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Abstract

Why are classifiers in high dimension vulnerable
to “adversarial” perturbations? We show that it
is likely not due to information theoretic limita-
tions, but rather it could be due to computational
constraints. First we prove that, for a broad set of
classification tasks, the mere existence of a robust
classifier implies that it can be found by a pos-
sibly exponential-time algorithm with relatively
few training examples. Then we give two partic-
ular classification tasks where learning a robust
classifier is computationally intractable. More
precisely we construct two binary classifications
task in high dimensional space which are (i) in-
formation theoretically easy to learn robustly for
large perturbations, (ii) efficiently learnable (non-
robustly) by a simple linear separator, (iii) yet are
not efficiently robustly learnable, even for small
perturbations. Specifically, for the first task hard-
ness holds for any efficient algorithm in the statis-
tical query (SQ) model, while for the second task
we rule out any efficient algorithm under a cryp-
tographic assumption. These examples give an
exponential separation between classical learning
and robust learning in the statistical query model
or under a cryptographic assumption. It suggests
that adversarial examples may be an unavoidable
byproduct of computational limitations of learn-
ing algorithms.

1. Introduction

The most basic task in learning theory is to learn from a
data set (X, f(X;))ie[n) a good approximation to the un-
known input-output function f. One is typically interested
in finding a hypothesis function h with small out of sample
probability of error. That is, assuming the X;’s are i.i.d.
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from some distribution D, one wishes to approximately
minimize Px . p(h(X) # f(X)). A more challenging task
is to learn a robust hypothesis, that is, one that would mini-
mize the probability of error against adversarially corrupted
examples. More precisely, assume that the input space is
endowed with a norm || - || and let € > 0 be a fixed robust-
ness parameter. In robust learning the goal is to find h to
minimize:

X]P’D(E zsuch that ||z]| < e, and h(X + z) # f(X +2)).

(D
Such an input X + z in the above event is colloquially
referred to as an adversarial example'.

Following Szegedy et al. (2013) there is a rapidly expanding
literature exploring the vulnerability of neural networks to
adversarially chosen perturbations. The surprising obser-
vation is that, say in vision applications, for most images
X ~ D the perturbation can be chosen in a way that is im-
perceptible to a human yet dramatically changes the output
of state-of-the-art neural networks. This is a particularly
important issue as these neural networks are currently being
deployed in real-world situations. Naturally there is by now
a large literature (in fact going back at least to (Dalvi et al.,
2004; Globerson and Roweis, 2006)) on attacks (finding
adversarial perturbations) and defenses (making classifiers
robust against certain type of attacks).

While we have a sophisticated theory for the classical goal
of minimizing the non-robust probability of error, our un-
derstanding of the robust scenario is still very rudimentary.
At the moment, the “attackers” seem to be winning the
arms race against the “defenders”, see e.g., (Athalye et al.,
2018). We identify four mutually exclusive possibilities for
why all known classification algorithms are vulnerable to
adversarial examples:

1. No robust classifier exists.

2. Identifying a robust classifier requires too much train-
ing data.

3. Identifying a robust classifier from limited training data

'In the literature one sometimes uses a more stringent definition
of adversarial examples, where X and z are in addition required
to satisfy f(X + z) = f(X). We ignore this requirement here.
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is information theoretically possible but computation-
ally intractable.

4. We just have not found the right algorithm yet.

The goal of this paper is to provide two pieces of evidence,
one in favor of hypothesis 3 and one against hypothesis 2.
Our primary result is that hypothesis 3 is indeed possible:
there exist robust classification tasks that are information
theoretically easy but computationally intractable under a
powerful model of computation (namely the statistical query
model, see below) or for unrestricted efficient algorithms but
under a cryptographic hardness assumption. Our secondary
result is evidence against hypothesis 2, showing that if a
robust classifier exists then it can be found with relatively
few training examples under a standard assumption on the
data distribution (for example, that the distribution within
each label is close to a Lipschitz generative model, or is
drawn from a finite set of exponential size).

In Section 1.1 we discuss related work on adversarial ex-
amples in light of those four hypotheses. In Section 1.2
we introduce the model of computation under which we
will prove intractability. We conclude the introduction with
Section 1.4 where we give a brief proof overview for our
primary and secondary result. These results are discussed
in greater depth respectively in Sections 4,5 and Section 3.

1.1. Related work on adversarial examples

To the best of our knowledge, previous works have not
linked computational constraints to adversarial examples,
but instead have focused on the other three hypotheses.

Supporting hypothesis 1 is the work of Fawzi et al. (2018).
Here the authors consider a generative model for the fea-
tures, namely X = g(r) where 7 € R? is sampled from an
isotropic Gaussian (in particular it is typically of Euclidean
norm roughly v/d). The observation is that, due to Gaussian
isoperimetry, no classifier is robust to perturbations in 7 of
Euclidean norm O(1). If g is L-Lipschitz, this corresponds
to perturbations of the image X of at most O(L). On the
other hand, evidence against hypothesis 1 is the fact that
humans seem to be robust classifiers with low error rate
(albeit nonzero error rate, as shown by examples in (Elsayed
et al., 2018)). This suggests that, to fit real distributions
on images, the Lipschitz parameter L in the data model
assumed in (Fawzi et al., 2018) may be prohibitively large.

Another work arguing the inevitability of adversarial exam-
ples is Gilmer et al. (2018). There the authors propose a
simple classification task, namely distinguishing between
samples on the unit sphere in high dimension and samples
on a sphere of radius R bounded away from 1. They show
experimentally that even in such a simple setup, state-of-
the-art neural networks have adversarial examples at most

points. We note however that this example only applies to
specific classifiers, since it is easy to construct an efficient
robust classifier for the given example (e.g., just use a linear
model on the norm of the features); thus the “hardness” here
only appears for a given network structure.

Supporting hypothesis 2 is the work of Schmidt et al. (2018).
Here the authors consider a mixture of two separated Gaus-
sians (isotropic, with means at distance ©(v/d)). With
such a separation a single sample is sufficient to learn non-
robustly; but to learn a classifier that is robust to O(1)-size
perturbations in £,.-norm one needs €2(v/d) samples. This
polynomial separation suggests that avoiding adversarial ex-
amples in high dimension requires a lot more samples than
mere learning—but only up to v/d samples. In fact, since
their hard instance is essentially a set of 2¢ possible distri-
butions, our secondary result gives a black-box algorithm
that would produce a robust classifier with O(d) samples.

Finally the large body of work on “adversarial defense” can
be viewed as investigating hypothesis 4. We note that, at
the time of writing, the state of the art defense Madry et al.
(2018) (according to (Athalye et al., 2018)) is still far from
being robust. Indeed on the CIFAR-10 dataset its accuracy
is below 50% even with very small perturbations (of order
102 in £, -norm), while state of the art non-robust accuracy
is higher than 95%.

Update. Since the first version of the paper appeared (in
May 2018), all the directions discussed above have seen
lots of progress (for a small and by no means representa-
tive sample, see (Garg et al., 2018; Yin et al., 2018; Zhang
et al., 2019)). However, the status quo does not seem to
change significantly. Namely, the defense from (Madry
et al., 2018) is still the state of the art for the CIFAR dataset,
and there are no attacks that perform drastically better than
simple projected gradient descent (PGD). Perhaps the most
significant developments have been related to training mod-
els with provable robustness guarantees (Dvijotham et al.,
2018; Wong and Kolter, 2018; Weng et al., 2018; Xiao et al.,
2018), however, currently all the methods for such training
are either extremely slow or the certified bound is much
weaker than the bound achieved by the PGD attack.

1.2. The SQ model

Proving computational hardness is a notoriously difficult
problem. To circumvent this difficulty one usually either
(i) reduces the problem at hand to a well-established com-
putational hardness conjecture (e.g., proving NP-hardness),
or (ii) proves an unconditional hardness within a limited
computational framework (such as the oracle lower bounds
in convex optimization, (Nesterov, 2004)). Our task here
is further complicated by the average-case nature of the
problem (the datasets are i.i.d. from some fixed distribution).
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Fortunately there is a growing set of results on computa-
tional hardness in learning theory that we can leverage. The
statistical query (SQ) model of computation from Kearns
(1998) is a particularly successful instance of approach (ii)
for learning theory: (a) most known learning algorithms
fall in the framework, including in particular logistic re-
gression, SVM, stochastic gradient descent, etc; and (b)
SQ-hardness has been proved for many interesting prob-
lems that are believed to be computationally hard, such as
learning parity with noise (Kearns, 1998), learning intersec-
tion of halfspaces (Klivans and Sherstov, 2007), the planted
clique problem (Feldman et al., 2013), robust estimation
of high-dimensional Gaussians (Diakonikolas et al., 2017),
or learning a function computable by a small neural net-
work (Song et al., 2017). Thus we naturally use this model
to prove our main result on the computational hardness of
robust learning. We now recall the definition of the SQ
model and state informally our main result.

As Kearns put it in his original paper, the SQ model consid-
ers “learning algorithms that construct a hypothesis based
on statistical properties of large samples rather than on
the idiosyncrasies of a particular sample”. More precisely,
rather than having access to a data set (X;, f(X;)), in the
SQ model one must make queries to a 7-SQ oracle which
operates as follows: given a [0, 1]-valued function ¢ de-
fined on input/output pairs, the SQ oracle returns a value
Ex~p ¥ (X, f(X)) + £ where |{| < 7. We refer to 7 as
the precision of the oracle. Obviously, an algorithm using
T queries to an oracle with precision 7 can be simulated
using a data set of size roughly 7'/72. In our main result
we consider an oracle with exponential precision. More
concretely we take 7 of order exp(—Cd€) where d is the
dimension of the problem and ¢, C' > 0 are some numerical
constants. Observe that such a high precision oracle cannot
be simulated with a polynomial (in d) number of samples.
Yet we show that even with such a high precision one needs
an exponential number of queries to achieve robust learning
for a certain task which on the other hand is easy to learn,
and information theoretically learnable robustly:

Theorem 1.1 (informal). For any ¢ > 0, there exists a
classification task in R which is

o learnable in poly(d) time and poly(d) samples;

e robustly learnable in poly(d) samples with (5-
robustness parameter logo'49 d (while with high proba-
bility all samples have {y-norm O(\/d));

e not efficiently and robustly learnable in the statistical
query model, in the sense that even with an exponen-
tial (in d) precision statistical query oracle one needs
an exponential (in d) number of queries in order to
robustly learn with robustness parameter €.

The same result holds using the ¢, norm instead of /s,
except with diameter O(v/d log d).

Of course, a number of natural machine learning algorithms
such as nearest neighbor are not based on statistical queries.
Although we cannot prove it, we believe that our input dis-
tributions are computationally hard in general. For the case
of nearest neighbor, the distance to points of each class
have very similar distributions—indeed, the two distribu-
tions match on polynomially many moments. This suggests
that exponentially many samples are necessary for nearest
neighbor. For more information about nearest neighbor clas-
sifiers in the context of adversarial examples, see (Wang
et al., 2017).

Moreover, there are very few problems in any domain with
exponential SQ hardness for which polynomial time algo-
rithms are known; in fact, the only such problems involve
solving systems of linear equations over finite fields (Feld-
man, 2017). Since Theorem 1.1 involves a real-valued prob-
lem, finding a polynomial time algorithm that avoids the
SQ lower bound would be a remarkable breakthrough in SQ
theory.

1.3. Cryptographic hardness

We complement Theorem 1.1 with an alternative construc-
tion, which has qualitatively similar properties. How-
ever, there are two important differences. First, instead
of logo'49 d-robust classifier, we can guarantee the existence
of a Q(v/d)-robust one (which is the best possible, since the
diameter of the dataset is O(v/d)). Second, instead of ruling
out efficient SQ algorithms, we can rule out all the efficient
algorithms. However, this is of course not an unconditional
result, and we show it under a cryptographic assumption.

More specifically, we build a classification task out of a
pseudo-random generator from (Blum et al., 1986) and hard-
ness of robust learning follows from computational indistin-
guishability of the output of the generator and the uniform
distribution.

1.4. Overview of proofs

Our secondary result, on the information theoretic achiev-
ability of robustness, is proved via simple arguments rem-
iniscent of PAC-learning theory. Namely, if a classifier is
not good enough for a given pair of distributions, we can
rule it out with high confidence by looking at not too many
samples. Then, we use a union bound to claim the result for
a family of pairs that is either at most exponentially large,
or is at least covered by a net of at most exponential size
(the only subtlety is in the proper definition of a net in this
robust context).

Our primarily result, on the hardness of robustness, is techni-
cally much more challenging. The central object in the proof
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is a natural high-dimensional generalization of a construc-
tion from Diakonikolas et al. (2017). Roughly speaking, a
hard pair of distributions is obtained by taking a standard
multivariate Gaussian, choosing a random k-dimensional
subspace and planting there two well-separated distributions
that match many moments of a Gaussian (in (Diakonikolas
et al., 2017) only the case k = 1 is considered). To show an
SQ lower bound, we use — as in (Diakonikolas et al., 2017) —
the framework of (Blum et al., 1994; Feldman et al., 2013)
to reduce the question to computing a certain non-standard
notion of correlation between the distributions. To bound
said correlation, we deviate from (Diakonikolas et al., 2017)
significantly, since their argument is tailored crucially to the
case k = 1. Our argument is less precise, but allows k£ > 1
which is necessary to obtain a large separation between the
distributions (which in turn controls the parameter M in
Theorem 1.1).

For the cryptographic hardness, we, roughly speaking, re-
quire a classifier to distinguish the uniform distribution from
the output of the pseudo-random generator (PRG) on a uni-
formly random seed. Because the seed is much shorter
than the output, extremely robust classifiers exist (since
the image of the generator is tiny). In order to provide
an example where an efficient robust classifier exists and
is information-theoretically easy but computationally in-
tractable to learn from data, we use a “trapdoor” PRG. The
construction from (Blum et al., 1986) gives a trapdoor PRG
under standard cryptographic assumptions (Vazirani and
Vazirani, 1983).

2. Definitions

Throughout we restrict ourselves to binary classifiers, R¢%-
feature space, as well as to balanced classes. We fix some
norm || - || in R?, and we denote B(e) = {z € R?: ||z <
e}
Definition 2.1. The s-robust zero-one loss (with respect
to || - ||) is defined as follows, for f : R* — {0,1} and
(z,i) € R? x {0,1},

b(f,x,i))=1{3z€ Ble): flx+2)#1i}.
Definition 2.2. A binary classifier f : R? — {0,1} is
(e, 9)-robust for a pair of distributions (Dg, D1) on X if for
any i € {0,1},

B (f X)) <6

Definition 2.3. A (binary) classification task is given by a
family D of pairs of distributions D = (Dgy, D1) over a
domain X. The goal is to map datasets Xy, X, consisting
of n i.i.d. samples from Dy and D, respectively into a
classifier f : R4 — {0,1}.

We say that D is (e, §)-robustly learnable with n samples if
there is a classification mapping such that, for every D € D,

with probability at least 2/3 over X, and X ,, the resulting
classifier f is (e, d)-robust for D.

Remark 2.4. The success probability 2/3 is an arbitrary
constant larger than 1/2. It is easy to see that, for any
n > 0, by using O(nlog(1/n)) samples one can obtain a
success probability of 1 — n.

We also note that the classical (¢',9")-PAC learning sce-
nario, with 6’ = 1/3, corresponds to our definition of (g, 9)-
robust classification with parameters ¢ = 0 and § = ¢
Slightly more precisely, a concept class F C {0, 1}Rd for
PAC-learning corresponds to the family D of all pairs of
distribution supported respectively on f~1(0) and f=*(1)
for some f € F.

Definition 2.5. We say that D is (g, 0)-robustly feasible if
every D € D admits an (e, d)-robust classifier. When it
exists we denote fp for such a classifier (chosen arbitrarily
among all robust classifiers for D), and Fp = {fp,D €
D}.

3. Robust learning with few samples

Obviously robust feasibility is a necessary condition for
robust learnability. We show that it is in fact sufficient, even
for sample efficient robust learnability. We first do so when
a finite set of classifiers Fp suffices for robust feasibility.

3.1. Robust empirical risk minimization

Theorem 3.1. Assume that D is (e,d)-robustly feasi-
ble. Then it is (g,0 + 0')-robustly learnable with n =

0 (22 10g(1 7o) ).

Proof. Let D; = % Z?Zl dx,(;) be the empirical measure
corresponding to the dataset X ;. We will show that ERM
on the e-robust loss gives the claimed sample complexity.
More precisely we consider the following classifier:
f=argmin max E (.(f, X,i).
ferp €{0,1} X~D;

For  shorthand notation we  write py =
maX;e{o,1} ]EXNDi £€(f7 X, Z) and ﬁf =
maX;e(0,1} Ex.p, le(f, X,i). In particular we sim-
ply want to prove that p; < 0 4 ¢'. Note that by definition
pf, < 0. A standard Chernoff bound gives that, with
probability at least 2/3, one has for every f € Fp,

lpy — sl = O(\/pslog(|Fpl)/n).

Now observe that for n > 45;3/ log(]Fp|) one can has

VPfo log(|Fpl)/n < ¢'/2, and thus we obtain with n =
0 (%2 10g(17p) ).

¢ 7
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It now suffices to observe that s > § + ¢’ implies s —
8 : 8
S >0+ % [

3.2. Robust covering number

In many natural situations the classification task is specified
by a continuous set of distributions. For example one might
have a set of the form D = {(go(wo), g1(w1)), (wo, w1) €
0} where gg and ¢; are Lipschitz functions and {2 is some
compact subset of R, In this case Theorem 3.1 does not
apply, although one would like to say that “essentially” D
is of log-size roughly d’. The classical solution to this
difficulty is with covering numbers:

Definition 3.2. For a metric space (X, dist) we write
Naist(X,e) =inf {|X|s. X C X

and X C U {y : dist(z,y) < 5}} .

zeX

With a slight abuse of notation we also extend the distance
to the Cartesian product X x X by dist((x,2'), (y,y')) =
max(dist(z, z’), dist(y, y')).

With the above definitions one can obtain the following
result as a straightforward corollary of Theorem 3.1 and the
definition of total variation distance.

Theorem 3.3. Assume that D is (e,06)-robustly feasi-
ble. Then D is (g, + 20")-robustly learnable with n =

@ (54 log(Nry (D, 8)).

In fact, if one is willing to lose a little bit of robustness,
one can use a significantly weaker notion of “distance” than
total variation. Indeed we can consider a broader class of
modifications to a distribution that preserves the robust-
ness of a classifier: in Theorem 3.3 we used that we can
move arbitrarily a small amount of mass, but in fact we
can also move a little an arbitrary amount of mass. While
the former type of movement corresponds to total varia-
tion distance, the latter corresponds to the (infinity) Wasser-
stein distance. We denote W, (D, D’) for the infimum of
SUD (5 1) esupp(p) |17 — @[] over all measures p(z,z") with
marginal over z (respectively z’) equal to D (respectively
D’). Next we introduce a slightly non-standard notion of
covering with respect to a pair of distances

Definition 3.4. For a metric space X equipped with two
distances dist and dist’ we define an (¢, §) neighborhood
by?:

Ues(z) = {y: Fzs.t. dist'(z,2) < 6 and dist(z,y) < €} .

The choice of first moving with dist” and then with dist will

The corresponding covering number is:
Maistaist’ (X, €,0) = inf {| X| s.. X C X

and X C U Us,a(x)} .

reX

It is now easy to prove the following strengthening of Theo-
rem 3.3:

Theorem 3.5. Assume that D is (e, §)-robustly feasible.
Then D is (e — €', + 20")-robustly learnable with n =

0 (5373/ log(NMw., tv(D, €, 5/)))

Proof. Let A be the set realizing the infimum in the defini-
tion of Ny v (D, €’,4"). Observe that D is (e—¢’, §+4")-
robustly feasible with classifiers from F 4, and apply Theo-
rem 3.1. O

3.3. Covering number bound from generative models

We now show that distributions approximated by generative
models have bounded covering numbers (in terms of Defini-
tion 3.4), so Theorem 3.5 gives a good sample complexity
for such distributions. The proof is deferred to Appendix C
in the supplementary material.

Definition 3.6. A generative model g, : R* — R%is a
neural network indexed by weights w € R™. The generated
distribution D(g,,) is the distribution given by g,,(x) for
T ~ N(O, Ik)

Lemma 3.7. Let g, be an (-layer neural network archi-
tecture with at most d activations in each layer and Lips-
chitz nonlinearities such as ReLUs. Consider any family
of distribution pairs D such that for each D € D, and
each i € {0,1}, there exists some w € [—B, B]™ with
Woo(Di, D(gw)) < €. Then

log (Nw..,v(D, e +6,68)) < O(mllog(dB/9)).

4. Lower bound for the SQ model

Let Dg and D, be two distributions over a set X, for which
we would like to solve a (binary) classification task. The
SQ model, introduced in (Kearns, 1998), is defined as
follows. An algorithm is allowed to access Dy and D,
through queries of the following kind. A query is speci-
fied by a function h: X — [0, 1], and the response is two

fit our application. In general a more natural definition would be:
Uss(x)={y:3wc=21,21,.. ., Zn, 20 =y

n n—1
s.t. Zdist(zi,zg) < eand ZdiStI(Z;,Zi+1) < d}.

i=1 i=1
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numbers u,v € R such that w € E,.p,[h(z)] £ 7 and
v € Ezup, [R(x)] £ 7. Here 7 > 0 is a positive parameter
called precision. After asking a number of such queries,
the algorithm must output a required (robust or non-robust)
classifier for Dg and D, .

Our main result is as follows:

Theorem 4.1. For every sufficiently small p,v > 0 the
following holds. There exists a family of 9d?" pairs of
distributions (Dy, D1) over R such that:

e Almost all the mass of ]50 and 51 is supported in an
{o-ball of radius O(\/d);

o The dlstrtbuttons 150 and lN)l admits a
( (v1/7v),2~ ) )-robust  classifier;  moreover,

Q(+/1/7),0.01)-robust classifier can be learned
from O(d) samples from Dy and D ;

e For Dy and D1, there exists a linear (non-robust) clas-
sifier; which can be learned in polynomial time;

e For every e > P in order to learn a (g,0.01)-robust

(1)
classifier for Do and Dl, one needs at least 2%

()
statistical queries with accuracy as good as 2~¢ .

For instance, if 7y is a small constant we get the existence of
a C-robust classifier, where C'is a large constant. One could
push C as high as Q(log'/2~¢ d) at a cost of the lower bound

being against SQ queries with somewhat worse accuracy
_olog®(©) a )
92 d ).

instead of 2
We first show a family of pairs (Dg, D1) that admit a robust
classifier, yet it is hard (in the SQ model) to learn any (non-
robust) classifier. Later, in Section 4.3, we show a simple
modification of this family to obtain the main result.

4.1. Hard family of distributions

Here we define a hard family of pairs of distributions
(Do, D1) as discussed above. This section contains the
definition and key properties of the family; proofs of those
properties appear in Appendix A. This family can be seen
to be a high-dimensional generalization and modification
of a family considered in (Diakonikolas et al., 2017). The
family depends on three parameters: integers 1 < k < d,
m > 1 and a positive real € > 0.

Fix an integer m > 1. We introduce two auxiliary distribu-
tions over R that we will use later as building blocks.

Lemma 4.2. There exist two distributions D 4 and D g over
R with everywhere positive p.d.f’s A(t) and B(t) respec-
tively such that:

e D, and Dp match N(0,1) in the first m moments;

Well-separated distributions matching on 19 moments

D/l
g --- Dy
i, N(0,1) rescaled

Figure 1. The distributions in Lemma 4.2 are similar to discretized
Gaussians, with careful discretization and weighting from Gauss-
Hermite quadrature.

e There exist two subsets Sa,Sp C R such that the
distance between Sa and Sg is at least Q(1/\/m),
Pop,lz € Sa] > 1 —e ™) and P, p,z €
SB] >1— e—Q(m)’.

e A, B e (C® andforevery 0 <l <m+1andt, one

d A)| | d- B() ,O(+1
has: datl G( )| |dth |< G+,

(See Figure 1 for the illustration.)

Next let us fix parameters 1 < k < d and ¢ > 0. Let
U = {U;} be a family of k-dimensional subspaces of R?
with fixed orthonormal bases such that for every i # j
and u € Uj, one has: [[projy ull2 < & - [|uf|2. Informally
speaking, subspaces from I/ are pairwise near-orthogonal.

Lemma 4.3. Forevery k < d®Y), there exists such a family
U with e < d=°4° and U] = 24°"" .

Now we are ready to define our family of hard pairs
(Dy, Dy) of distributions over R?. The family is parameter-
ized by a k-dimensional subspace U € U together with an
orthonormal basis 1, us, . .., ur € U, where U is the fam-
ily of subspaces guaranteed by Lemma 4.3. Let us extend
the above basis to a basis for the whole R%: w1, us, . . ., uq.
Now we define a pair of distributions Dy, 4 and Dy, g via
their p.d.f’s Ay (z) and By () respectively as follows:

where A(-) and B(+) are densities of distributions D 4 and

Dp from Lemma 4.2, and G(t) = \/% e /2 s the p.d.f,
of the standard Gaussian distribution N (0, 1).
simply take Dy to be D7, 4 and D to be Dy, g.

Now we

Lemma 4.4. There exist two sets Sy 4, Su.p C R? such
that the distance between Sy a and Sy g is Q(\/k/m),
and for which Py.p,, ,|x € Sya] > 1 — e~ Ukm) 4pa
P1~D1]7B[$ S SU,B] >1- G_Q(km).
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As a result, the pair (Dg,D;) admits a
(Q/&/m), e=*m"")robust classifier. Moreover,

since log [U| < O(d) (which follows from standard bounds
on the number of pairwise near-orthogonal unit vectors
in R%), it follows from Theorem 3.1 that one can learn
a (Q(+/k/m),0.01)-robust classifier from merely O(d)
samples.

4.2. SQ lower bound for learning a classifier for Dy 4
and DU, B

The heart of the matter is to show that it requires 2¢ @

statistical queries with precision 7 = 2-4%" {0 learn a clas-
sifier for Dy 4 and Dy, g provided that all the parameters
m, k, € are set correctly. The argument is fairly involved and
uses the framework of (Feldman et al., 2013) to reduce the
question to that of upper bounding y-correlation between
the distributions. Due to space limitations, we show the
argument in Appendix B of the supplementary material.

4.3. Making the distribution easy to learn non-robustly

Let us now show a family of pairs distributions (Dy, D1 )
over R4t such that it is easy to learn a (non-robust) classi-
fier, but hard to learn a robust one. The construction is very
simple: we take distributions (Dg, D;) over R? as defined
above and define z ~ Dy to be z = (0,91,Y2, - -+, Yd)s
where y ~ Dy, and, similarly, z ~ l~)1 to be x =
(p,y1,Y2,---,Yd), where y ~ D; and p > 0. These dis-
tributions admit a trivial (non-robust) classifier based on
the first coordinate. Moreover, since Dy and D are lin-
early separable, they can be classified using linear SVM
or logistic regression. Information-theoretically, one can
learn a (1/1/7,0.1)-robust classifier using O(d) samples
by ignoring the first coordinate and applying Theorem 3.1.
However, for every € > p, one needs 9d? SQ queries with
accuracy 2-4°" {0 Jearn an (e, 0.1)-robust separator. This
can be shown exactly the same way as for D and D; (see
Appendix B in the supplementary material).

The above distributions are hard to learn robustly with re-
spect to the {5 norm. We can switch to /., by replacing x
by its Hadamard transform Hz. Since |[Hz — Hyl|oo >
| H(x — y)|l2/Vd = ||z — y||2, the robustness parameters
in the theorem are unchanged while the diameter becomes

O(v/dlogd).
5. Cryptographic hardness

5.1. Hard-to-compute robust classifiers

We will now exhibit a binary classification task that admits
a maximally robust classifier (that is, robust to perturba-
tions comparable to the diameter of the support), yet any
efficiently computable classifier has an accuracy close to

random guessing.

Let G : {0,1}%? — {0,1}" be a cryptographic pseudo-
random generator (PRG). Let Dy be uniform on {0, 1}"™ and
D; be the distribution of G(s) for s uniform in {0, 1}4/2,
Clearly a simple volume argument shows that there exists
a classifier A which satisfies (1) for ¢ = ©(v/d) (i.e., this
problem admits a maximally robust classifier). Yet by def-
inition of a PRG no polynomial time algorithm can have
a non-trivial classification accuracy (let alone robust accu-
racy).

5.2. Adversarial examples and trapdoor PRG

Given Section 5.1, our goal is now to construct a classifica-
tion task which admits a maximally robust classifier that is
also efficiently computable, yet one cannot get non-trivial ac-
curacy in polynomial time. The main idea here is to replace
the PRG in the construction of Section 5.1 with a trapdoor
PRG. In a nutshell a trapdoor PRG comes with a key, such
that knowing the key allows to efficiently distinguish the
PRG from a true source of randomness (and thus allows for
efficient classification in the construction of Section 5.1).
Note also that, by a simple union bound, the sample com-
plexity of such a problem would be of order of the number
of bits in the key.

Let us now detail the construction a bit more. For the sake
of concreteness, we use a specific trapdoor PRG, namely the
Blum—Blum—Shub PRG (Blum et al., 1986) (in its “back-
ward” form). Let p and ¢ be large distinct prime numbers
congruent to 3 mod 4, let N = pg and d = O(log(N)). The
BBS PRG Gy : {0,1}¢ — {0,1}* works as follow. First
it maps the seed s € {0,1}¢ to 2y € N a quadratic residue
mod N in such a way that a uniformly random seed gives a
nearly-uniform quadratic residue modulo V. Next it itera-
tively takes square roots mod NV, that is let z; 1 be such that
T; = at%H mod N and z;4; is a quadratic residue itself
(this is well-defined per our assumption on p and ¢q). The
it" element of the output of Gy is then simply the parity of
Z;.

The key property of the BBS PRG is that, without know-
ing the factorization N = pgq, its output is computationally
indistinguishable (under the quadratic residuosity assump-
tion) from a true source of randomness (even when the
seed is known), while on the other hand knowing the fac-
torization allows for efficient distinguishing. To make this
mathematically precise let us recall the notion of computa-
tional statistical distance for a family of pairs of distribution
{(Do(w), D1(w)),w € Q}: it is the supremum over all
polynomial-time algorithms of the infimum over w € €2 of
the success probability one can have to identify whether
a random sample was generated from D (w) or generated
from D;(w). Let us fix some constant ¢ > 1 and denote
Dy = unif({0,1}°) and D} (N) the distribution of the
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first d° bits of s o G (s) where s is a uniformly random
element of {0, 1}<.

Theorem 5.1 ((Blum et al., 1986; Vazirani and Vazirani,
1983)). Assuming that for infinitely many N the computa-
tional statistical distance of {(D&, D¢(pq))}p.q is greater
than 1/2+1/poly(d) would refute the quadratic residuosity
assumption.

On the other hand, if p and q are known, then the computa-
tional statistical distance of {(Dg, DE(N))} is 1 — 04(1).

From the above discussion we have the following prop-
erties for the classification task described by the family

{(D§. D{(pa) }p.a:
a. The (robust) sample complexity of this family is O(d).

b. Any task in this family admits a maximally robust
classifier (same volume argument as in Section 5.1)
that is also efficiently computable (second statement in
Theorem 5.1).

c. Under the quadratic residuosity assumption, any poly-
nomial time learning algorithm for this family has an
accuracy close to chance on some task in the family
(first statement in Theorem 5.1).

We also note that, using the trick of adding a dummy coordi-
nate revealing the label from Section 4.3, one could replace
property c by ¢’ and add property d as follows (for any fixed
e > 0):

¢’. Under the quadratic residuosity assumption, any poly-
nomial time learning algorithm for this family has a
e-robust accuracy close to chance on some task in the
family.

d. One can learn non-robustly in polynomial time (and
polynomial sample complexity).

Remark: After the preliminary version of the present paper
appeared, we got notified by Degwekar and Vaikuntanathan
that there is an issue with the above construction. Namely, it
is not clear that the item b holds (the existence of an efficient
robust classifier), since one can corrupt seed, which prevents
us from (efficiently) distinguishing Dy and D;. However, as
they explain in their paper (Degwekar and Vaikuntanathan,
2019), this can be remedied by post-composing our con-
struction with a constant-rate linear distance efficient error-
correcting code. We refer the reader to (Degwekar and
Vaikuntanathan, 2019) for a further discussion.

6. Conclusion and future directions

In this paper we put forward the thesis that adversarial ex-
amples might be an unavoidable consequence of computa-
tional constraints for learning algorithms. Our main piece

of evidence is two classification tasks, for which there exist
classifiers robust to large Euclidean perturbations, yet find-
ing any non-trivial robust classifier is hard in the statistical
query model or under a cryptographic hardness assumption.
The most important question for the validity of our thesis
is whether one could prove a similar hardness result for
natural distributions. This is a particularly challenging open
problem as the concept of a natural distribution is fuzzy (for
instance there is no consensus on what a natural distribution
for images should look like).
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