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Abstract

Data augmentation (DA) is commonly used dur-

ing model training, as it significantly improves

test error and model robustness. DA artificially

expands the training set by applying random noise,

rotations, crops, or even adversarial perturbations

to the input data. Although DA is widely used,

its capacity to provably improve robustness is not

fully understood. In this work, we analyze the

robustness that DA begets by quantifying the mar-

gin that DA enforces on empirical risk minimiz-

ers. We first focus on linear separators, and then a

class of nonlinear models whose labeling is con-

stant within small convex hulls of data points.

We present lower bounds on the number of aug-

mented data points required for non-zero margin,

and show that commonly used DA techniques may

only introduce significant margin after adding ex-

ponentially many points to the data set.

1. Introduction

Modern machine learning has ushered in a plethora of ad-

vances in data science and engineering, which leverage mod-

els with millions of tunable parameters and achieve unprece-

dented accuracy on many vision, speech, and text prediction

tasks. For state-of-the-art performance, model training in-

volves stochastic gradient descent (SGD), combined with

regularization, momentum, data augmentation, and other

heuristics. Several empirical studies (Zhang et al., 2016;

Zantedeschi et al., 2017) observe that among these methods,

data augmentation plays a central role in improving the test

error performance and robustness of these models.

Data augmentation (DA) expands the training set with ar-

tificial data points. For example, Krizhevsky et al. (2012)
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augmented ImageNet using translations, horizontal reflec-

tions, and altered intensities of the RGB channels of im-

ages in the training set. Others have augmented datasets

by adding labels to sparsely annotated videos (Misra et al.,

2015; Kuznetsova et al., 2015; Prest et al., 2012). Another

important class of data augmentation methods are referred

to broadly as adversarial training. Such methods use adver-

sarial examples (Szegedy et al., 2013; Madry et al., 2017)

to enlarge the training set. Many works have since shown

that by training models on these adversarial examples, we

can increase the robustness of learned models (Bastani et al.,

2016; Carlini & Wagner, 2017; Szegedy et al., 2013; Good-

fellow et al., 2014). Recently, (Ford et al., 2019) studied

the use of additive Gaussian DA in ensuring robustness of

learned classifiers. While they showed the approach can

have some limited success, ensuring robustness to adversar-

ial attacks requires augmenting the data set with Gaussian

noise of particularly high variance.

The high-level motivation of DA is clear: a reliable model

should be trained to predict the same class even if an image

is slightly perturbed. Despite its empirical effectiveness, rel-

atively few works theoretically analyze the performance and

limitations of DA. Bishop (1995) shows that training with

noise is equivalent to Tikhonov regularization in expectation.

Wager et al. (2013) show that training generalized linear

models while randomly dropping features is approximately

equivalent to `2-regularization normalized by the inverse

diagonal Fisher information matrix. Dao et al. (2018) study

data augmentation as feature-averaging and variance regu-

larization, using a Markov process to augment the dataset.

Wong & Kolter (2018) provide a provable defense against

bounded `∞-attacks by training on a convex relaxation of

the “adversarial polytope,” which is also a form of DA.

We take a different path by analyzing how DA impacts the

margin of a classifier, i.e., the minimum distance from the

training data to its decision boundary. We focus on margin

since it acts as a proxy for both generalization (Shalev-

Shwartz & Ben-David, 2014) and worst-case robustness.

In particular, we analyze how much data augmentation is

necessary in order to ensure that any empirical risk mini-

mization algorithm achieves positive, or even large, margin.

To the best of our knowledge, no existing work has explicitly

analyzed data augmentation through the lens of margin.
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a notion of semi-random noise and study the robustness

of classifiers to this noise in terms of the curvature of the

decision boundary. Moosavi-Dezfooli et al. (2018) also re-

late the robustness of a classifier to the local curvature of

its decision boundary, and provide an empirical analysis

of the curvature of decision boundaries of neural networks.

Fawzi et al. (2018a) relate the robustness of a classifier to its

empirical risk and show that guaranteeing worst-case robust-

ness is much more difficult than robustness to random noise.

Franceschi et al. (2018) provide a geometric characteriza-

tion of the robustness of linear and “locally approximately

flat” classifiers. Their results analyze the relation between

the robustness of a classifier to noise and its robustness to

adversarial perturbations.

2. Margin via Data Augmentation

Our work aims to quantify the potential of DA to guarantee

margin for generic ERMs. We first examine linear clas-

sification on linearly separable data, and then extend our

results to nonlinear classification. Although we can find

max-margin linear classifiers efficiently through quadratic

programming (Shalev-Shwartz & Ben-David, 2014), gener-

alizing this to nonlinear classifiers has proved difficult; if

this was a simple task for neural networks, the problem of

adversarial examples would be non-existent. Hence linear

classification serves as a valuable entry point for our study

of data agumentation.

We first introduce some notation. Let A,B ⊆ R
d, x, y ∈

R
d, and r ≥ 0. Let d(x, y) denote the `2 distance between

x, y, and let d(A,B) = infx∈A,y∈B d(x, y). Define Ar :=
{z ∈ R

d | d(z,A) ≤ r}. Let |A|,
∫

(A), and conv(A)
denote the cardinality, interior, and convex hull of A. Let

Sd−1 denote the unit sphere in R
d, and for r > 0 let rSd−1

denote the sphere of r.

Let S ⊆ R
d × {±1} be our training set. For (x, y) ∈ S,

x is the feature vector, and y ∈ {±1} is the label. For any

such S, we define

X+ = {x | (x, 1) ∈ S}, X− = {x | (x,−1) ∈ S}. (2.1)

Linear classification. We next recall some background

on linear classification. As in Section 1.1, we assume we

have access to an algorithm A that solves the ERM problem

over the set of linear classifiers.

A linear classifier is a function of the form h(x) =
sign(〈w, x〉 + b), for w ∈ R

d, b ∈ R. We often identify

h with the hyperplane H = {x | 〈w, x〉 + b = 0}. We

say that h linearly separates S if ∀x ∈ X+, h(x) ≥ 0 and

∀x ∈ X−, h(x) ≤ 0. If such h exists, S is linearly separa-

ble. Let H(S) denote the set of linear separators of S.

Margin. Suppose S is linearly separable. The margin of

a linear separator h ∈ H(S) is defined as follows:

Definition 1. The margin of a linear separator h(x) =
sign(〈w, x〉+ b) with associated hyperplane H is

γh(S) = inf
(x,y)∈S

d(x,H) = inf
(x,y)∈S

|〈w, x〉+ b|
‖w‖2

.

We define γh(S) = −∞ if h does not linearly separate S.

If S is linearly separable, there is a linear classifier h∗ cor-

responding to (w∗, b∗) with maximal margin γ∗. This clas-

sifier is the most robust linear classifier with respect to

bounded `2 perturbations of samples in S.

In this work, we analyze the margin of ERMs that are trained

without any explicit margin constraints or regularization.

Let S denote the true dataset. To achieve margin, we create

an artificial dataset S′. We then assume we have access

to an algorithm that outputs (if possible) a linear separator

h of the augmented dataset Saug := S ∪ S′. We define

X ′
±, X

aug
± analogously to X± in (2.1).

We will analyze the margin of h with respect to the true

training data S. If S is linearly separable and we add no

artificial points, then some h ∈ H(S) must have 0 margin.

If S′ is designed properly, one might hope that Saug is still

linearly separable and that any h ∈ H(Saug) has positive

margin with respect to S. The following notion formalizes

this idea, illustrated in Figure 2.

Definition 2. The worst-case margin of a linear separator

of Saug with respect to the original data S is defined as

α(S, S′) = min
h∈H(Saug)

γh(S).

We define this to be −∞ if H(Saug) = ∅.

We are generally interested in the following question:

Question. How do we design S′ so that α(S, S′) is as large

as possible?

In Section 3.1, we analyze how large S′ must be to ensure

that α(S, S′) is positive. We show that |S′| > d is neces-

sary to ensure positive worst-case margin. Moreover, if S′ is

formed via bounded perturbations of S, we need |S′| ≥ |S|
to guarantee positive margin. In Section 3.2, we analyze

the setting where S′ is formed by spherical random pertur-

bations of S of radius r, a technique that mirrors random

noise perturbations used in practice. We show that if r is

not well-calibrated, exponentially many perturbations are

required to achieve a margin close to γ∗. However, if r is set

correctly, then it suffices to have |S′| polynomial in n and

d to ensure that any linear separator of Saug will achieve

margin close to γ∗ on S. In Section 4, we generalize this

notion to a class of nonlinear classifiers, which we refer to as
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(a) (b) (c)

Figure 2. Solid dots represent the true data points and hollow dots represent artificial data points. Convex hulls of the true and augmented

data are represented by solid and dashed lines, respectively. Classifiers are shown in blue. (a) Without DA, we may obtain a zero margin

classifier. (b) Carefully chosen augmentations can guarantee positive margin. (c) Large augmentations may violate linear separability.

“respectful” classifiers, and derive analogous results to those

described above. We show that this class includes classifiers

of general interest, such as nearest neighbors classifiers.

3. Linear Classifiers

3.1. How Much Augmentation Is Necessary?

Suppose S is linearly separable with max-margin γ∗. We

wish to determine the required size of S′ to ensure that

α(S, S′) > 0. We first show that to achieve a positive worst-

case margin, the total number of perturbations must exceed

the ambient dimension.

Theorem 1. If |S′| < d+ 1, then α(S, S′) ≤ 0.

Therefore, we need to augment by at least d+ 1 points to

ensure positive margin. We now wish to understand what

margin is possible using data augmentation. We have the

following lemma.

Lemma 1. Let γ∗ be the maximum margin on S. For all

S′ ⊆ R
d, α(S, S′) ≤ γ∗.

In fact, if we know the max-margin hyperplane, then d+ 1
points are sufficient to achieve α(S, S′) = γ∗.

Theorem 2. Let S be linearly separable with max-margin

γ∗. Then ∃S′ such that |S′| = d+ 1 and α(S, S′) = γ∗.

The augmentation method in the proof (see Section ??)

requires explicit knowledge of the maximum-margin hy-

perplane. In practice, most augmentation methods avoid

such global computations, and instead apply bounded per-

turbations to the true data. Recall that for A ⊆ R
d,

Ar = {x|d(x,A) ≤ r}. For S ⊆ R
d × {±1}, we define

Sr =

(

(X+)r × {1}
)

⋃

(

(X−)r × {−1}
)

. (3.1)

If S′ is formed from S by perturbations of size at most r,

then S′ ⊆ Sr. The following result shows that if S′ ⊆ Sr,

then |S′| ≥ |S| is necessary to guarantee that α(S, S′) > 0.

Theorem 3. Fix (n,m) ∈ N
2 and r > 0. Then ∃S ⊆ R

d

with |X+| = n and |X−| = m, such that if S′ ⊆ Sr, and

|X ′
+| < n, then α(S, S′) = 0.

Figure 3 provides an illustration. Given r, we choose X+

to lie on a parabola P such that the tangent lines at these

points are at distance at least r from other points. We choose

X− to be far enough below the x-axis so that these tangent

lines linearly separate X+ from Xaug
− . Suppose we do not

augment some point s ∈ X+. Then the tangent at that point

linearly separates X+ from Xaug
− , while being at distance 0

away from s. Thus, we need augmentations at every point

in X+ to guarantee positive margin.

Figure 3. Points in X+ lie on the the parabola P defined by y =
9x2. The tangent at each point s ∈ X+ does not intersect the

ball of radius r around any other point in X+. We choose X−

to have points far enough below the x-axis so that the tangents at

X+ separate X ′

+ from any X ′

− ⊆ (X−)r . Points in X+ and their

r-balls are in red, their tangents are in blue, and X− is in black.

3.2. Random Perturbations

We now analyze the setting where S′ is formed by ran-

dom perturbations of S. Our results reveal a fundamen-

tal trade-off between the size of perturbations, number of

perturbations, margin achieved, and whether or not linear

separability is maintained. If we construct many large per-

turbations, we may violate linear separability, but if we use

too few perturbations that are too small in size, we may only
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achieve small margin guarantees.

In the rest of this section, we assume that each point in S′

is of the form (x + z, y) where (x, y) ∈ S and z is drawn

uniformly at random from rSd−1, the sphere of radius r.

Due to the construction of S′, the following lemma about

the inner products of random points on the sphere Sd−1 will

be useful throughout.

Lemma 2. Let a be a unit vector and z be generated uni-

formly at random from the sphere of radius γ. Then with

probability at least 1− e−dε2/2γ2

, 〈a, z〉 ≤ ε.

For further reference, see Chapter 3 of (Vershynin, 2011).

Upper bounds on margin. By Theorem 1, we know that

|S′| ≥ d+ 1 is necessary to achieve positive margin on S.

Since S′ ⊆ Sr, we must have α(S, S′) ≤ r. In general, we

hope that high probability, α(S, S′) ≈ r. We show below

that the margin and perturbation size can be close only if

|S′| is exponential in d. The result follows using results on

the measure of spherical cap densities to bound the distance

between S and the max-margin hyperplane.

Theorem 4. For all δ ∈ (0, 1), with probability at least

1− δ, we have

α(S, S′) ≤
(
√

2 ln(|S′|) + 2 ln(1/δ)

d

)

r.

This result shows that to achieve minimum-margin close to

r, we need the number of perturbations to be exponential

in d. Thus, if r ≈ γ∗, we require exponentially many

augmentations. However, by making r much larger than γ∗,

we may be able to achieve a large margin, provided linear

separability is maintained.

Maintaining linear separability. We now show that if r
is too large, the augmented sets will often not be linearly

separable. Specifically, we show that when S just has two

points, if r = Ω(
√
dγ∗) and |X ′

+| = Ω(d), then linear

separability is violated with high probability. For Theorem

5, suppose S = {(x1, 1), (x2,−1)} where d(x1, x2) = 2γ∗

(i.e., the max-margin is γ∗).

Theorem 5. If |X ′
+| ≥ 16d and r ≥ 8e2

√
2d

π3/2 γ∗, with prob-

ability at least 1− 2e−d/6, Saug is not linearly separable.

To prove this, we first show that with high probability, there

are Ω(d) points in X ′
+ labeled −1 by the max-margin clas-

sifier. We then use estimates of when random points on

the sphere are contained in a hemisphere to show that with

high probability, the convex hull of the these points contains

x2. This analysis can be extended directly to the setting

where X+ and X− are contained in balls of sufficiently

small radius compared to
√
dγ∗.

On the other hand, we show that if r is slightly smaller than√
dγ∗, linear separability holds with high probability.

Theorem 6. Suppose S is linearly separable and |S′| ≤
N . If r ≤ β−1/2

√

d/ log(N)γ∗ for β > 1, then with

probability at least 1−N1−β , Saug is linearly separable.

A short proof sketch is as follows: Let w∗ be a unit vector

orthogonal to the max-margin hyperplane H∗. Suppose (x+
z, y) ∈ S′ where (x, y) ∈ S and z is sampled uniformly on

the sphere of radius r. By Lemma 2, with high probability

〈w∗, x + z〉 will be close to 〈w∗, x〉, and so x, x + z will

fall on the same side of H∗. The result then follows by a

union bound.

Theorems 5 and 6 together imply that if r = Ω(
√
dγ∗), we

cannot hope to maintain linear separability. Instead, setting

r = O(
√

d/ logNγ∗), we will maintain linear separability

with high probability. We will use the latter result in the

next section to show that for such r, we can actually provide

lower bounds on the adversarial margin α(S, S′) achieved.

Lower bounds on margin. By Theorem 4, we know that

if r ≈ γ∗, we need N to be exponential in d to achieve a

margin close to γ∗. By Theorem 6, we can set r to be as

large as O(
√

d/ logNγ∗) and maintain linear separability.

We might hope that in this latter setting, we can achieve

a margin close to γ∗ with substantially fewer points than

when r ≈ γ∗.

Suppose S′ is formed by taking N perturbations of each

point in S = {(xi, yi)}i∈[n]. Formally, for i ∈ [n], j ∈ [N ]

let z
(j)
i be drawn uniformly at random from rSd−1. Then,

S′ = {(xi + z
(j)
i , yi)}i∈[n],j∈[N ]. (3.2)

We show following theorem:

Theorem 7. Suppose S is linearly separable with max-

margin γ∗. Let S′ be as in (3.2). There is a universal con-

stant C such that if N ≥ Cd and r ≤ β−1/2
√

d/ logNγ∗

for β > 1, then with probability at least 1−ne−d−nN1−β ,

we have

α(S, S′) ≥ 1

2
√
2

√

log(N/d)

d
r.

Taking r = β−1/2
√

d/ logNγ∗ and β sufficiently large,

we can ensure that the worst-case margin among linear sep-

arators is a constant fraction of the max-margin. Thus, with

high probability, we can achieve a constant approximation

of the best possible margin with |S′| = O(nd2). While

Theorems 1 and 3 indicate that |S′| should grow linearly in

n and d, determining whether O(nd2) is tight for some S is

an open problem.

Remark 1. Theorem 7 can be extended to the setting where

we only take perturbations of each point in a τ -cover of X+
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and X−. Recall that A is a τ -cover of B if ∀x ∈ B, ∃x′ ∈ A
where d(x, x′) ≤ ε. The same result (with the constant 2

√
2

replaced by 4
√
2) holds when S′ is formed according to

(3.2), but with S replaced by A+×{1}∪A−×{−1} where

A+, A− are τ -covers of X+, X− for

τ =
1

4
√
2

√

log(N/d)

d
r. (3.3)

Thus, we only need |S′| = O(md2) perturbations, where

m = max{|X+|, |X−|}. When S is highly clustered, this

could result in a much smaller sample complexity, as m may

be much smaller than n.

To give a sketch of the proof, suppose (0, 1) ∈ S. Thus, S′

contains N points of the form (zi, 1) where zi ∼ rSd−1.

We wish to guarantee that any linear separator, with as-

sociated hyperplane H , has some margin at 0. Consider

K = conv({zi}i∈[N ]). Since each zi has label 1, we know

that H cannot intersect the interior of K. Then, if 0 is in the

interior of K, then H has positive margin at 0. In fact, we

extract a strengthening of this from the proof of Lemma 3.1

of (Alonso-Gutierrez, 2008):

Lemma 3. Let z1, . . . , zN be drawn uniformly at random

on rSd−1. Let K = conv(z1, . . . , zN ). Then there exists a

constant C > 0 such that if N ≥ Cd, then

P

(

1

2
√
2

√

log(N/d)

d
Br(0) 6⊆ K

)

≤ e−d.

Thus, with high probability Bρ(0) ⊆ K where ρ =

Ω(
√

log(N/d)/dr). The margin of H at 0 is therefore

at least ρ. Applying Theorem 6, we derive Theorem 7. A

pictorial explanation of the proof is given in Figure 4.

Figure 4. A pictorial explanation of the proof of Theorem 7. Sup-

pose X ′

+ is drawn uniformly at radius r from X+. With r as

in the theorem statement, with high probability X ′

+ will not pre-

vent linear separability of Saug. Moreover, with high probability

conv(X ′

+) will contain a ball of radius ρ around each point in X+.

This then implies that any h ∈ H(Saug) has margin at least ρ.

4. Nonlinear Classifiers

We now consider more general binary-valued classifiers.

Given S ⊆ R
d × {±1}, a classifier f : Rd → {±1} sep-

arates S if f(x) = y for all (x, y) ∈ S. Let R(S) denote

the collection of separators of S. If R(S) is non-empty, we

say that S is separable. Given f : Rd → {±1}, we define a

generalization of the notion of margin in 1.

Definition 3. If f ∈ R(S), its margin on S is given by

γf (S) := min
(x,y)∈S

d(x, f−1(−y)).

We define γf (S) = −∞ if f /∈ R(S).

Suppose we have a function class F and we wish to find an

ERM of the 0−1 loss on S (more generally, any nonnegative

loss function where `(f(x), y) = 0 iff f(x) = y). The set

of ERMs is simply R(S) ∩ F .

To find ERMs with positive margin, we will again form a

perturbed dataset S′, and then find some ERM of Saug =
S ∪ S′. We define the margin of f with respect to S and S′

as follows.

Definition 4. The margin γf (S, S
′) of f with respect to

S, S′ is defined by γf (S, S
′) = γf (S) if f ∈ R(Saug) and

−∞ otherwise.

If Saug is separable and F is sufficiently expressive, one

can always find an ERM with zero margin. Instead, we will

restrict to a collection of functions that is expressive, but

still have meaningful margin guarantees. We refer to these

as respectful functions.

Respectful classifiers. If x1, x2 ∈ R
d are sufficiently

close and have the same label, it is reasonable to expect

a well-behaved classifier to assign the same label to every

point between x1 and x2. In fact, (Fawzi et al., 2018b)

shows that empirically, state-of-the-art deep nets often re-

main constant on straight lines connecting different points

of the same class. For a linear classifier f labels all points in

A as 1, we know that f assigns 1 to the entire set conv(A).
With this in mind, we give the following definition:

Definition 5. A function f : R
d → {±1} is respect-

ful of S if ∀x ∈ conv(X+), f(x) = 1 and ∀x ∈
conv(X−), f(x) = −1.

Intuitively, f must respect the operation of taking convex

hulls of points with the same label. However, assigning all

of conv(X+) and conv(X−) the same label is a relatively

strict condition. To relax this condition, we define a class of

functions that are respectful only on small clusters of points.

Recall the notion of a circumradius:

Definition 6. The circumradius R(A) of a set A ⊆ R
d is

the radius of the smallest ball containing A.
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Figure 5. Suppose that R(X+) ≤ ε. The classifier with a blue

decision boundary is not ε-respectful of S, but the classifier with a

green decision boundary is ε-respectful of S.

We now define ε-respectful classifiers:

Definition 7. For ε ∈ [0,∞], we say that a classifier f :
R

d → {±1} is ε-respectful of S if ∀A ⊆ X+ such that

R(A) ≤ ε, and ∀x ∈ conv(A), f(x) = 1; and ∀B ⊆ X−
such that R(B) ≤ ε, and ∀x ∈ conv(B), f(x) = −1. Let

Rε(S) denote the set of ε-respectful classifiers.

An illustration is provided in Figure 5. Note that the set of

separators of S is simply R0(S), and the set of respectful

classifiers is R∞(S). Smaller values of ε lead to more

expressive function classes Rε(S). We now show that this

definition includes some function classes of interest:

Example 1 (Linear Classifiers). Recall that H(S) is the

set of linear separators of S. It is straightforward to see

that such functions are respectful of S, so H(S) ⊆ R∞(S).
By the hyperplane separation theorem (see Lemma ??), we

have H(S) 6= ∅ if and only if R∞(S) 6= ∅. In general,

H(S) is a proper subset of R∞(S).

Example 2 (Nearest Neighbor). Let fNN denote the 1-

nearest neighbor classifier on S: For x ∈ R
d, we have

fNN (x) = 1 if d(x,X+) ≤ d(x,X−), and fNN (x) = −1

otherwise. For ε ∈ [0, d(X+,X
−
)

2 ), we can argue that

fNN ∈ Rε(S), as follows: Suppose x ∈ conv(A) where

A ⊆ X+ and R(A) ≤ ε. Then d(x,X+) ≤ ε. For all

u ∈ X−, we have d(u,X+) ≥ d(X+, X−), so d(x, u) >
d(X+,X

−
)

2 . Hence, fNN (x) = 1.

We now consider the following adversarial problem. Given

S, we form a perturbed version S′. An adversary can pick

an ε-respectful classifier f ∈ R(Saug). The smaller the

value of ε, the more powerful the adversary. We hope that no

matter which f the adversary chooses, the value of γf (S, S
′)

is not too small.

We first provide bounds on how large S′ must be to ensure

a positive margin, and then derive results for random per-

turbations when S is (non)-linearly separable. Our results

are versions of Theorem 7 for respectful classifiers. Finally,

we will show that for respectful classifiers, our bounds for

random perturbations are tight up to constants for some S.

4.1. How Much Augmentation Is Necessary?

We first show that for any ε ∈ [0,∞], we must have |S′| >
2d in order to achieve a positive margin.

Theorem 8. Suppose S is separable. If |X ′
+| ≤ d or

|X ′
−| ≤ d, then for any ε ∈ [0,∞], either Rε(S

aug) = ∅,

or ∃f ∈ Rε(S
aug) such that γf (S, S

′) = 0.

Suppose we limit ourselves to bounded perturbations of S,

so that S′ ⊆ Sr for some r > 0. We will show that in this

setting, we may need as many as |S|(d+ 1) perturbations

to guarantee a positive margin.

Theorem 9. For all n ≥ 1 and ε, r ∈ (0,∞), there is

some S of size n such that if |S′| ≤ |S|(d+ 1), then ∃f ∈
Rε(S

aug) such that γf (S, S
′) = 0.

Next, we consider the problem of ensuring a positive margin

with bounded perturbations. The following lemma shows

that if ε < r, there is some S such that the adversary can

find a zero margin classifier for any S′ ⊆ Sr.

Lemma 4. For any ε ∈ (0,∞) and r > ε, there is S
such that for any S′ ⊆ Sr, ∃f ∈ Rε(S

aug) such that

γf (S, S
′) = 0.

Therefore, for S′ ⊆ Sr, to ensure that any f ∈ Rε(S
aug)

has positive margin, we need r ≤ ε, |S′| ≥ 2d + 2, and

|S′| ≥ |S|(d+ 1). In fact, these three conditions are suffi-

cient to ensure positive margin.

Theorem 10. For any S, if ε ∈ (0,∞] and r ≤ ε, then

∃S′ ⊆ Sr with |S′| = |S|(d+1), such that ∀f ∈ Rε(S
aug),

γf (S, S
′) > 0.

While this theorem does not guarantee that Rε(S
aug) 6= ∅,

we will show in Lemma ?? that if S′ ⊆ Sr for r ≤ ε <
d(X+,X

−
)

4 , then Rε(S
aug) is guaranteed to be nonempty.

4.2. Random Perturbations

We now analyze how random perturbations affect the margin

of ε-respectful classifiers. Just as in the linear setting, we

focus on the case where the points in S′ are of the form

(x+ z, y) where z is drawn uniformly at random from the

sphere of radius r. We provide lower bounds on the margin

that are analogous to the linear setting, and show that our

margin bounds are tight up to constants in some settings.

Linearly separable data. We first show that when S is

linearly separable and we perform random augmentations,

the results in Section 3.2 still hold, even though the adver-

sary is allowed to select classifiers in the larger set R∞.

Theorem 11. Let S′ be generated as in (3.2). There

is a universal constant C such that if N ≥ Cd and

r ≤ β−1/2
√

d/ logNγ∗ for β > 1, then with probabil-

ity at least 1 − ne−d − nN1−β , we have R∞(S) 6= ∅.
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Furthermore, ∀f ∈ R∞(Saug), we have

γf (S, S
′) ≥ 1

2
√
2

√

log(N/d)

d
r.

The proof uses a generalization of Theorem 7 to respectful

functions. We show in Theorem 13 that this bound is tight

up to constants under certain assumptions on S.

As in the linear case, a perturbation radius of r = O(
√
dγ∗)

is necessary to maintain separability. Suppose S =
{(x1, 1), (x2,−1)} with d(x1, x2) = 2γ∗ and S′ is as in

(3.2). Applying the hyperplane separation theorem and The-

orem 5, we have the following result:

Theorem 12. If N ≥ 16d and r ≥ 8e2
√
2d

π3/2 γ∗, then

P(R∞(Saug) = ∅) ≥ 1− 2e−d/6.

In short, spherical random data augmentation behaves simi-

larly when the adversary selects linear classifiers or classi-

fiers in R∞(Saug), both in terms of margin achieved and

upper bounds on perturbation size to maintain separability.

Nonlinearly separable data. When S consists of more

than two points, the margin obtained by some f ∈ Rε(S)
may be much larger than the max-margin linear classifier.

Moreover, Rε(S) may be non-empty even though S is not

linearly separable. Thus, we would like to derive versions

of the results in Section 3.2 for settings where S may not

be linearly separable, but Rε(S) 6= ∅. In fact, if Rε(S) 6= ∅
and we generate S′ as in (3.2), we can derive the following

theorem, comparable to Theorem 7 above:

Theorem 13. If r ≤ ε, then there is a universal constant C
such that if N ≥ Cd, then with probability at least 1−ne−d,

∀f ∈ Rε(S
aug),

γf (S, S
′) ≥ 1

2
√
2

√

log(N/d)

d
r.

Furthermore, if ε < d(X+,X
−
)

4 then Rε(S
aug) 6= ∅.

The first part of the proof proceeds similarly to that of Theo-

rem 7, using the definition of ε-respectful classifiers. For the

second, we use nearest neighbor classifiers (as in Example

2) to construct ε-respectful classifiers of Saug.

Although r ≤ ε < d(X+,X
−
)

4 is sufficient to guarantee that

Rε(S
aug) 6= ∅, this may be overly conservative. Whereas

Theorems 11 and 12 provide a characterization of the range

on r for which R∞(Saug) is non-empty with high probabil-

ity, a tighter characterization for ε < ∞ remains open.

Upper bounds on margin. Finally, we show that for cer-

tain S, the margin bounds in Theorems 11 and 13 are tight

up to constants. While it is as yet unknown whether The-

orem 7 is asymptotically tight, the increased expressive

capability of respectful classifiers allows us to exhibit up-

per bounds on the worst-case margin matching the lower

bounds above. Suppose S = {(x1, 1), (x2,−1)}, and S′ is

generated as in (3.2). We have the following result:

Theorem 14. Fix ε ∈ [0,∞] and r > 0. There are absolute

constants C1, C2 such that if N > d and Rε(S
aug) 6= ∅,

then with probability at least 1 − 2e−C2d log(N/d), ∃f ∈
Rε(S

aug) such that

γf (S, S
′) ≤

√

C1
log(2N/d)

d
r. (4.1)

The proof relies on estimates of the inradius of random con-

vex polytopes from (Alonso-Gutierrez, 2008). The theorem

can also be extended to settings where X+ and X− are not

singletons. Suppose we can decompose X+ and X− into

clusters {Ai}ki=1 and {Bj}lj=1 such that each cluster has

size at most m, circumradius at most O(
√

log(N/d)/dr),
and the distance between any two clusters is Ω(ε). If S′

is generated as in (3.2), then with high probability there is

some f ∈ Rε(S
aug) satisfying (4.1) where N is replaced

by mN .

5. Conclusion and Open Problems

Data augmentation is commonly used in practice, since

it significantly improves test error and model robustness.

In this work, we have analyzed the performance of data

augmentation through the lens of margin. We have demon-

strated how data augmentation can guarantee positive mar-

gin for unconstrained empirical risk minimizers. For both

linear and nonlinear “respectful” classifiers, we provided

lower bounds on the number of points needed to ensure pos-

itive margin, and analyzed the margin attained by additive

spherical data augmentation.

There are several interesting open problems that we plan

to tackle in the future. First, it would be interesting to

theoretically analyze practical state-of-the-art augmenta-

tion methods, such as random crops, flips, and rotations.

Such perturbations often fall outside our framework, as they

are not bounded in the `2 norm. Another fruitful direc-

tion would be to examine the performance of adaptive data

augmentation techniques. For example, robust adversarial

training, (such as in (Madry et al., 2017)), can be viewed as

a form of adaptive data augmentation. By taking a data aug-

mentation viewpoint, we hope to derive theoretical benefits

of using adversarial training methods. One final direction

would be to develop improved augmentation methods. In

particular, we would like methods that can exploit domain

knowledge and the geometry of the underlying problem in

order to find models with better robustness and generaliza-

tion properties.
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C. A kernel theory of modern data augmentation. arXiv

preprint arXiv:1803.06084, 2018.

Fawzi, A., Moosavi-Dezfooli, S.-M., and Frossard, P. Ro-

bustness of classifiers: From adversarial to random noise.

In Advances in Neural Information Processing Systems,

pp. 1632–1640, 2016.

Fawzi, A., Fawzi, O., and Frossard, P. Analysis of classi-

fiers: Robustness to adversarial perturbations. Machine

Learning, 107(3):481–508, 2018a.

Fawzi, A., Moosavi-Dezfooli, S.-M., Frossard, P., and

Soatto, S. Empirical study of the topology and geometry

of deep networks. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pp.

3762–3770, 2018b.

Ford, N., Gilmer, J., Carlini, N., and Cubuk, D. Adversarial

examples are a natural consequence of test error in noise.

arXiv preprint arXiv:1901.10513, 2019.

Franceschi, J., Fawzi, A., and Fawzi, O. Robustness of

classifiers to uniform `p and Gaussian noise. In Interna-

tional Conference on Artificial Intelligence and Statistics,

AISTATS 2018, pp. 1280–1288, 2018.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Ex-

plaining and harnessing adversarial examples. CoRR,

abs/1412.6572, 2014. URL http://arxiv.org/

abs/1412.6572.

Huber, G. Gamma function derivation of n-sphere volumes.

The American Mathematical Monthly, 89(5):301–302,

1982.

Klartag, B. and Kozma, G. On the hyperplane conjecture

for random convex sets. Israel Journal of Mathematics,

170(1):253–268, 2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet

classification with deep convolutional neural networks.

In Advances in Neural Information Processing Systems,

pp. 1097–1105, 2012.

Kuznetsova, A., Ju Hwang, S., Rosenhahn, B., and Sigal,

L. Expanding object detector’s horizon: Incremental

learning framework for object detection in videos. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pp. 28–36, 2015.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and

Vladu, A. Towards deep learning models resistant to

adversarial attacks. arXiv preprint arXiv:1706.06083,

2017.

Misra, I., Shrivastava, A., and Hebert, M. Watch and learn:

Semi-supervised learning for object detectors from video.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2015.

Moosavi-Dezfooli, S.-M., Fawzi, A., Fawzi, O., Frossard,

P., and Soatto, S. Robustness of classifiers to uni-

versal perturbations: A geometric perspective. In In-

ternational Conference on Learning Representations,

2018. URL https://openreview.net/forum?

id=ByrZyglCb.

Prest, A., Leistner, C., Civera, J., Schmid, C., and Ferrari,

V. Learning object class detectors from weakly anno-

tated video. In Computer Vision and Pattern Recogni-

tion (CVPR), 2012 IEEE Conference on, pp. 3282–3289.

IEEE, 2012.

Shalev-Shwartz, S. and Ben-David, S. Understanding Ma-

chine Learning: From Theory to Algorithms. Cambridge

University Press, 2014.

Sinha, A., Namkoong, H., and Duchi, J. Certifying some dis-

tributional robustness with principled adversarial training.

In International Conference on Learning Representations,

2018.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,

D., Goodfellow, I., and Fergus, R. Intriguing properties of

neural networks. arXiv preprint arXiv:1312.6199, 2013.

Vershynin, R. Lectures in geometric functional analysis.

Preprint, University of Michigan, 2011.



Does Data Augmentation Lead to Positive Margin?

Wager, S., Wang, S., and Liang, P. S. Dropout training as

adaptive regularization. In Advances in Neural Informa-

tion Processing Systems, pp. 351–359, 2013.

Wendel, J. G. A problem in geometric probability. Math-

ematica Scandinavica, 11(1):109–111, 1963. ISSN

00255521, 19031807. URL http://www.jstor.

org/stable/24490189.

Wong, E. and Kolter, Z. Provable defenses against adver-

sarial examples via the convex outer adversarial polytope.

In International Conference on Machine Learning, pp.

5283–5292, 2018.

Xu, H., Caramanis, C., and Mannor, S. Robustness and

regularization of support vector machines. Journal of

Machine Learning Research, 10(Jul):1485–1510, 2009.

Zantedeschi, V., Nicolae, M.-I., and Rawat, A. Efficient

defenses against adversarial attacks. In Proceedings of

the 10th ACM Workshop on Artificial Intelligence and

Security, pp. 39–49. ACM, 2017.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.

Understanding deep learning requires rethinking general-

ization. arXiv preprint arXiv:1611.03530, 2016.


