
DETOX: A Redundancy-based Framework for Faster

and More Robust Gradient Aggregation

Shashank Rajput∗

University of Wisconsin-Madison
rajput3@wisc.edu

Hongyi Wang∗

University of Wisconsin-Madison
hongyiwang@cs.wisc.edu

Zachary Charles
University of Wisconsin-Madison
zcharles@math.wisc.edu

Dimitris Papailiopoulos
University of Wisconsin-Madison

dimitris@papail.io

Abstract

To improve the resilience of distributed training to worst-case, or Byzantine node
failures, several recent approaches have replaced gradient averaging with robust
aggregation methods. Such techniques can have high computational costs, often
quadratic in the number of compute nodes, and only have limited robustness
guarantees. Other methods have instead used redundancy to guarantee robustness,
but can only tolerate limited number of Byzantine failures. In this work, we
present DETOX, a Byzantine-resilient distributed training framework that combines
algorithmic redundancy with robust aggregation. DETOX operates in two steps,
a filtering step that uses limited redundancy to significantly reduce the effect of
Byzantine nodes, and a hierarchical aggregation step that can be used in tandem
with any state-of-the-art robust aggregation method. We show theoretically that
this leads to a substantial increase in robustness, and has a per iteration runtime
that can be nearly linear in the number of compute nodes. We provide extensive
experiments over real distributed setups across a variety of large-scale machine
learning tasks, showing that DETOX leads to orders of magnitude accuracy and
speedup improvements over many state-of-the-art Byzantine-resilient approaches.

1 Introduction

To scale the training of machine learning models, gradient computations can often be distributed
across multiple compute nodes. After computing these local gradients, a parameter server (PS) then
averages them, and updates a global model. As the scale of data and available compute power grows,
so does the probability that some compute nodes output unreliable gradients. This can be due to
power outages, faulty hardware, or communication failures, or due to security issues, such as the
presence of an adversary governing the output of a compute node.

Due to the difficulty in quantifying these different types of errors separately, we often model them
as Byzantine failures. Such failures are assumed to be able to result in any output, adversarial or
otherwise. Unfortunately, the presence of a single Byzantine compute node can result in arbitrarily
bad global models when aggregating gradients via their average [1].

In distributed training, there have generally been two distinct approaches to improve Byzantine
robustness. The first replaces the gradient averaging step at the PS with a robust aggregation step,
such as the geometric median and variants thereof [1, 2, 3, 4, 5, 6]. The second approach instead

∗Authors contributed equally to this paper and are listed alphabetically.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

We prove that DETOX can obtain orders of magnitude improved robustness guarantees compared to
its competitors, and can achieve this at a nearly linear complexity in the number of compute nodes p,
unlike methods like BULYAN [10] that require complexity that is quadratic in p. We extensively test
our method in real distributed setups and large-scale settings, showing that by combining DETOX with
previously proposed Byzantine robust methods, such as MULTI-KRUM, BULYAN, and coordinate-
wise median, we increase the robustness and reduce the overall runtime of the algorithm. Moreover,
we show that under strong Byzantine attacks, DETOX can lead to almost a 40% increase in accuracy
over vanilla implementations of Byzantine-robust aggregation. A brief performance comparison with
some of the current state-of-the-art aggregators in shown in Fig. 2.

Related work. The topic of Byzantine fault tolerance has been extensively studied since the early
80s by Lamport et al. [12], and deals with worst-case, and/or adversarial failures, e.g., system crashes,
power outages, software bugs, and adversarial agents that exploit security flaws. In the context of
distributed optimization, these failures are manifested through a subset of compute nodes returning to
the master flawed or adversarial updates. It is now well understood that first-order methods, such
as gradient descent or mini-batch SGD, are not robust to Byzantine errors; even a single erroneous
update can introduce arbitrary errors to the optimization variables.

Byzantine-tolerant ML has been extensively studied in recent years [13, 14, 15, 16, 17, 2], establishing
that while average-based gradient methods are susceptible to adversarial nodes, median-based update
methods can in some cases achieve better convergence, while being robust to some attacks. Although
theoretical guarantees are provided in many works, the proposed algorithms in many cases only ensure
a weak form of resilience against Byzantine failures, and often fail against strong Byzantine attacks
[10]. A stronger form of Byzantine resilience is desirable for most of distributed machine learning
applications. To the best of our knowledge, DRACO [7] and BULYAN [10] are the only proposed
methods that guarantee strong Byzantine resilience. However, as mentioned above, DRACO requires
heavy redundant computation from the compute nodes, while BULYAN requires heavy computation
overhead on the PS end.

We note that [18] presents an alternative approach that does not fit easily under either category, but
requires convexity of the underlying loss function. Finally, [19] examines the robustness of SIGNSGD
with a majority vote aggregation, but study a restricted Byzantine failure setup that only allows for a
blind multiplicative adversary.

2 Problem Setup

Our goal is to solve solve the following empirical risk minimization problem: minw F (w) :=
1
n

Pn
i=1 fi(w) where w 2 R

d denotes the parameters of a model, and fi is the loss function on the
i-th training sample. To approximately solve this problem, we often use mini-batch SGD. First, we
initialize at some w0. At iteration t, we sample St uniformly at random from {1, . . . , n}, and then
update via

wt+1 = wt �
⌘t

|St|

X

i∈St

rfi(wt), (1)

where St is a randomly selected subset of the n data points. To perform mini-batch SGD in a
distributed manner, the global model wt is stored at the PS and updated according to (1), i.e., by
using the mean of gradients that are evaluated at the compute nodes.

Let p denote the total number of compute nodes. At each iteration t, during distributed mini-batch
SGD, the PS broadcasts wt to each compute node. Each compute node is assigned Si,t ✓ St, and

then evaluates the mean of gradients gi =
1

|Si,t|

P

j∈Si,t
rfj(wt). The PS then updates the global

model via wt+1 = wt � ηt

p

Pp
i=1 gi. We note that in our setup we assume that the PS is the owner of

the data, and has access to the entire data set of size n.

Distributed training with Byzantine nodes We assume that a fixed subset Q of size q of the p
compute nodes are Byzantine. Let ĝi be the output of node i. If i is not Byzantine (i /2 Q), we say it
is “honest”, in which case its output ĝi = gi where gi is the true mean of gradients assigned to node i.
If i is Byzantine (i 2 Q), its output ĝi can be any d-dimensional vector. The PS receives {ĝi}

p
i=1,

and can then process these vectors to produce some approximation to the true gradient update in (1).

3

We make no assumptions on the Byzantine outputs. In particular, we allow adversaries with full
information about F and wt, and that the Byzantine compute nodes can collude. Let ✏ = q/p be the
fraction of Byzantine nodes. We will assume ✏ < 1/2 throughout.

3 DETOX: A Redundancy Framework to Filter most Byzantine Gradients

We now describe DETOX, a framework for Byzantine-resilient mini-batch SGD with p nodes, q of
which are Byzantine. Let b � p be the desired batch-size, and let r be an odd integer. We refer to r as
the redundancy ratio. For simplicity, we will assume r divides p and that p divides b. DETOX can be
directly extended to the setting where this does not hold.

DETOX first computes a random partition of [p] in p/r node groups A1, . . . , Ap/r each of size r.
This will be fixed throughout. We then initialize at some w0. For t � 0, we wish to compute some
approximation to the gradient update in (1). To do so, we need a Byzantine-robust estimate of the true
gradient. Fix t, and let us suppress the notation t when possible. As in mini-batch SGD, let S be a
subset of [n] of size b, with each element sampled uniformly at random from [n]. We then partition of
S in groups S1, . . . , Sp/r of size br/p. For each i 2 Aj , the PS assigns node i the task of computing

gj :=
1

|Sj |

X

k∈Sj

rfk(w) =
p

rb

X

k∈Sj

rfk(w). (2)

If i is an honest node, then its output is ĝi = gj , while if i is Byzantine, it outputs some d-dimensional
ĝi, which is then sent to the PS. The PS then computes zj := maj({ĝi|i 2 Aj}), where maj denotes
the majority vote. If there is no majority, we set zj = 0. We will refer to zj as the “vote” of group j.

Since some of these votes are still Byzantine, we must do some robust aggregation of the vote.
We employ a hierarchical robust aggregation process HIER-AGGR, which uses two user-specified
aggregation methods A0 and A1. First, the votes are partitioned in to k groups. Let ẑ1, . . . , ẑk denote

the output of A0 on each group. The PS then computes Ĝ = A1(ẑ1, . . . , ẑk) and updates the model

via w = w � ⌘Ĝ. This hierarchical aggregation resembles a median of means approach on the votes
[20], and has the benefit of improved robustness and efficiency. We discuss this in further detail in
Section 4. A description of DETOX is given in Algorithm 1.

Algorithm 1 DETOX: Algorithm to be performed at the parameter server

input Batch size b, redundancy ratio r, compute nodes 1, . . . , p, step sizes {⌘t}t≥0.
1: Randomly partition [p] in “node groups” {Aj |1  j  p/r} of size r.
2: for t = 0 to T do
3: Draw St of size b randomly from [n].
4: Partition St in to groups {St,j |1  j  p/r} of size rb/p.
5: For each j 2 [p/r], i 2 Aj , push wt and St,j to compute node i.
6: Receive the (potentially Byzantine) p gradients ĝt,i from each node.
7: Let zt,j := maj({ĝt,i|i 2 Aj}), and 0 if no majority exists. %Filtering step

8: Set Ĝt = HIER-AGGR({zt,1, . . . , zt,p/r}). %Hierarchical aggregation

9: Set wt+1 = wt � ⌘Ĝt. %Gradient update
10: end for

Algorithm 2 HIER-AGGR: Hierarchical aggregation

input Aggregators A0,A1, votes {z1, . . . , zp/r}, vote group size k.

1: Let p̂ := p/r.
2: Randomly partition {z1, . . . , zp̂} in to k “vote groups” {Zj |1  j  k} of size p̂/k.
3: For each vote group Zj , calculate ẑj = A0(Zj).
4: Return A1({ẑ1, . . . , ẑk}).

3.1 Filtering out Almost Every Byzantine Node

We now show that DETOX filters out the vast majority of Byzantine gradients. Fix the iteration t.
Recall that all honest nodes in a node group Aj send ĝj = gj as in (2) to the PS. If Aj has more

4

honest nodes than Byzantine nodes then zj = gj and we say zj is honest. If not, then zj may not
equal gj in which case zj is a Byzantine vote. Let Xj be the indicator variable for whether block Aj

has more Byzantine nodes than honest nodes, and let q̂ =
P

j Xj . This is the number of Byzantine

votes. By filtering, DETOX goes from a Byzantine compute node ratio of ✏ = q/p to a Byzantine vote
ratio of ✏̂ = q̂/p̂ where p̂ = p/r.

We first show that E[q̂] decreases exponentially with r, while p̂ only decreases linearly with r. That
is, by incurring a constant factor loss in compute resources, we gain an exponential improvement in
the reduction of Byzantine nodes. Thus, even small r can drastically reduce the Byzantine ratio of
votes. This observation will allow us to instead use robust aggregation methods on the zj , i.e., the
votes, greatly improving our Byzantine robustness. We have the following theorem about E[q̂]. All
proofs can be found in the appendix. Note that throughout, we did not focus on optimizing constants.

Theorem 1. There is a universal constant c such that if the fraction of Byzantine nodes is ✏ < c, then
the effective number of Byzantine votes after filtering satisfies E[q̂] = O

�

✏(r−1)/2q/r
�

.

We now wish to use this to derive high probability bounds on q̂. While the variables Xi are not
independent, they are negatively correlated. By using a version of Hoeffding’s inequality for weakly
dependent variables, we can show that if the redundancy is logarithmic, i.e., r ⇡ log(q), then with
high probability the number of effective Byzantine votes drops to a constant, i.e., q̂ = O(1).

Corollary 2. There is a constant c such that if and ✏  c and r � 3 + 2 log2(q) then for any
� 2 (0, 1

2), with probability at least 1� �, we have that q̂  1 + 2 log(1/�).

In the next section, we exploit this dramatic reduction of Byzantine votes to derive strong robustness
guarantees for DETOX.

4 DETOX Improves the Speed and Robustness of Robust Estimators

Using the results of the previous section, if we set the redundancy ratio to r ⇡ log(q), the filtering
stage of DETOX reduces the number of Byzantine votes q̂ to roughly a constant. While we could
apply some robust aggregator A directly to the output votes of the filtering stage, such methods often
scale poorly with the number of votes p̂. By instead applying HIER-AGGR, we greatly improve
efficiency and robustness. Recall that in HIER-AGGR, we partition the votes into k “vote groups”,
apply some A0 to each group, and apply some A1 to the k outputs of A0. We analyze the case where
k is roughly constant, A0 computes the mean of its inputs, and A1 is a robust aggregator. In this case,
HIER-AGGR is analogous to the Median of Means (MoM) method from robust statistics [20].

Improved speed. Suppose that without redundancy, the time required for the compute nodes to
finish is T . Applying KRUM [1], MULTI-KRUM [4], and BULYAN [10] to their p outputs requires
O(p2d) operations, so their overall runtime is O(T + p2d). In DETOX, the compute nodes require
r times more computation to evaluate redundant gradients. If r ⇡ log(q), this can be done in
O(ln(q)T). With HIER-AGGR as above, DETOX performs three major operations: (1) majority
voting, (2) mean computation of the k vote groups and (3) robust aggregation of the these k means
using A1. (1) and (2) require O(pd) time. For practical A1 aggregators, including MULTI-KRUM

and BULYAN, (3) requires O(k2d) time. Since k ⌧ p, DETOX has runtime O(ln(q)T + pd). If
T = O(d) (which generally holds for gradient computations), KRUM, MULTI-KRUM, and BULYAN

require O(p2d) time, but DETOX only requires O(pd) time. Thus, DETOX can lead to significant
speedups, especially when the number of workers is large.

Improved robustness. To analyze robustness, we first need some distributional assumptions. At a
given iteration, let G denote the full gradient of F (w). Throughout this section, we assume that the

gradient of each sample is drawn from a distribution D on R
d with mean G and covariance Σ. Let

�2 = Tr(Σ), we’ll refer to this as variance. In DETOX, the “honest” votes zi will also have mean G,
but their variance will be �2p/rb. This is because each honest compute node gets rb/p samples, so its
variance is reduced by rb/p. Note that this variance reduction is integral in proving that we achieve
optimal rates (see Theorem 3 and the discussion after it). To see this intuitively, consider a scenario
without Byzantine machines, then the variance of empirical mean is �2/b. A simple calculation

shows that variance of the mean of each “vote group” is
σ
2p/rb
p̂/k = k�2/b where k is the number of

vote groups. Thus, if k is small, we are still able to optimally reduce the variance.

5

Suppose Ĝ is some approximation to the true gradient G. We say that Ĝ is a ∆-inexact gradient

oracle for G if kĜ�Gk  ∆. [5] shows that access to a ∆-inexact gradient oracle is sufficient to

upper bound the error of a model ŵ produced by performing gradient updates with Ĝ. Thus, to bound
the robustness of an aggegator, it suffices to bound ∆. Under the distributional assumptions above,
we will derive bounds on ∆ for the hierarchical aggregator A with different base aggregators A1.

We will analyze DETOX when A0 computes the mean of the vote groups, and A1 is geometric

median, coordinate-wise median, or ↵-trimmed mean [6]. We will denote the approximation Ĝ to

G computed by DETOX in these three instances by Ĝ1, Ĝ2 and Ĝ3, respectively. Using the proof
techniques similar to [20], we get the following.

Theorem 3. Assume r � 3 + 2 log2(q) and ✏  c where c is the constant from Corollary 2. There
are constants c1, c2, c3 such that for all � 2 (0, 1/2), with probability at least 1� 2�:

1. If k = 128 ln(1/�), then Ĝ1 is a c1�
p

ln(1/�)/b-inexact gradient oracle.

2. If k = 128 ln(d/�), then Ĝ2 is a c2�
p

ln(d/�)/b-inexact gradient oracle.

3. If k = 128 ln(d/�) and ↵ = 1
4 , then Ĝ3 is a c3�

p

ln(d/�)/b-inexact gradient oracle.

The above theorem has three important implications. First, we can derive robustness guarantees
for DETOX that are virtually independent of the Byzantine ratio ✏. Second, even when there are no

Byzantine machines, it is known that no aggregator can achieve ∆ = o(�/
p
b) [21], and because we

achieve ∆ = Õ(�/
p
b), we cannot expect to get an order of better robustness by any other aggregator.

Third, other than a logarithmic dependence on q, there is no dependence on the number of nodes p.
Even as p and q increase, we still maintain roughly the same robustness guarantees.

By comparison, the robustness guarantees of KRUM and Geometric Median applied directly to the
compute nodes worsens as as p increases [17, 3]. Similarly, [6] show if we apply coordinate-wise
median to p nodes, each of which are assigned b/p samples, we get a ∆-inexact gradient oracle where

∆ = O(�
p

✏p/b+�
p

d/b). If ✏ is constant and p is comparable to b, then this is roughly �, whereas

DETOX can produce a ∆-inexact gradient oracle for ∆ = Õ(�/
p
b). Thus, the robustness of DETOX

can scale much better with the number of nodes than naive robust aggregation of gradients.

5 Experiments

In this section we present an experimental study on pairing DETOX with a set of previously proposed
robust aggregation methods, including MULTI-KRUM [17], BULYAN [10], coordinate-wise median
[5]. We also incorporate DETOX with a recently proposed Byzantine resilient distributed training
method i.e.SIGNSGD with majority vote [19]. We conduct extensive experiments on the scalability
and robustness of these Byzantine-resilient methods, and the improvements gained when pairing them
with DETOX. All our experiments are deployed on real distributed clusters under various Byzantine
attack models. Our implementation is publicly available for reproducibility 2.

5.1 Experimental Setup

The main findings are as follows: 1) Applying DETOX leads to significant speedups, e.g., up to an
order of magnitude end-to-end training speedup is observed; 2) in defending against state-of-the-art
Byzantine attacks, DETOX leads to significant Byzantine-resilience improvement, e.g., applying
BULYAN on top of DETOX improves the test-set prediction accuracy from 11% to 60% when training
VGG13-BN on CIFAR-100 under the “a little is enough" (ALIE) [11] Byzantine attack. Moreover,
incorporating SIGNSGD with DETOX improves the test set prediction accuracy from 34.92% to
78.75% when defending against a constant Byzantine attack for ResNet-18 trained on CIFAR-10.

We implemented vanilla versions of the aforementioned Byzantine resilient methods, as well as
versions of these methods pairing with DETOX, in PyTorch [22] with MPI4py [23]. Our experiments
are deployed on a cluster of 46 m5.2xlarge instances on Amazon EC2, where 1 node serves as the
PS and the remaining p = 45 nodes are compute nodes. In all the following experiments, we set the
number of Byzantine nodes to be q = 5. We also study the performance of all considered methods
with smaller number (and without) Byzantine nodes, the result can be found in the Appendix B.6.

2https://github.com/hwang595/DETOX

6

Acknowledgments

This research is supported by an NSF CAREER Award #1844951, a Sony Faculty Innovation Award,
an AFOSR & AFRL Center of Excellence Award FA9550-18-1-0166, and an NSF TRIPODS Award
#1740707. The authors also thank Ankit Pensia for useful discussions about the Median of Means
approach.

References

[1] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learning
with adversaries: Byzantine tolerant gradient descent. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
4-9 December 2017, Long Beach, CA, USA, pages 118–128, 2017.

[2] Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in adversarial
settings: Byzantine gradient descent. Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 1(2):44, 2017.

[3] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Generalized byzantine-tolerant sgd. arXiv
preprint arXiv:1802.10116, 2018.

[4] Georgios Damaskinos, El Mahdi El Mhamdi, Rachid Guerraoui, and Sebastien Guirguis,
Arsany Rouault. Aggregathor: Byzantine machine learning via robust gradient aggregation.
Conference on Systems and Machine Learning, 2019.

[5] Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter Bartlett. Defending against saddle
point attack in byzantine-robust distributed learning. CoRR, abs/1806.05358, 2018.

[6] Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter Bartlett. Byzantine-robust distributed
learning: Towards optimal statistical rates. In International Conference on Machine Learning,
pages 5636–5645, 2018.

[7] Lingjiao Chen, Hongyi Wang, Zachary Charles, and Dimitris Papailiopoulos. Draco: Byzantine-
resilient distributed training via redundant gradients. In International Conference on Machine
Learning, pages 902–911, 2018.

[8] Deepesh Data, Linqi Song, and Suhas Diggavi. Data encoding for byzantine-resilient distributed
gradient descent. In 2018 56th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pages 863–870. IEEE, 2018.

[9] Qian Yu, Netanel Raviv, Jinhyun So, and A Salman Avestimehr. Lagrange coded computing:
Optimal design for resiliency, security and privacy. arXiv preprint arXiv:1806.00939, 2018.

[10] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. The hidden vulnerability of
distributed learning in byzantium. arXiv preprint arXiv:1802.07927, 2018.

[11] Moran Baruch, Gilad Baruch, and Yoav Goldberg. A little is enough: Circumventing defenses
for distributed learning. arXiv preprint arXiv:1902.06156, 2019.

[12] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–401, 1982.

[13] El-Mahdi El-Mhamdi, Rachid Guerraoui, Arsany Guirguis, and Sebastien Rouault. Sgd:
Decentralized byzantine resilience. arXiv preprint arXiv:1905.03853, 2019.

[14] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Zeno: Byzantine-suspicious stochastic
gradient descent. arXiv preprint arXiv:1805.10032, 2018.

[15] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Fall of empires: Breaking byzantine-tolerant sgd
by inner product manipulation. arXiv preprint arXiv:1903.03936, 2019.

10

[16] El-Mahdi El-Mhamdi and Rachid Guerraoui. Fast and secure distributed learning in high
dimension. arXiv preprint arXiv:1905.04374, 2019.

[17] Peva Blanchard, Rachid Guerraoui, Julien Stainer, et al. Machine learning with adversaries:
Byzantine tolerant gradient descent. In Advances in Neural Information Processing Systems,
pages 119–129, 2017.

[18] Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. Byzantine stochastic gradient descent. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems 31, pages 4618–4628. Curran Associates,
Inc., 2018.

[19] Jeremy Bernstein, Jiawei Zhao, Kamyar Azizzadenesheli, and Anima Anandkumar. signsgd
with majority vote is communication efficient and fault tolerant. arXiv, 2018.

[20] Stanislav Minsker et al. Geometric median and robust estimation in banach spaces. Bernoulli,
21(4):2308–2335, 2015.

[21] Gábor Lugosi, Shahar Mendelson, et al. Sub-gaussian estimators of the mean of a random
vector. The Annals of Statistics, 47(2):783–794, 2019.

[22] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[23] Lisandro D Dalcin, Rodrigo R Paz, Pablo A Kler, and Alejandro Cosimo. Parallel distributed
computing using python. Advances in Water Resources, 34(9):1124–1139, 2011.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[25] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[26] Nathan Linial and Zur Luria. Chernoff’s inequality-a very elementary proof. arXiv preprint
arXiv:1403.7739, 2014.

[27] J. Ramon C. Pelekis. Hoeffding’s inequality for sums of weakly dependent random variables.
Mediterranean Journal of Mathematics, 2017.

[28] Georgios Damaskinos, El Mahdi El Mhamdi, Rachid Guerraoui, Arsany Guirguis, and Sèbastien
Rouault. Aggregathor: Byzantine machine learning via robust gradient aggregation. In SysML,
2019.

11

