EXTENSION OF ISOTOPIES IN THE PLANE
L. C. HOEHN, L. G. OVERSTEEGEN, AND E. D. TYMCHATYN

ABSTRACT. It is known that a holomorphic motion (an analytic
version of an isotopy) of a set X in the complex plane C al-
ways extends to a holomorphic motion of the entire plane. In
the topological category, it was recently shown that an isotopy
h: X x [0,1] — C, starting at the identity, of a plane continuum
X also always extends to an isotopy of the entire plane. Easy
examples show that this result does not generalize to all plane
compacta. In this paper we will provide a characterization of iso-
topies of uniformly perfect plane compacta X which extend to an
isotopy of the entire plane. Using this characterization, we prove
that such an extension is always possible provided the diameters
of all components of X are uniformly bounded away from zero.

1. INTRODUCTION

Denote the complex plane by C and the open unit disk by . An
isotopy of a set X C C is a homotopy h : X x [0,1] — C such that for
each t € [0,1], the function h' : X — C defined by h'(x) = h(z,t) is an
embedding (i.e. a homeomorphism of X onto the range of ht).

Suppose that h : X x[0,1] — C is an isotopy of a compactum X C C
such that h° = idx. We consider the old problem of when the isotopy
h can be extended to an isotopy of the entire plane !.

Positive classical solutions were obtained only in the case when X
is a simple continuum. For example, it follows from results in [Bae27,
Bae28] that an isotopy of a simple closed curve can be extended over
the plane (see [Eps66] for a generalization). Much stronger results were
obtained in the analytic setting. In this setting an isotopy corresponds
to a holomorphic motion. If one thinks of an isotopy h : X x [0,1] — C
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as a continuous collection of embeddings {h|xx }ter of the so-called
“dynamical space” X where t is contained in the parameter space I,
then, in the case of a holomorphic motion, the parameter space I is
replaced by the unit disk D C C. Moreover, the requirement that h
is continuous is replaced by the assumption that on slices the map is
holomorphic. To be precise, a holomorphic motion A : D x X — Cis a
function such that:

(i) for each z € D, the map h|{.}«x is one-to-one,
(ii) h|{0}><x = idx, and
(iii) for each x € X the map h|px{y) is holomorphic.

Note that, in order to be consistent with standard notation, we reversed
the order of the parameter space and the dynamical space X in the
domain of the holomorphic motion h. Even though in this definition A
is not assumed to be continuous, continuity of the map h follows from
the other conditions [MSS83]. Initial results extended the holomorphic
motion over the closure of X [MSS83, Lyu83]. Subsequently [BRS6,
ST86| it was shown that the holomorphic motion could be extended to
all of C, but only on a sub-disk of the parameter space D. These results
culminated in the remarkable extension result by Slodkowski [Slo91]:
Any holomorphic motion of an arbitrary subset X of the plane extends
to a holomorphic motion of the entire plane (see [AMO1] or [Chi04] for
alternative proofs, and [GJW10] for a self contained exposition).

Although the Slodkowski Extension Theorem holds for arbitrary
plane sets, some additional restrictions are needed for the existence
of an extension of an isotopy to the entire plane C. First, it is rea-
sonable to restrict to isotopies of plane compacta. This by itself is
not enough since it is known that there exists an isotopy of a conver-
gent sequence in the plane which cannot be extended over the plane
(see [ST86] or [Fab05]). On the other hand, it was shown recently in
[OT10] that any isotopy beginning at the identity of an arbitrary plane
continuum X can be extended over the plane. In this case each com-
plementary domain U of X is simply connected and, hence, there exists
a conformal isomorphism ¢y : D — U. The proof made use of two key
analytic results for these conformal isomorphisms: the Carathéodory
kernel convergence theorem, and the Gehring-Hayman inequality for
the diameters of hyperbolic geodesics in U.

Let us now consider the case when X is a plane compactum. Since
we may assume that X contains at least three points, the boundary
of every complementary component U of X contains at least three
points, so U is hyperbolic, i.e. there exists an analytic covering map
oy : D — U (see [AhI73]).
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There is an analogue of the Carathéodory kernel convergence theo-
rem which holds for families of analytic covering maps (see Section 2.1).
For an analogue of the Gehring-Hayman inequality, an additional geo-
metric condition will be required:

Definition 1. A compact subset X C C is uniformly perfect with
constant k provided there exists 0 < k < 1 so that for all r < diam(X)
and all z € X,

{zeC:kr<|z—z|<r}nX #0.

Clearly every uniformly perfect set is perfect and the standard “middle-
third” Cantor set is uniformly perfect. It is known that the Gehring-
Hayman estimate on the diameter of hyperbolic geodesics still holds for
an analytic covering map ¢y : D — U to a domain U whose boundary
is uniformly perfect (see Section 2.1 for details).

The main result in this paper is a characterization of isotopies h :
X x [0,1] — C of uniformly perfect plane compacta X which can be
extended over the entire plane (see Theorem 12). We use our charac-
terization to prove that any isotopy of a plane compactum such that
the diameter of every component is uniformly bounded away from zero
can be extended over the plane (see Theorem 20). Along the way, we
will provide simpler proofs of some of the technical results in [OT10].

The authors are indebted to the referee for helpful comments.

1.1. Notation. By a map we mean a continuous function. For z €
C, the magnitude of z is denoted |z|, so that the Euclidean distance
between two points z,w € Cis |z —w|. Given zy € C and r > 0, denote

B(zg,17) ={2 € C: |z — 2| <r}.

By a domain we mean a connected, open, non-empty set U C C. If
X C Cis closed, then a complementary domain of X is a component of
C\ X. A crosscut of a domain U is an open arc @ (i.e. Q =~ (0,1) C R)
contained in U such that Q is a closed arc (i.e. Q ~ [0,1]) whose
endpoints are in OU. Note that the endpoints of @) are required to be
distinct. In general, if A is an open arc whose closure A is a closed arc,
we may refer to the endpoints of A as the “endpoints of A”.

A path is amap v : [0, 1] — C. Given a domain U, we say 7 is a path
in U if v((0,1)) C U. Note that we allow the possibility that v(0) € OU
and/or (1) € OU — we still call such a path a path in U.

We will make frequent use of covering maps in this paper. Given a
covering map ¢ : V — U, where V and U are domains, a [lift of a point
x € U is a point T € V such that ¢(Z) = z. Similarly, if v is a path
with ([0, 1]) C U then a lift of 7 is a path 7 in V' such that po7y = ~.



4 HOEHN, OVERSTEEGEN, AND TYMCHATYN

The Hausdorff metric dg measures the distance between two com-
pact sets Ay, Ay C C as follows:
dy(Aq, As) = i — i — )
n(An o) =mextpgy B, 1o~ 2l g gy b al
Equivalently, dy(A;, A2) is the smallest number £ > 0 such that A; is
contained in the closed e-neighborhood of A; and A, is contained in
the closed e-neighborhood of Aj;.
Given an isotopy h : X x [0,1] — C, we denote h’ = h|xyy;y and, for
z € X, we denote x' = hi(x).

2. PRELIMINARIES

In this section we collect several tools which we use in this paper.
Many of these are standard analytical results; others are less well-
known.

2.1. Bounded analytic covering maps. It is a standard classical
result (see e.g. [Ahl73]) that for any domain U C C whose complement
contains at least two points, and for any 2z, € U, there is a complex
analytic covering map ¢ : D — U such that ¢(0) = z5. Moreover, this
covering map ¢ is uniquely determined by the argument of ¢’(0).

Many of the results below hold only for analytic covering maps ¢ :
D — U to bounded domains U. For the remainder of this subsection,
let U C C be a bounded domain, and let ¢y = ¢ : D — U be an
analytic covering map.

Theorem 2 (Fatou [Fat06], see e.g. [Con95, p.22]). The radial limits
lim,_,1- @(re®) exist for all points € in OD except possibly for a set of
linear measure zero.

From now on, we will always assume that any bounded analytic
covering map ¢ : D — U has been extended to be defined over all points
¢ € 9D where the radial limit exists by p(e) = lim,_,;- ¢(re®). Note
that the function ¢ is not necessarily continuous at these points.

For this extended map ¢, we extend the notion of lifts. If v is a
path in U (recall this allows for the possibility that v(0) and/or (1)
belongs to U), then a lift of v is a path 7 in D such that p o7 = ~.
This means that if v(0) € 9U, then 5(0) € D and ¢ is defined at the
point 7(0) (and ¢(7(0)) = v(0)); and likewise for v(1) and 7(1).

Theorem 3 (Riesz [RR16, Rie23], see e.g. [Con95, p.22]). For each
x € OU, the set of points € for which lim,_,- ¢(re”’) = x has linear
measure zero in OD.
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The next result about lifts of paths is very similar to classical results
for covering maps. Since our extended map ¢ is not a covering map at
points in 0D, we include a proof for completeness.

Theorem 4. Suppose v is a path in U such that ~v((0,1]) C U. Let
z € D be such that p(Z) = v(1). Then there exists a unique lift 5 of ~
with 7(1) =z,

In particular, if v(0) € OU, then 5(0) € ID, ¢ is defined at 7(0)
(i.e. the radial limit of ¢ exists there), and o(7(0)) = v(0).

Proof. We may assume that v(0) € OU. Since ¢ is a covering map,
Yl(0,1) lifts to a path with initial point Z which compactifies on a contin-
uum K C 0dD. If K is non-degenerate, then there exists by Theorem 2
a set I of positive measure in the interior of K so that for each ¢ € E,
the radial limit lim,_,;- y(re®) exists. Since the graph of 3 compacti-
fies on K we can choose a sequence s; — 1 so that J(s;) = r;¢? with
r; — 1. Tt follows that the radial limit lim,_,;- ¢'(re??) = v(1) for each
e’ € E, a contradiction with Theorem 3. Thus K is a point €. Hence
we can extend 7 continuously by defining 5(0) = €.

By a theorem of Lindel6f [Linl5] (see e.g. [Con95, p.23)), it follows
from the above that the radial limit of ¢ at e? exists and equals (0)
as required. O

The next result is a variant of Theorem 4, in which the base point
of the path to be lifted is in the boundary of U.

In the case that the boundary of U is uniformly perfect, we prove
below in Lemma 16 a stronger result about lifting a homotopy under
covering maps to a domain whose boundary is changing under an iso-
topy. The present result can be obtained as a Corollary to Lemma 16
by using the identity isotopy. We omit a proof for the non-uniformly
perfect case, since we won’t need it for this paper.

Theorem 5. Suppose v is a path in U such that v((0,1]) C U and
7(0) € OU. Let & € 9D be such that oy () = v(0) and v is homotopic
to the radial path ou|pz . o<r<1y under a homotopy in U that fizes the
point (0). Then there exists a lift 4 of v with (0) = x. Moreover, if
OU is perfect, this lift 7 is unique.

The hyperbolic metric on the unit disk D is given by the form 12|c|lz‘\27
meaning that the length of a smooth path ~ : [0, 1] — D is fol 12‘77@ dt.

The important property of the hyperbolic metric for us is that (hyper—
bolic) geodesics in D are pieces of round circles or straight lines which
cross the boundary 0D orthogonally. Via the covering map ¢ : D — U,
we obtain the hyperbolic metric on U, in which the length of a smooth
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path in U is equal to the length of any lift of that path under ¢ — this
length is independent of the choice of lift. It is a standard result that
the hyperbolic metric on U is independent of the choice of covering
map p: D —=U.

Theorem 6 (Gehring-Hayman [PRI8, Pom02]). Suppose OU is uni-
formly perfect with constant k. There exists a constant K such that if g
15 a hyperbolic geodesic in D and T is a curve with the same endpoints
as g, then
diam(¢(3)) < K - diam(o(T)).
The constant K depends only on k, not on the domain U itself or on
the choice of analytic covering map .

We end this subsection with a discussion of analytic covering maps
of varying domains in the plane. We will make use of the notion of
Carathéodory kernel convergence, which was introduced by Carathéodory
for univalent analytic maps in [Carl12], then extended by Hejhal to the
case of analytic covering maps.

Let Uy, Us,, ... and Uy be domains and let 21, 29, ... and 2z, be points
with z, € U, forallm = 1,2,... and z, € Uy. We say that (U,, z,) —
(Uso, Z00) in the sense of Carathéodory kernel convergence provided
that (i) 2, = 2wo; (ii) for any compact set K C Uy, K C U, for all but
finitely many n; and (iii) for any domain U containing 2., if U C U,
for infinitely many n, then U C U.

Theorem 7 ([Hej74]; see also [Com13]). Let Uy, Us, ... and Uy be do-
mains and let zq,zo,... and zs be points with z, € U, for all n =
1,2,... and zo € Uy. Let 0o : D — Uy be the analytic covering map
such that p(0) = ze and ¢'(0) > 0. Likewise, for eachn =1,2,..., let
on = D — U, be the analytic covering map such that ¢,(0) = z, and
0 (0) > 0. Then (U,, z,) = (Ux, 200) in the sense of Carathéodory
kernel convergence if and only if p, — Yo uniformly on compact sub-
sets of D.

2.2. Partitioning plane domains. Let U be a bounded domain in
C. We next describe a way of partitioning U into simple sets which are
either circular arcs or regions whose boundaries are unions of circular
arcs.

Let B be the collection of all open disks B(c,r) C U such that
|0B(c,r) N OU| > 2. Let C be the collection of all centers of such
disks, and for ¢ € C let r(c) be the radius of the corresponding disk
in B. The set C, called the skeleton of U, was studied by several
authors (see for example [Fre97]). Note that for each ¢ € C, B(c,r(c)) is
conformally equivalent with the unit disk ID and, hence, can be endowed
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FIGURE 1. Depiction of two examples of the sets Hull(c)
from the Kulkarni-Pinkall decomposition of a domain U
in C. In the picture, U is a component of the complement
of the wavy lines.

with the hyperbolic metric p.. Let Hull(c) be the convex hull of the set
J0B(c,r(c))NOU in B(c,r(c)) using the hyperbolic metric p. on the disk
B(c,r(c)). The following theorem by Kulkarni and Pinkall generalizes
an earlier result by Bell [Bel76] (see [BFM*13] for a more complete
description):

Theorem 8 ([KP94]). For each z € U there exists a unique c € C such
that z € Hull(c).

Let J be the collection of all crosscuts of U which are contained in
the boundaries of the sets Hull(c) for ¢ € C. The elements of J are
circular open arcs (called chords) whose endpoints are in OU. Two
such chords do not cross each other inside U (i.e., if £ # ¢’ are chords
in J, then £ N ¢ = @) and the limit of any convergent sequence of
chords in J is either a chord in J or a point in QU. In particular, the
subcollection of chords of diameter greater or equal to € is compact for
each € > 0. As such, the family J is close to being a lamination of
U (see Definition 17 in Section 3 below). However, it is possible that
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uncountably many distinct chords in 7 have the same pair of endpoints
x,y € 0U.

2.3. Equidistant sets. Let A; and A be disjoint closed sets in C.
The equidistant set between A; and A, is the set

Equi(A;, 4y) = {z eC: b |z —w| = min |z — w[} :

The equidistant set is a convenient way to define a set running “in
between” A; and A,. Moreover, it has a very simple local structure in
the case that the sets A; and As are not “entangled” in the sense of
the following definition:

Definition 9. We say that A; and A, are non-interlaced if whenever
B(e,r) is an open disk contained in the complement of A; U A,, there
are disjoint arcs C1,Cy C 9B(c,r) such that A; N dB(c,r) C Cy and
Ay NAB(c,r) C Cy. We allow for the possibility that C; = () in the
case that Ay N OB(c,r) = 0B(c,r), and vice versa.

By a 1-manifold in the plane, we mean a closed set M C C such
that each component of M is homeomorphic either to R or to 9D, and
these components are all open in M.

Theorem 10 ([Bro05, ABO09]). Let A; and Ay be disjoint closed
sets in C. If Ay and Ay are non-interlaced, then Equi(A;, As) is a
1-manifold in the plane.

2.4. Midpoints of paths. We identify the space of all paths in the
plane C with the function space C([0, 1], C) with the wuniform metric;
that is, the distance between two paths 1,72 € C([0, 1], C) is equal to
sup{|71(t) —72(t)| : t € [0,1]}.

The standard Euclidean length of a path is not a well-behaved func-
tion from C([0, 1], C) to [0, 00). First, it is not defined (i.e., not finite)
for all paths in C([0, 1], C), but only for rectifiable paths. Second, paths
can be arbitrarily close in the uniform metric and yet have very differ-
ent Euclidean path lengths.

However, there do exist alternative “path length” functions len :
C([0,1],C) — [0, 00) such that len is defined for all paths in C(]0, 1], C),
and len is continuous with respect to the uniform metric on C([0, 1], C)
and the standard topology on [0, 00) C R, see [Mor36, Sil69, HOT18|.
Such an alternative path length function can be used to define a choice
of “midpoint” of a path which varies continuously with the path. Specif-
ically, the midpoint of +y is defined to be the point m(vy) = 7(to), where
to € (0,1) is chosen such that len(|,)) = len(7],1))-
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In this paper, we will not need to know any particulars about the
definitions of such path length functions, but only this result about
existence of such midpoints, which we state below.

Theorem 11 (see e.g. [HOT18]). There is a continuous function
m:C([0,1],C) —» C
such that m(vy) € v((0,1)) for all v € C([0,1],C).

Moreover, if v1 and 7o are both parameterizations of a closed arc A
(i.e. if 11(]0,1]) = 12([0,1]) = A and v, and 2 are homeomorphisms
between [0,1] and A), then m(v1) = m(72).

In light of the second part of Theorem 11, given an (open or closed)
arc A, we define the midpoint of A to be m(A) = m(y) where v is any
path which parameterizes A (A if A is an open arc).

3. MAIN THEOREM

In this section, we state and prove the main theorem of this pa-
per, which is a characterization of isotopies of uniformly perfect plane
compacta which can be extended over the entire plane. Note that the
example of an isotopy of a countable sequence which does not extend
over the plane, mentioned in the Introduction, can easily be modified
to obtain an isotopy h : X x [0,1] — C so that for each ¢, X' = h'(X)
is a uniformly perfect Cantor set with the same constant k. Thus, ad-
ditional assumptions are required to ensure the extension of such an
isotopy over the plane.

Theorem 12. Suppose that h : X x [0,1] — C is an isotopy of a
compactum X C C starting at the identity, such that X' is uniformly
perfect with the same constant k for each t € [0,1]. Then the following
are equivalent:

(i) h extends to an isotopy of the entire plane C;

(ii) For each € > 0 there exists § > 0 such that for any crosscut Q
of a complementary domain U of X with diam(C) < §, there
exists a homotopy hg : (X U Q) x [0,1] — C starting at the
identity which extends h and is such that h(Q) N X' =0 and
diam(h¢(Q)) < e for all t € [0, 1].

It is trivial to see that condition (i) implies condition (ii) from The-
orem 12.

To obtain the converse, we will in fact prove a stronger characteri-
zation in Theorem 14 below. To state this Theorem, we introduce the
following simple condition:
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Definition 13. Let X C C be a compact set and let A : X x[0,1] — C
be an isotopy of X starting at the identity. We say that X is encircled
if X has a component which is a large circle 3 such that h'|y is the
identity for all ¢ € [0, 1], and X'\ ¥ is contained in a compact subset
of the bounded complementary domain of ¥ for all ¢ € [0, 1].

Note that if (ii) from Theorem 12 holds, then we may additionally
assume without loss of generality (i.e. without falsifying condition (ii)
from Theorem 12) that X is encircled.

3.1. Tracking bounded complementary domains. For the remain-
der of this section, we assume that h : X x [0,1] — C is an isotopy
of a compact set X C C starting at the identity, such that X* is uni-
formly perfect for all ¢ € [0, 1] with the same constant k, and that X
is encircled.

Clearly such an isotopy can be extended over the unbounded com-
plementary domain of X as the identity for all ¢ € [0, 1]. Hence we only
need to consider bounded complementary domains for the remainder
of this section.

Let U be a bounded complementary domain of X. Choose a point
zy € U. Clearly the isotopy h can be extended to an isotopy hy :
(X U{zpy}) x [0,1] — C starting at the identity. Define U to be the
complementary domain of X* which contains the point Al (zy) = 2.
Let ¢f, : D — U* be the analytic covering map such that ¢}, (0) = 2,
and (p};)'(0) > 0. It is straightforward to see that if ¢, — t., then
the pointed domains (U', z;7) converge to (U'<, 2°) in the sense of
Carathéodory kernel convergence. Hence, by Theorem 7, the covering
maps @y} converge to g uniformly on compact subsets of D. We will
always assume that the complementary domains U’ of X' and analytic
covering maps ¢, : D — U" are defined in this way. It is clear that
this definition of U! does not depend on the choices of z; and hy.

The following Theorem is a stronger characterization of isotopies of
uniformly perfect plane compacta that can be extended over the plane
than the one given in Theorem 12, in the sense that condition (ii) of
Theorem 14 is weaker than condition (ii) of Theorem 12. We will in
fact use this stronger characterization in Section 4.

Theorem 14. Suppose that h : X x [0,1] — C is an isotopy of a
compactum X C C starting at the identity, such that X' is uniformly
perfect with the same constant k for each t € [0,1], and that X is
encircled. Then the following are equivalent:

(i) h extends to an isotopy of the entire plane C;
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(ii) For each bounded complementary domain U of X and each
e > 0 there exists & > 0 with the following property:
For any crosscut (Q in U with endpoints a,b € OU and
with diam(Q) < 0, there exists a family {y : t € [0,1]}
such that (1) ~; is a path in U joining a* and b' for each
t €[0,1], (2) v is homotopic to @ in U with endpoints fized,
(3) diam(y:([0,1])) < € for all t € [0,1], and (4) there are lifts
e of the paths v, under ¢t such that the sets 7,([0,1]) vary
continuously in t with respect to the Hausdorff metric.

We have deliberately chosen to use subscripts in the notation for ~;
(instead of superscripts like 4*) to emphasize the point that the paths
v; are not required to change continuously in the sense of an isotopy
or homotopy — we only require the weaker condition that the images
of the lifts 4; vary continuously with respect to the Hausdorff metric.
Even though condition (ii) of Theorem 14 is more cumbersome to state,
we demonstrate in Section 4 that it is easier to apply.

The proofs of Theorem 12 and Theorem 14 will be completed in
Section 3.4 below.

3.2. Lifts in moving domains. As in Section 3.1, we continue to
assume that h : X x [0,1] — C is an isotopy of a compact set X C C
starting at the identity, such that X is uniformly perfect for all ¢t €
0, 1] with the same constant k, and that X is encircled.

We begin by proving two statements about lifts under the covering
maps @};, in the spirit of the results from Section 2.1 above.

Lemma 15. Let U be a bounded complementary domain of X. For
every € > 0 there ezists 6 > 0 such that for any t € [0,1] if v is a path
in U" with diam(v([0,1])) < ¢ and 7 is any lift of v under ¢};, then
diam(5([0, 1])) < e.

Proof. Suppose the lemma fails. Then there exists € > 0, a sequence
7; of paths in U' and lifts 7; such that lim diam(+;([0,1])) = 0 and
diam(3;([0,1])) > ¢ for all i. Choose two points @;, b; in ([0, 1]) such
that |a; _ZZ| > £, and let g; be the hyperbolic geodesic with endpoints
a; and E Put gpfj(ﬁ,) = g;- By Theorem 6, diam(g;) — 0. Since the
geodesics g; are pieces of round circles or straight lines which cross oD
perpendicularly and have diameter bigger than £, there exist n > 0
and points 7; € g@; such that |z;| < 1 —n for all i. By choosing
a subsequence we may assume that t; — to, T; — ZTo € D, and
lim g; = 2o is a point in Ut=. Let K; be the component of §;N B(Z s, 7)
containing the point ;. We may assume K; — K., where K, is a non-
degenerate continuum in . Since pp: — @i uniformly on compact
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sets in D, ¢ (Kw) = za0, which is a contradiction since ¢® is a
covering map. 0

Given a homotopy I : [0, 1] x [0, 1] — C we denote for each ¢ € [0, 1]
It = F|[071]><{t} : [0, 1] — C.

Lemma 16. Let U be a bounded complementary domain of X. Suppose
that T': [0,1] x [0,1] — C is a homotopy with T*(0) = RY(T°(0)) € oU*
and T*(s) € Ut for all s € (0,1] and all t € [0,1]. Let Z € D be such

that @Y, (2) = I'°(1). Then there exists a homotopy I : [0,1] x[0,1] — D
lifting T, i.e. o}, o T =T* for all t € [0,1], and such that T°(1) = Z.

Proof. Define W : D x [0, 1] = ;o y(U" % {t}) by ¥(2,1) = (¢p;(2), 1)
for t € [0,1] and z € D.

Claim 16.1. ¥ is a covering map.

Proof of Claim 16.1. Let (yo,t0) € U™ x {to}. Choose a small simply
connected neighborhood V of 1y and § > 0 such that V N Xt =
and V is evenly covered by ¢}, for all ¢t with |t — to] < §. Hence,
V' X (ty — 0,tp + d) is a simply connected neighborhood of (y, ) in
Uncoa (U X {1))

Next let (zo,t0) € ¥ ((yo,t0)). Since the covering maps ¢}, are
uniformly convergent on compact sets, it is not difficult to see that there
exists a map g : (to — 0,tp + 0) — D x [0, 1] such that g(ty) = (xo, to)
and W o g(t) = (yo, t) for all t with |t — to] < 0.

For each t with [t — to| < 0, let € U" be such that g(t) = (z,1),
and let W' be the component of (¢})~1 (V) which contains the point
z. Let W = Ucry—s0rs)(W* % {t}). Then it is not difficult to see
that Wy : W — V x (to — d,to + ) is a homeomorphism. Thus ¥ is a
covering map. O(Claim 16.1)

Define o : [0,1] x [0,1] = U, (U* x {t}) by a(s,t) = (I'(s),?).
Define the lift & of o under ¥ as follows: first lift a|{1}x[071], using the
covering map W, to define &|{1yx[0,1) such that a@(1,0) = (%,0). Next,
for each ¢ € [0, 1], use Theorem 4 to lift a|(p,1)x s} to define &g 1)1, SO
that this lift coincides with the first lift of oy« at (1,¢). Finally,
define T = m o &, where 7; denotes the first coordinate projection.

Observe that for all s € (0,1], the function @] 17«0, is the unique
lift of a|(s11x[0,1) under the covering map ¥ with @(1,0) = Z, hence is
continuous by standard covering map theory. It follows that &, and
hence T, is continuous on (0,1] x [0,1]. It remains to prove that ' is
continuous at all points of the form (0, ¢y).
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Fix ty € [0,1] and ¢ > 0. Choose 6 > 0 small enough (using
Lemma 15) so that for any ¢ € [0,1] and any open arc D in U’ of

diameter less than 4, each lift D of D under ¢!, has diameter less than

s
Choose 11,12 > 0 small enough so that:

(i) [T?(0) — Tto(ny)| < 5 (this is possible since the lifted path [t
is continuous);

(i) [T4(ny)—Tto ()] < 5 for each t € [to—n2, to+n2] (this is possible
since we already know that I is continuous on (0, 1] x [0, 1]);
and

(iii) T([0,m] x [to — 12, to+12]) € B(I'*(0), $) (this is possible since
[ is continuous).

Now for any ¢ € [ty — 12, to + 12], the image I'*([0, 71]) has diameter
less than &, hence T*([0,7:]) has diameter less than 5. It follows that
T4([0,m]) € B(I*(0),&). So [0,m1) % (to — 12, to+12) is a neighborhood
of (0, to) which is mapped by T' into B(I'0(0),&). Thus I is continuous
at (0,1p). O

Observe that in light of Lemma 16, condition (ii) of Theorem 12 is
stronger than condition (ii) of Theorem 14. Therefore to complete the
proofs of both Theorem 12 and Theorem 14, we must prove that if
condition (ii) of Theorem 14 holds then the isotopy h extends to the
entire plane C. Hence we will assume for the remainder of this section
that condition (ii) of Theorem 14 holds.

Notation (a'). Let @ € dD be any point at which @y is defined (i.e.
at which the radial limit of oy exists). Using any sufficiently small
crosscut () in U which has one endpoint equal to a = ¢y (a) and which
is the image of a crosscut of D having one endpoint equal to @, we obtain
from condition (ii) of Theorem 14 a family of paths {v; : ¢ € [0, 1]} and
lifts 4; with the properties listed there, and such that ;(0) = a' for each
t € [0,1], and 75(0) = @. Because the sets 7;([0, 1]) vary continuously
in ¢ with respect to the Hausdorff metric, the endpoint 7;(0) moves
continuously in ¢. Now we define a* = 74,(0) for each ¢t € [0,1]. Then
a° = a and py(a’) = a' for all t € [0,1]. It is straightforward to see
that this definition of @' is independent of the choice of crosscut @ and
of the paths v, and lifts 7; afforded by condition (ii) of Theorem 14.
Thus, in the presence of condition (ii) of Theorem 14, we can extend
the superscript ¢ notation to points in 0D at which ¢ is defined. We
will assume this is done for all such points @ € 9D for the remainder
of this section.
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3.3. Hyperbolic laminations. The following condition on a set of
hyperbolic geodesics £ is inspired by a similar notion introduced by
Thurston (cf. [Thu09]).

Definition 17. A hyperbolic lamination L in a bounded domain U C C
is a closed set of pairwise disjoint hyperbolic geodesic crosscuts in U
such that two distinct crosscuts in £ are disjoint and have at most one
common endpoint in the boundary of U and the family of crosscuts in
L of diameter greater or equal ¢ is compact for any € > 0.

We denote by | £ the union of all the crosscuts in £. A gap of L is
the closure of a component of U \ |J L.

The compactness condition in Definition 17 is equivalent to the fol-
lowing statement: if (g,)22 ; is a sequence of elements of £, then either
diam(g,,) — 0, or there is a convergent subsequence whose limit is also
an element of L.

Fix a bounded complementary domain U of X. Recall the Kulkarni-
Pinkall construction described in Section 2.2: we consider the collection
B of all open disks B(c,r) C U such that |0B(c,r)NoU| > 2. For each
such disk B(c, ), Hull(c) denotes the convex hull of the set 0B(c, r(c))N
OU in B(e,r(c)) using the hyperbolic metric p. on the disk B(c,r(c)).
Let J be the collection of all crosscuts of U which are contained in the
boundaries of the sets Hull(c) for B(e,r) € B.

Let

T = {@ : @ is a component of @' (Q) for some Q € J}.
For any ) € 7, it is straightforward to see that each component @
of goal(Q) is an open arc whose closure is mapped homeomorphically
onto @ by ¢y.

Given an (open) arc A, we denote the set of endpoints of A by
Ends(A); that is, Ends(A) = {a,b} means that a and b are the end-
points of (the closure of) A. Let Jgnas = {Ends(Q) : Q € J}, and let
Tenas = {Ends(Q) : Q € J}. These are sets of (unordered) pairs.

For each ¢ € [0, 1], let

L' = {§" :g" is the hyperbolic geodesic in I
joining @, b", where {@,b} € Frnas}
and let R
L= {ep(@)a € L'},
Observe that £° is the collection of all hyperbolic geodesic crosscuts

of U = U which are homotopic (with endpoints fixed) to some crosscut
in J. For t > 0, the collection £! is obtained from L£° by following
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the motion of the endpoints of the arcs in £° under the isotopy and
joining the resulting points in OU? by the hyperbolic geodesic crosscut
g' = ¢}, (g") in U' using the hyperbolic metric induced by ¢},. We do
not consider a Kulkarni-Pinkall style partition of the domain U* for
t>0.

We shall prove that L' is a hyperbolic lamination in U! for each
t € [0,1]. We start with the following lemma.

Lemma 18. For any t € [0,1] and any g' € Lt, the map @t is one-
to-one on g' and, hence, the corresponding element g' = ¢ (g") € L*
is a crosscut in Ut. Moreover, if g}, g4 are two distinct elements of L,
then gt N gt =0 (though their closures may have at most one common
endpoint in OU*).

Proof. Let g° be an arbitrary hyperbolic crosscut of £° with endpoints,
a and b. By the discussion at the end of Section 3.2, we can lift g’ to
geodesics g' with continuously varying endpoints. Let @' (0') be the
endpoints of g¢ corresponding to a® (b, respectively). Since g° is an arc,
all components g° of go,}l(go) are pairwise disjoint geodesic crosscuts
of D. Since the endpoints of all these crosscuts move continuously in ¢
and the points a' and b are distinct, the geodesics g' are also pairwise
disjoint open arcs for all t. Hence, ¢}, is one-to-one on each of these
crosscuts and their common image is a geodesic arc g'. By a similar
argument, the lifts g¢ and g} of two distinct geodesics g} and g} in £
are pairwise disjoint in I and, hence, g} Ng, = 0. It follows easily from
the construction that two distinct geodesics in £° share at most one
common endpoint and, hence, the same is true for £°. 0

To prove L' is a hyperbolic lamination in U* for each ¢ € [0, 1], it
remains to show that the collection of arcs in L' of diameter at least
¢ is compact for every ¢ > 0. This will follow from the next Lemma,
which states that even for varying ¢, the limit of a convergent sequence
of elements of the corresponding L' collections must belong to the limit
Lt collection as well.

Lemma 19. Let {ay,b1},{az,b2},... be a sequence of pairs in Jgnds
such that a, — ao and b, — by, where ao, and by, are distinct points
in OU. Then {oo,boo} € TEnds-

Furthermore, let tq,ts,... € [0,1] be a sequence such that t, — ts €
[0,1]. For each n € {1,2,...} U{oc} and each t € [0,1], let g', € L*
be the geodesic with endpoints at and bl,. Then glr — gl in the sense
that there exist homeomorphisms 0, : gl — gin such that 6,, — id.

n
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Proof. Let A C 9D be the set of all points in O at which Y, is defined,
and let A = {¢%(x) : * € A}. This set A is the set of all accessible

points in QU by Theorem 4. The set A is dense in OU and the set A
of lifts of points in A under ¢, is dense in 9D by Theorem 2.

Claim 19.1. For each t € [0,1], the function o' : 9D — D which
extends the function that maps each 7 € A to ¥, and is defined by
af(x) = lme ,, 5eq yt for each x € 9D, is a homeomorphism. More-
over a : ID x [0,1] — 9D, defined by a(x,t) = of(x), is an isotopy
starting at the identity.

We sketch the proof of Claim 19.1. Since the restriction o'| 5 is one-to-

one and preserves circular order, it suffices to show that o’(A) is dense
for each t. The proof will make use of the following notion: Let S
be the unit circle, v : S — C a continuous function and O a point
in the unbounded complementary domain of v(S). A complementary
domain U of 7(S) is odd if every arc J from O to a point in the domain
intersects (S) an odd number of times; counting with multiplicity and
assuming that every intersection is transverse and the total number of
crossings is finite; cf. [OT82, Lemma 2.1].

Fix ¢ > 0. By Theorem 3, a®(A) is dense. By condition (ii) of
Theorem 14 and Lemma 15 there exists 6 > 0 so that for any crosscut
C of X all lifts of the paths v¢ (whose existence follows from condition
(ii)) have diameters less than e. Since X is uniformly perfect one
can choose finitely many simple closed curves S; which bound disjoint
closed disks D; so that X° C |, D;, X° N {JOD; is finite, and for all
i and every component C' of S; \ X, the diameter of C' is less than
d. Moreover we can assume that for all ¢ ¢f (0) is contained in the
unbounded component of | J7¢([0,1]). Then all lifts 3¢ have diameter
less than €. Let FO = J, X°N S, and F* = h*(F?). Since for all C' and
all t, v¢((0,1)) N X* = () and 7; is continuous in the Hausdorff metric,
it follows that every point of X'\ F"* is contained in an odd bounded
complementary component of | v ([0, 1]).

Every component C of S;\ X is a crosscut which defines a collection
of paths 7¢ by condition (ii) of Theorem 14. For all ¢ let C, be the
collection of all lifts of all the paths ¢

Fix t. Suppose that r is a radius of the unit disk D so that R = ¢};(r)
lands on a point in X*\ F*. Then a terminal segment B of R must be
in an odd complementary domain of (v ([0, 1]). Let A = R\ B be the
initial segment of R. Then the subsegment b of r that corresponds to B
is disjoint from all crosscuts in C;. Suppose that that b is not contained
in the shadow of one of these crosscuts. Then we may assume that



EXTENSION OF ISOTOPIES IN THE PLANE 17

the intersection of a and any member of CAt is finite and even. Since
we may also assume that the intersection of a with all lifted crosscuts
is finite, the intersection of a with the union of all members of C; in a
finite even number. Since ¢!, is a local homeomorphism, the number
of intersections of A with all crosscuts 7 is also even, a contradiction
since A terminates in an odd domain. O(Claim 19.1)

Note that by construction, J is almost a lamination, except that
multiple arcs in J can share the same two endpoints. In particular,
if C(apby,) are circular arcs in J joining the points a, and b, then,
after taking a subseuence if necessary, lim C(a,b,) is a circular arc in
J joining as, to bs. From this it follows easily that £° is a lamination
and, if g, € L° is the geodesic joining a, to b,, then limg, = g,
where go, € L% is the geodesic joining as, to bs. Choose lifts g! and
g%, under ¢!, for each ¢ € [0,1] as in the proof of Lemma 18, such that
limg? =g°.

Fix k. By Claim 19.1, limg?* = g% . This implies immediately that
liminf g’ > g’ . Since the points a, and a., can be joined by a small
crosscut in U, it follows from assumption (ii) of Theorem 14 that the
points a!* and a’: can be joined by a small path. Hence, points x!*
in gl* close to an endpoint (say a*) can be joined to the endpoint a’*
by a small path (first by a small arc to a point in g’ and then by a
small arc in U' to the endpoint a't, followed by a small path in U to
a*). By Theorem 6, the sub-geodesic of gl* from x!* to a’ is small and
we can conclude that lim g% = g“ for each k. Since the maps ¢}, are
uniformly convergent on compact subsets, liminf gft > gfe. Since by
the above argument the sub-geodesic from a point close to the endpoint
of gt to this endpoint is small, lim g = g'=. It is now easy to see that
there exist homeomorphisms 6, : gl — gi» such that 6,, — id. O

For each t € [0, 1], we conclude from Lemma 18 and Lemma 19 (using
t, =t for all n) that £' is a lamination in U".

3.4. Proof of Theorem 14. In this section we will complete the proof
of Theorem 14 (and hence of Theorem 12 as well).

We will employ here the path midpoint function m described in The-
orem 11 of Section 2.4.

Let U be any bounded complementary domain of X, and consider
the hyperbolic laminations £' in U* as constructed above in Section 3.3.

Given any element g € LY, we extend the isotopy h over g to hy :
(X Ug) x[0,1] — C by defining hi(m(g)) = m(g") and, if z € g is
located on the subarc with endpoints m(g) and a (respectively, b), then
hi(x) is the unique point on the subarc of g* with endpoints m(g") and
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a’ (respectively, b*) such that p°(z, m(g)) = p*(h§(x), m(g")), using the
hyperbolic metric p* on U*.
Now extend & to he : X U[J LY — C by defining

he(at) = h(z,t) ifzeX
EOY T Y hy(a,t) ifzege L.

Then for each t € [0, 1], h% is clearly a bijection from X U JL° to
XtuycL.

Claim 1. A, is continuous.

Proof of Claim 1. Suppose that (z;,t;) — (Too,teo) and x; € g; € LO.
If there exists € > 0 so that diam(g;) > ¢ for all 7, then we may assume,
by taking a subsequence if necessary, that limg; = go € £°. If 2 is
not an endpoint of g, then, by uniform convergence of ¢!, on compact
sets, im hz (24, 1) = he(Too, too). If Too is an endpoint of g, (s0 2o €
X), then p°(x;,m(g;)) — oo and again lim hg(2;,t;) = he(Teo, too) =
h(Zoo, o). Hence we may assume that lim diam(g;) = 0. Then 2, € X
and lim diam(h!%(g;)) = 0. Hence, if a; is an endpoint of g;, then
lim hp(x;,t;) = lim h(a;, t;) = h(Zso, ts) as desired. O(Claim 1)

Finally, we repeat the above procedure on each bounded comple-
mentary domain U of X to extend h over the hyperbolic lamination
obtained from the Kulkarni-Pinkall construction as in Section 3.3 on
each such U. The result is a function H : Y x [0,1] — C which is
defined on the union Y of X with all the hyperbolic laminations of all
bounded complementary domains of X. Note that for any € > 0, there
are only finitely many bounded complementary domains of X which
contain a disk of diameter at least ¢, and hence there are only finitely
many such domains whose corresponding hyperbolic lamination con-
tains an arc of diameter at least €. This implies, as above, that H is
continuous.

Note that each bounded complementary domain of Y is a gap of the
hyperbolic lamination of one of the bounded complementary domains
of X. Since all such gaps are simply connected, Y is a continuum.
Hence by [OT10] the isotopy H of Y can be extended over the entire
plane.

This completes the proof of Theorem 14. By the comments at the
end of Section 3.2, this also completes the proof of Theorem 12.
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In Theorem 12 we assumed that X* is uniformly perfect for each
t € [0,1]. This assumption allows for the use of the powerful ana-
lytic results described in Section 2.1. It is natural to wonder if this
assumption is really needed. We conjecture that this is not the case.

Conjecture 1. Suppose that X s a plane compactum and h : X X
0,1] — C is an isotopy starting at the identity. Then the following are
equivalent:

(i) h extends to an isotopy of the entire plane,

(ii) for each ¢ > 0 there exists 0 > 0 such that for every com-
plementary domain U of X and each crosscut Q of U with
diam(Q) < 6, h can be extended to an isotopy hg : (X U Q) X
[0,1] — C such that for all t € [0,1], diam(h*(Q)) < €.

4. COMPACT SETS WITH LARGE COMPONENTS

The remaining part of this paper is devoted to a proof of the following
theorem.

Theorem 20. Suppose X C C is a compact set for which there exists
1n > 0 such that every component of X has diameter bigger than n. Let
h: X x [0,1] — C be an isotopy which starts at the identity. Then h
extends to an isotopy of the entire plane which starts at the identity.

Suppose X C C is a compact set for which there exists n > 0 such
that every component of X has diameter bigger than n. Let h : X X
[0,1] — C be an isotopy which starts at the identity.

Clearly in this case X! is uniformly perfect with the same constant &
for each t € [0, 1], and we may assume that X is encircled. By scaling,
we may also assume that for any a € X and any component C' of X,
there exists ¢ € C such that |a' — | > 1 for all ¢ € [0,1]. We will make
these assumptions for the remainder of the paper.

We will prove Theorem 20 using the characterization from Theo-
rem 14. To this end, we fix (again for the remainder of the paper) an
arbitrary bounded complementary domain U of X.

To satisfy condition (ii) of Theorem 14 we must construct, for a
sufficiently small crosscut ) of U with endpoints a and b, a family of
paths ~y, in U' with endpoints a’ and b, which remain small during the
isotopy, such that 7y is homotopic to () in U with endpoints fixed, and
which can be lifted under ¢}, to paths 7, in D which are continuous in
the Hausdorff metric. We will show first that, in the case that X has
large components, it suffices to construct the family of paths v; to be
continuous in the Hausdorff metric.
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Lemma 21. Let a,b € OU. Suppose that {~; : t € [0,1]} is a family
such that 7, is a path in U' joining a' and b* with diam(([0, 1])) < 3
for each t € [0,1], and the sets ([0, 1]) vary continuously in t with
respect to the Hausdorff metric. Then there are lifts 4y of the paths =
under ¢t such that the sets 3,([0,1]) also vary continuously in t with
respect to the Hausdorff metric.

Proof. Suppose that the family ~; is as specified in the statement. Re-
call that dy denotes the Hausdorff distance. Fix t € [0,1]. It suffices
to show that, given a lift 7, of v, and 0 < ¢ < %, there exists 6 > 0
and lifts 7; of v, for |t — to] < § such that dg(7:([0, 1]), 7, ([0,1])) < e.

By Lemma 15 we can choose small disjoint open balls B, centered
at a' and B, centered at b of diameters less than i such that for all ¢
and any path )\ contained in B, N U* or By N U?, the diameter of each
lift of A\ under ¢y; is less than 5.

Let sq, sp € (0, 1) be the numbers such that v, (sa) € 0Ba, Y1, ([0, 84)) C
B, Yio(sp) € OBy, and 74, ((sp,1]) C Bp. Denote z, = 7, (s,) and
20 = Yio(8p). Choose an open set O C C such that 7, ([s4, $p]) C O,
O c U', and the diameter of O U B, U By, is less than 1. For ¢ suffi-
ciently close to tg, we have O C U* and v,([0,1]) € O U B, U By,. Since
each component of X! has diameter greater than 1, we have that no
bounded complementary component of OU (B, U By \ X") contains any
points of X*. It follows that there exists a simply connected open set
P, in U" such that v((0,1)) UO C P,. This means that the covering
map ¢!, maps each component of ()~ (P;) homeomorphically onto
P,.

Since the maps ¢}, converge uniformly on compact sets as ¢ — to,
for ¢ sufficiently close to tq there exists exactly one component F of
(o)~ (P) such that 7y, ([sa, sp]) C Pi. For such t, define the lift 7, of
Ve by Vi = (@Hﬁt)il ° Y.

To see that these lifts are Hausdorff close to 7;,, let § > 0 be small
enough so that for all ¢ with |t — ¢y| < J we have:

(i) There exists v > 0 such that ]((pmlgt)_l(:cl)—(<p§?|13t0)_1(xg)| <
s for all 21,25 € C with |71 — 25| < v and either z; € O or
T € O;
(ii) drr(7([0,1]), 7, ([0, 1])) < v; and
(i) 7((0, 1)) N (9B, \ 0) = 0 and ([0, 1) " (9B, \ 0) = 0.
Fix t with |t — to| < 0, and let s € (0,1). We claim that 7;(s) is
within distance € from some point in 7, ([0, 1]).

To see this, assume first that 1;(s) € P.. Let 1 = y(s). By con-
dition (ii) above, there exists xo € 74, ([0,1]) with |z — 23] < v. By



EXTENSION OF ISOTOPIES IN THE PLANE 21
condition (i) it follows that 7;(s) = (¢}
from (Qot(ﬂﬁto)il(x?) S 7%0([07 1])

Now suppose that 7;(s) ¢ P,.. We assume without loss of generality
that v;(s) € B,. Follow the path ~, from ~(s) to a point z; € 9B,
so that the section of the path 7, in between is contained in B,. Since
this part of the path ~; is contained in B,, the corresponding section
of the lifted path 7, from 7,(s) to (¢f|p) " (1) has diameter less than
5, by choice of B,. By condition (iii) above, we have z; € O, and
by condition (ii) there exists zo € 7, ([0,1]) with |z — 23] < v. By
condition (i) it follows that (¢f|p)~" (1) is within distance § from

p,) "' (21) is within distance §

(¢l Isto)’l(xg) € 7, ([0,1]). Then by the triangle inequality, we have

Fils) — (¢815,) " (w)| <.

Thus in any case, we see that every point of 7;([0,1]) is within ¢
of a point in 7;,([0,1]). By symmetry, the same argument also shows
that each point of 7;,([0,1]) is within e of a point in 7;([0, 1]). Hence
di(7:(]0,1]), 74, ([0, 1])) < e, as desired. O

Notation (g, v). For the remainder of the paper, we fix an arbitrary
€ > 0. For later use, fix 0 < v < % small enough so that % < 3.

To prove Theorem 20, it remains to show that there exists § > 0
such that if @) is a crosscut of U with endpoints a and b with diameter
less than §, there is a family of paths -, such that (1) v, is a path in
U' joining a' and b* for each ¢ € [0,1], (2) 7 is homotopic to @ in U
with endpoints fixed, (3) diam(v([0,1])) < ¢ for all ¢t € [0,1], and (4)
the sets ([0, 1]) vary continuously in ¢ with respect to the Hausdorff
metric.

In Section 4.1, we will transform the compactum X, so that the
crosscut ) becomes the straight line segment [0, 1] in the plane, to
simplify the ensuing constructions and arguments. We will refer to the
transformed plane as the “normalized plane”, and the image of X will
be denoted by X. In Section 4.2, we will lift the isotopy under an
exponential covering map. The domain of the covering map will be
called the “exponential plane”, and the preimage of X will be denoted
by X. In Sections 4.3 and 4.4 we will replace the lift of the crosscut
[0,1] of X by an equidistant set which varies continuously in ¢. The
projection of this equidistant set to the original plane containing X*
will be shown in Section 4.5 to be the desired path ;.

4.1. The normalized plane. In the following sections, we will make
use of a covering map (which we will refer to as the “exponential map”)
of the plane minus the endpoints of a crosscut (). In order to simplify
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the notation and work with a single exponential map below we will
normalize the compactum X and the crosscut ) of X with end points
a and b so that for all ¢, a® = 0, b = 1, and @ becomes the straight
line segment (0,1) C R.

By composing with translations it is easy to see that given a crosscut
Q@ of X with endpoints a and b we can always assume that the point a
is the origin 0 and that this point remains fixed throughout the isotopy
(i.e., a* =0 for all ¢).

Let @ be a crosscut of U with endpoints 0 and b such that diam(Q) <
%. We will impose further restrictions on the diameter of @) later.

Since all arcs in the plane are tame, there exists a homeomorphism
O : C — C such that ©(Q) is the straight line segment joining the
pOiIltS 0 and b, @(0) = 0, @(b) = band @’(C\B((]Jdiam(Q)) = idC\B(O’Qdiam(Q)).
Let L' : C — C be the linear map of the complex plane defined by
Li(z) = % z.

Notation (X, 7). Define X = L° 0 ©(X) and define the isotopy
h:X x[0,1] - C by

h(E,t) = L'o©o h((L° 0 ©)"1(7),t) = L 0 O(z).

Here and below we adopt the notation that 7 = L% o ©(z) for all
z € X and, hence, h'(Z) = 7 = L' 0 O(z!). As indicated above, we
will use ordinary letters to denote objects in the plane containing X
and attach a tilde to the corresponding objects in the normalized plane
(the plane containing X).

In the next lemma we establish some simple properties of the induced
isotopy h.

Lemma 22. There exists § > 0 such that if the crosscut Q of X with
endpoints 0 and b has diameter diam(Q) < ¢, then the induced isotopy

h: X x [0,1] — C has the following properties:

(1) h® = idg, X contains the points 0 and 1, the isotopy h fives
these points and the segment (0,1) C R in the complezx plane
is disjoint from X ;

(ii) If z° € (0,1) for some s € [0,1], then for each t € [0,1],

’§t| < m,’ and

(iii) For every component C of)N( there exists a point ¢ € C such

1
that for all t € [0,1], | > IR
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Proof. 1t follows immediately that ho = id| ¢, the isotopy h fixes the

points 0 and 1 and that the interval (0,1) is disjoint from X. Hence
(i) holds.

Since h is uniformly continuous we can choose 0 < § < 7 so that if
x € X and |2°| < 26 for some s € [0, 1], then |2*| < ¥ for all . Suppose
z* € (0,1) for some s € [0,1], then 2° € @ and hence |z'| < ¥ for all ¢.
Then |77 < 2|®lzbf)| + |9%gt)| < |®(l;)t)| using that ©|p\p(0,26) = id and so
(ii) holds.

By the standing assumption on X stated after Theorem 20, for every
component C of X there exists a point ¢ € C such that for all ¢, |¢!| > 1.
Note that O(c") = ¢! for all t. Hence, [¢*]| > @|(CTZ|)‘ > W for all ¢ and
(iii) holds. O

4.2. The exponential plane. Define the covering map
exp: C\{2n+mi:neZ} — C\{0,1}
by

eZ

er+1
The function exp is periodic with period 27i, and satisfies

lim exp(z) =1, lim exp(z) =0, exp(R)=(0,1),

R(z)—00 R(z)——o0

exp(z) =

and has poles at each point (2n + 1)7i, n € Z.

Note that exp is the composition of the maps e* and the Mobius
transformation f(w) = _%7. Hence the vertical line through a point
x € R is first mapped (by the covering map e*) to the circle with
center 0 and radius e* and, if x # 0, then mapped by f to the circle
with center efj—il and radius ‘% . The imaginary axis is mapped to

the vertical line through the point z = % with the points at the poles
(2n + 1)mi mapped to infinity.

Notation (X, x, E,(r)). Denote by boldface X the preimage of X
under the covering map exp, and in general we will use boldface letters
to represent points and subsets of the exponential plane (the plane
containing X).

The isotopy h of X lifts to an isotopy h of X; that is, h : X x[0,1] —
C is the map satisfying h® = idx and exp(h(x,t)) = h(exp(x),t) for
every x € X and all ¢ € [0,1]. As above, given a point x € X (a subset
A CX)andt € 0,1], denote x* = h(x,t) (respectively, A* = h(A,1)).

For each n € Z and each r > 0, let E,(r) = B((2n + 1)mi,r) be the
ball of radius r centered at the point (2n + 1)mi.
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Lemma 23. There exists 0 < K < w such that for any 0 <r < K,

(i) &P (gEnm) cC\B (o, %)

(i) exp (C\nLerEn(r)> CcB (o, %)

Proof. For any n € Z and sufficiently small |z|, we have

e(2n+1)7m+z — fa—1—2

and hence exp((2n + 1)mi + z) ~ £2. In particular, there exists 0 <
K < 7 such that for all |z| < K

2
< lexp((2n+ )mi+ 2)] < —.
22 E
Let S, = 0B((2n + 1)mi,r). Then, by the above inequality, T =
exp(lJ,, Sn) is an essential simple closed curve in the annulus centered

around the origin 0 with inner radius % and outer radius % Since

exp is periodic, all S, have the same image T, and exp ' (T) = U,, Sn-
It follows that exp(lJ, B((2n + 1)mi,r) \ (2n + 1)mi) is contained in
the unbounded complementary domain of 7" and exp(C \ J,, B((2n +
1)mi,r)) is contained in the bounded complementary domain of T
Hence, exp(,, B((2n+1)xi,r)) € C\ B(0, 3-) and exp(C\U, B((2n+
D)mi,r)) C B(0,2). O

4.3. Components of X‘. We say a component C of X' (¢ € [0, 1])
is unbounded to the right (respectively left) if projp(C) C R is not
bounded from above (respectively from below).

For convenience we denote the horizontal strip {z +iy € C : x €
R, 2nm < y < 2(n + 1)7} simply by HS,. Observe that since X N
(0,1) =0 and exp '((0,1)) = U, iz +iy € C: 2 € R, y = 2n7}, we
have that X C (J, o, HS,.

Lemma 24. There exists § > 0 such that if the crosscut QQ of X with
endpoints 0 and b has diameter diam(Q) < 9, then the following holds
for the induced isotopy h of X:

Gwen a component C of X, let n € Z be such that C is contained in
the horizontal strip HS,,. Let D be the component ofX that contains
exp(C). Then:

(i) if DN{0,1} =0, thenCtﬂEnCG(b >7é(2)f0'rallt€ 0,1];
(ii) C'NE,, ('e(b)|> =0 for allm # n and all t € [0,1]; and



EXTENSION OF ISOTOPIES IN THE PLANE 25

(iii) ifﬁ N{0,1} # 0, then C is unbounded to the left, to the right,
or both.

Furthermore, there exist for each k € 7Z components Ly and Ry of
X N HSy such that for all t € [0,1], Lt is unbounded to the left and
R is unbounded to the right. Moreover, these may be chosen so that

eitherLZﬂEk(le(b )#(Z)forallkéZorRtﬂE ( )#@for
all k € 7.

Proof. Adopt the notation introduced in the Lemma and assume C
is contained in the horizontal strip HS,,. Let 0 < K < 7 be as in

Lemma 23. Choose § > 0 so small that |6 | < K for all .
Suppose that DN {0,1} = (). Then exp(C) D. By Lemma 22(iii),
we can choose ¢ € D such that |[¢f| > Gl bt for all ¢. By Lemma 23(ii),
exp (C \E, (@)) C B(0, Wlbt)\)' Hence we can choose c® € E, <M>ﬂ

C such that exp(c?) = ¢°, and then ¢! € C'NE, < ) for all . This

completes the proof of ( )

Note that for all n € Z, exp(R x {2n7i}) = (0,1) C R and hence,
XN (R x {2n7i}) = 0 for all n € Z. To see that C* N E,, ( )—@
for m # n and all ¢, note first that this is the case at t =0 smce C =
C C HS,,. In order for a point x* € C? to enter a ball E,, |@§ with
n # m for some s > 0, it would first have to cross one of the horizontal
boundary lines of HS,,, say x* € R x {2nmi} for some 0 < u < s. Then
exp(x") = 2" € (0,1) C R. Hence by Lemma 22(ii), |Z°] < g for

all t. Since by Lemma 23(i), exp (Em (le(bt”)) CcC\B ( 0] ) for

all t, x* ¢ E,, ('%T”), a contradiction. This completes the proof of
(ii).

Suppose next that lN)ﬂ{O, 1} # ). Then exp(C) = C is a component
of D\ {0,1} such that C' N {0,1} # 0. Hence C is unbounded to the
left or to the right (or both). This completes the proof of (iii).

There must exist components L and R of X "\ {0,1} such that 0 is
in the closure of L and 1 is in the closure of R. For each k € Z, let
L, be the lift of L under exp exp which is contained in the strip HS;, and
similarly define Ry. Then since the closure of L' contains 0 and the

closure of R* contains 1 for all ¢ € [0, 1], we have that for each k € Z,
the lift L! is unbounded to the left and the lift R% is unbounded to the
right for all ¢ € [0, 1].
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FIGURE 2. An illustration of an example of the set X! at
t =0 (above) and at a later moment ¢ > 0 (below). The
horizontal lines are the preimages of (0, 1) under exp, and

the balls depicted are the sets E,, (@gﬂ)

Finally, by Lemma 22(iii), there exists a component S of X \ {0,1}
whose closure contains 0 or 1, which contains a point ¢ € S such
that |¢*| > \G(bt)\' Then, as in the proof of (ii), the component St of

exp (S f) which contains the lift ¢t € HS;, of ¢ under exp is unbounded
to the left or to the right for all £ and ¢ and intersects E;, (‘G(b N) as
required. O
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Notation (A, B, 2(,9). Let A denote the set of all points of X above
R and B the set of all points of X below R. Recall that X NR = 0, so
X = A UB. For each t € [0,1], let

mt:AtUUEn(W) and %t:BtUUEn(&th”)

n>0 n<0

Then A! and B! are disjoint closed sets, and by Lemma 24, each com-
ponent of A" and of B is either unbounded to the left or to the right.

Lemma 25. For each r > 0, there ezists a lower bound { € R (respec-
tively upper bound u € R) such that for all t € [0,1], if ¢+ di € Al
(respectively B') and |c| < r, then d > € (respectively d < u).

Proof. Let T denote the imaginary axis, so that [—r,r] x I is the strip
in the plane between the vertical lines through r and —r.

By uniform continuity of h and the fact that h leaves 0 and 1 fixed,
there must exist for each » > 0 an ' > r such that for all x € X, if
x* € ((—o0, =] U [r';00)) x I for some s € [0, 1] then for all ¢ € [0, 1],
x' ¢ [—rr] x L.

Given a point x € A N ([, 7] x I), let T = exp(x) be the corre-
sponding point of X. Every time x travels vertically within the strip
[—r",r'] x T a distance 27, the point T travels around a disk of fixed
radius (depending on r’) centered at 0 or at 1. By uniform continu-
ity and compactness of X, this can only happen a uniformly bounded
number of times. The result follows. 0

Corollary 26. Let C is any component of X. Then for any r > 0 and
any t € [0,1], the set C'N{x +yi:x € [—r,r]} is compact.

Proof. Because the set X! is periodic with period 27i, there exists an
integer k such that if D is the copy of C shifted vertically by 27k, then
without loss of generality C C A and D C B. Then by Lemma 25, C!
is bounded below in the strip {x + yi : © € [-r, 7]}, and D' is bounded
above in this strip. By periodicity, it follows that C! is also bounded
above in this strip. U

Definition 27. Given two distinct components C,D of X which are
both unbounded to the right (respectively, to the left), we say that
C lies above D if there is some R > 0 such that for all x € R with
x > R (respectively, z < —R), max(y € R: x+iy € C) > max(y € R :
z+iy € D) and alsomin(y € R : z+iy € C) > min(y € R : z+iy € D).

Note that it follows immediately from the definition of A° and B°
that if C and D are components of A" and B°, respectively, which
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are unbounded on the same side, then C lies above D. The following
Lemma follows from this fact. The proof, which is left to the reader,
is very similar to the proof of Lemma 2.5 in [OT10].

Lemma 28. There exists 6 > 0 such that if the crosscut Q of X with
endpoints 0 and b has diameter diam(Q) < ¢, then the following holds
for the induced isotopy h of X:

Let C and D be components of A° and B°, respectively, which are
both unbounded to the same side. Then C! lies above D' for all t €
0, 1].

Consequently, if E and F are components of A and B, respectively,
which are both unbounded to the same side, then E' lies above F* for
all t €10, 1].

4.4. Equidistant set between A! and B!. For the remainder of
this section, we assume that é > 0 is chosen so that the conclusions of
Lemma 24 and Lemma 28 hold. We also assume that the crosscut @)
has diameter less than 9.

Recall that disjoint closed sets A; and A, in C are non-interlaced if
whenever B(c,r) is an open disk contained in the complement of A; U
Ay, there are disjoint arcs Cy,Cy C 0B(¢,r) such that Ay NIB(c,r) C
Cy and Ay N 9B(c,r) C Cy. We allow for the possibility that C; = ()
in the case that Ay NIdB(c,r) = 0B(c,r), and vice versa.

Lemma 29. A’ and B' are non-interlaced for all t € [0, 1].

Proof. Fix t € [0,1]. Let B C C\ (A" UB) be a round open ball, and
suppose for a contradiction that there exist points a;, a, € 0BNA! and
by,by € 9B N B' such that the straight line segment aja; separates
b, and b, in B. Let A; and A, be the components of a; and a,,
respectively, in 2, and let B; and By be the components of b; and b,
in B’. Then [A; UA3]N[B;UBy] = () and by the remarks immediately
following the definition of 2I* and B!, each of these four components is
either unbounded to the left or unbounded to the right. Consider an
arc S in B\ (B; UBy) joining a; and ay;. Then A; U Ay U S separates
the plane into at least two components, and B; and By must lie in
different components of C\ (A; U Ay U S). It is then straightforward
to see by considering cases that there exist i,j € {1,2} such that B;
lies above A;, a contradiction with Lemma 28. U

For each t € [0,1], let M; = Equi(A*, B). In light of Lemma 29, M,
is a l-manifold by Theorem 10.
Lemma 30. For eacht € [0,1] and eachn € Z, MtﬂEn<%f)(bt)|> =
0.
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. t
In particular, M; N E, (W) =0.

Proof. Let n € Z and assume that n > 0 (the case n < 0 proceeds

1 (A-py)e@)] o) oY)
3 i > 2,soEn(2>C

similarly). Since 0 < v <
En(ufv)l@(bf)\)_

4v
By Lemma 24, there is a component C of X such that C'NE,, (ﬁft)‘) #+

() for all t € [0,1]. Since n >0, C C A.
On the other hand, given any component D of B, we have by

Lemma 24(i) that D' N E, ('6( ) = () for all t € [0,1]. Thus B'N
En<|®(fj)> = for all t € [0,1]. Tt follows that any point z €

E, —(l_l’zf(b ) ) , the distance from z to A is less than ‘G(bt)l + = ")le(bt” =
—(Hyl‘l? (bt)‘, while the distance from z to B! is a greater than w _
(l_yzlll/@(bt)‘ (IO ) Thus M, A E, <%§)(bt)l> — 0 forall n. O

Lemma 31. For each t the set My is a connected 1-manifold. More-
over, the vertical projection of My to the real axis R is onto.

Proof. Since by Lemma 29 A’ and B! are non-interlaced, by Theo-
rem 10, M; is a I-manifold which separates Af from B*. By Lemma 30,

M, is disjoint from (J,, En(%> and, hence, M, separates A from

B! (recall that A" and B' were defined above Lemma 25). Since all
components of A" and B are unbounded, no component of M, is a
simple closed curve and every component is a copy of R with both
ends converging to infinity. By Lemma 25 each end of a component of
M, either converges to —oo or +o0o. Fix ¢t and let M’ be a component
of M;. Note that for all x € M’ there exists a set of points AL, C A’
closest to z and B, C B' closest to z and that |,y AL and (J,cnp B
are separated by the line M'. For x € M/, let r, denote the distance
from z to Af (equivalently, to BE).

If both ends of M’ are unbounded to the same side, say on the left
side, then C \ M’ has two complementary components P and ), with
P only unbounded to the left (see Fig. 3). Assume that (J,p AL C P
(the case Uycpy B C P is similar). Note that since P contains no
components of A’ which are unbounded to the right, P must contain
components of A! which are unbounded to the left.

Let z € M. Then M’ \ {z} consists of two rays M and M~ and we
may assume that M™ lies above M~. Choose z, € M monotonically
converging to —co and b, € B! . Since the radii r., are uniformly
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FIGURE 3. An illustration of the situation described in
the proof of Lemma 31.

bounded, b,, also converges to —oco. Let H,, be the component of B?
that contains b,,.

If H, is unbounded to the left, by Lemma 28 it must lie below the
unbounded components of A’ in P and hence must “go around” M’ as
H, does in Figure Fig. 3. If H, is not unbounded to the left, then either
it intersects some Ek(‘@gﬂ) for some k£ < 0 (as Hy does in Fig. 3), or
it is unbounded to the right (as Hj is in Fig. 3). In any case it is clear
that there exists ¢ € R such that every component H,, intersects the
vertical line x = c.

For each n let d,, be such that the point (¢, d,) € H,. By Lemma 25,
the sequence d,, is bounded and, hence has an accumulation point d,.
By Corollary 26, the component of B! which contains d, is unbounded
to the left, and clearly it lies above the unbounded components of A'
in P, a contradiction with Lemma 28. Hence, the vertical projection
of M’ to the real axis R is onto.

The proof that M, = M’ is connected is similar and is left to the
reader. O
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Lemma 32. For each t € [0,1], the set exp(M;) U {0,1} is the image
of a path 7, in U' joining 0 and 1.

Proof. Let I denote the imaginary axis, so that [—r, r] x I is the strip in
the plane between the vertical lines through r and —r. By Lemma 25,
for each r > 0, exp(([—r,7] x I) N M;) is compact. Together with
Lemma 31, this implies that we can choose a parameterization « :
(0,1) — M; so that:

lim exp o a(s) = {0}

s—0t
and

lim exp o a(s) = {1}.

s—1—
Define the path 4, : [0,1] — exp(M;) U {0,1} by %(s) = exp o a(s)
for s € (0,1), and 7;(0) = 0 and 7;(1) = 1. Then 7; is the required
path. O

4.5. Proof of Theorem 20. In this section we complete the proof of
Theorem 20.

Recall that € > 0 is a fixed arbitrary number, and 0 < v < % has
been chosen so that 18_—”V < 5. Choose 0 < 4 < § small enough so that
the conclusions of Lemma 24 and Lemma 28 hold (and therefore the
results from Section 4.4 also hold).

For each t € [0,1], let 4 = (L' 0 ©)7! 07;. This =, is a path in U?
joining 0 and b'.

Claim 2. diam(([0,1])) < ¢ for all ¢ € [0, 1].

Proof of Claim 2. By Lemma 30, for all ¢ € [0,1] and n € Z, M; N
B, (i)

By Lemma 23(ii), we have exp(M;) C B(O, %). Then

(LY~ Yexp(My)) C B(O, (18_—”V)> By the choice of v, and since © is
a homeomorphism of C which is the identity outside of B(0,20) C
B(0,%), it then follows that ([0, 1]) = (L'0©) ! (exp(M,)) C B(0, §).

O(Claim 2)

Claim 3. The sets ([0, 1]) vary continuously in the Hausdorff metric,
and 7 is homotopic to ) with endpoints fixed.

Proof of Claim 3. By Lemma 32, 7; is a path in U! with endpoints 0
and 1. To see that 7, is homotopic to @ = (0, 1) note first that since A°
is above the real axis and B is below the real axis, for each (z, ) € M
the vertical segment from (x,0) to (z,y) is disjoint from X°. Hence
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we can construct a homotopy k& between M, and R which fixes the x-
coordinate of each point in M and decreases the absolute value of the
y-coordinate to zero. Then expok is the required homotopy between Yo
and @ with endpoints fixed. Hence, 79 = (L° 0 ©)~1 07, is homotopic
to () as required.

Suppose t; — too. It is easy to see that limsup M, C M, by the
definition of the equidistant sets M,. Since, by Lemma 31, each M,
and M, __ is a connected 1-manifold whose vertical projection to the real
axis R is onto, it follows that lim inf M,, © M,_. Thus lim M,, = M,__.
It follows that 1;([0,1]) = (L o ©)~! o exp(M;) is continuous in the
Hausdorff metric. O(Claim 3)

Combined with Lemma 21, Claims 2 and 3 complete the verification
of condition (ii) of Theorem 14. Therefore, by Theorem 14, the isotopy
h of the compactum X can be extended to the entire plane C. This
completes the proof of Theorem 20.

In Theorem 12 we have given necessary and sufficient conditions for
an isotopy of a uniformly perfect compact set to extend to an isotopy
of the plane. These conditions involve the existence of an extension of
the isotopy over sufficiently small crosscuts while controlling the size
of the image. The following problem remains open.

Problem 1. Are there intrinsic properties on X and the isotopy h of
X, which do not involve the existence of extensions over small cross-
cuts, that characterize when an isotopy of X can be extended over the
plane?
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