i′ be the largest index such that (xj2 − xj1)i′ > 0. Choose ai′ and oi′ so that
xj2 − xj1 = ai′ei′ − oi′ , overwriting the old values of ai′ and oi′ . Then roll i back to i′ +1 and
continue from there.

Lemma 52. This procedure will terminate after a finite number of steps.

Proof. After each iteration, either i increases or i is set to i′ + 1 with ai′ reduced from its previous
value. As the ai take values in the positive integers, the second can only happen finitely many
times, and so the procedure will eventually terminate.

7.3.3 Space

Lemma 53.
∏n

i=1 ai ≤ 2s.

Proof. Consider the procedure from Section 7.3.2. In the final iteration (that is, when an is defined
rather than i rolling back to some earlier index), j2 was the smallest integer such that there existed
j1 such that A(κ(xj2)) = A(κ(xj1)), and an = (xj2 − xj1)n.

34

As j2 was the smallest integer such that this held, this implies that A(κ(x0), . . . ,A(κ(xj2−1))
were all distinct states. As the sequence xj comes from iterating through the vectors in

∏n−1
i=1 Zai×Z

in little-endian order, j2 is at least
∏n−1

i=1 ai × (xj2)n. So as an ≤ (xj2)n, there are at least
∏n

i=1 ai
distinct states of A, and so the result follows.

Recall that m = |{i ∈ [n : ai > 1}|.

Corollary 54. m ≤ s

Proof. This follows from the fact that the procedure that generates the ai will always roll back if
it would generate an ai equal to 0, and therefore all the ai are positive integers.

Lemma 55. We may calculate all the moduli ai in O(s+m log n) space.

Proof. To execute the procedure that generates the ai, we need to remember the values of all aj
for j < i (which we can store in O(s +m log n) space, as at most m are greater than 1 and their
magnitudes sum to at most 2s), and we need to find the pair j2 > j1 such that A(κ(xj2)) =
A(κ(xj1)).

We can generate any κ(xj) we will need in O(S + s) space given a list of the ai, as they just

require marching through the elements of
∏j−1

i=1 Zai × Z in little-endian order while executing the
state-transition function of A, and the number of elements we go through is at most the number
of distinct states of A.

Therefore, we can find the pair in O(S + s) space by running two copies of A and feeding them
the streams κ(xj) until we find a collision.

Lemma 56. For any i, oi can be calculated in O(S + s+m log n) space.

Proof. First note that, as each oi is in
∏i−1

j=1 Zaj × Z
n−i+1, they can be stored in O(s + m log n)

space by storing (j, (oi)j) pairs as above.

To calculate oi, we may first calculate all the ai as above, and then run the procedure until the
final time where it changes ai. At that point we may read off oi (as we know xj and xj′).

7.3.4 Correctness

Theorem 57. Let f : Zn → {0, 1} be any function. Suppose there is a “post-processing” function
g such that, for all σ of length at most n + 2m + 2, g(A(σ)) = f(freqσ). Then for all x ∈ Z

n,
f(x) = g(A(κ(φ(x)))).

Proof. We proceed by induction on i, the largest non-negative integer such that xj < aj for all
j > i, and xi.

Suppose i = 0. Then x = φ(x) and the result follows immediately, as κ(x) has length at most
n. So suppose that this is not the case, and the result holds for all x with smaller i or the same i
and smaller xi.

Then by the construction of oi above, there exist x and y in
∏i−1

j=1 Zaj × {0}
n−i+1 and integers

r′ < r such that A(κ(x+ rei)) = A(κ(y + r′ei)), and oi = y − x, ai = r − r′.

35

Now write x = x′ + xiei + x′′, where x′ is zero on all indices at least i and x′′ is zero on all
indices no greater than i. Then

φ(x) = φ(x′ + ⌊xi/ai⌋oi) + (xi mod ai)ei + x′′

= φ(x′ + oi + (xi − ai)ei + x′′)

and so by the inductive hypothesis:

g(A(κ(φ(x)))) = f(x′ + oi + (xi − ai)ei + x′′)

Now consider the following two streams:

σ1 = κ(x+ rei) · κ(−x− rei) · κ(x)

σ2 = κ(y + r′ei) · κ(−x− rei) · κ(x)

Note that x and y are both supported on at most m indices, so the length of these streams is
at most n + 2m + 2 and so g(A(σ1)) = f(freqσ1) and g(A(σ2)) = f(freq(σ2)). Furthermore, as
A(κ(x+ rei)) = A(κ(y + r′ei)), A(σ1) = A(σ2), and so f(freq(σ1) = f(freq(σ2)).

Now freq(σ1) = x, while

freq(σ2) = (y − x)− (r − r′)ei + x

= oi − aiei + x

= x′ + oi + (xi − ai)ei + x′′

and so f(x′ + oi + (xi − ai)ei + x′′) = f(x), and so

g(A(κ(φ(x)))) = f(x),

completing the proof.

7.3.5 Turnstile-Sketching Equivalence

Theorem 12. Suppose there is a deterministic algorithm solving a streaming problem P that works
on streams of length n+2s+2, uses S space during updates and recovery, and uses s space between
updates. If P corresponds to a total function on Z

n, there is a linear sketching algorithm for P
that uses O(S + s log n) space during updates and recovery, and stores an s space sketch.

Proof. Let A be the original algorithm. The algorithm will be to keep φ(x), where x is the input
vector (which by the previous sections we can do in O(s +m log n) ≤ O(s log n) space), and then
give A κ(φ(x)). By Theorem 57, as m ≤ s, the output of A will be f(x).

By the lemmas in Section 7.3.3, the conditions of Theorem 46 hold, and so this sketch can be
stored in s space, and maintained in O(S + s + m log n) ≤ O(S + s log n) space (as m ≤ s by
Corollary 54). Recovering f(x) from the sketch requires running A on κ(x), which takes O(S + s)
space.

36

7.4 Sketching General Stream Problems

7.4.1 Overview

In order to prove an equivalence between linear sketches and turnstile algorithms for general stream
problems, we need to define parameters ai and oi to instantiate the linear sketch φ→ Z

n.

Once we have defined these parameters we will prove the sketch is “correct” — for every x ∈ Z
n,

there are streams with frequency x, φ(x) on which A outputs the same thing. We will then show
that it is possible to generate the parameters ai and oi in O(s +m log n) space, and therefore by
Theorem 46 we may maintain the sketch in this space.

Finally, we will show that, using the streams described in the correctness section, it is possible
to recover a solution to any stream problem solved by A using the sketch.

7.4.2 Defining the Parameters

Along with the parameters ai and oi, we also define “prefix vectors” πi for i = 0, . . . , n and “covering
streams” τxi (for x ∈

∏i−1
j=1 Zaj×Z×{0}

n−i and i = 1, . . . , n) to be used in the recursive construction
and in the later proof of correctness.

These will be defined as the output of the following procedure, which proceeds through the
indices i with backtracking.

Let π0 be the empty stream. For i = 1, . . . , n:

• We start by defining the covering streams τxi . Let xj be defined as the jth vector in x ∈∏i−1
j=1 Zaj ×Z× {0}n−i in little-endian order. Then we define τx1

i = τ0i = πi−1. For j > 0, we

define τ
xj

i = τ
xj−1

i · κ(xj − xj−1).

Note that for any j1 < j2, as τ
xj1

i is a prefix of τ
xj2

i we may write τ
xj2

i = τ
xj1

i · α for some
stream α and freqα will be equal to xj2 − xj1 .

• Let j be the smallest integer such that there exists j′ < j such that A(τ
xj

i) = A(τ
xj′

i). Choose
ai, oi so that xj − xj′ = aiei − oi. Note that ai ≥ 0 as xj is later than xj′ in little-endian

order. If ai > 0, set πi = τ
xj′

i and move on to the next i.

If ai = 0, let i′ be the largest index such that (xj − xj′)i′ > 0. Choose ai′ and oi′ so that

xj − xj′ = ai′ei′ − oi′ , and set πi′ = τ
xj′

i , overwriting the old values of ai′ , oi′ , and πi′ . Then
roll i back to i′ + 1 and continue from there.

Lemma 58. This procedure will terminate after a finite number of steps.

Proof. After each iteration, either i increases or i is set to i′ + 1 with ai′ reduced from its previous
value. As the ai take values in the positive integers, the second can only happen finitely many
times, and so the procedure will eventually terminate.

7.4.3 Space

Lemma 59.
∏n

i=1 ai ≤ 2s.

37

Proof. Consider the procedure from Section 7.4.2. In the final iteration (that is, when an is defined
rather than i rolling back to some earlier index), j was the smallest integer such that there existed

j′ such that A(τ
xj
n) = A(τ

x′

j
n), and an = (xj − xj′)n.

As j was the smallest integer such that this held, this implies that A(τx0

n), . . . ,A(τ
xj−1

n) were
all distinct states. As the sequence xk comes from iterating through the vectors in

∏n−1
i=1 Zai × Z

in little-endian order, j is at least
∏n−1

i=1 ai × (xj)n. So as an ≤ (xj)n, there are at least
∏n

i=1 ai
distinct states of A, and so the result follows.

Recall that m = |{i ∈ [n : ai > 1}|.

Corollary 60. m ≤ s

Proof. This follows from the fact that the procedure that generates the ai will always roll back if
it would generate an ai equal to 0, and therefore all the ai are positive integers.

Lemma 61. We may calculate all the moduli ai, while generating the stream πn, in O(S + s +
m log n) space.

Proof. To execute the procedure that generates the ai, we need to remember the values of all aj
for j < i (which we can store in O(s +m log n) space, as at most m are greater than 1 and their
magnitudes sum to at most 2s), we need to remember A(πi−1) (which takes O(s) space) and then
we need to find the pair j > j′ such that A(τ

xj

i) = A(τ
xj′

i).

Given the moduli (aj)
i
j=1, we can generate the elements of the streams τ

xj

i (from after πi−1) on

the fly in O(S + s) space, as they just require marching through the elements of
∏i−1

j=1 Zai × Z in
little-endian order while executing the transition function of A on each update, and the number of
elements we go through is at most the number of distinct states of A.

Therefore, we can find the pair in O(S + s) space by running two copies of A and feeding them
the streams τ

xj

i until we find a collision.

Lemma 62. For any i, oi can be calculated in O(S + s+m log n) space.

Proof. First note that, as each oi is in
∏i−1

j=1 Zaj × Z
n−i+1, they can be stored in O(s + m log n)

space by storing (j, (oi)j) pairs as above.

To calculate oi, we may first calculate all the ai as above, and then run the procedure until the
final time where it changes ai. At that point we may read off oi (as we know xj and xj′ , as we

tracked them while generating the streams τ
xj

i and τ
xj′

i).

7.4.4 Correctness

Lemma 63. Let α, β be any pair of streams. Then there are infinitely many l ∈ N such that
A(α · βl) = A(α · β2

s

).

Proof. Consider the sequence of states ql = A(α · β
l). As there are only 2s distinct states, there is

some state that recurs infinitely many times, and that state must appear for some l ≤ 2s. So let
this l = 2s − k. Each time this state appears, A(α · β2

s

) appears k states later. So A(α · β2
s

) also
appears infinitely many times.

38

Theorem 64. For all x ∈ Z
n, there is a stream σ such that freqσ = x and:

A(σ) = A(πn · πn · κ(o1 − a1e1)
2s . . . κ(on − anen)

2s · κ(φ(x)))

Proof. For each i ∈ [n], let ψi be such that πi = πi−1 · ψi (recall that each πi is a prefix of the
next), and let ρi be the stream found in the construction of M such that A(πi · ρi) = A(πi) and
freq ρi = aiei − oi. For y ∈ N

n, let ξy be the following stream:

ψ1 · ρ
y1
i . . . ψn · ρ

yn
n

Then for all y ∈ N
n,

A(ξy) = A(ψ1 . . . ψn) = A(πn)

while freq ξy = freqπn +
∑n

i=1 yi(aiei − oi). Next, for y ∈ N
n, let

χy = κ(o1 − a1e1)
y1 . . . κ(on − anen)

yn

so freqχy = −
∑n

i=1 yi(aiei − oi). We will prove the theorem for a σ of the form

σ = ξy · πn · χz · κ(φ(x))

for carefully chosen y and z. Note that

freqσ = freq ξy − freqπn + freqχz + φ(x)

= φ(x) +

n∑

i=1

(yi − zi)(aiei − oi). (1)

In particular, we will choose z such that

A(πn · πn · κ(o1 − a1e1)
z1 . . . κ(oi − aiei)

zi) = A(πn · πn · κ(o1 − a1e1)
2s . . . κ(oi − aiei)

2s)

for each i ∈ [n].

We show that the theorem holds for such a σ and z by induction on i, the largest non-negative
integer such that 0 ≤ xj < aj for all j > i.

Suppose i = 0. Then x = φ(x), so we can take σ = ξy · πn ·χz · κ(φ(x)), where both y and z are
the vectors with 2s in every coordinate. Then

A(σ) = A(πn · πn · χz · κ(φ(x))

= A(πn · πn · κ(o1 − a1e1)
2s . . . κ(on − anen)

2s · φ(x))

and by (1), freqσ = φ(x) = x. Finally, the condition on z is trivially satisfied, as zi = 2s for each i.

Now suppose i > 0, and the result holds for all x with smaller i. Write x = x′+xiei+x
′′, where

x′ is zero on all indices at least i and x′′ is zero on all indices no greater than i. Then

φ(x) = φ(x′ + ⌊xi/ai⌋oi) + (xi mod ai)ei + x′′

= φ(x′ + ⌊xi/ai⌋oi + (xi mod ai)ei + x′′)

and by the inductive hypothesis there exists a σ′ = ξy′ · πn · χz′ · κ(φ(x)) such that

freqσ′ = x′ + ⌊xi/ai⌋oi + (xi mod ai)ei + x′′

39

and
A(σ′) = A(πn · πn · κ(o1 − a1e1)

2s . . . κ(on − anen)
2s · κ(φ(x)))

with z′ such that

A(πn · πn · κ(o1 − a1e1)
z′
1 . . . κ(oj − ajej)

z′j) = A(πn · πn · κ(o1 − a1e1)
2s . . . κ(oj − ajej)

2s)

for each j ∈ [n].

Now, by Lemma 63, there are infinitely many l ∈ N such that

A(πn · πn · κ(o1 − a1e1)
2s . . . κ(oi−1 − ai−1ei−1)

2s · κ(oi − aiei)
l)

=A(πn · πn · κ(o1 − a1e1)
2s . . . κ(oi−1 − ai−1ei−1)

2s · κ(oi − aiei)
2s)

so let l be such that this holds and l ≥ z′i − ⌊xi/ai⌋. We will define z to be z′ at every coordinate
except that zi = l. We will define y to be y′ except with yi = y′i + l + ⌊xi/ai⌋ − z

′
i, so y is still in

N
n.

Now let σ = ξy · πn · χz · κ(φ(x)). We will show this satisfies all the conditions required by the
inductive hypothesis. First, we show that z obeys the desired property. For all j ∈ [n], if j < i it
holds by the inductive hypothesis, as zj = z′j for all j < i. Then, if j = i,

A(πn · πn · κ(o1 − a1e1)
z1 . . . κ(oj − ajej)

zj) = A(πn · πn · κ(o1 − a1e1)
2s . . . κ(oi−1 − ai−1ei−1)

2s) · κ(oi − aiei)
l)

= A(πn · πn · κ(o1 − a1e1)
2s . . . κ(oi − aiei)

2s)

using the j < i property and our choice of l. For j > i, the result again holds by the inductive
hypothesis, as it holds for j = i and zj = z′j for all j > i.

Now we show that A(σ) takes the correct value.

A(σ) = A(ξy · πn · χz · κ(φ(x)))

= A(πn · πn · χz · κ(φ(x)))

= A(πn · πn · κ(o1 − a1)
2s . . . κ(on − an)

2s · κ(φ(x)))

by the property we just proved for z.

Finally we need to prove that freqσ = x. The difference between σ and σ′ is that we replaced
ξy′ with ξy and χz′ with χz, and y, z each differ from y′, z′ only in coordinate i. Therefore by (1),

freqσ = freqσ′ + (yi − y
′
i + z′i − zi)(aiei − oi)

= (x′ + ⌊xi/ai⌋oi + (xi mod ai)ei + x′′) + (l + ⌊xi/ai⌋ − zi + z′i − l)(aiei − oi)

= x′ + (⌊xi/ai⌋ai + (xi mod ai))ei + x′′

= x′ + xiei + x′′

= x

completing the proof.

7.4.5 Sketching-Turnstile Equivalence

Theorem 2. Suppose there is a deterministic algorithm solving a streaming problem P that works
on streams of all lengths, uses S space during updates and recovery, and uses s space between
updates. Then there is a linear sketching algorithm for P that uses O(S + s log n) space during
updates and recovery, and stores an s space sketch.

40

Proof. Let A be the original algorithm. The new algorithm will be to construct M and φ as above,
and as we receive updates to the input vector x, maintain φ(x). By the Lemmas in Section 7.4.3,
the conditions of Theorem 46 are satisfied, so this will require O(S + s+m log n) ≤ O(S + s log n)
space to compute (as m ≤ s by Corollary 60).

Then, at the end of the stream, we will input σ∗ := πn·πn·κ(o1−a1e1)
2s . . . κ(on−anen)

2s ·κ(φ(x))
to A, and output whatever A recovers from the resulting state (as we can compute πn we can also
compute πn). By Theorem 64, there is a stream σ with freqσ = x such that A(σ∗) = A(σ), so as
A would have output a correct answer for σ it will output the same correct answer when given σ∗.

This recovery algorithm takes O(S + s + m log n) ≤ O(S + s log n) space, as by Lemma 61
we can generate πn in that space (and therefore πn), even though we could not store the whole
stream. Similarly, we can generate the streams κ(oi − ai)

2s by generating ai and oi and using an
s-bit counter to insert it the correct number of times. Other than computing the stream, we simply
maintain A under the stream σ∗ and apply the recovery algorithm, both of which use S space by
assumption.

References

[AGM12] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via
linear measurements. SODA, pages 459–467, 2012.

[AHLW16] Yuqing Ai, Wei Hu, Yi Li, and David P Woodruff. New characterizations in turnstile
streams with applications. In LIPIcs-Leibniz International Proceedings in Informatics,
volume 50. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[AKL17] Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum matching size
in graph streams. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1723–1742. SIAM, 2017.

[AKLY16] Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum match-
ings in dynamic graph streams and the simultaneous communication model. In Pro-
ceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms,
pages 1345–1364. SIAM, 2016.

[AMS96] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating
the frequency moments. In STOC, pages 20–29, 1996.

[CCF02] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in
data streams. In International Colloquium on Automata, Languages, and Programming,
pages 693–703. Springer, 2002.

[CDIM03] Graham Cormode, Mayur Datar, Piotr Indyk, and S Muthukrishnan. Comparing data
streams using hamming norms (how to zero in). IEEE Transactions on Knowledge and
Data Engineering, 15(3):529–540, 2003.

[CM05] Graham Cormode and Shan Muthukrishnan. An improved data stream summary: the
count-min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

[FIS08] Gereon Frahling, Piotr Indyk, and Christian Sohler. Sampling in dynamic data streams
and applications. International Journal of Computational Geometry & Applications,
18(01n02):3–28, 2008.

41

[FS05] Gereon Frahling and Christian Sohler. Coresets in dynamic geometric data streams.
In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing,
pages 209–217. ACM, 2005.

[Gan08] Sumit Ganguly. Lower bounds on frequency estimation of data streams. In International
Computer Science Symposium in Russia, pages 204–215. Springer, 2008.

[HLY19] Kaave Hosseini, Shachar Lovett, and Grigory Yaroslavtsev. Optimality of linear sketch-
ing under modular updates. CCC, 2019.

[Ind06] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data
stream computation. Journal of the ACM (JACM), 53(3):307–323, 2006.

[IP11] Piotr Indyk and Eric Price. K-median clustering, model-based compressive sensing,
and sparse recovery for earth mover distance. In Proceedings of the forty-third annual
ACM symposium on Theory of computing, pages 627–636. ACM, 2011.

[JG05] Hossein Jowhari and Mohammad Ghodsi. New streaming algorithms for counting tri-
angles in graphs. In Computing and Combinatorics, pages 710–716. Springer, 2005.

[JW18] Rajesh Jayaram and David P Woodruff. Data streams with bounded deletions. In
Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, pages 341–354. ACM, 2018.

[KKM13] Bruce M Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in
polylogarithmic worst case time. In Proceedings of the twenty-fourth annual ACM-
SIAM symposium on Discrete algorithms, pages 1131–1142. Society for Industrial and
Applied Mathematics, 2013.

[KKP18] John Kallaugher, Michael Kapralov, and Eric Price. The sketching complexity of graph
and hypergraph counting. In 2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS), pages 556–567. IEEE, 2018.

[KLM+14] Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron Sid-
ford. Single pass spectral sparsification in dynamic streams. FOCS, 2014.

[KMY18] Sampath Kannan, Elchanan Mossel, and Grigory Yaroslavtsev. Linear sketching over
F2. CCC, 2018.

[Kon15] Christian Konrad. Maximum matching in turnstile streams. In Algorithms-ESA 2015,
pages 840–852. Springer, 2015.

[KP17] John Kallaugher and Eric Price. A hybrid sampling scheme for triangle counting. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 1778–1797. SIAM, 2017.

[LNW14] Yi Li, Huy L. Nguyễn, and David P. Woodruff. Turnstile streaming algorithms might
as well be linear sketches. In Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, pages 174–183, 2014.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinator-
ica, 12(4):449–461, 1992.

42

[NY19] Jelani Nelson and Huacheng Yu. Optimal lower bounds for distributed and stream-
ing spanning forest computation. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1844–1860. SIAM, 2019.

[PT12] Rasmus Pagh and Charalampos E Tsourakakis. Colorful triangle counting and a mapre-
duce implementation. Information Processing Letters, 112(7):277–281, 2012.

[PTTW13] A. Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu. Counting
and sampling triangles from a graph stream. Proc. VLDB Endow., 6(14):1870–1881,
September 2013.

[PW12] Eric Price and David P Woodruff. Applications of the shannon-hartley theorem to data
streams and sparse recovery. In 2012 IEEE International Symposium on Information
Theory Proceedings, pages 2446–2450. IEEE, 2012.

[TKMF09] Charalampos E Tsourakakis, U Kang, Gary L Miller, and Christos Faloutsos. Doulion:
counting triangles in massive graphs with a coin. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 837–
846. ACM, 2009.

43

	1 Introduction
	1.1 Definitions
	1.2 Our Results: Separations
	1.3 Our Results: Equivalences

	2 Related Work
	3 Overview of Techniques
	3.1 Turnstile-Sketching Separations
	3.1.1 Binary and Box-Constrained Streams
	3.1.2 Bounded Degree Triangle Counting

	3.2 Deterministic Turnstile-Sketching Equivalence

	4 Box-Constrained Streaming: Problem and lower bound
	4.1 Streaming Triangle Game
	4.2 Linear Sketching Lower Bound
	4.3 Algorithm for `39`42`"613A``45`47`"603ATrianglePromise over 0,1
	4.4 Algorithm for `39`42`"613A``45`47`"603ATrianglePromise over 2M-1

	5 Restricted Intermediate State Triangle Counting
	5.1 Problem
	5.2 Linear Sketching Lower Bound
	5.3 Algorithm
	5.4 Space Complexity
	5.5 Correctness

	6 Bounded-Length Triangle Counting
	6.1 Problem
	6.2 Linear Sketching Lower Bound
	6.3 Algorithm
	6.4 Space Complexity
	6.5 Correctness

	7 Deterministic Turnstile-Sketching Equivalence
	7.1 Overview
	7.2 Our Module
	7.2.1 Definition of M
	7.2.2 Algebraic Properties of M and
	7.2.3 Space

	7.3 Sketching Total Functions
	7.3.1 Overview
	7.3.2 Defining the Parameters
	7.3.3 Space
	7.3.4 Correctness
	7.3.5 Turnstile-Sketching Equivalence

	7.4 Sketching General Stream Problems
	7.4.1 Overview
	7.4.2 Defining the Parameters
	7.4.3 Space
	7.4.4 Correctness
	7.4.5 Sketching-Turnstile Equivalence

