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Mark Rudelson and Konstantin Tikhomirov

Abstract. The circular law asserts that the empirical distribution of eigenvalues
of appropriately normalized n×n matrix with i.i.d. entries converges to the uniform
measure on the unit disc as the dimension n grows to infinity. Consider an n × n

matrix An = (δ(n)ij ξ
(n)
ij ), where ξ

(n)
ij are copies of a real random variable of unit

variance, variables δ
(n)
ij are Bernoulli (0/1) with P{δ

(n)
ij = 1} = pn, and δ

(n)
ij and

ξ
(n)
ij , i, j ∈ [n], are jointly independent. In order for the circular law to hold for the

sequence
(

1√
pnnAn

)
, one has to assume that pnn → ∞. We derive the circular law

under this minimal assumption.
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1 Introduction

For any n × n matrix B, denote by μn(B) the spectral measure of B, that is, the
probability measure

μn(B) :=
1
n

n∑

i=1

δλi(B),

where λ1(B), . . . , λn(B) are eigenvalues of B.
Let (An) be a sequence of random matrices where for each n, the matrix An

has i.i.d. entries equidistributed with a real or complex random variable ξ of unit
variance. The circular law for (An) asserts that the sequence of spectral measures
μn( 1√

n
An) converges weakly (in probability and almost surely) to the uniform mea-

sure on the unit disc of the complex plane [TV10].
The paper [TV10] is a culmination of a line of research which includes works

[Gin65,Ede88,Gir84,Bai97,GT10,PZ10,TV08], where the circular law was estab-
lished under additional assumptions on the distribution of the entries. The case of
Gaussian matrices, when an explicit formula for joint distribution of the matrix
eigenvalues is available, was treated in [Gin65,Ede88]. For general distributions of
entries, the known proofs of the circular law are based on the Hermitization strat-
egy introduced by Girko [Gir84] (see Section 2 below). Following the strategy, Bai
[Bai97] established the law when the matrix entries have a uniformly bounded den-
sity and satisfy some additional moment conditions. The assumption of bounded
density, which allows to easily overcome the problem of singularity for shifted ma-
trices An − z Id, was removed in [GT10,PZ10,TV08], following a rapid progress in
understanding invertibility of non-Hermitian random matrices [Rud08,TV09,RV08].
We refer to survey [BC12] for further information on the history of the circular law.

A natural counterpart of the above setting are sparse non-Hermitian random
matrices. Now, for each n let An be a random n × n matrix with entries of the
form δ

(n)
ij ξ

(n)
ij , where ξ

(n)
ij are independent copies of a random variable with unit

variance, and δ
(n)
ij are Bernoulli random variables jointly independent with ξ

(n)
ij ,

with P{δ
(n)
ij = 1} = pn, for some numbers (pn)∞

n=1. Under some additional moment
assumptions and under the condition that for some (arbitrary) fixed ε > 0 the
sequence pn satisfies pnn ≥ nε, the circular law for the sequence of spectral measures
of matrices 1√

pnnAn was established in [TV08,GT10,Woo12]. Compared to the dense
regime, additional difficulties in the sparse setting arise when bounding from below
the smallest and “smallish” singular values of shifted matrices An−z Id (see Section 2
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for further discussion). For pnn ≥ C log n, strong lower bounds on smin(An − z Id)
were obtained in [BR17,BR], which allowed to prove the circular law for ( 1√

pnnAn)
when pnn is at least polylogarithmic in dimension and ξ is subgaussian of zero mean
[BR].

Let us note that for a special model of random matrices—adjacency matrices
of random d–regular directed graphs—the circular law was recently established in
papers [Coo,BCZ18] (for degree d at least polylogarithmic in dimension) and in
[LLTTYc] (for d slowly growing to infinity with n). Paper [LLTTYc] was the first to
treat the case of non-Hermitian matrices with a sublogarithmic number of non-zero
elements in rows and columns. One of key elements of the proof in [LLTTYc] is a
lower bound on the smallest singular value of a shifted adjacency matrix, derived in
[Coo,LLTTYa]. It was shown in [LLTTYa] that, for d slowly growing to infinity with
n, the smallest singular value of the uniform random d–regular matrix is bounded
below by a constant (negative) power of n with probability going to one as n → ∞.

Analogous assertion for smin(An) is false for the sparse model with i.i.d. entries
discussed above. Indeed, if pn = P{δ

(n)
ij = 1} ≤ log n/n then with constant (non-zero)

probability the matrix An is singular. The presence of a large number of zero rows
and columns in the very sparse regime requires a completely different approach to
studying invertibility of the shifted matrices An −z Id, compared with [TV08,GT10,
Woo12,BR] (see Section 2). For a real random variable ψ, define the concentration
function L(ψ, t) := supr∈R P{|ψ − r| ≤ t}, t ≥ 0. One of the main technical results
of this paper is

Theorem 1.1 (Bound on smin of a shifted matrix; Theorem 7.1). For any α > 1
there are Cα, cα > 0 depending only on α with the following property. Let n ≥ Cα,
p ∈ (0, 1] with Cα ≤ pn ≤ n1/8, and let A = (aij) be a random n × n matrix with
i.i.d. real valued entries aij = δijξij , where δij is the Bernoulli (0/1) variable with
P{δij = 1} = p and ξij is a variable of unit variance independent of δij and such
that L(ξij , 1/α) ≤ 1 − 1/α. Further, assume that z ∈ C is such that |z| ≤ pn and
|Im(z)| ≥ 1/α. Then

P
{
smin(A − z Id) ≤ e−Cα log3 n

} ≤ (pn)−cα .

The above theorem, together with estimates of intermediate singular values, al-
lows to prove the main result of the paper:

Theorem 1.2. Let ξ be a real random variable with unit variance. For each n ≥ 1,
let pn satisfy pnn ≤ n1/8, and assume additionally that limn→∞ pnn = ∞. Further,
for every n let An be an n×n random matrix with i.i.d. entries aij = δij ξij , where δij

is a Bernoulli (0/1) random variable with P{δij = 1} = pn and ξij are i.i.d. random
variables equidistributed with ξ (and mutually independent with δij). Then, as n
converges to infinity, the empirical spectral distribution of 1√

pnnAn converges weakly

in probability to the uniform measure on the unit disc of the complex plane.
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564 M. RUDELSON, K. TIKHOMIROV GAFA

Note that for finite pnn, the multiplicity of zero eigenvalue is bounded from below
by a constant proportion of n with a large probability, so convergence to the uniform
distribution on the disc does not hold. In that respect, our theorem is proved under
the minimal assumptions on the sparsity.

2 Overview of the Proof

The circular law was initially proved by Ginibre [Gin65] for matrices with i.i.d. com-
plex normal entries, and by Edelman [Ede88] for i.i.d. real normal entries. All known
proofs of the circular law for more general classes of random matrices rely on the
strategy put forward by Girko [Gir84]. This strategy is based on using the logarith-
mic potentials of the empirical measures of the eigenvalues. Namely, let Bn, n ∈ N

be a sequence of matrices, and let

μn =
1
n

n∑

j=1

δλj(Bn)

be the empirical measures of their eigenvalues. The measures μn converge to a de-
terministic measure μ weakly in probability if for any bounded continuous function
f : C → C,

∫
f dμn → ∫

f dμ in probability. To establish this convergence, it is
enough to show that the logarithmic potentials of μn,

Fn(z) =
∫

C

log |z − w| dμn(w)

converge to the logarithmic potential of μ a.e. The logarithmic potential can be
rewritten as

Fn(z) =
1
n

log |det(Bn − zIdn)| =
1
n

n∑

j=1

log |λj(Bn) − z| =
1
2n

2n∑

j=1

log |λj(Hn(z))|,

where Hn(z) =
(

0 (Bn−zIdn)
(Bn−zIdn)∗ 0

)
is a Hermitian matrix. The eigenvalues of

Hn(z) are the singular values of Bn − zIdn and their negatives. Denoting the empir-
ical measures of the singular values of Bn − zIdn by νn,z, we have to establish the
convergence of

∫ ∞
0 log x dνn,z(x) for almost any z ∈ C. This argument allows to pass

from the empirical measures of the eigenvalues to more stable empirical measures
of the singular values. To establish the convergence of logarithmic potentials in the
latter case, it would be sufficient to prove the weak convergence of the measures νn,z

to some limit measure as well as the uniform integrability of the function log x with
respect to νn,z. The last step is needed as the function log x is unbounded at 0 and
∞.

To prove the circular law for sparse random matrices, we set Bn = (1/
√

pnn)An.
In this case, the weak convergence of the measures νn,z can be derived following the
methods already existing in the literature. The main problem therefore is establishing
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the uniform integrability of the logarithm. It splits in two parts: checking the uniform
integrability at ∞ and at 0. The first one turns out to be simple due to the fact that
the Hilbert-Schmidt norm of (1/

√
pnn)An has a finite second moment:

E ‖(1/
√

pnn)An‖2
HS =

1
pnn

n∑

i,j=1

E|(An)i,j |2 < ∞.

Thus, the derivation of the circular law reduces to checking the uniform integrability
of log x at 0 with respect to the measures νn,z. Although this looks like a minor
technical issue, this was a main step in the proof in all other settings where the
circular law was established. Attacking it required developing a number of different
methods ranging from additive combinatorics and harmonic analysis to measure
concentration and convex geometry. Yet, checking the uniform integrability for very
sparse matrices present multiple new challenges which cannot be handled by these
techniques. This means that although Girko’s strategy can be used in proving the
circular law for very sparse random matrices, its implementation requires new ideas
at each step.

Let us discuss these challenges in more details. The first, and usually the most
difficult step is obtaining a lower bound for the smallest singular value of Ãn,z :=
(1/

√
pnn)An − zIdn. Such bound frequently comes in the form P(sn(Ãn,z) < n−c) =

o(1) for some absolute constant c > 0. If proved, this bound allows to estimate
m(n) = o(n/ log n) smallest singular values of Ãn,z by the minimal one and conclude
that (1/n)

∑n
j=n−m(n) log sj(Ãn,z) = o(1) with probability 1− o(1). In [GT10,PZ10,

TV08,TV10,Woo12,BR,Coo,LLTTYa], the bound on the smallest singular value
was uniform over z. If we consider the range of sparsity pnn < log n, such uniform
bound cannot hold as the matrix Ãn,z contains a zero row with high probability
whenever z = 0. It may seem that this problem has an easy fix. Since we have to
bound the smallest singular value for a.e. z ∈ C, we can assume that z 	= 0. This
would ensure the absence of entirely zero rows. However, the zero rows is not the
only obstacle we have to tackle to bound the smallest singular value. Consider, for
example, the matrix of the form

Bn =
(

Zk Vn−k

0 Wn−k

)
, with Zk =

⎛

⎜
⎜
⎝

z 2z 0 · · · 0
0 z 2z · · · 0

· · · · · ·
0 . . . z

⎞

⎟
⎟
⎠ , (2.1)

where Zk is a k ×k matrix, and Vn−k, Wn−k is any k × (n−k) and (n−k)× (n−k)
matrices respectively. We can choose Vn−k and Wn−k so that all rows and columns
of the matrix Bn are non-zero. However, regardless of the value of z and the choice
of Vn−k, Wn−k, the smallest singular value of Bn satisfies sn(Bn) ≤ 2−k+1. To
be able to bound the smallest singular value from below in our setting, we have
to identify the “almost singular” sparse deterministic matrices and show that the
matrix (1/

√
pnn)An − zIn cannot be of this type with any significant probability.
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566 M. RUDELSON, K. TIKHOMIROV GAFA

On a more technical level, the estimates on the smallest singular value obtained in
the papers mentioned above rely on discretization of the sphere Sn−1 using ε-nets and
approximation of certain subsets of the sphere using these nets. A uniform estimate
of ‖Bnx‖2 over x from the ε-net uses the union bound. However, if we know only that
pnn → ∞ without any prescribed rate, the union bound becomes largely unavailable.
A related problem appeared in [LLTTYa] where a lower bound on the smallest
singular value of random d-regular matrices is derived for d → ∞ with arbitrarily
slow convergence, however, absence of zero rows/columns and dependencies make
that setting completely different. These obstacles show that obtaining a smallest
singular value bound would require developing a new method taking into account
the structure of the non-zero entries of An as well as replacing the classical ε-net
argument with a more delicate discretization approach. We will discuss the details
of our method below.

Besides the smallest singular value of the matrix Bn, the uniform integrability of
the logarithmic potential requires the bound on the smallish ones. More precisely,
we have to show that the contribution of these singular values (1/n)

∑
log sj(Ãn,z),

where the sum is taken over j ≤ n−m(n) with sj(Ãn,z) ≤ δ can be made arbitrarily
small by choosing an appropriate δ independently of n. In some previously considered
settings this was a relatively easier step. Following [TV10], one can use the negative
second moment identity to obtain such bound. This identity allows to bound the
singular value sn−j(Bn) of an n×n matrix Bn in terms of the distances between one
row of Bn and the linear span of n− j other rows. To obtain a small ball probability
estimate for such distance, one uses the measure concentration. Then passing from
the estimate of a single distance to the negative second moment uses the union bound
over rows. Yet, as before, for very small pn, the measure concentration estimate we
can obtain this way is too weak to be combined with the union bound. Moreover, to
guarantee the uniform integrability, we have to bound many intermediate singular
values at once. In previous papers this was also achieved through using the union
bound. In [LLTTYc], which deals with the circular law for adjacency matrices of
d–regular graphs in the very sparse regime (with d → ∞ arbitrarily slowly) a similar
problem was resolved by deriving strong small ball probability bounds for those
distances, however, the techniques are tailored to the d–regular setting and cannot
be applied in our context. In short, the weak probability estimates which preclude
using the union bound is the main challenge in considering sub-logarithmic values
of pnn.

To overcome this obstacle, we introduce a new method. We will define a global
event Egood which occurs with probability 1−o(1). This event would reflect both the
structure of the non-zero entries of the matrix and the magnitudes of the entries.
The aim of this construction is to ensure that conditioned on Egood, we can obtain
much better probability estimates allowing us to use the union bound whenever
necessary. Construction of this event Egood occupies a significant part of this paper.
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GAFA THE SPARSE CIRCULAR LAW UNDER MINIMAL ASSUMPTIONS 567

To determine the obstacles to a good smallest singular value estimate, let us
look at example (2.1) again. It immediately points to one of the possible problems,
namely, the presence of the columns having a small support. Furthermore, if we
replace the coefficient 2 in this example, say, by 1/2, the upper estimate for sn(Bn)
is no longer true in general. This means that we have to pay a special attention
to the support of the columns as well as to the distribution of entries having large
absolute values. To account for both phenomena we associate to the random matrix
An = (δijξij) a random directed bipartite graph G defined as follows. The vertex
set of the graph is [n] 
 [n] (the union of left and right vertex sets). For every left
vertex i and a right vertex j, there is a directed edge from i to j (i → j) if and
only of δij = 1, and a directed edge i ← j iff |δijξij | ≥ 1/α, where α > 0 is a
parameter. Alternatively, the graph can be described by introducing an auxiliary
collection of i.i.d random Bernoulli variables (μij) mutually independent with δij ,
such that P{μij = 1} = P{ξij ≥ 1/α}. Then i ← j iff δijμij = 1. The graph can be
analyzed independently of the matrix An.

A column having too few large entries will correspond to a right vertex of a small
out-degree in this encoding. We will regard these vertices as exceptional. After re-
moving the exceptional vertices and all their left neighbors, we will get a subgraph,
some of the right vertices of which can have a small out-degree. We will add these
to the exceptional vertices and continue the process iteratively. The precise defi-
nition of the set of exceptional vertices appears in Subsection 4.1, where they are
called vertices of a finite type. We analyze this set in Subsection 4.2 and show that
with probability close to 1, the set of exceptional vertices has cardinality at most
exp(−cpnn) · n.

Note that for z 	= 0, the graph associated to the matrix Ãn,z has all horizontal
edges j → j and j ← j, j ∈ [n]. After identifying the exceptional vertices, we will
identify paths in the graph presence of which may result in a small least singular
value. Here, we can also take guidance from example (2.1), where the matrix Zk

gives rise to a zig-zag path of the length 2k whose edges going from right to left are
horizontal. Such special paths called chains are introduced and studied in Subsec-
tion 4.3. In this subsection we prove that with high probability, the associated graph
has no long bad (self-balancing) chains, and estimate the number of short ones.

Subsection 4.5 defines a notion of a shell which is crucial in connecting the
properties of the matrix to the geometry of the associated graph. Roughly speaking,
an M -shell A = (C�)d

�=0 is a sequence of subsets of right vertices such that each
vertex in each layer C�+1 is reachable from the previous layer C� by a path of length
2 avoiding some set M of left vertices. Using previously established properties of
chains, we prove that the shells possess an expansion property and that the union
of the first few layers contains many right vertices which are not exceptional. These
results are used in Section 5 to show that with high probability, almost null vectors
of the matrix Ãn,z cannot be �cp−1

n 
-sparse.
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568 M. RUDELSON, K. TIKHOMIROV GAFA

Section 6 is devoted to proving that with high probability, almost null vectors
cannot be �cn/ log(pnn)
-sparse. The strategy in this section is different and relies on
nets instead of graphs. Because of Section 5, we can assume at this point that at least
�cp−1

n 
 coordinates of a vector x ∈ Sn−1 we consider are non-negligible. This means
that for any row i ∈ [n], 〈rowi(Ãn,z), x̄〉 is non-negligible with probability bounded
away from zero. A standard tensorization argument yields that the probability that
‖Ãn,zx‖2 is small is at most exp(−cn). Yet, as we do not have a good control of
‖Ãn,z‖2, we cannot combine this with a straightforward ε-net argument. Instead, we
introduce a new method based on approximating the vector restricted to the set of
its small coordinates in the 
∞-norm and dealing with each product 〈rowi(Ãn,z), x̄〉
separately. At this step, we turn the sparsity of the matrix from a difficulty to an
advantage which allows us to disregard the large coordinates of x.

Section 6 yields that to estimate smin(Ãn,z), it is enough to bound ‖(Ãn,z)x‖2

over the set of spread vectors. Such bound is obtained in Section 7 using the random
normal method of [RV08] and the Lévy–Kolmogorov–Rogozin–Esseen inequality.

Now, we are passing to the estimates of the intermediate singular values. Com-
pared to the least one, the difficulty here is twofold. First, to derive uniform integra-
bility of the logarithmic potential, the bound has to be significantly more precise.
Second, the probability estimate has to be strong enough to allow taking the union
bound. In Section 8, we relate the bound on the (n − k + 1)-th singular value to
the magnitude of projection of columns of our matrix onto a subspace orthogonal
to n − k other columns. To be able to derive a lower bound for these magnitudes,
we need to know that the projections have sufficiently many vectors in their kernels.
This should be done simultaneously for many submatrices since we cannot rely on
the union bound at this point. To this end, we introduce a special operation—a com-
pression of the matrix and its associated graph. These compressions are introduced
in Subsection 4.4 and used in Subsection 4.5 and Section 5 to derive the required
property. After this is done, getting a strong probability bound is based on random-
ized restricted invertibility. Restricted invertibility is a well-studied topic going back
to the classical theorem of Bourgain and Tzafriri [BT87]. It is known that this theo-
rem may not hold for a random submatrix with any significant probability. However,
in Section 8 we show that it holds with a non-negligible, albeit exponentially small
probability which turns out to be sufficient for our purposes. Restricted invertibility
has been used in random matrix context in [Coo18] and [Ngu18], but our approach is
significantly different. The combination of compressions and randomized restricted
invertibility allows to obtain a good lower bound for all intermediate singular values.
This is done in Section 9.

We derive the uniform integrability and complete the proof of the circular law in
Section 10. To this end, we use the estimate of the least singular value obtained in
Section 7 as well as that of the intermediate singular values obtained in Section 9.
However, it turns out that we can use the estimate for sn−k((1/

√
pnn)An − zIdn)

only for k < n
logC(pnn)

. For larger k, we need a tighter bound. To this end, we use
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GAFA THE SPARSE CIRCULAR LAW UNDER MINIMAL ASSUMPTIONS 569

the idea of [Coo] based on the comparison of Stieltjes transforms of our matrix
and some reference random matrix having nice properties. This reference random
matrix is often chosen to be Gaussian. However, in our case, the comparison with
the Gaussian matrix does not seem to be feasible. Instead, we introduce a new
random matrix obtained by replacing relatively small values of (1/

√
pnn)An − zIdn

by i.i.d. N(0, 1) variables. This requires bounding the Stieltjes transform of Gaussian
matrices with partially frozen entries. Such bound is obtained in Subsection 10.1. The
uniform integrability is established in Subsection 10.2. Finally, in Subsection 10.3,
we complete the proof of Theorem 1.2.

3 Preliminaries

Let us start with notation. The complex conjugate of a complex number z is denoted
by z. Given a vector x = (x1, . . . , xn) in C

n or R
n, denote by x∗ the non-increasing

rearrangement of the vector of absolute values (|x1|, . . . , |xn|). Further, by supp(x)
we denote the support of x. For a real number a, by �a� we denote the largest integer
not exceeding a, and by �a
—the smallest integer greater or equal to a. Given a finite
set I, let |I| denote its cardinality.

The standard inner product in C
n and R

n is denoted by 〈·, ·〉, and the standard
unit vectors—by e1, e2, . . . , en. For a k × m matrix B, let colj(B), j ≤ m and
rowi(B), i ≤ k, be its columns and rows, respectively. By ‖B‖HS we denote the
Hilbert–Schmidt norm of B = (bij), i.e. ‖B‖HS =

√∑
i,j |bij |2.

For a random variable ξ (real or complex), define its Lévy anti-concentration
function by

L(ξ, t) := sup
τ∈C

P
{|ξ − τ | ≤ t

}
, t ≥ 0.

Let k, m be any positive integers. We introduce a collection Gk,m of directed
bipartite graphs having k left and m right vertices, and with the property that
i ← j only if i → j (for any i ∈ [k], j ∈ [m]).

For a subset I of the right vertices of G ∈ Gk,m, define in-neighbors of I—
∂in(I)—as the set of all left vertices of i of G such that there is an edge emanating
from i and landing in I. Similarly, the set of out-neighbors ∂out(I) is the collection
of left vertices i such that i ← j for some j ∈ I. For a one-element set {j}, we will
write ∂in(j), ∂out(j) instead of ∂in({j}), ∂out({j}).

Sets of in- and out-neighbors for collections of left vertices of G are defined along
the same lines. In situations where confusion may arise, we specify explicitly if the
vertices are left or right, by adding corresponding superscript: jL stands for the left
vertex j of G, and jR—the right vertex. We use the same convention for sets of
vertices.

3.1 Assumptions on distributions and parameters. As the crucial step in
the proof of the main result, we will derive estimates on the smallest and “smallish”
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singular values of shifted random matrices A−z Id, assuming that conditions (A1)–
(A2)–(A3) stated below are satisfied. First, we fix a global parameter α ≥ 1 and
let the dimension n and sparsity parameter p satisfy

Cαn−1 ≤ p ≤ n−7/8, (A1)

where Cα > 0 depends only on α and is assumed to be sufficiently large (the value
of Cα could be computed explicitly but we prefer to reduce the amount of technical
details). We will consider random square matrices A satisfying

A is n × n, with i.i.d. entries aij = δij ξij , where δij is a Bernoulli random
variable with P{δij = 1} = p; ξij is nowhere zero complex variable with zero
mean and unit variance independent from δij such that L(ξij , 1/α) ≤ 1 − 1/α.

(A2)
The complex shift z ∈ C will be chosen so that

|z| ≤ pn and |aij − z| ≥ 1/α almost surely. (A3)

The assumption that ξij ’s are nowhere zero does not affect our estimates on
the singular values and can be discarded with help of a standard approximation
argument.

As was already mentioned in the introduction, a considerable part of the paper
is devoted to the study of the random bipartite graph associated with our random
matrix. Let us recall the definition.

Let (δij) and (μij) be two collections of jointly independent Bernoulli random
variables where P{δij = 1} = p and P{μij = 1} ≥ 1/α, where p satisfies (A1).
Then the directed bipartite graph G with the vertex set [n] 
 [n] is defined by
i → j iff (δij = 1 or i = j) and i ← j iff (δijμij = 1 or i = j).

(B1)

3.2 Classical inequalities. Let us recall the classical Bernstein inequality for
sums of Bernoulli variables:

Lemma 3.1 (Bernstein’s inequality). Let m be any positive integer, and
let η1, . . . , ηm be i.i.d. Bernoulli (0/1) random variables with P{ηi = 1} = p for
some p ∈ [0, 1]. Then for any t > 0 we have

P

{ m∑

i=1

ηi ≥ pm + t
}

≤ exp
( − c3.1t

2/(pm + t)
)

for a universal constant c3.1 > 0.

The next lemma (with certain variations) is due to Lévy, Kolmogorov, Rogozin,
Esseen:
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Lemma 3.2 (Lévy–Kolmogorov–Rogozin–Esseen, [Kol58,Rog61,Ess68]). Let m ∈ N

and let ξ1, ξ2, . . . , ξm be independent complex random variables. Then for any t > 0
we have

L
( m∑

i=1

ξi, t
)

≤ C3.2
(∑m

i=1(1 − L(ξi, t))
)1/2

,

where C3.2 > 0 is a universal constant.

3.3 Basic concentration and expansion properties of A and G. In the
following elementary statements we summarize some typical properties of the matrix
A and the graph G, specifically, expansion (Proposition 3.3), statistics of in- and out-
degrees of vertices in G (Proposition 3.4 and Lemma 3.5), magnitude of 
1–norms
of rows and columns of A (Proposition 3.6). All statements and their proofs are
elementary; the proofs are provided for Reader’s convenience. We refer to [LLTTY17,
Coo17] for some related results in the setting of random directed d–regular graphs,
and to [Coo17, Section 2.1] for the directed Erdős–Renyi setting.

Proposition 3.3 (Expansion in G). For any ε ∈ (0, 1] there are Cε, cε > 0 depend-
ing only on ε with the following property. Let p, n, G be as in (B1), and, additionally,
assume pn ≥ Cε. Then for each k in the interval 2 ≤ k ≤ cε/p, with probability at
least 1 − (n

k )−k we have

∣∣∂in(I)
∣∣ ≥

∑

i∈I

∣∣∂in(i)
∣∣ − εpn |I| for any set of right vertices I with |I| = k.

In particular, the event

E3.3(ε) :=
{∣
∣∂in(I)

∣
∣≥

∑

i∈I

∣
∣∂in(i)

∣
∣−εpn |I| for every set of right vertices I, 2≤|I|≤ cε

p

}

has probability at least 1 − 1/n.

Proof. Fix any ε > 0, p, n and a subset I of [n] with 2 ≤ |I| ≤ e−2/ε/p. Consider
random variables

η′
i := max(|{j ∈ I : iL → jR}| − 1, 0), i ≤ n.

Informally, η′
i counts non-unique occurences of the left vertex i among in-neighbors

of right vertices from I. Observe that

∣
∣∂in(I)

∣
∣ =

∑

i∈I

∣
∣∂in(i)

∣
∣ −

n∑

i=1

η′
i.

On the other hand, taking into account non-random “horizontal” edges of G, if we
define ηi := max(|{j ∈ I : δij = 1}| − 1, 0) then every η′

i can be estimated as
η′

i ≤ ηi + 1 for i ∈ I and η′
i = ηi for i /∈ I. We will use the standard Laplace
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transform method to estimate probabilities of deviations for ηi’s. Clearly, P{ηi =

} ≤ ( |I|

�+1

)
p�+1, 
 ∈ N. Thus, for any number λ > 0 such that eλp|I| ≤ 1, we have

E
(
eληi

) ≤ 1 +
∞∑

�=1

(
eλ

)�
p�+1|I|�+1((
 + 1)!)−1 ≤ 1 + p|I|,

and hence

P

{ n∑

i=1

ηi ≥ t
}

≤
(
1 + p|I|)n

exp(λt)
, t > 0.

In particular, taking t := ε
2pn|I| and λ := log 1

p|I| , we get

P

{ n∑

i=1

ηi ≥ ε

2
pn|I|

}
≤ exp

(
pn|I| − ελpn|I|/2

) ≤ exp
( − ελpn|I|/4

)
.

Taking the union bound over all subsets of cardinality k (for some 2 ≤ k ≤ e−4/ε/p),
we get

P

{∣∣∂in(I)
∣∣ ≤

∑

i∈I

∣∣∂in(i)
∣∣ − εpnk for some set of right vertices I, |I| = k

}

≤ P

{∣
∣∂in(I)

∣
∣ ≤

∑

i∈I

∣
∣∂in(i)

∣
∣ − k − ε

2
pnk for some I, |I| = k

}

= P

{ n∑

i=1

η′
i ≥ k +

ε

2
pnk for some I, |I| = k

}

≤ P

{ n∑

i=1

ηi ≥ ε

2
pnk for some I, |I| = k

}

≤
(

1
pk

)− 1
4
εpnk(en

k

)k

≤
(

n

k

)−k

,

provided that 1
4εpn ≥ C log(pn) ≥ C2 for a large enough C = C(ε). �


Proposition 3.4 (Statistics of in- and out-neighbors). Let n ∈ N, p ∈ (0, 1] and G
satisfy (B1). Denote

E3.4 :=
{∣∣{i ≤ n : |∂out(iL)| ≥ 2pn + u

}∣∣ ≤ exp(−c3.4(pn + u))n and

∣
∣{j ≤ n : |∂in(jR)| ≥ 2pn + u

}∣∣ ≤ exp(−c3.4(pn + u))n ∀ u = 0, 1, . . .
}

.

Then P(E3.4) ≥ 1 − e−c3.4pn, where c3.4 > 0 is a universal constant.
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Proof. Applying Bernstein’s inequality (Lemma 3.1), together with the definition of
G, we get for any i ≤ n:

P
{|∂out(iL)| ≥ 2pn + t

} ≤ exp(−c (pn + t)), t > 0,

for a universal constant c > 0. Hence, by Markov’s inequality,

P
{|{i ≤ n : |∂out(iL)| ≥ 2pn + t}| ≥ exp(−c (pn + t)/2)n

} ≤ exp(−c (pn + t)/2).

Similar argument is carried out for ∂in(jR), j ≤ n. It remains to take the union of
respective events over all t = 0, 1, 2, . . . . �

Lemma 3.5. Let n, p, G and event E3.4 be as in Proposition 3.4, and fix any subset
M of [n]. Then, conditioned on E3.4, we have

∣
∣∂out(ML)

∣
∣ ≤

∑

i∈ML

∣
∣∂out(i)

∣
∣ ≤ C3.5

(
pn + log

n

|M |
)

|M |, and

∣
∣∂in(MR)

∣
∣ ≤

∑

j∈MR

∣
∣∂in(j)

∣
∣ ≤ C3.5

(
pn + log

n

|M |
)

|M |,

where C3.5 > 0 is a universal constant.

Proof. Set

w := max
(
0,
⌈ 1
c3.4

log
n

|M | − pn
⌉)

.

It is not difficult to see from the definition of E3.4 that

|{i ≤ n : |∂out(iL)| ≥ 2pn + w}| ≤ |M |,
and that

∑

i≤n: |∂out(iL)|≥2pn+w

∣
∣∂out(iL)

∣
∣ ≤ C(2pn + w)e−c3.4(pn+w)n.

Similar estimates hold for MR. The result follows. �

Proposition 3.6. Let n, p, A satisfy assumptions (A1)–(A2). Define

E3.6 :=
{∣∣{i ≤ n : ‖rowi(A)‖1 ≥ r pn

}∣∣ ≤ n/r0.9 for all r ≥ pn, and

∣
∣{i ≤ n : ‖coli(A)‖1 ≥ r pn

}∣∣ ≤ n/r0.9 for all r ≥ pn
}

.

Then P(E3.6) ≥ 1 − (pn)−c3.6 , for a universal constant c3.6 > 0.

Proof. By the assumption on the distribution of the matrix entries, we have
E‖rowi(A)‖1 = E‖coli(A)‖1 ≤ pn, so it remains to apply Markov’s inequality. �
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4 Combinatorial Structure of the Associated Random Graph G
4.1 Vertex types: definition and basic properties. Let k, m be large inte-
gers, and fix any parameter K > 0. Let G be a graph in Gk,m. We will inductively
introduce a classification of the right vertices of G as follows. For an index j ≤ m, we
will say that the vertex j is of type (K, 1) if |∂out(j)| ≤ K. Denote by TK,1(G) ⊂ [m]
the subset of vertices of type (K, 1). Further, assume that 
 ≥ 2 and that types
(K, 1), (K, 2), . . . , (K, 
 − 1) have been identified. Take j ≤ m which is not any of
the types (K, 1), (K, 2), . . . , (K, 
 − 1). Then we say that the j is of type (K, 
) if

∣
∣∂out(j)\∂in(TK,1(G) ∪ · · · ∪ TK,�−1(G))

∣
∣ ≤ K.

The set of all vertices of type (K, 
) is denoted by TK,�(G). A vertex j is of type
(K, ∞) (of infinite type) if it is not of any types (K, 
), 
 ∈ N.

A key point of our argument consists in establishing a correspondence between
vertex types of a graph in Gk,m and its subgraphs. Given a graph G ∈ Gk,m and
a subset I ⊂ [m], denote by GI the subgraph of G obtained by removing the right
vertices in I. It will be convenient for us to assume that the right vertex set of GI

is indexed over [m]\I (so that we get a direct correspondence with vertices of G).

Lemma 4.1. Let G ∈ Gk,m, let I ⊂ [m] be a subset, and let GI be defined as before.
Then for any K > 0 and 
 ≥ 1 we have

TK,�(GI) ⊂
⋃

h≤�

TK,h(G).

Proof. We will prove the statement by induction. The case 
 = 1 is obvious; in fact
TK,1(GI) = TK,1(G)\I. Now, assume that 
 ≥ 2 and that the statement has been
verified for 
 − 1. Take any j ∈ TK,�(GI). By definition, we have

∣
∣∂out(j)\∂in(TK,1(GI) ∪ · · · ∪ TK,�−1(GI))

∣
∣ ≤ K,

and therefore

∣∣∂out(j)\∂in(TK,1(G) ∪ · · · ∪ TK,�−1(G))
∣∣ ≤ K.

This last assertion immediately implies that j ∈ ⋃
h≤� TK,h(G). �


Note that the last lemma implies TK,∞(GI) ⊃ TK,∞(G)\I. The opposite inclusion
does not hold in general even in “approximate” sense. For example, it is not difficult
to construct a graph G ∈ Gk,m and a subset I ⊂ [m] of cardinality, say, m/2, such
that TK,∞(GI) = [m]\I while TK,∞(G)\I = ∅. Nevertheless, it turns out that under
some assumptions (which hold with high probability in our random setting), a kind
of reverse inclusion can be observed.
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Lemma 4.2. Let G ∈ Gk,m, and let I ⊂ [m] be a set. Assume that for some K > 0
we have

∣
∣∂out(j) ∩ ∂in(I)

∣
∣ ≤ K/2

for all j ∈ [m]\I. Then

TK,∞(GI) ⊂ TK/2,∞(G).

Proof. Note that it is sufficient to show that for any 
 ≥ 1 we have

TK/2,�(G) \I ⊂
⋃

h≤�

TK,h(GI).

We will verify the statement by induction. The case 
 = 1 is obvious. Now, fix 
 ≥ 2
and assume the assertion is true for 1, 2, . . . , 
 − 1. Pick any j ∈ TK/2,�(G)\I. Then,
by the definition,

∣
∣∣∂out(j) \∂in

( ⋃

h≤�−1

TK/2,h(G)
)∣∣∣ ≤ K/2.

By the assumptions of the lemma, we have

∣
∣∂out(j) ∩ ∂in(I)

∣
∣ ≤ K/2,

and so
∣
∣
∣∂out(j) \∂in

( ⋃

h≤�−1

TK/2,h(G)\I
)∣∣
∣ ≤ K.

By the induction hypothesis, we have

∂in

( ⋃

h≤�−1

TK/2,h(G)\I
)

⊂ ∂in

( ⋃

h≤�−1

TK,h(GI)
)
.

That, together with the above relation, implies

j ∈ ∂in

( ⋃

h≤�

TK,h(GI)
)
.

The result follows. �
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4.2 Cardinality of the infinite type in random setting. The random
graphs we consider in this section will be subgraphs of G introduced at the begin-
ning. Fix a positive integer m, a positive real p, and let δij , μij ((i, j) ∈ [m]× [m]) be
jointly independent Bernoulli variables with P{δij = 1} = p and P{μij = 1} ≥ 1/α.
Consider a random directed bipartite graph G′ with the vertex set [m] 
 [m], such
that

• i → j iff δij = 1 or i = j;
• i ← j iff δijμij = 1 or i = j.

Additionally, let K0 be a parameter such that

pm

2α
≤ K0 ≤ 2pm

3α
.

The purpose of this subsection is to prove that typically the cardinality of TK0,∞(G′)
is very large—almost m.

It will be convenient for us to define a filtration of sigma-algebras Fk, k ∈ N,
where for each natural k, Fk is generated by (random) sets TK0,�(G

′), 
 ≤ k and by
sets of in-neighbors ∂in(j), j ∈ TK0,1(G′) ∪ · · · ∪ TK0,k(G

′).
Everywhere in this subsection, by ∂in(·), ∂out(·) we understand corresponding sets

of in- and out-neighbors for the graph G′. Also, we use shorter notation TK0,g for
types of vertices TK0,g(G′).

Lemma 4.3. Let G′, K0, and filtration Fk, k ∈ N be as above. Then for any d ≥ 2
we have

E

( ∣∣TK0,d

∣∣1d∣∣∂in(TK0,d−1)\∂in

(⋃
g≤d−2 TK0,g

)∣∣

∣
∣
∣ Fd−1

)
≤ e−c4.3pm,

where 1d is the indicator of the event
{∣∣∂in

(⋃
�≤d−1 TK0,�

)∣∣ ≤ m/4
}
, and c4.3 > 0

depends only on α.

Let j be a vertex of G′ in the complement of
⋃

�≤d−1 TK0,�. Assume for a moment
that the set of in- and -out neighbors of j were independent of the set

⋃
�≤d−1 TK0,�

and their in-neighbors. Using the assumption that
∣∣∂in

(⋃
�≤d−1 TK0,�

)∣∣ ≤ m/4 (which
defines the indicator 1d above), it would be easy to obtain a bound for the prob-
ability P

{
j ∈ TK0,d

}
for each fixed j, and then sum up to bound the expectation

of |TK0,d|. In reality, the set of neighbors of j depends on types TK0,�, 
 ≤ d − 1.
However, this dependence is almost negligible, and using a conditioning argument,
we will be able to show that a similar estimate for |TK0,d| still holds.

Proof of Lemma 4.3. Fix a partition L = (Lj)d
j=1 of [m] and a collection of subsets

Min(h), Mout(h) ⊂ [m], h ∈ L1 ∪ · · · ∪ Ld−1, such that

• Mout(h) ⊂ Min(h) for all h;
• |Mout(h)| ≤ K0 whenever h ∈ L1;
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• for any 2 ≤ 
 ≤ d − 1 and h ∈ L�, we have
∣
∣
∣Mout(h) \

⋃

r∈Lg, g≤�−2

Min(r)
∣
∣
∣ > K0

and
∣
∣
∣Mout(h) \

⋃

r∈Lg, g≤�−1

Min(r)
∣
∣
∣ ≤ K0;

• ∣
∣⋃

r∈Lg, g≤d−1 Min(r)
∣
∣ ≤ m/4.

The conditions on the sets Min(h), Mout(h) are designed so that the sets Lg, g ≤ d−1,
would play the role of types TK0,g in our random graph. Further, for any u ∈ Ld

define event

E ′
u :=

{
∂in(h) = Min(h) and ∂out(h) = Mout(h) for all h ∈ L1 ∪ · · · ∪ Ld−1, and

∣∣
∣∂out(j) \

⋃

r∈Lg, g≤d−2

Min(r)
∣∣
∣ > K0 for all j ∈ Ld\{u}

}
,

and take

Ẽ :=
{

∂in(h) = Min(h) and ∂out(h) = Mout(h) for all h ∈ L1 ∪ · · · ∪ Ld−1, and
∣
∣∣∂out(j) \

⋃

r∈Lg, g≤d−2

Min(r)
∣
∣∣ > K0 for all j ∈ Ld

}
,

Note that if the event Ẽ occurs then TK0,g = Lg, g ≤ d − 1. We are interested in
bounding the probability that u is of type (K0, d) on the Fd−1–measurable event Ẽ .
However, a direct computation is difficult due to dependencies, and for that reason
we have introduced the auxiliary event E ′

u, on which the sets of in- and out-neighbors
of u are defined by independent Bernoulli selectors. We will bound the probability
that u is of type (K0, d) on the event E ′

u, and then compare the event E ′
u with Ẽ .

It is easy to see that Ẽ ⊂ E ′
u for all u ∈ Ld. Observe that, conditioned on E ′

u, the
event {u is of type (K0, d)} implies that

(a) the set ∂out(u) has a non-empty intersection with Min(h)\⋃r∈Lg, g≤d−2 Min(r)
for some h ∈ Ld−1, and

(b) the intersection of ∂out(u) with the set [m]\⋃r∈Lg, g≤d−1 Min(r) has cardinality
at most K0.

In the case u ∈ ⋃
r∈Ld−1

Min(r)\⋃h∈Lg, g≤d−2 Min(h) the condition (a) is satisfied
automatically since u ← u is in the edge set of the graph. In this case, we simply
estimate the probability P{u is of type (K0, d) | E ′

u}, using condition (b), by the
probability

P

{∣∣
∣∂out(u)\

⋃

r∈Lg, g≤d−1

Min(r)
∣∣
∣ ≤ K0

}
,
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which in turn can be estimated by exp(−cpm), for some c = c(α) > 0, using our
assumption on the cardinality of

⋃
r∈Lg, g≤d−1 Min(r). In the case

u /∈
⋃

r∈Ld−1

Min(r)\
⋃

h∈Lg, g≤d−2

Min(h)

we use both (a) and (b) to get an upper bound

P
{
u is of type (K0, d) | E ′

u

} ≤ P
{
(a) holds | E ′

u

} · P{(b) holds | E ′
u

}

≤ p
∣
∣
∣

⋃

r∈Ld−1

Min(r)\
⋃

h∈Lg, g≤d−2

Min(h)
∣
∣
∣ · exp(−cpm).

Next, again by the assumption on the cardinality of the union of Min(r) (with
r ∈ L1 ∪ · · · ∪ Ld−2), we have

P(Ẽ | E ′
u) = P

{∣∣∣∂out(u) \
⋃

r∈Lg, g≤d−2

Min(r)
∣
∣∣ > K0

∣
∣∣
}

>
1
2

for all u ∈ Ld.

This, together with the above, gives for every u ∈ Ld:

• P{u is of type (K0, d) | Ẽ} ≤ exp(−c′pm), if u belongs to the set
⋃

r∈Ld−1

Min(r)\⋃h∈Lg, g≤d−2 Min(h);

• P{u is of type (K0, d) | Ẽ} ≤ p
∣
∣⋃

r∈Ld−1
Min(r)\⋃h∈Lg, g≤d−2

Min(h)
∣
∣ exp(−c′pm), if u /∈ ⋃

r∈Ld−1
Min(r)\⋃h∈Lg, g≤d−2 Min(h).

Summing up over all u ∈ Ld, we get

E
(∣∣{u ∈ Ld : u is of type (K0, d)

}∣∣ | Ẽ)

≤ e−c′′pm
∣
∣∣

⋃

r∈Ld−1

Min(r)\
⋃

h∈Lg, g≤d−2

Min(h)
∣
∣∣

for some c′′ > 0 depending only on α. Thus,

E

( ∣∣TK0,d

∣∣

|∂in(TK0,d−1)\∂in(
⋃

g≤d−2 TK0,g)|
∣
∣
∣ Ẽ

)
≤ e−c′′pm.

Moreover, the event Ẽ is an atom of the sigma-algebra Fd−1. The only restriction
on the sets TK0,� that we employ is that

∣∣
∣∂in

( ⋃

�≤d−1

TK0,�

)∣∣
∣ ≤ m/4

(conditioned on Ẽ). Hence, we get from the above

E

( ∣∣TK0,d

∣∣1d

|∂in(TK0,d−1)\∂in(
⋃

�≤d−2 TK0,�)|
∣∣
∣ Fd−1

)
≤ e−c′′pm,

with 1d defined earlier. �


Author's personal copy



GAFA THE SPARSE CIRCULAR LAW UNDER MINIMAL ASSUMPTIONS 579

The next proposition asserts that the expected cardinality of the set of in-
neighbors of the right vertices of G′ of finite types is much smaller than m. Thus,
with large probability the majority of left vertices are connected only to right ver-
tices of the infinite type. When recast in terms of the random matrix A − z Id (see
Subsection 5.1), the result says that with probability close to one most of the rows
of A − z Id are supported on the infinite column type.

Proposition 4.4. Let m, p and G′ be as above. Then

E

(∣∣
∣∂in

( ⋃

g≥1

TK0,g

)∣∣
∣
)

≤ e−c4.4 pm m

for c4.4 > 0 depending only on α.

Proof. Let 1� be as in Lemma 4.3, and for each 
 ∈ N define 1̃� to be the indicator
of the event

E� :=
{∣∣
∣∂in

( ⋃

h≤�−1

TK0,h

)∣∣
∣ ≤ m

4
(1 − 2−�)

}
.

Observe that 1̃� ≤ 1� for all 
 ≥ 2; we will postulate that 1̃1 = 1 everywhere.
Importantly, 1̃� is measurable with respect to the sigma-algebra F�−1 (
 ≥ 1).

We will prove the statement in two steps. First, we show that, conditioned on
the intersection

⋂�
j=1 Ej , the cardinality of the set ∂in

(
TK0,�

)\∂in

(⋃
g≤�−1 TK0,g

)
is

small on average. Then, we show that the event
⋂�

j=1 Ej holds with probability close
to one.

For any 
 ≥ 2, we have

E
(|TK0,�|1̃1 . . . 1̃�

)

= E

(
E

( |TK0,�|1̃1 . . . 1̃�∣
∣∂in(TK0,�−1)\∂in

(⋃
g≤�−2 TK0,g

)∣∣

∣
∣∣ F�−1

)

·
∣
∣
∣∂in(TK0,�−1)\∂in

( ⋃

g≤�−2

TK0,g

)∣∣
∣1̃1 . . . 1̃�−1

)

≤ e−c′′pm
E

(∣∣∣∂in(TK0,�−1)\∂in

( ⋃

g≤�−2

TK0,g

)∣∣∣1̃1 . . . 1̃�−1

)

for some c′′ > 0 depending on α, where at the last step we used Lemma 4.3.
Let W 0 be any realization of the matrix W := (μij), A ∈ F�−1 be any atom of

the sigma-algebra F�−1 (i.e. some realization of sets TK0,1, . . . , TK0,�−1 and respective
collections of in- and out-neighbors), and set E ′ := A ∩ {W = W 0} assuming that
the event has a non-zero probability. Observe that, conditioned on E ′, the variables
δij for j /∈ TK0,1, . . . , TK0,�−1 and W 0

ij = 0, are mutually independent, and, moreover,
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the set TK0,� is completely determined by the values of δij for (i, j) with W 0
ij = 1.

Hence,

E
(∣∣{(i, j) ∈ [m] × [m] : j ∈ TK0,�, W 0

ij = 0, δij = 1, i 	= j
}∣∣ | E ′)

≤ pmE
(|TK0,�| | E ′). (4.1)

At the same time, by the definition of TK0,�, we have (deterministically)
∣
∣
∣∂out(TK0,�)\∂in

( ⋃

h≤�−1

TK0,h

)∣∣
∣ ≤ K0|TK0,�|. (4.2)

Note that the set ∂in(TK0,�) can be viewed as consisting of three parts: the left
vertices i such that i → j and i 	← j for some j ∈ TK0,�\{i}; left vertices i such
that i → j and i ← j for some j ∈ TK0,�\{i}; and the vertices i with i ∈ TK0,�. For
the first category, we will apply formula (4.1); for the second—formula (4.2), and
for the third—the trivial upper bound. Thus, removing conditioning with respect to
{W = W 0}, we obtain

E

(∣∣
∣∂in(TK0,�) \∂in

( ⋃

h≤�−1

TK0,h

)∣∣
∣ | F�−1

)
≤ 3pmE

(|TK0,�| | F�−1

)
.

Together with above estimate of E
(|TK0,�|1̃1 . . . 1̃�

)
and the measurability of

1̃1, . . . , 1̃� with respect to F�−1, this yields

E

(∣∣
∣∂in(TK0,�)\∂in

( ⋃

h≤�−1

TK0,h

)∣∣
∣1̃1 . . . 1̃�

)

≤ e−c̃ pm
E

(∣∣∣∂in(TK0,�−1)\∂in

( ⋃

g≤�−2

TK0,g

)∣∣∣1̃1 . . . 1̃�−1

)

for all 
 ≥ 2, where c̃ may only depend on α. It is an easy consequence of Bernstein–
type inequalities that

E
(∣∣∂in(TK0,1)

∣
∣) ≤ e−c pmm

for a universal constant c > 0. Then, applying the previous relation iteratively, we
obtain for all 
 ≥ 1 and c′ = c′(α) > 0:

E

(∣∣
∣∂in(TK0,�)\∂in

( ⋃

h≤�−1

TK0,h

)∣∣
∣1̃1 . . . 1̃�

)
≤ e−c′ pm � m. (4.3)

This completes the first part of the proof. It remains to show that 1̃1 . . . 1̃� is equal
to one with high probability. Conditioned on the event {1̃1 . . . 1̃�−1 = 1}, we have

∣∣
∣∂in

( ⋃

h≤�−1

TK0,h

)∣∣
∣ ≤

∣∣
∣∂in(TK0,�−1)\∂in

( ⋃

h≤�−2

TK0,h

)∣∣
∣ +

m

4
(1 − 2−�+1).
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Hence, for any 
 ≥ 2:

P
{
1̃1 . . . 1̃�−1 · (1 − 1̃�) = 1

}

= P
{
1̃� = 0 | 1̃1 . . . 1̃�−1 = 1

}
P
{
1̃1 . . . 1̃�−1 = 1

}

≤ P

{∣∣
∣∂in(TK0,�−1)\∂in

( ⋃

g≤�−2

TK0,g

)∣∣
∣ >

m

4
2−�

∣
∣ 1̃1 . . . 1̃�−1 = 1

}

· P{1̃1 . . . 1̃�−1 = 1
}
.

Using (4.3) and applying Markov’s inequality, we obtain

P

{∣∣∣∂in(TK0,�−1)\∂in

( ⋃

g≤�−2

TK0,g

)∣∣∣ >
m

4
2−�

∣
∣ 1̃1 . . . 1̃�−1 = 1

}
≤ e−c′ pm (�−1)2�+2.

Thus,

P
{
1̃1 . . . 1̃�−1 · (1 − 1̃�) = 1

} ≤ e−c′ pm (�−1)2�+2
P
{
1̃1 . . . 1̃�−1 = 1

}
, 
 ≥ 2.

Rearranging, we get

P
{
1̃1 . . . 1̃�−11̃� = 1

} ≥ (
1 − e−c′ pm (�−1)2�+2

)
P
{
1̃1 . . . 1̃�−1 = 1

}
, 
 ≥ 2,

and hence

P

{ ∞∏

�=1

1̃� = 1
}

≥ 1 − e−c1 pm.

It remains to apply the last relation to (4.3): we have

E

(∣∣∣∂in

( ⋃

g≥1

TK0,g

)∣∣
∣
)

≤ E

(∣∣
∣∂in

( ⋃

g≥1

TK0,g

)∣∣
∣

∞∏

�=1

1̃� = 1
)

+ mP

{ ∞∏

�=1

1̃� = 0
}

≤
∞∑

�=1

E

(∣∣
∣∂in(TK0,�)\∂in

( ⋃

h≤�−1

TK0,h

)∣∣
∣1̃1 . . . 1̃�

)
+ e−c1 pm m

≤ e−c̄ pm m

for c̄ = c̄(α) > 0. �
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4.3 Chains. Define a subfamily Ḡn,n ⊂ Gn,n as the collection of graphs having
all “horizontal” edges, namely, for any G ∈ Ḡn,n and any i ∈ [n] we have iL → iR

and iL ← iR. Note that the random graph G defined by (B1), belongs to Ḡn,n with
probability one. Such graphs are important for us since they correspond to matrices
with a non-zero diagonal.

Let G ∈ Ḡn,n and k ≥ 1. The left and right vertices of G are indexed by the same
set [n]. For this moment, it will be convenient to write jL for the left and jR for the
right vertices. We will say that a sequence (jR

� )k
�=1 of right vertices of G is a chain

of length k for G if it lies on the path jR
1 → jL

1 → jR
2 → jL

2 → · · · → jL
k−1 → jR

k ,
with jR

� 	= jR
�+1 for 
 < k. In other words, all edges leading to the left vertices are

“horizontal”. If all jR
� ’s (1 ≤ 
 ≤ k) are distinct, we will call such a chain cycle-free.

Further, if jR
� ’s for 1 ≤ 
 ≤ k − 1 are all distinct but jR

k = jR
u for some u < k − 1,

the chain will be called cyclic.
To verify that the square matrix A − z Id is non-singular with high probability,

the above setting is all that is needed. However, in the treatment of intermediate
singular values we will need a more general definition of chains for bipartite graphs
with different sets of left and right vertices. We will extend the definition in the last
part of the section.

The following is an elementary observation:

Lemma 4.5. Let J = (j�)k
�=1 be a chain for a graph G ∈ Ḡn,n. Then one of the

following two assertions is true: either J is cycle-free or there is a number 1 ≤ k1 ≤ k
such that (j�)k1

�=1 is cyclic.

In what follows, it will be sometimes convenient for us to view a chain J as
a set rather than a sequence. In particular, for any subset of integers S, notation
J\S should be understood as a set consisting of those elements of J which are not
included in S. Further, given a chain J = (j�)k

�=1 for G, let GJ be the subgraph of G
formed by removing right vertices j�, 
 ≤ k (note that this notation for subgraphs
is consistent with the one given in Subsection 4.1). It will be convenient for us to
assume that the right vertices of GJ are indexed by [n]\{j�}k

�=1.
Given K > 0, we will say that the chain J for a graph G ∈ Ḡn,n is K–self-

balancing if j� /∈ TK,∞(G) for all 
 ≤ k and, moreover, for any 
 ≤ k we have

∂out(j�) ⊂ ∂in

( ⋃

g≥1

TK,g(G)\{j�}
)
.

Note that in the above definition jL
� ∈ ∂out(jR

� ) since the graph G ∈ Ḡn,n is required
to contain “horizontal” edges; and it is possible that ∂out(jR

� ) consists of a single
element jL

� .
By negation, a chain J = (j�)k

�=1 for G is not K–self-balancing if and only if
either (a) j� ∈ TK,∞(G) for some 
 ≤ k or (b) j1, j2, . . . , jk ∈ [n]\TK,∞(G) and there
is j� and a left vertex i ∈ ∂out(j�) such that ∂out(i)\{j�} ⊂ TK,∞(G). We also observe
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that if a chain (j�)k
�=1 is K–self-balancing then (j�)h

�=1 is K–self-balancing for any
h ≤ 
.

The notion of chains plays the central role in our argument. A connection with
the matrix invertibility can be illustrated as follows: assume that x is a non-zero
null vector of A − z Id (where we assume that the matrix diagonal elements are
non-zero), and let G be the corresponding bipartite graph. Let i ≤ n be such that
xi 	= 0. Looking at rowi(A − z Id) and noticing that aii − z 	= 0, we find j 	= i such
that aijxj 	= 0. This means that i ∈ ∂in(j). Next, looking at the j-th row, by the
same reason, we find k 	= j such that ajkxk 	= 0, continuing with the construction
of the chain. In fact, for any k ≥ 1 there exists a chain J for G of length k, with
all elements in the support of x. A more detailed analysis shows that, conditioned
on an event of probability close to one, all such chains must be self-balancing. At
the same time, as we show in Subsection 4.3.1, with high probability there are no
self-balancing cyclic or cycle-free chains of logarithmic length. This (combined with
some additional observations) implies that A − z Id does not have very sparse null
vectors with high probability. As we are interested in quantitative bounds on the
smallest singular value, this argument needs to be augmented: we have to take into
account the magnitudes of the coordinates of x, the distribution of cardinalities of
supports of rows of A − z Id, statistics of chains (i.e. number of self-balancing/non-
self-balancing cyclic and cycle-free chains of a given length). The lastly mentioned
characteristic of the matrix is studied in this section.

Define

K0 :=
pn

2α
.

The next lemma can be viewed as a decoupling procedure for the vertex chains.
Specifically, it will be used to replace vertex types of the graph G in the definition
of a self-balancing chain J with vertex types of the subgraph GJ , taking advantage
of independence of these types from edges incident to J .

Lemma 4.6. Let n, p, G be as in (B1). Define

E4.6 :=
{
for every cycle-free/cyclic chain J of length k ≤ logpn n

for G we have TK0,∞(GJ) ⊂ TK0/2,∞(G)
}
.

Then P(E4.6) ≥ 1−n−10. In fact, “−10” can be replaced with any negative constant.

Proof. It is not difficult to see that it is sufficient to prove the statement for cycle-
free chains; corresponding bound for cyclic chains will follow just by throwing away
the last element of the chains. Fix k ≤ logpn n and denote

E ′ :=
{
(1, 2, . . . , k) is a chain for G such that TK0,∞(GJ) 	⊂ TK0/2,∞(G)

}
.
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We will compute the probability P(E ′). By Lemma 4.2, E ′ does not occur, whenever
for any j ∈ [n]\[k] we have

∣
∣∂out(j) ∩ ∂in([k])

∣
∣ ≤ K0/2. Thus,

P(E ′) ≤ P

{

 → 
 + 1 for all 
 ≤ k − 1 and there is j ∈ [n]\[k]

with
∣
∣∂out(j) ∩ ∂in([k])

∣
∣ > K0/2

}

≤ P

{

 → 
 + 1 for all 
 ≤ k − 1 and there is j ∈ [n]\[k]

with
∣
∣∂in(j) ∩ [k]L

∣
∣ > K0/4

}

+ P

{

 → 
 + 1 for all 
 ≤ k − 1 and there is j ∈ [n]\[k]

with
∣
∣∂in(j) ∩ ∂in([k]R)\[k]L

∣
∣ > K0/4

}
,

where in the last inequality, we used that ∂out(j) ⊂ ∂in(j) for a right vertex j. Hence,
we get

P(E ′) ≤ pk−1 · n · p�K0/4�
(

k

�K0/4

)

+ pk−1 · n

· P
{∣∣∂in(j) ∩ ∂in([k]R)\[k]L

∣∣ > K0/4
}

≤ pk−1n
(
24k/n

)K0/4 + pk−1n · (p2k)�K0/4−1�
(

n

�K0/4 − 1

)

.

Bounding the first term is straightforward. To bound the second term, we use the
assumptions on p and k, which imply that p2kn ≤ n−1/4. This yields P(E ′) ≤
pkn−100. It remains to observe that

P
{
there is a cycle-free chain J of length k

for G with TK0,∞(GJ) 	⊂ TK0/2,∞(G)
} ≤ nk

P(E ′),

and apply the union bound over all k ≤ logpn n. �

4.3.1 Self-balancing chains. In this subsection, we study statistics of self-balancing
chains. Further, in subsection 4.4 we will transfer the results to a generalized setting
of φ–chains.

Lemma 4.7 (Number of self-balancing cycle-free chains). Let n, p, G be as in (B1).
Let 1 ≤ k ≤ logpn n, and let Ik be the set of all (K0/2)–self-balancing cycle-free

chains of length k for G. Denote by E0 the event {|∂in

(⋃
g≥1 TK0,g(G)

)| ≤ n e−c4.4pn/2},
where c4.4 = c4.4(α) > 0 is taken from Proposition 4.4. Then

E
(|Ik| | E0 ∩ E4.6

) ≤ 8(pk)k−1(k − 1) + n e−c4.7pnk

for some c4.7 = c4.7(α) > 0.
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Proof. Let us estimate conditional probability of the event

E :=
{
(1, 2, . . . , k) is a (K0/2)–self-balancing chain for G}

given E0 ∩ E4.6. Due to lack of independence, a direct estimate can be complicated.
To overcome this problem, we introduce auxiliary events E(Q). For any Q ⊂ [n] set

E(Q) :=
{∣∣
∣∂in

( ⋃

g≥1

TK0,g(GQ)
)∣∣
∣ ≤ n e−c4.4pn/2

}
.

Observe that, by Lemma 4.1, we have E0 ⊂ E(Q) for every Q ⊂ [n].
We will bound P(E | E([k]) ∩ E4.6) first. We have

P
(E | E([k]) ∩ E4.6

)
=

P(E([k]))
P(E([k]) ∩ E4.6)

· P(E ∩ E4.6 | E([k])
) ≤ 2P

(E ∩ E4.6 | E([k])
)
,

where we used a simple estimate P(E([k]) ∩ E4.6) ≥ 1/2, which follows from the
inclusion E0∩E4.6 ⊂ E([k])∩E4.6 and the fact that both E0 and E4.6 have probabilities
close to one (see Lemma 4.6 and Proposition 4.4).

By the definition of a self-balancing chain, on the event E ∩ E4.6 we have i ∈
∂in

(
([k]\{j}) ∪ (

⋃

g≥1
TK0/2,g(G)\[k])

)
for all pairs (i, j) ∈ {k + 1, . . . , n} × [k] with

i ← j. Moreover, on this event we have
⋃

g≥1
TK0/2,g(G)\[k] ⊂ ⋃

g≥1
TK0,g(G[k]). Thus,

P
(E ∩ E4.6 | E([k])

) ≤P

{
i → i + 1 for all i ≤ k − 1 and

∀ (i, j) ∈ {k + 1, . . . , n} × [k] such that i ← j we have

i ∈ ∂in

({h ≤ k, h 	= j}) ∪ ∂in

( ⋃

g≥1

TK0,g(G[k])
) ∣∣ E([k])

}
.

Therefore,

P
(E | E([k]) ∩ E4.6

) ≤2P
{
i → i + 1 for all i ≤ k − 1

∣
∣ E([k])

}·
P

{
∀ (i, j) ∈ {k + 1, . . . , n} × [k] such that i ← j we have

i ∈ ∂in

({h ≤ k, h 	= j}) ∪ ∂in

( ⋃

g≥1

TK0,g(G[k])
) ∣
∣ E([k])

}
,

where we used conditional independence of {δij : (i, j) ∈ [k] × [k]} and {δij , μij :
(i, j) ∈ {k + 1, . . . , n} × [k]} given event E([k]), as this event refers only to the
subgraph G[k]. Obviously,

P
{
i → i + 1 for all i ≤ k − 1

∣∣ E([k])
} ≤ pk−1.
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To estimate probability of the second event in the last formula, observe that the
condition

∀ (i, j) ∈ {k + 1, . . . , n} × [k] such that i ← j we have

i ∈ ∂in

({h ≤ k, h 	= j}) ∪ ∂in

( ⋃

g≥1

TK0,g(G[k])
)

means that for every left vertex i of G with i /∈ W := [k] ∪ ∂in

(⋃
g≥1 TK0,g(G[k])

)
,

either

(a) ∂in(i) ∩ [k] = ∅ or
(b) |∂out(i) ∩ [k]| ≥ 2 and |∂in(i) ∩ [k]| ≥ 1, that is, i has at least 2 out-neighbors

one of which is also its in-neighbor.

If there are q pairs (i, j) ∈ [n]\W × [k] such that i → j and the left vertex i satisfies
condition (b) then necessarily

k∑

h=1

∣∣∂in(hR)
∣∣ − ∣∣∂in([k]R)

∣∣ ≥ q/2.

Otherwise, if there are less than q such pairs then

∣∣
∣
{

(i, j) ∈ [n]\W × [k] : i ← j
}∣∣
∣ ≤ q.

In view of the above, we can write

P

{
∀ (i, j) ∈ {k + 1, . . . , n} × [k] such that i ← j we have

i ∈ ∂in

({h ≤ k, h 	= j}) ∪ ∂in

( ⋃

g≥1

TK0,g(G[k])
) ∣∣ E([k])

}

≤ P

{ k∑

h=1

∣
∣∂in(hR)

∣
∣ − ∣

∣∂in([k]R)
∣
∣ ≥ K0 k/8

∣
∣ E([k])

}

+ P

{∣∣∣
{

(i, j) ∈ [n]\W × [k] : i ← j
}∣∣∣ ≤ K0 k/4

∣∣ E([k])
}

.

For the first of the two probabilities, we can apply Proposition 3.3 to get an upper
estimate (n

k )−k (for k = 1, the probability is clearly zero). The second term can be
represented as

P

{ ∑

(i,j)∈[n]\W ×[k]

δijμij ≤ K0 k/4
∣∣ E([k])

}
.
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Here, δij , μij are given by (B1) and are conditionally independent given E([k]).
Further, the cardinality of [n]\W given E([k]) is at least n/2. Therefore,

P

{∣∣
∣
{

(i, j) ∈ [n]\W × [k] : i ← j
}∣∣
∣ ≤ K0 k/4

∣
∣ E([k])

}

≤

K0 k/4�∑

q=0

(�nk/2�
q

)
(p/α)q(1 − p/α)
nk/2�−q

≤ e−pnk/(4α) +

K0 k/4�∑

q=1

(
epnk/(αq)

)q
e−pnk/(4α)

≤ e−c′pnk

for some c′ = c′(α) > 0. Combining all the estimates, we obtain

P
(E | E([k]) ∩ E4.6

) ≤ 2pk−1
(
e−c′pnk + (n/k)−k1{k≥2}

)
.

Therefore

P
(E | E0 ∩ E4.6

) ≤ P(E([k]) ∩ E4.6)
P(E0 ∩ E4.6)

· 2pk−1
(
e−c′pnk + (n/k)−k1{k≥2}

)
.

As we observed before, P(E0 ∩ E4.6) ≥ 1/2 and hence P(E([k])∩E4.6)
P(E0∩E4.6)

≤ 2. Thus,

P
(E | E0 ∩ E4.6

) ≤ 4pk−1
(
e−c′pnk + (n/k)−k1{k≥2}

)
.

Finally, by the permutation invariance of our model, we get

E
(|Ik| | E0 ∩ E4.6

) ≤ nk
P
(E | E0 ∩ E4.6

) ≤ 4(pn)k−1n e−c′pnk + 8(pk)k−1(k − 1).

The result follows. �

Lemma 4.8 (No self-balancing cyclic chains). Let n, p, G and event E0 be as in
Lemma 4.7. Then for any k ≤ logpn n we have

P
{G contains a (K0/2)–self-balancing cyclic chain of length k | E0 ∩ E4.6

}

≤ e−c4.8pnk + k
(
pk

)k−1

for some c4.8 = c4.8(α) > 0.

Proof. Fix any k in {3, 4, . . . , n} (cyclic chains have length at least 3). As in the
proof of Lemma 4.7, denote by E(Q) (Q ⊂ [n]) the event

{∣∣∂in

(⋃
g≥1 TK0,g(GQ)

)∣∣ ≤
n e−c4.4pn/2

}
. By a similar argument, we get for every integer w ≤ k − 2:

P
{
(1, 2, . . . , k − 1, w) is a (K0/2)–self-balancing (cyclic) chain | E([k − 1]) ∩ E4.6

}

≤ 2P
{
i → i + 1 for all i ≤ k − 2; k − 1 → w

∣∣ E([k − 1])
}·

P

{
∀ (i, j) ∈ {k, . . . , n} × [k − 1] such that i ← j we have

i ∈ ∂in

({h ≤ k − 1, h 	= j}) ∪ ∂in

( ⋃

g≥1

TK0,g(G[k−1])
) ∣
∣ E([k − 1])

}
.
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The first probability is trivially at most pk−1, whereas for the second we apply the
same argument as in the proof of Lemma 4.7 to get an upper estimate

e−c′pn(k−1) + (n/(k − 1))−(k−1)

for some c′ = c′(α) > 0. Hence,

P
{
(1, 2, . . . , k−1, w) is a (K0/2)–self-balancing cyclic chain | E0 ∩ E4.6

}

≤ 2P
{
(1, 2, . . . , k − 1, w) is a (K0/2)–self-balancing cyclic chain | E([k−1]) ∩ E4.6

}

≤ 4pk−1
(
e−c′pn(k−1) + (n/(k − 1))−(k−1)

)
,

where we reproduced arguments from the proof of Lemma 4.7.
Notice that the number of “potential” cyclic chains of length k is less than k·nk−1.

Hence,

P
{G contains a (K0/2)–self-balancing cyclic chain of length k | E0 ∩ E4.6

}

≤ 2k(pn)k−1
(
e−c′pn(k−1) + (n/(k − 1))−(k−1)

)

≤ e−c′′pnk + k
(
pk

)k−1
,

where c′′ > 0 may only depend on α. �

Let us summarize the last two lemmas.

Proposition 4.9 (Statistics of self-balancing chains). There is c4.9 > 0 depending
only on α with the following property. Let n, p, G satisfy (B1). For each k ≤ n,
denote by Ik the set of all (K0/2)–self-balancing cycle-free chains of length k for G.
Finally, set

E4.9 :=
{∣∣
∣∂in

( ⋃

g≥1

TK0,g(G)
)∣∣
∣ ≤ n e−c4.9pn

}
∩

{
|Ik| ≤ n e−c4.9pnk for all 1 ≤ k ≤ n

}
∩

{
G does not contain (K0/2)–self-balancing cyclic chains

}
.

Then P(E4.9) ≥ 1 − exp(−c4.9pn) − n−c4.9 .

Proof. The first part of the intersection in the definition of E4.9 can be estimated us-
ing Proposition 4.4. For the second part, if 1 ≤ k ≤ logpn n is such that 8(pk)k−1(k−
1) ≤ n e−c4.7pnk then, combining Lemma 4.7 with Markov’s inequality, we get

P
{|Ik| ≥ �n e−c4.7pnk/2
 | E0 ∩ E4.6

} ≤ 2e−c4.7pnk/2.

On the other hand, if 8(pk)k−1(k − 1) ≥ n e−c4.7pnk then, by Lemma 4.7,

E
(|Ik| | E0 ∩ E4.6

) ≤ 16(pk)k−1(k − 1) ≤ n−c

Author's personal copy



GAFA THE SPARSE CIRCULAR LAW UNDER MINIMAL ASSUMPTIONS 589

for a constant c > 0, where we have used that p satisfies (A1). Hence, applying
Markov’s inequality, we get

P
{|Ik| ≥ �n e−c4.7pnk/2
 | E0 ∩ E4.6

} ≤ P
{|Ik| ≥ 1 | E0 ∩ E4.6

} ≤ n−c.

This together with the union bound over all 1 ≤ k ≤ logpn n and P(E0 ∩ E4.6) ≥
1 − e−c′pn − n−10, gives

P
{|Ik| ≤ n e−c4.7pnk/2 for all 1 ≤ k ≤ logpn n

} ≥ 1 − e−c′′pn − n−c′′
.

It remains to note that, as any (K0/2)–self-balancing chain of length k > logpn n
contains (K0/2)–self-balancing subchains of length �logpn n�, we get from the above

P
{|Ik| ≤ n e−pnk for all logpn n < k ≤ n

}

≥ P
{I
logpn n� = ∅} ≥ 1 − e−c′′pn − n−c′′

,

where we have used that n e−c4.7pn 
logpn n�/2 < 1.
For the third part, by removing conditioning in Lemma 4.8, we get

P
{G contains a (K0/2)–self-balancing cyclic chain of length k ≤ logpn n

}

≤ e−c̃pn + n−c̃.

for some constant c̃ > 0. At the same time, applying the above estimate for cycle-free
chains, we obtain

P
{G contains a (K0/2)–self-balancing cyclic chain of length k > logpn n

}

≤ P
{I�logpn n�−1 	= ∅} ≤ e−c′′pn + n−c′′

.

The result follows. �

4.4 Graph compression. The notion of chains, the way it is considered in the
previous subsection, would be sufficient if our only goal was to bound the smallest
singular value of the shifted matrix A−z Id. However, bounding intermediate singular
values requires more elaborate arguments. In particular, our notion of chains should
be extended to cover what can be called “graph compression”.

A compression of a graph G ∈ Gn,n is glueing together some pairs of left vertices
of G satisfying certain additional assumptions. Namely, left vertices i1, i2 can be
glued together only if their sets of out-neighbors are disjoint and all out-neighbors
of {i1, i2} belong to the infinite type TK,∞(G).

Formally, let G ∈ Gn,n, let K ≥ 1 be a parameter, and let φ : [n] → [m]
be a surjective mapping. Let us assume that the mapping φ satisfies the following
assumptions:

• For any i ∈ [m], the preimage φ−1(i) consists of either one or two elements;
• For any i1 	= i2 ∈ [m] such that φ(i1) = φ(i2), we have ∂out(i1) ∩ ∂out(i2) = ∅,

and, moreover, ∂out(i1) ∪ ∂out(i2) ⊂ TK,∞(G).
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We will call such a mapping φ (G, K)–admissible. The crucial observation, which
will be made rigorous further in the paper, is that a “compression” of the matrix
A − z Id (which is defined as a matrix equivalent of the compression for G) typically
contains only well-spread vectors in its kernel.

We say that a (G, K)–admissible mapping is u–light for some u > 0 if the set of
in-neighbors of any right vertex contains not more than u left vertices glued by φ;
formally,

∣
∣{i ≤ n : |φ−1(φ(i))| = 2

} ∩ ∂in(j)
∣
∣ ≤ u for all j ≤ n.

The notion of u–light mappings allows us to identify those compressions which pre-
serve expansion properties of the graph (see Lemma 4.10 below).

Denote by φ(G) the directed bipartite graph in Gm,n obtained from G by glueing
together left vertices by φ. That is, if φ(i1) = φ(i2) then

∂φ
out(φ(i1)) = ∂out(i1) ∪ ∂out(i2)

and

∂φ
in(φ(i1)) = ∂in(i1) ∪ ∂in(i2).

Here and further, ∂in(·) and ∂out(·) mean the sets of in- and out-neighbors in the
graph G as before, and ∂φ

in(·) and ∂φ
out(·) stand for the sets of in- and out-neighbors

in the compressed graph φ(G).

Lemma 4.10. Let K, u > 0, let G ∈ Gn,n, m ≤ n, and let φ : [n] → [m] be a u–light
(G, K)–admissible mapping. Further, assume that for some δ > 0 and ε > 0 we have
∣
∣∂in(I)

∣
∣ ≥

∑

i∈I

∣
∣∂in(i)

∣
∣ − εK|I| for any subset I of right vertices with |I| ≤ δn.

Then
∣∣∂φ

in(I)
∣∣ ≥

∑

i∈I

∣∣∂φ
in(i)

∣∣ − (εK + u)|I| for any subset of right vertices I with |I| ≤ δn.

Proof. Fix any subset I ⊂ [n] of right vertices with |I| ≤ δn. By the definition of
a (G, K)–admissible mapping, the number of in-neighbors of any right vertex does
not change under compression, and hence

∑

i∈I

∣
∣∂in(i)

∣
∣ =

∑

i∈I

∣
∣∂φ

in(i)
∣
∣.

On the other hand, the assumption that φ is light implies that
∣∣∂φ

in(I)
∣∣ ≥ ∣∣∂in(I)

∣∣ −
∑

i∈I

|{j ≤ m : |φ−1(j)| = 2, φ−1(j) ∩ ∂in(i) 	= ∅}|

≥ ∣
∣∂in(I)

∣
∣ − u|I|.

The result follows. �
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Lemma 4.11. Let K > 0, let G ∈ Gn,n, m ≤ n, and let φ : [n] → [m] be a
(G, K)–admissible mapping. Then for any g ≥ 1 we have TK,g(G) = TK,g(φ(G)); as
a consequence, TK,∞(G) = TK,∞(φ(G)).

Proof. The left vertices which are glued together by φ, do not have out-neighbors
in

⋃

g≥1
TK,g(G). As we will show, this implies that each TK,g is preserved under

compression.
First, since |∂φ

in(j)| = |∂in(j)| for all right vertices j, we have that TK,1(G) =
TK,1(φ(G)). Now, fix g > 1 and assume that all vertex types (K, 1), (K, 2), . . . ,
(K, g − 1) coincide for G and φ(G).

Take any j ∈ TK,g(G), and observe that ∂out(j) and ∂in

( ⋃

h<g

TK,h(G)
)

are not

affected by the mapping φ. This, together with the definition of the type (K, g),
implies that j ∈ TK,g(φ(G)).

On the other hand, if j /∈ TK,g(G) then
∣
∣∂out(j)\∂in

( ⋃

h<g

TK,h(G)
)∣∣ > K, and

hence by the induction hypothesis
∣
∣∂φ

out(j)\∂φ
in

( ⋃

h<g

TK,h(φ(G))
)∣∣ > K. Thus, j /∈

TK,g(φ(G)). �


In the next lemma we show that, conditioned on certain realization of our graph
G, given a uniform random 
–element subset J of the left vertices of G, with high
probability (with respect to J) we can find a light (G, K)–admissible mapping φ
which glues together only some vertices in J . The lemma will be applied to estimate
the intermediate singular values of the random matrix A − z Id (see remark before
Proposition 9.2).

Lemma 4.12. Fix K > 0, r > 0 and a realization of G from event E3.4 such that

∣
∣∣∂in

( ⋃

g≥1

TK,g

)∣∣∣
)

≤ e−rpn n.

Let 
 ≥ n1/2 be a natural number, and let ε ∈ (0, 1/32). Let J be a uniform random
subset of [n] of cardinality 
 (defined on another probability space). Denote by E the
event that there exists a (G, K)–admissible mapping φ satisfying the conditions

• |φ([n])| = n − �ε
�;
• φ−1(φ(i)) = i for all i /∈ J ;
• φ is (64εpn)–light.

Then

PJ(E) ≥ 1 − 2e−c4.12�pn,

where c4.12 > 0 may only depend on r.
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Proof. We will assume that pn is large. We will construct the mapping φ in three
steps. First, we show that with large probability we can find a subset J ′ of J of
cardinality at least 
/2 such that for any i ∈ J ′ both the left vertex iL and the
right vertex iR have “good” sets of neighbors. Second, we extract from J ′ a subset
of pairs of left vertices H1 with disjoint sets of out-neighbors in each pair. Third, we
construct subset H2 ⊂ H1 which will define our compression φ.

Let

M :=
{
j ≤ n : |∂in(jR)| ≥ 2pn

}
.

Define a subset I of all left vertices of G satisfying the following conditions:

• |∂out(jL)| ≤ 2pn;
• ∂out(jL) ⊂ TK,∞(G);
• jL /∈ ∂in(M).

Since we condition on event E3.4 and because of Proposition 3.4, we have |∂in(M)| ≤
exp(−c1pn)n. Further, by our assumption on the realization of G, the total number
of left vertices of G whose sets of out-neighbors have non-empty intersection with
[n]\TK,∞(G), is bounded from above by exp(−c2pn)n, for a constant c2 > 0. Finally,
again in view of conditioning on E3.4, cardinality of the set of left vertices with at
least 2pn out-neighbors is bounded above by exp(−c3pn)n. Combining the bounds,
we get |Ic| ≤ exp(−c′pn)n, for some c′ > 0.

Now, since J is chosen uniformly at random, standard concentration inequalities
imply that the set J ′ := J ∩ I has cardinality at least 
/2 with probability at least
1 − e−c̃�pn.

From now on, we fix J ′ with |J ′| ≥ 
/2 and work with it as a deterministic
set. We construct the set of pairs H1 step by step as follows: at k–th step, choose
any index jk in J ′ which was not previously selected. By our construction of J ′,
|∂out(jL

k )| ≤ 2pn. On the other hand, since we conditioned on the event E3.4, for
every u ∈ ∂out(jL

k ), the cardinality of ∂in(u) is at most 2pn + C log n. Hence, the
number of unselected indices in J ′ whose sets of out-neighbors have a non-empty
intersection with ∂out(jL

k ), is bounded above by 2pn(2pn + C log n). Choose one of
the indices of J ′ which does not belong to the set, and add the resulting pair to H1.

Continuing the process, we get a collection of pairs H1 with |H1| ≥ (|J ′| −
2pn(2pn + C log n))/2 ≥ 
/8, where we used our assumptions on 
 and pn.

It remains to construct a subset H2 ⊂ H1 of pairs of vertices to be glued together
by the mapping φ.

Let Q be a uniform random subset of H1 of cardinality �2ε
� ≤ 16ε|H1| (defined
on another probability space). By the construction of H1, for any right vertex u of
G we have

∣∣{(j, j̃) ∈ H1 : {j, j̃} ∩ ∂in(u) 	= ∅}∣∣ ≤ 2pn.

Hence, a standard concentration inequality implies

PQ

{∣∣{(j, j̃) ∈ Q : {j, j̃} ∩ ∂in(u) 	= ∅}∣∣ ≥ 64εpn
} ≤ exp(−c4εpn), u ≤ n.
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Further, using the condition |∂out(jL)| ≤ 2pn, j ∈ J ′, we get
∣
∣{u ≤ n :

∣
∣{(j, j̃) ∈ H1 : {j, j̃} ∩ ∂in(u) 	= ∅}∣∣ ≥ εpn

}∣∣ ≤ C2|H1|/ε.

For every u ≤ n, denote by 1u the indicator of the event (with respect to the
randomness of Q)

{∣∣{(j, j̃) ∈ Q : {j, j̃} ∩ ∂in(u) 	= ∅}∣∣ ≥ 64εpn
}
.

Then, by the above, EQ1u ≤ exp(−c4εpn) for all u ≤ n and, moreover, 1u = 0 for
all but at most C2|H1|/ε indices. Hence,

n∑

u=1

1u ≤ C2|H1|
ε

exp(−c4εpn) ≤ exp(−c5εpn)|H1|

for some realization Q0 of Q.
Denote by R the collection of all indices u ≤ n with

∣
∣{(j, j̃) ∈ Q0 : {j, j̃} ∩

∂in(u) 	= ∅}∣∣ ≤ 64εpn. The above argument shows that |Rc| ≤ exp(−c5εpn)|H1|.
Define H2 as the subset of Q0 of cardinality �ε
�, where we remove all pairs of

indices {j, j̃} intersecting with ∂in(u) for some right vertex u ∈ Rc (such a subset
exists since jL /∈ ∂in(M) for all j ∈ J ′, and |Rc| is small). Finally, observe that
if we define any surjective mapping φ : [n] → [n − |H2|] with φ(j) = φ(j̃) for all
(j, j̃) ∈ H2, is (G, K)–admissible and is (64εpn)–light. �


As the next step, we extend the notion of chains to compressed graphs. Specifi-
cally, let m ≤ n, let G ∈ Ḡn,n, and let φ : [n] → [m] be a (G, K)–admissible map. We
will say that a sequence (j�)k

�=1 of right vertices of φ(G) is a φ–chain of length k for
φ(G) if for any 
 < k we have j� 	= j�+1 and φ(j�)L → jR

�+1 (i.e. the edge from φ(j�)L

to jR
�+1 belongs to the edge set of φ(G)). If all j�’s (1 ≤ 
 ≤ k) are distinct, we will

call such a φ–chain cycle-free. Further, if j�’s for 1 ≤ 
 ≤ k − 1 are all distinct but
jk = ju for some u < k − 1, the φ–chain will be called cyclic. Note that for m = n
and φ being the identity map, the above notion of chains coincides with the one
given in the previous subsection. Similarly to the “uncompressed” setting, φ–chains
can be associated with “zig-zag” paths on the graph φ(G). Namely, (j�)k

�=1 lies on
the path jR

1 → φ(j1)L → jR
2 → φ(j2)L → · · · → φ(jk−1)L → jR

k , with jR
� 	= jR

�+1 for
all 
 < k.

The definition of self-balancing φ–chains and contact elements carries to the gen-
eralized setting in a straightforward way. We restate the definitions for completeness.
Let G ∈ Ḡn,n and let φ : [n] → [m] be (G, K)–admissible. Given K > 0, a φ–chain
J = (j�)k

�=1 for φ(G) is (K, φ)–self-balancing if j� /∈ TK,∞(φ(G)) for all 
 ≤ k and,
moreover, for any 
 ≤ k, we have

∂φ
out(j�) ⊂ ∂φ

in

( ⋃

g≥1

TK,g

(
φ(G))\{j�}

)
.
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By a “self-balancing chain” for a graph G ∈ Ḡn,n we mean ψ–self-balancing
chain with ψ being the identity mapping. This makes the new generalized notions
compatible with the previous definitions.

The following lemma allows to easily transfer the results of the previous subsec-
tion to the new generalized setting.

Lemma 4.13 (Compression via an admissible mapping). Let G ∈ Ḡn,n and let φ :
[n] → [m] be (G, K)–admissible (for some K > 0). Then

• Any chain J for G is also a φ–chain for φ(G). Converse is not true in general,
however

• Any φ–chain J for φ(G) such that J ∩ TK,∞(G) = ∅, is also a chain for G;
• Any cyclic φ–self-balancing chain for φ(G) is also an self-balancing cyclic chain

for G, and vice versa;
• Any cycle-free φ–self-balancing chain for φ(G) is also a cycle-free self-balancing

chain for G, and vice versa.

Proof. The first assertion of the lemma follows immediately from definitions.
For the second assertion, assume that J = (j�)k

�=1 is a φ–chain for φ(G). Then
jR
� → φ(j�)L → jR

�+1 for all 1 ≤ 
 < k. Now, the condition J ∩ TK,∞(G) = ∅ implies
that φ−1(φ(j�)) = j�. On the other hand, jR

� → jL
� → jR

�+1 in G if and only if
jR
� → φ(j�)L → jR

�+1 in φ(G), 
 < k. Thus, J is a chain for G.
For the third and fourth assertions, let J = (j�)k

�=1 be a (K, φ)–self-balancing
cyclic (resp., cycle-free) chain for φ(G). Then, in particular, j� /∈ TK,∞(φ(G)) for all

 ≤ k, and hence, by the definition of an admissible mapping, for any left vertex i of
G, such that ∂out(i) ∩ J 	= ∅, we necessarily have φ−1(φ(i)) = i. That is, restricted
to ∂in(j�) (
 ≤ k), φ acts as a bijection. This, together with the stability of the
vertex types under the “compression” operation (Lemma 4.11) implies that J must
be an self-balancing cyclic (resp., cycle-free) chain for G as well (in the sense of
subsection 4.3). The converse statement is checked in a similar way. �


Combining Proposition 4.9, Lemma 4.6 and Lemma 4.13, we get

Proposition 4.14 (Statistics of self-balancing φ-chains). Let n, p, G satisfy assump-
tions (B1). Define

E1
4.14 :=

{∣∣
∣∂in

( ⋃

g≥1

TK0,g(G)
)∣∣
∣ ≤ n e−c4.9pn

}
;

E2
4.14 :=

{
For any (G, K0/2)–admissible map φ

there are no (K0/2, φ)–self-balancing cyclic chains for φ(G)
}

;

E3
4.14 :=

{
For any (G, K0/2)–admissible map φ and any 1 ≤ k ≤ n1/4,

all but at most n e−c4.9pnk cycle-free φ–chains of length k

for φ(G) are not (K0/2, φ)–self-balancing
}

,
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and set

E4.14 := E1
4.14 ∩ E2

4.14 ∩ E3
4.14.

Then P(E4.14) ≥ 1 − exp(−c4.14pn) − n−c4.14 for a universal constant c4.14 > 0.

4.4.1 Number of φ–chains. The next lemma bounds the number of starting ver-
tices of φ–chains terminating in a set of right vertices S.

Lemma 4.15. Let n, p, G satisfy assumption (B1), and E3.4 be as in Proposition 3.4.
Fix a realization of G in E3.4. Let K > 0 and let φ be a (G, K)–admissible map. Then
for any subset S ⊂ [n] and any k ≥ 1, the set

Wk,S :=
{
j ≤ n : there is a φ–chain J =(j�)u

�=1 for φ(G) with u ≤ k, j1 =j, ju ∈ S
}

has cardinality at most
(
C4.15pn + C4.15 log

n

|S|
)k−1 |S|,

where C4.15 > 0 is a universal constant.

Proof. We will construct the φ–chains with the last element in S “backwards”, using
the definition of E3.4. Clearly, W1,S = S. Take any k > 1. Observe that cardinality
of the set Wk,S can be bounded from above by twice the cardinality of the union
of ∂φ

in(i), i ∈ Wk−1,S , plus the cardinality of S, with the latter coming from chains
of length one. Indeed, any φ–chain J = (j�)u

�=1 of length u ≥ 2 must satisfy jR
1 →

φ(j1)L → jR
2 , and therefore j1 necessarily belongs to the set φ−1(∂φ

in(j2)). Thus, all
possible choices of j1 are contained in the set φ−1

(
∂φ

in(Wk−1,S)
)

of cardinality at
most 2 |∂φ

in(Wk−1,S)|. In view of Lemma 3.5, we obtain

1
2

∣
∣Wk,S)

∣
∣ ≤ ∣

∣∂φ
in(Wk−1,S)

∣
∣ ≤ ∣

∣∂in(Wk−1,S)
∣
∣ ≤ C

(
pn + log

n

|Wk−1,S |
)

|Wk−1,S | + |S|

≤ C ′
(
pn + log

n

|S|
)

|Wk−1,S |, k > 1.

Applying the estimate iteratively, we get the result. �

As a corollary of the last estimate, we obtain

Lemma 4.16. Let n, p, G satisfy assumption (B1), and E3.4 be as in Proposition 3.4.
Fix a realization of G in E3.4. Further, take K > 0 and a (G, K)–admissible map φ.
Let V be a subset of φ([n]), let k ≥ 1, and let J be a collection of φ–chains for φ(G)
with distinct first elements, each J = (j�)

p
�=1 ∈ J of length at most k and such that

∂φ
in(J) ∩ V 	= ∅.

Then necessarily

|J | ≤
(
C4.16pn + C4.16 log

n

|V |
)k |V |

for a universal constant C4.16 > 0.
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Proof. First, we estimate cardinality of the subset V ′ ⊂ [n] of all right vertices j such
that ∂φ

in(j) ∩ V 	= ∅. Clearly, the last condition is equivalent to ∂in(j) ∩ φ−1(V ) 	= ∅,
where |φ−1(V )| ≤ 2|V |. Lemma 3.5 implies

|V ′| ≤ C
(
pn + log

n

|V |
)

|V |

for a universal constant C > 0. On the other hand, by the definition of sets Wk,S

from Lemma 4.15, we get |J | ≤ |Wk,V ′ |, and hence, by the cardinality estimate from
Lemma 4.15,

|J | ≤
(
C ′pn + C ′ log

n

|V ′|
)k−1 |V ′|.

The result follows. �

4.5 Shells. In our approach, we separate observations related to the structure
of the underlying graph G, from linear algebraic aspects of the problem. The notion
which connects these two parts of the argument is shell.

Let G ∈ Gk,m, let d ≥ 1 be a natural number, and M ⊂ [k] be any subset of left
vertices of G. We say that a finite sequence A = (C�)d

�=0 of sets of right vertices of
G is an M–shell of depth d for G if for any 0 ≤ 
 ≤ d − 1 and any j ∈ C� we have
the following: whenever a left vertex i ∈ [k]\M is such that i ← j, there is a right
vertex j′ = j′(i, j) 	= j in C�+1 such that i → j′. The sets C� are called layers of the
shell. The subset C0 will be called the center of A.

As we prove below, assuming certain expansion properties for the graph G, we
can show that any shell centered in TK,∞(G) (with the center of sufficiently large
cardinality), must be fast expanding in the sense that cardinalities of the layers grow
at an exponential rate.

Lemma 4.17 (Expansion property of shells). Let k, m be large integers, M ⊂ [k],
K > 0; let G ∈ Gk,m, and assume that for some δ ∈ (0, 1] and ε ∈ (0, 1/32) we have

∣∣∂in(I)
∣∣ ≥

∑

i∈I

∣∣∂in(i)
∣∣ − εK|I|, for any subset of right vertices I with |I| ≤ δm.

(4.4)
Further, fix any non-empty J ⊂ TK,∞(G) with |J | ≤ δm/2 such that

2
K

∑

i∈M

|∂out(i)| ≤ |J |
2

.

Then any M–shell A = (C�)d
�=0 for G of depth d ≥ 1 centered in J (if such a shell

exists), satisfies

|C�| ≥ min
(�δm/4�, (32ε)−�|J |), 0 ≤ 
 ≤ d.
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Proof. Let us fix any d ≥ 1 and any M–shell A = (C�)d
�=0 for G centered in J (if

such a shell does not exist then there is nothing to prove). Observe that the total
number of right vertices whose sets of in-neighbors intersect with M at least on K/2
vertices, is at most 2

K

∑
i∈M |∂out(i)|, which is less than |J |/2, by the assumptions

on J and G.
We will prove assertion of the lemma via an inductive argument. At zero step,

we set Ṽ0 to be the subset of all vertices j ∈ J such that
∣
∣
∣∂out(j)\

(
M ∪ ∂in

( ⋃

g≥1

TK,g(G)
))∣∣

∣ ≥ K/2. (4.5)

By the above remark on the cardinality of M and the definition of TK,∞(G), we get
|Ṽ0| ≥ |J |/2. We then let V0 to be a subset of Ṽ0 of cardinality min(�δm/2�, |Ṽ0|).

Now, fix 1 ≤ 
 ≤ d, and assume that a subset V�−1 of C�−1 ∩ TK,∞(G), of
cardinality |J |/2 ≤ |V�−1| ≤ δm/2, such that all j ∈ V�−1 satisfy (4.5), has been
defined.

Denote by Q� the collection of all edges i ← h, with h ∈ V�−1 and i ∈ [k]\M .
Note that by the definition of an M–shell, for any edge i ← h in Q� there is right
vertex r 	= h with r ∈ C� and i → r. Thus, we can define a function f : Q� → [m],
with r = f(i ← h) (f need not be uniquely defined). Further, by the condition on
V�−1, for any h ∈ V�−1 there are at least K/2 left vertices i such that the edge i ← h
belongs to Q� and f(i, h) ∈ TK,∞(G). Thus, the set Q′

� := {i ← h in Q� : f(i, h) ∈
TK,∞(G) ∩ C�} has cardinality at least K|V�−1|/2.

Set S := {f(i, h) : i ← h in Q′
�}, then for any h ∈ V�−1 we have |∂in(h) ∩

∂in(S\{h})| ≥ K/2. This immediately implies that
∑

r∈S∪V�−1

∣
∣∂in(r)

∣
∣ − ∣

∣∂in(S ∪ V�−1)
∣
∣ ≥ K|V�−1|/4.

Combining this with the expansion property taken as the assumption of the lemma,
we get

K|V�−1|/4 ≤ εK|S ∪ V�−1|,
unless |S ∪ V�−1| > δm. Hence, we have

|S| ≥ min
((

(4ε)−1 − 1
)|V�−1|, δm − |V�−1|

) ≥ min
(
(8ε)−1|V�−1|, δm/2

)
.

Further, let S′ ⊂ S be the set of all right vertices in S whose sets of in-neighbors
intersect with M at most on K/2 elements. Obviously, the total number of vertices
in S\S′ cannot be bigger than 2

K

∑
i∈M |∂out(i)|. Hence, by the assumptions on J

and δ, we have

|S′| ≥ |S| − |J |
2

≥ min
(
(8ε)−1|V�−1| − |J |

2
, δm/4

)
≥ min

(�(16ε)−1|V�−1�, �δm/4�),
where in the last inequality we used the induction hypothesis. Now, we set V� as a
subset of S′ of cardinality min

(�(16ε)−1|V�−1|�, �δm/4�). Then |J |/2 ≤ |V�| ≤ δm/4,
completing the induction. The result follows. �
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The next lemma shows that if the center of a shell is sufficiently large then the
union of first few layers has a large intersection with TK0/2,∞(G).

Lemma 4.18. There are constants C4.18, c4.18, c
′
4.18 > 0 with the following property.

Let n, p, G satisfy assumptions (B1) and fix a realization of G in E3.4 ∩ E4.14. Let
m ≤ n, and let φ : [n] → [m] be a (G, K0/2)–admissible surjective mapping. Further,
let M ⊂ [m] be a subset of left vertices of φ(G) satisfying

|M | ≤ n/
√

L,

for some L > 1. Let 1 ≤ k, and let A = (C�)k
�=0 be any M–shell for φ(G) such that

|C0| ≥ (
C4.18pn + C4.18 log L

)k+2
n/

√
L + C4.18 e−c4.9pnkn.

Then necessarily

∣
∣∣

k⋃

�=0

C� ∩ TK0/2,∞(φ(G))
∣
∣∣ ≥ (k + 1) max

(
n/

√
L,

∑

i∈M

|∂out(i)|
)
.

The assumption on |C0| requires L to be sufficiently large; otherwise, the statement
is vacuous.

Proof. Fix an M–shell A = (C�)k
�=0 for φ(G) satisfying the above condition for C0,

where we assume that C4.18 > 0 is a large universal constant to be chosen later. Note
that the definition of φ(G), implies that φ(j)L ← jR for all j ≤ n. Now, starting
with any j ∈ C0, let us construct a sequence of vertices J = J(j) = (j�)

q
�=0 (with

q ≤ k − 1) as follows:
At Step 0, we set j0 := j ∈ C0.
At Step 
, k ≥ 
 ≥ 1, we have indices j0, j1, . . . , j�−1 constructed, with jr ∈ Cr

for all r < 
. We do the following. If ∂φ
in(j�−1) ∩ M 	= ∅ then set q := 
 − 1 and

teminate. Otherwise, if j�−1 = jr for some r < 
 − 1 then, again, set q := 
 − 1 and
terminate. Otherwise, as ∂φ

in(j�−1) ∩ M = ∅ and φ(j�−1)L ← jR
�−1, by the definition

of an M–shell there is a right vertex j� 	= j�−1 such that j� ∈ C� and φ(j�−1) → j�;
this vertex is added to the sequence.

At Step k (if this step is reached), we set q := k − 1 and terminate.
As a result of the above procedure, for any j ∈ C0 we obtain a φ–chain J =

J(j) = (j�)
q
�=0 for φ(G) of length q + 1 ≤ k such that j = j0, ∂φ

in(j�) ∩ M = ∅ for all

 ≤ q − 1, and, additionally, one of the following three conditions holds:
(a) ∂φ

in(jq) ∩ M 	= ∅;
(b) q = k − 1, ∂φ

in(jq) ∩ M = ∅, and J is cycle-free;
(c) ∂φ

in(jq) ∩ M = ∅ and J is cyclic.
Fix one such chain for each j ∈ C0 and denote the set of these chains by J . If
n/

√
L ≥ 1 then Lemma 4.16 yields that the number of φ–chains from J satisfying

condition (a) is bounded from above by
(
C̃pn + C̃ log

n

�n/
√

L�
)k �n/

√
L� ≤ (

C ′pn + C ′ log L
)k

n/
√

L
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(for n/
√

L < 1 we have M = ∅, and the upper bound trivially holds as well). Further,
on the event E4.14, no φ–chains satisfying condition (c) are (K0/2, φ)–self-balancing,
and at most ne−c4.9pnk chains satisfying (b) are (K0/2, φ)–self-balancing. Therefore,
because of our assumption on |J | = |C0| (choosing a sufficiently large C4.18), we get
that there is a subset J ′ ⊂ J of cardinality at least 1

2 |J | such that any J ∈ J ′

satisfies conditions (b) or (c) and is not (K0/2, φ)–self-balancing.
Pick a chain J = (j�)

q
�=0 in J ′. Then, by definition of non–self-balancing chains,

we have the following alternative.

(1) There is v ≤ q such that jv ∈ TK0/2,∞(φ(G)). We denote the vertex jv by jJ .
(2) The chain J does not satisfy (1), and there is v ≤ q and a left vertex i ∈ ∂φ

out(jv)
such that ∂φ

out(i)\{jv} ⊂ TK0/2,∞(φ(G))\J . As J is of type (b) or (c), we have
i /∈ M , and hence by the definition of an M -shell, the set ∂φ

out(i)\{jv} must be
non-empty, implying that there is a right vertex

j ∈ (
∂φ

out(i)\{jv}
) ∩ Cv+1 ⊂ (C0 ∪ · · · ∪ Ck) ∩ TK0/2,∞(φ(G)).

In this case, we set wJ := j.

Denote

S1 :=
{
jJ : J satisfies (1)

}
; S2 :=

{
wJ : J satisfies (2)

}
,

and observe that S1, S2 ⊂ (C0 ∪ · · · ∪ Ck) ∩ TK0/2,∞(φ(G)) and at least one of these
sets is non-empty.

Take any set W of right vertices containing S := S1 ∪S2. By Lemma 4.15 applied
to chains J truncated at jJ , we have

∣
∣{J ∈ J ′ : J satisfies (1)

}∣∣ ≤
(
C4.15pn + C4.15 log

n

|W |
)k−1 |W |.

Similarly, by Lemma 4.16 we have

∣
∣{J ∈ J ′ : J satisfies (2)

}∣∣ ≤ (
C̃pn + C̃ log

n

|∂φ
in(W )|

)k |∂φ
in(W )|,

where
∣
∣∂φ

in(W )
∣
∣ ≤ C

(
pn + log

n

|W |
)

|W |,

in view of Lemma 3.5.
Combining the inequalities and taking the minimum over R = |W | ≥ |S|, we get

1
2
|C0| ≤ |J ′| ≤ min

n≥R≥|S|

(
C ′pn + C ′ log

n

R

)k+1
R (4.6)
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for a large enough universal constant C ′ > 0. Let us show that the last relation
implies that

|S| ≥ (k + 1) max
(
n/

√
L,

∑

i∈M

|∂φ
out(i)|

)
.

Since we condition on event E3.4, Lemma 3.5 and the upper bound |M | ≤ n/
√

L

imply that
∑

i∈M

|∂φ
out(i)| ≤ C̄

(
pn+log L

)
n/

√
L for a universal constant C̄ > 0. Thus,

it is sufficient to show that

|S| ≥ C̄(k + 1)
(
pn + log L

)
n/

√
L.

As S 	= ∅, the last inequality can be false false only when C̄(k+1)
(
pn+log L

)
n/

√
L ≥

1. In this case, choose R0 := �C̄(k + 1)
(
pn + log L

)
n/

√
L� and observe that

(
C ′pn + C ′ log

n

R0

)k+1
R0 ≤ (C ′′′pn + C ′′′ log L)k+2n/

√
L.

Thus, if the constant C4.18 is sufficiently large, we get contradiction to (4.6).
The result follows. �


5 Almost Null Vectors Cannot be Very Sparse

In this section, we show that a shifted (very sparse) random matrix A−z Id satisfying
the above assumptions on the distribution of the entries and on the non-random shift,
typically does not have almost null very sparse vectors. The main statement of the
section is Proposition 5.4. The main difficulty in proving the result, compared to
the standard setting dealing with dense matrices as well as sparse matrices with
at least logarithmic average number of non-zero elements in rows/columns, lies in
the fact that in the very sparse regime some rows and columns of A have only
zero components. The absence of very sparse null vectors (and, as we show later,
non-singularity of A − z Id) is guaranteed by the presence of the non-zero shift z Id.
Accordingly, the way to study the kernel of A−z Id is significantly different from the
geometric approach to invertibility of dense random matrices. The random graphs,
considered in the previous section, provide a helpful tool in analyzing the structure
of non-zero entries of the matrix A − z Id, taking into account their magnitudes.
In the next subsection, we will consider matrix equivalents of the notions of a φ-
compression, an M -shell and vertex types.

5.1 Compressions, shells and types for matrices. Let B = (bij) be an
m × k matrix with complex entries, and let K > 0 be a parameter. We associate
with B a graph GB ∈ Gm,k with the edge set defined as follows: i → j if and only
if bij 	= 0, and i ← j if and only if |bij | ≥ 1/α. This way, rows of B correspond to
left vertices of GB, and columns—to right ones. When the matrix B is random, this
association generates coupling with a random graph from Gm,k. In particular, when
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B = A − z Id, with A and z satisfying conditions (A1)–(A2)–(A3), the associated
graph G := GB satisfies (B1) where we take μij as indicators of events {|ξij | ≥ 1/α}.
For every g ∈ N ∪ {∞}, we let TK,g(B) := TK,g(GB). We will refer to sets TK,g(B)
as column types of B. The infinite type TK,∞(B) is of particular importance to us
as it corresponds to a nicely expanding part of the graph.

Further, consider a square n × n matrix B. Let φ be any (GB, K)–admissible
mapping with φ([n]) = [m] for some m ≤ n. We define the m × n matrix φ(B) (the
φ–compression of B) by

rowi(φ(B)) :=
∑

v∈φ−1(i)

rowv(B), i ≤ m.

The above means that we add rows whose indices are glued together by φ, and have
disjoint supports, in view of the definition of a (GB, K)–admissible mapping. Note
that TK,g(φ(B)) = TK,g(φ(GB)). In what follows, such a mapping φ will be called
(B, K)–admissible.

We say that a (B, K)–admissible mapping φ (for some n×n matrix B) is u–light
for some u > 0 if

∣
∣{i ≤ n : |φ−1(φ(i))| = 2

} ∩ supp colj(B)
∣
∣ ≤ u for all j ≤ n.

Clearly, the notion is consistent with that of a u–light mapping for graphs, given in
the previous section.

Shells for matrices are defined as shells for the associated graphs. Specifically, let
B = (bij) be a k × m matrix with complex entries, let d ≥ 1 be a natural number,
and M ⊂ [k] be any subset. We say that a finite sequence A = (C�)d

�=0 of subsets
of [m] is an M–shell of depth d for B if for any 0 ≤ 
 ≤ d − 1 and any j ∈ C� we
have the following: whenever i ∈ [k]\M is such that |bij | ≥ 1/α, there is an index
j′ = j′(i, j) 	= j from C�+1 such that bij′ is non-zero. The subset C0 will be called the
center of A.

5.2 Matrix shells in non-random setting. In the next lemma, we relate
structural properties of almost null vectors of a matrix to properties of its M -shells.
More specifically, we will show that if the coordinates of an almost null vector x are
large on some subset of indices J then there exists an M -shell A centered at J such
that xi’s are also large for all i in the first few layers of A.

Lemma 5.1 (Order statistics and M -shells). Assume that B = (bij) is a k×m matrix
with complex entries. Further, let M ⊂ [k], let x ∈ C

m be a complex vector, and fix
any non-empty J ⊂ [m] and d ≥ 1. Denote

L := max
i∈[k]\M

m∑

j=1

|bij |.
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Assume that

∣
∣
∣

m∑

j=1

bijxj

∣
∣
∣ ≤ 1

2α

(
2α L

)−d min
j∈J

|xj |, i ∈ [k]\M.

Then there exists an M–shell A = (C�)d
�=0 of depth d centered in J such that for

any 1 ≤ q ≤ d with Cq 	= ∅, we have

x∗
|Cq| ≥ (

2α L
)−q min

j∈J
|xj |.

Proof. We start with the following observation. Let (i, 
) ∈ ([k]\M)×[m] and assume
that

|bi�| ≥ 1/α and |x�| ≥ (
2α L

)−d min
j∈J

|xj |.

Then the upper bound on |∑m
j=1 bijxj | implies that there is h = h(i, 
) 	= 
 such

that bih 	= 0 and |xh| ≥ 1
2α L |x�|. Indeed, if it was not the case then the inner product∑m

j=1 bijxj could be estimated as

∣
∣
∣

m∑

j=1

bijxj

∣
∣
∣ ≥ |x� bi�| −

∑

r �=�

|xr bir| > |x� bi�| − L · 1
2α L

|x�| ≥ 1
2α

(
2α L

)−d min
j∈J

|xj |,

leading to contradiction.
Denote by Q the collection of all pairs (i, 
) ∈ ([k]\M) × [m] satisfying the as-

sumption above. If Q 	= ∅ then the observation above tells us that we can define a
mapping f : Q → [m] taking f(i, 
) := h, with h = (i, 
) satisfying the aforemen-
tioned conditions.

Now, we can construct an M -shell (Cq)d
q=0 centered in J as follows. Let C1 :=

{f(i, 
) : (i, 
) ∈ Q ∩ ([k] × J)}; and for any 1 ≤ q ≤ d − 1, let

Cq+1 := {f(i, 
) : (i, 
) ∈ Q ∩ ([k] × Cq)}.

Observe that by the construction for any 1 ≤ q ≤ d and any 
 ∈ Cq we have, by
induction,

|x�| ≥ (
2α L

)−q min
j∈J

|xj |.

Thus, whenever (i, 
) ∈ ([k]\M) × Cq is such that |bi�| ≥ 1/α, there is at least one
index 
′ 	= 
 with 
′ ∈ Cq+1 and bi�′ 	= 0. Thus, the M–shell is well defined. Finally,
assuming that Cq is non-empty, we have

x∗
|Cq| ≥ (

2α L
)−q min

j∈J
|xj |,

and the result follows. �
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Clearly, the above lemma gives a non-trivial estimate only when all shells for
B are “expanding” in the sense that cardinalities of the q-th subset of each shell
is much greater than |J |. This expansion property is guaranteed by Lemma 4.17.
Combining it with Lemma 5.1, we obtain

Corollary 5.2. Let k, m, M ⊂ [k], K, ε, δ and the associated graph G := GB be
as in Lemma 4.17 (in particular, GB satisfies (4.4)). Set

L := max
i∈[k]\M

m∑

j=1

|bij |.

Fix a non-empty subset J ⊂ TK,∞(B) with |J | ≤ δm/2 and

2
K

∑

i∈M

| supp rowi(B)| ≤ |J |
2

.

Let x be a complex vector such that

∣
∣∣

m∑

j=1

bijxj

∣
∣∣ ≤ 1

2α

(
2α L

)−d min
j∈J

|xj |, i ∈ [k]\M.

Then for any 1 ≤ q ≤ d and kq := min
(�δm/4�, (32ε)−q|J |) we have

x∗
kq

≥ (
2α L

)−q min
j∈J

|xj |.

Roughly speaking, the last statement tells us that whenever B satisfies certain
expansion properties, any almost null vector of B, “well supported” on TK,∞(B),
must necessarily be well spread.

5.3 Order statistics of almost null vectors. In this subsection, all the results
on the random graph G and its compressions obtained in Section 4, come into play.
As in the text before, we define parameter K0 as K0 := pn/(2α). By some abuse of
terminology, we will say that some event holds for a random n × n matrix B if that
event holds for the associated graph GB.

Lemma 5.3. There are universal constants C5.3, c5.3 > 0 with the following property.
Let n, p, z and A satisfy (A1)–(A2)–(A3), and set Ã := A − z Id. Fix a realization
of A such that E3.6 occurs for A and event E3.4 ∩ E4.14 ∩ E3.3(1/(512α)) occurs for Ã.
Let q be in the interval {1, 2, . . . , �e−c4.9pn/2n�}. Let m ≤ n, and let φ : [n] → [m] be
a (Ã, K0/2)–admissible (K0/256)–light mapping. Then for any vector x ∈ C

n with

‖φ(Ã)x‖2 ≤
√

n

2α
(2α)−C5.3 log2 4n

q
log2 log 4n

q x∗
q

we have

x∗
q ≤ (2α)C5.3 log3 4n

q
log2 log 4n

q x∗

c5.3/p�.
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Proof. Observe that the condition on the Euclidean norm of φ(Ã)x implies that the
set M̃ ⊂ [m] of all indices i such that

∣
∣〈rowi(φ(Ã)), x̄

〉∣∣ ≥ 1
2α

(2α)− C5.3
2

log2 4n

q
log2 log 4n

q x∗
q ,

has cardinality
|M̃ | ≤ n(2α)−C5.3 log2 4n

q
log2 log 4n

q .

Denote B := φ(Ã) and let k := � 1
cpn log 4n

q 
, L :=
(
k log 4n

q

)Ck(n
q

)2, and d :=
�C log L
, where c > 0 is small and C > 0 is large enough constant, whose values
can be recovered from the proof below. Let M ′ ⊂ [m] be the set of all indices i such
that ‖rowi(B)‖1 ≥ L, and set M := M̃∪M ′. On event E3.6, we have |M ′| ≤ n/(2

√
L),

and so |M | ≤ n/
√

L.
Let A = (C�)d

�=0 be the M–shell for B centered in the set C0 := {i ≤ n : |xi| ≥
x∗

q}, constructed in Lemma 5.1. By the assumption on q and the definition of L and
k we have

(
C4.18pn + C4.18 log L

)k+2
n/

√
L

≤
(
C4.18pn + 2C4.18Ck log log

4n

q
+ 2C4.18 log

n

q

)k+2(
k log

4n

q

)−Ck/2
q ≤ q

2
,

if C is sufficiently large. Also,

C4.18 e−c4.9pnkn ≤ q

2

if c is small enough. Thus, the cardinality of C0 satisfies assumptions in Lemma 4.18.
Applying Lemma 4.18, we get

∣
∣
∣

k⋃

�=0

C� ∩ TK0/2,∞(B)
∣
∣
∣ ≥ (k + 1) max

(
n/

√
L,

∑

i∈M

| supp rowi(B)|
)
,

and hence there is 
0 ∈ {0, 1, . . . , k}, such that

|C�0 ∩ TK0/2,∞(B)| ≥ max
(
n/

√
L,

∑

i∈M

| supp rowi(B)|
)
,

implying

4
K0

∑

i∈M

| supp rowi(B)| ≤ |C�0 ∩ TK0/2,∞(B)|
2

.

Since we are on the event E3.3(1/(512α)), the graph GÃ satisfies
∣
∣∂in(I)

∣
∣ ≥

∑

i∈I

∣
∣∂in(i)

∣
∣ − κK |I| for every set of right vertices I, 2 ≤ |I| ≤ δn,
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with κ := 1/128, K := K0/2, and δ := c1/(pn) (for some constant c1 > 0 depending
on α). Next, we use the assumption that the mapping φ is (K0/256)–light. Applying
Lemma 4.10, we get for the graph GB = φ(GÃ):

∣
∣∂φ

in(I)
∣
∣ ≥

∑

i∈I

∣
∣∂φ

in(i)
∣
∣ − εK|I| for any subset of right vertices I with |I| ≤ δn,

with ε := 1/64. Applying Lemma 4.17 with J := C�0 ∩ TK0/2,∞(B) and using that
d ≥ Ck and 
0 ≤ k, we obtain

|Cd| ≥ min
(�δm/4�, 2d−�0 |J |) ≥ min

(�δm/4�, 2C log L/2|J |) ≥ c2/p.

Thus, using Lemma 5.1, we get

x∗

c2/p� ≥ (2α L)−dx∗

q ,

and the result follows. �


In the next proposition, we extend Lemma 5.3 to all q ≤ c/p.

Proposition 5.4. There are universal constants C5.4, c5.4 > 0 with the following
property. Let n, p, z and A satisfy (A1)–(A2)–(A3); set Ã := A − z Id. Assume
that event E3.4 ∩ E4.14 ∩ E3.3(1/(512α)) occurs for Ã and event E3.6 occurs for A.
Let q be in the interval {1, 2, . . . , �c5.4/p�}. Let m ≤ n, and let φ : [n] → [m] be a
(Ã, K0/2)–admissible (K0/256)–light mapping. Then for any vector x ∈ C

n with

‖φ(Ã)x‖2 ≤
√

n

2α
(2α)−C5.4 log2 4n

q
log2(pn+log 4n

q
) x∗

q

we have

x∗
q ≤ (2α)C5.4 log2 4n

q
log2(pn+log 4n

q
)x∗


c5.4/p�.

Proof. We will choose constant C5.4 > 0 large and c5.4 > 0 small enough (the
precise relation can be recovered from the argument below). In the range q ∈
{1, 2, . . . , �e−c4.9pn/2n�} the statement is proved above (Lemma 5.3). When q ≥
e−c4.9pn/2n, we have on E4.14 that the subset

J :=
{
i ≤ n : |xi| ≥ x∗

q

} ∩ TK0,∞(φ(Ã))

has cardinality at least q/2. Set L := C(pn)2(n/q)2 (for a large enough constant
C > 0). As in the proof of Lemma 5.3, we define two subsets M̃, M ′ ⊂ [m]: M̃ is the
set of all indices i such that

∣∣〈rowi(φ(Ã)), x̄
〉∣∣ ≥ 1

2α
(2α)− C5.4

2
log2 4n

q
log2(pn+log 4n

q
) x∗

q ,
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and M ′ the set of all indices i such that ‖rowi(φ(Ã))‖1 ≥ L. Define M := M̃ ∪ M ′.
On the event E3.6 ∩ E3.4 we have |M ′| ≤ n/

√
L. Therefore, by Lemma 3.5 and since

q ≥ e−c4.9pn/2n, we obtain
∑

i∈M ′ | supp rowi(φ(Ã))| ≤ C ′pn · n/
√

L. Thus,

2
K0

∑

i∈M ′

| supp rowi(φ(Ã))| ≤ |J |
4

.

Similarly to the proof of Lemma 5.3, we can estimate the cardinality of M̃ as

|M̃ | ≤ n(2α)−C5.4 log2 4n

q
log2(pn+log 4n

q
).

Proceeding as above, we get

2
K0

∑

i∈M

| supp rowi(φ(Ã))| ≤ |J |
2

.

As in the proof of the above lemma, observe that on event E3.3(1/(512α)), in view
of Lemma 4.10, the matrix φ(Ã) satisfies (4.4) with ε := 1/64, K := K0 and δ :=
c1/p (for some universal constant c1 > 0). Then, applying Corollary 5.2 with d :=
�C ′ log 2n

q � (for an appropriate constant C ′ > 0), we get the required estimate. �

As an immediate corollary, we get the following statement:

Corollary 5.5. Let n, p, A, z satisfy assumptions (A1)–(A2)–(A3). Fix a real-
ization of Ã := A−z Id such that events E3.4∩ E4.14 ∩ E3.3(1/(512α)) and E3.6 occur.
Then any vector x ∈ C

n such that ‖Ãx‖∞ ≤ (2α)−C5.5 log3 n‖x‖∞, satisfies

‖x‖∞ ≤ (2α)C5.5 log3 n x∗

c5.5/p�,

and, moreover, for all q in {1, 2, . . . , �c5.5/p�} we have

x∗
q ≤ (2α)C5.5 log2 4n

q
log2(pn+log 4n

q
)x∗


c5.5/p�.

6 Almost Null Vectors Cannot be Moderately Sparse

In this section, we extend the results of Section 5.3 showing that the the matrix
φ(Ã) typically does not have almost null vectors which are close to n/ log(pn)–
sparse. By the results of the previous section, it is enough to consider vectors x ∈
Sn−1(C) having sufficiently large x∗

m for m ≈ p−1. Unlike the treatment of very
sparse vectors, which relied on the properties of the graph associated to the matrix,
the analysis of the moderately sparse vectors uses ε-nets. However, the standard ε-
net argument cannot be applied here as the operator norm of the matrix φ(Ã) is too
large. Instead, we will analyze each inner product of a row of φ(Ã) and x separately.
In this analysis, in contrast with the dense matrices, the approximation in 
∞ norm
works better than that in 
2 norm. We note here that several versions of the ε–net
argument have been developed recently to deal with sparse random matrices; see,
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in particular, [LLTTY17,Coo,BCZ18,BR17,BR,LLTTYa,LLTTYb]. The argument
presented here differs considerably from those works.

To approximate any moderately sparse vector in 
∞ norm, one can consider a
covering of Sn−1(C) by cubes. This covering, however, is too large to be combined
with a small ball probability estimate, which is rather weak due to the sparsity of the
matrix. Yet, the sparsity, being an obstacle, can be turned into an advantage. For a
fixed vector x any given row typically has zero entries in the spots corresponding a
few largest coordinates of x. If this occurs, the largest coordinates of x do not have
to be approximated, which allows to reduce the cardinality of the net. We implement
this program below.

For a vector x ∈ C
n and a number r ≥ 1, denote by Maxr(x) an �r�-element

subset of [n] containing coordinates of x with largest absolute values (the ties are
broken arbitrarily). Let n/2 ≤ m ≤ n. We will consider a sparse m×n matrix φ(Ã),
where φ : [n] → [m] is a (K0/2, Ã)–admissible surjective mapping and, as before,
Ã = A − zIdn.

We start with showing that for a fixed vector x, the probability that a given row
of the matrix Ã has a large product with x and the entries corresponding to the
largest coordinates of x are zeroes, is non-negligible.

Lemma 6.1. Let n, p, z, A satisfy (A1)—(A2)—(A3), and let Ã = (ãij) := A −
z Idn. Let τ ∈ (0, 1) be a parameter and q be an integer with τp−1 ≤ q ≤ p−1. Fix
x ∈ Sn−1(C). For any i /∈ Maxq(x), consider the event

Ωi
x =

{ n∑

j=1

|ãij | ≤ C6.1pn & ãij =0 for all j ∈Maxq/2(x) & |〈rowi(Ã), x̄〉| ≥ 1
2α

x∗
q

}
.

Then

P(Ωi
x) ≥ c6.1

for some c6.1 = c6.1(τ) > 0 depending only on τ .

Proof. Let U be the event that ãij = 0 for all j ∈ Maxq/2(x). Then, clearly, P(U) ≥
c1, where c1 is an absolute constant.

Next, condition on any realization of ãij , j ∈ ([n]\ Maxq(x)) ∪ Maxq/2(x), and
set

y :=
∑

j∈Maxq(x)\ Maxq/2(x)

ãijxj .

Let Ωi
k(x) be the event that exactly k of the entries aij , j ∈ Maxq(x)\ Maxq/2(x),

have absolute value greater or equal to 1/α, and the other entries are zero. Clearly,
y = 0 everywhere on Ωi

0(x), and |y| ≥ 1
αx∗

q everywhere on Ωi
1(x). Further, by the

conditions on q, we have P(Ωi
0(x)),P(Ωi

1(x)) ≥ c(τ) for some c(τ) > 0. Together
with the above observation on the probability of the event U , this gives

P

{
ãij = 0 for all j ∈ Maxq/2(x) & |〈rowi(Ã), x̄〉| ≥ 1

2α
x∗

q

}
≥ c′(τ)
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for some c′(τ) > 0. Finally, observe that as the rowi(Ã) contains one entry which is
shifted by z and |z| ≤ pn, by Markov’s inequality there is C1(τ) > 0 such that

P

{ n∑

j=1

|ãij | > C1pn
}

≤ pnE|ξij | + pn

C1pn
≤ c′(τ)

2
.

The combination of the last two probability estimates yields the lemma. �

To pass from a single coordinate of Ãx to bounds for its norm, we need the fol-

lowing elementary lemma showing that with overwhelming probability, the number
of good rows is large.

Lemma 6.2. For any τ ∈ (0, 1) there are c6.2, c
′
6.2 > 0 depending only on τ with the

following property. Let x and n, p, z, A, q be as in Lemma 6.1. Denote

S(x) :=
∑

i∈[n]\ Maxq(x)

1Ωi
x
,

where 1Ωi
x

is the indicator of the event Ωi
x. Set

Ωx :=
{|S(x)| ≥ c6.2n

}
.

Then

P(Ωx) ≥ 1 − exp(−c′
6.2n).

Proof. Since the events Ωi
x for different i are independent, Bernstein’s inequality and

Lemma 6.1 imply this bound. �

The next proposition is the main step toward proving the result of this section.

It asserts that if X is an almost null vector for φ(Ã) and x∗
m/2 and x∗

m are commen-
surate, then typically x∗

M is also commensurate with x∗
m for M almost proportional

to n.

Proposition 6.3. Let τ ∈ (0, 1), let n, p, z, A, q be as in Lemma 6.1, and let

τp−1 ≤ m ≤ p−1.

There exist positive constants C6.3, C̃6.3, c6.3, c̃6.3, ĉ6.3 depending on τ and α with the
following property. Let

M := �c̃6.3n/ log(np)�,
and define

E6.3 :=
{

∀φ : [n] → N with |{i ≤ n : |φ−1(φ(i))| ≥ 2}| ≤ c6.3n and

∀x ∈ Sn−1(C) such that x∗
m > e−c̃6.3pnx∗


m/2� & x∗
M ≤ c6.3

pn
x∗

m

we have ‖φ(Ã)x‖2 > ĉ6.3
√

nx∗
m

}
.

Then P(E6.3) ≥ 1 − exp(−C6.3n).
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Proof. Let

ε :=
c6.3

pn
,

where the constant c6.3 will be chosen later. Denote

V :=
{

x ∈ Sn−1(C) : x∗
m > e−c̃6.3pnx∗


m/2� & x∗
M ≤ ε · x∗

m

}
.

and define a function f : V → C
n by

f(x) :=
Proj[n]\ Maxm/2(x)(x)

x∗
m

,

where Proj[n]\ Maxm/2(x) denotes the coordinate projection onto [n]\Maxm/2(x). De-
fine also

W := {f(x) : x ∈ V } .

The proof uses an ε-net in the set W in the 
∞ metric. Note that for every x ∈ V

‖f(x)‖∞ ≤ H := exp(c̃6.3pn), f(x)∗
�m/2�+1 ≤ 1 and f(x)∗

M−
m/2�+1 ≤ ε.

To construct the net, we first choose an M -element subset of [n] corresponding to
MaxM (x) and a further �m/2�-subset corresponding to Maxm/2(x). After these sets
are chosen, we cover the cube of size H of (complex) dimension �m/2
 and the unit
cube of dimension M − m by cubes of size ε. This allows to construct an ε-net
N ′ ⊂ W with cardinality

|N ′| ≤
(

n

M − �m/2�
)(

M − �m/2�
�m/2


)(
3
ε

)2(M−m) (3H

ε

)m+1

≤ exp
(

M

[
log

(en

M

)
+ 2 log

(
3
ε

)]
+ (m + 1)

[
log

(
eM

m/2

)
+ log (H)

])
.

Here,

M log
(en

M

)
≤ c̃6.3

n

log(pn)
log

(
e log

pn

c̃6.3

)
≤ c̃6.3n

and

M log
(

3
ε

)
= c̃6.3

n

log(pn)
log(3c−1

6.3pn) ≤ C1c̃6.3n

for some constant C1 which does not depend on c̃6.3 as long as c−1
6.3 ≤ pn. Also, since

τp−1 ≤ m ≤ p−1, we have

(m + 1)
[
log

(
eM

m/2

)
+ log (H)

]
≤ 2p−1 [log(C2c̃6.3pn) + c̃6.3pn] ≤ C3c̃6.3n
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where C2, C3 do not depend on c̃6.3. This allows us to conclude that

|N ′| ≤ exp (C4c̃6.3n) .

We will use a modification of this net to approximate the n − m/2 smallest coordi-
nates of a vector. Let us construct this modification.

For every u ∈ N ′ and every I ⊂ [n], |I| = �m/2�, pick a vector x ∈ V such that
Maxm/2(x) = I and ‖f(x) − u‖∞ ≤ ε. If such x does not exist for a given I, we
skip this I. If such x does not exist for any I, we skip u. This process creates a set
N ⊂ V such that

|N | ≤
(

n

�m/2�
)

· |N ′| ≤
(

en

�m/2�
)
m/2�

· exp (C4c̃6.3n) ≤ exp (C5c̃6.3n)

where C5 does not depend on c̃6.3. By construction, for any y ∈ V , there exists an
x ∈ N with

Maxm/2(x) = Maxm/2(y) and ‖f(y) − f(x)‖∞ ≤ 2ε.

Assume that the event Ω =
⋂

x∈N Ωx occurs. Take any y ∈ V and choose x ∈ N
satisfying the condition above. Since Maxm/2(x) = Maxm/2(y), for any i such that
Ωi

x holds, we have

|〈rowi(Ã), y〉| = |〈rowi(Ã), Proj[n]\ Maxm/2(y)(y)〉|
= |〈rowi(Ã), f(y)〉| · y∗

m

≥
(
|〈rowi(Ã), f(x)〉| − |〈rowi(Ã), f(x) − f(y)〉|

)
· y∗

m

≥
( 1

2α
− ‖f(x) − f(y)‖∞ ·

n∑

j=1

|ãij |
)

· y∗
m ≥

( 1
2α

− 2ε · C6.1pn
)

· y∗
m

≥ 1
4α

· y∗
m,

if the constant c6.3 appearing in the definition of ε is chosen sufficiently small. Since
S(x) ≥ c6.2n on Ω, and since |{i ≤ n : |φ−1(φ(i))| ≥ 2}| ≤ c6.3n, this implies that

∥∥
∥φ(Ã)y

∥∥
∥

2
≥ ĉ6.3

√
ny∗

m

for an appropriately chosen ĉ6.3. We proved that if Ω occurs, then the event E6.3 does
not occur. It remains to estimate the probability of Ωc. By Lemma 6.2, we have

P(Ωc) ≤
∑

x∈N
P(Ωc

x) ≤ |N | · exp(−c′
6.2n) ≤ exp

(
C5c̃6.3n − c′

6.2n
) ≤ exp(−(c′

6.2/2)n)

if the constant c̃6.3 is chosen appropriately small. This finishes the proof of the
proposition. �
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Now, we combine Proposition 6.3 and Proposition 5.4 to derive the main result of
this section. It will be convenient for us to define a single event which encapsulates
all good properties of the matrix Ã and the associated graph GÃ. Set E := E3.4 ∩
E4.14 ∩ E3.3(1/512α) ∩ E6.3, and let Egood be the event

Egood :=
{E occurs for both Ã and Ã�}.

Note that the results we have proved up to now show that P(Egood) ≥ 1− (pn)−c for
an absolute constant c > 0.

Proposition 6.4. Let n, p, z and the matrix A satisfy assumptions (A1)–(A2)–
(A3). Fix a realization of A in Egood. Let q be in the interval {1, 2, . . . , �c6.4/p�}. Let

m ≤ n, and let φ : [n] → [m] be a (Ã, K0/2)–admissible (K0/256)–light mapping.
Set

M = �c6.4n/ log(np)�.
Then for any vector x ∈ C

n with

‖φ(Ã)x‖2 ≤
√

n

2α
(2α)−C6.4 log2 4n

q
log2(pn+log 4n

q
) x∗

q

we have

x∗
q ≤ (2α)C6.4 log2 4n

q
log2(pn+log 4n

q
)x∗

M .

Combining Corollary 5.5 and Proposition 6.3, we obtain

Corollary 6.5. Let n, p, A, z satisfy assumptions (A1)–(A2)–(A3). Fix a real-
ization of Ã in Egood. Set

M = �c6.5n/ log(pn)�.
Then any vector x ∈ C

n such that ‖Ãx‖2 ≤ (2α)−C6.5 log3 n‖x‖∞, satisfies

‖x‖∞ ≤ (2α)C6.5 log3 n x∗
M .

7 The Smallest Singular Value

In this short section, we establish one of the main results of the paper, namely, the
lower bound on the smallest singular value. Sections 5 and 6 provide a probabilistic
lower bound on ‖Ãx‖2 for sparse vectors x. The methods used there cannot however
be extended to spread vectors. A method for treating these vectors suggested in
[RV08] was used to derive a lower bound on the smallest singular value. If we know
that a certain coordinate of x, say x1, has a large absolute value, then we can use
the orthogonal projection P1 onto the space H1 = span

{
col2(Ã), . . . , coln(Ã)

}⊥ to
bound ‖Ãx‖2 from below:

‖Ãx‖2 ≥ ‖P1Ãx‖2 = |x1| · ‖P1col1(Ã)‖2.
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The quantity ‖P1col1(Ã)‖2 can in turn be estimated below by |〈ν1, col1(Ã)〉|, where
ν1 is a unit vector orthogonal to col2(Ã), . . . , coln(Ã). This estimate provides the
desired lower bound for all vectors x with a sufficiently large first coordinate. If we
don’t know which coordinate of x is large, but know that many of them are, we can
construct a probabilistic version of this estimate by choosing a coordinate uniformly
at random. We implement this idea below.

Theorem 7.1 (Bound for smin). Let n, p, A, z satisfy assumptions (A1)–(A2)–
(A3), and, as before, let Ã := A − z Id. Then

P
{
smin(Ã) ≤ (2α)−C7.1 log3 n

} ≤ (pn)−c7.1 ,

where c7.1 > 0 is a universal constant.

Proof. For any j ≤ n, let νj be a random unit normal vector to the linear span of
columns colu(Ã), u 	= j (of course, νj is not uniquely defined). We will assume that
νj is measurable with respect to the σ–algebra generated by the columns colu(Ã),
u 	= j, that is, νj and colj(Ã) are independent for each j. Further, let Xmin be a
normalized right singular vector corresponding to the smallest singular value of Ã.

Denote

Esmin := Egood ∩ {
smin(Ã) ≤ (2α)−2C6.5 log3 n/(αn)

}

and

Ej := Egood ∩ {|〈νj , colj(Ã)〉| ≤ (2α)−C6.5 log3 n/(α
√

n)
}
, j = 1, 2, . . . , n.

Observe that Corollary 6.5 yields

Esmin ⊂ {‖Xmin‖∞ ≤ (2α)C6.5 log3 n (Xmin)∗
M

}
,

where

M := �c6.5n/ log(pn)�,
as in Corollary 6.5. The last relation, in combination with ‖Xmin‖2 = 1, implies that
within the event Esmin, at least M coordinates of Xmin are greater than
(2α)−C6.5 log3 n/

√
n by absolute value. On each of those coordinates, we have

smin(Ã) = ‖ÃXmin‖2 ≥ |ν�
j ÃXmin| ≥ (2α)−C6.5 log3 n|〈νj , colj(Ã)〉|/√

n,

hence,

|〈νj , colj(Ã)〉| ≤ (2α)−C6.5 log3 n/(α
√

n).

Thus, for any ω ∈ Esmin there are at least M indices j such that ω ∈ Ej . Equivalently,
we can write

n∑

j=1

1Ej
≥ M everywhere on Esmin. (7.1)
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As the final step of the proof, observe that for each j ≤ n:

P(Ej) ≤ P
{|〈νj , colj(Ã)〉| ≤ (2α)−C6.5 log3 n/(α

√
n) and (νj)∗

M ≥ (2α)−C6.5 log3 n/
√

n
}
.

Indeed, the inequality |〈νj , colj(Ã)〉| ≤ (2α)−C6.5 log3 n/(α
√

n), together with the con-
dition 〈νj , colu(Ã)〉 = 0, u 	= j, implies ‖Ã�νj‖2 ≤ (2α)−C6.5 log3 n‖νj‖∞. Since
Ej ⊂ Egood, by Corollary 6.5 (applied to the transposed matrix Ã�) this implies
that νj is spread in the sense that (νj)∗

M ≥ (2α)−C6.5 log3 n‖νj‖∞.
By our choice of νj ’s, the event {(νj)∗

M ≥ (2α)−C6.5 log3 n/
√

n} is measurable with
respect to σ-algebra generated by columns colu(Ã), u ∈ [n]\{j}, and hence

P
{|〈νj , colj(Ã)〉| ≤ (2α)−C6.5 log3 n/(α

√
n) and (νj)∗

M ≥ (2α)−C6.5 log3 n/
√

n
}

= E

(
P
{|〈νj , colj(Ã)〉| ≤ (2α)−C6.5 log3 n/(α

√
n) | νj

}
1{(νj)∗

M≥(2α)−C6.5 log3 n/
√

n}
)

≤ sup
Y

P
{|〈Y, colj(Ã)〉| ≤ (2α)−C6.5 log3 n/(α

√
n)

}
,

where in the last relation the supremum is taken over all unit (non-random) complex
vectors Y with Y ∗

M ≥ (2α)−C6.5 log3 n/
√

n. Fix Y for which the supremum is attained.
Note that, by the assumptions on the matrix, each entry ãij of Ã satisfies

L(
ãij ,

1
α

) ≤ 1 − p
α , i = 1, 2, . . . , n, and hence, denoting ξi := ãijYi, we get

L(ξi,
1
α(2α)−C6.5 log3 n/

√
n) ≤ 1 − p

α , i ∈ MaxM (Y ). Then, by Lemma 3.2, the prob-
ability P(Ej) can be bounded from above as

P(Ej) ≤ L
( ∑

i∈MaxM (Y )

ξi, (2α)−C6.5 log3 n/(α
√

n)
)

≤ C
√

α√
pM

≤ C ′√α log(pn)/pn,

for universal constants C, C ′ > 0. Thus, we have

E

n∑

j=1

1Ej
≤ C ′n

√
α log(pn)/pn.

This, together with (7.1) and Markov’s inequality, implies

P(Esmin) ≤ C ′′√α log3/2(pn)/
√

pn.

It remains to note that P(Egood) ≥ 1 − (pn)−c. �


8 Randomized Restricted Invertibility

We seek to extend the method of bounding the smallest singular value from the
previous section to bounding the k-th smallest one. It would be natural to suggest
replacing rank one random projections by the higher rank ones. Such idea was im-
plemented in [RV09] leading to the optimal estimate for the intermediate singular
value of a dense matrix (see [Wei17] for a matching upper estimate). However, the
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method used in [RV09] to construct random test projections provides a probability
estimate which becomes too weak if we consider very sparse matrices. To improve
the probability estimate, we will take advantage of the special structure of a test
projection. This will be achieved by applying the restricted invertibility principle
originating in the classical work of Bourgain and Tzafriri [BT87]. The argument
based on the restricted invertibility was used in the recent papers of Cook [Coo18]
and Nguyen [Ngu18], but our method will be different.

We need a probabilistic version of the Bourgain–Tzafriri restricted invertibility
theorem [BT87, Theorem 1.2].

Lemma 8.1. Let η ∈ (0, 1), ρ > 0; let k < n, and let V be a k × n matrix with
complex entries whose rows row1(V ), . . . , rowk(V ) are orthonormal. Assume that
(rowj(V ))∗


ηn� ≥ ρ/
√

n for all j ∈ [k]. Let


 := �c̃8.1η3ρ2k�,
let β1, . . . , βn be independent Bernoulli(
/n) random variables, and set J := {j ∈
[n] : βj = 1}. Denote the columns of V by V1, . . . , Vn. Then with probability at
least (ĉ8.1η)�, the set J satisfies

(1) |J | = 
;

(2) ‖Vj‖2 ≤
√

C8.1k
ηn for all j ∈ J ;

(3)
∥
∥∥
∑

j∈J zjVj

∥
∥∥

2
≥ c8.1ρ

√
η k

n ‖z‖2 for any z ∈ C
J .

Proof. Let R > 1 be a parameter to be chosen later, and let μ1, . . . , μn be indepen-
dent Bernoulli(R
/n) random variables. Denote J1 := {j ∈ [n] : σj = 1}. We will
prove that some weaker properties hold for the random set J1 with probability at
least 1/2. Then we will extract a subset J of cardinality 
 from each good realization
of the set J1 satisfying (1), (2), and (3). This extraction can be viewed as a random
selection using axillary 2R
 independent Bernoulli(1/R) random variables. In this
case, the probability that the correct subset J is selected is at least exp(−c
).

We pass to a detailed construction. First, we select a subset of columns Î with
upper and lower bounds on the Euclidean norm. By assumption of the lemma, the
matrix V = (vji) satisfies

|Ij | := |{i ∈ [n] : |vji| ≥ ρ/
√

n}| ≥ �ηn� for all j ∈ [k].

Denote Yi := |{j ∈ [k] : i ∈ Ij}|. Then 0 ≤ Yi ≤ k, and the previous inequality
implies that

∑n
i=1 Yi ≥ �ηn�k. Hence,

|{i ∈ [n] : Yi ≥ ηk/2}| ≥ 1
k

∑

i∈[n]: Yi≥ηk/2

Yi

≥ 1
k

(
�ηn�k − ηk

2
· |{i ∈ [n] : Yi < ηk/2}|

)

≥ ηn

2
− 1.
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By the definition of Yi’s, for any i ≤ k we have ‖Vi‖2 ≥ ρ
√

Yi/
√

n, and so

|Ĩ| :=
∣
∣
∣
{

i ∈ [n] : ‖Vi‖2 ≥ ρ

√
ηk

2n

}∣∣
∣ ≥ ηn

2
− 1.

Set Î :=
{

i ∈ Ĩ : ‖Vi‖2 ≤
√

4k
ηn

}
. By assumption on the matrix V ,

∑n
i=1 ‖Vi‖2

2 = k,
so

|Î| ≥ |Ĩ| −
∣
∣
∣
∣

{
i ∈ [n] : ‖Vi‖2 ≥

√
4k

ηn

}∣
∣
∣
∣ ≥ ηn

4
− 1.

We will select a good subset of indices inside Î.
Let Ω1 be the event that

∑
i∈Î σi ≥ ηR�

8 . Then, by standard concentration in-
equalities, P(Ωc

1) ≤ 1/8; moreover, on the event Ω1, the set

J2 := J1 ∩ Î =

{

i ∈ J1 : ρ

√
ηk

2n
≤ ‖Vi‖2 ≤

√
4k

ηn

}

satisfies |J2| ≥ ηR�
8 .

For any set I ⊂ [n], let QI : Ck → C
k be the orthogonal projection on span{Vi, i ∈

I}. Notice that for every given i ∈ [n], the random variables σi and
∥∥QJ1\{i}Vi

∥∥
2

are
independent. Therefore,

E

∑

i∈J1

∥
∥QJ1\{i}Vi

∥
∥2

2
= E

n∑

i=1

σi

∥
∥QJ1\{i}Vi

∥
∥2

2
=

R


n
E

n∑

i=1

∥
∥QJ1\{i}Vi

∥
∥2

2

≤ R


n
E

n∑

i=1

‖QJ1Vi‖2
2 =

R


n
E ‖QJ1V ‖2

HS

≤ R


n
E(‖QJ1‖2

HS · ‖V ‖2) ≤ R


n
· R
.

Let Ω2 be the event that
∑

i∈J1

∥
∥QJ1\{i}Vi

∥
∥2

2
≤ 8 (R�)2

n . By the Markov inequality
and the above estimates, P(Ωc

2) ≤ 1/8. On the event Ω2, we have

∣∣{i ∈ J1 :
∥∥QJ1\{i}Vi

∥∥2

2
≥ 128R
/ηn

}∣∣ ≤ ηR


16
.

Let us summarize our conclusions. On the event Ω1∩Ω2, whose probability is greater
than 3/4, we have

|J2| :=
∣∣
∣
∣

{
i ∈ J1 : ρ

√
ηk

2n
≤ ‖Vi‖2 ≤

√
4k

ηn

}∣∣
∣
∣ ≥ ηR


8
, and

|{i ∈ J1 :
∥
∥QJ1\{i}Vi

∥
∥2

2
≥ 128R
/ηn}| ≤ ηR


16
.
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If J3 := {i ∈ J2 :
∥
∥QJ1\{i}Vi

∥
∥2

2
≤ 128R
/ηn}, then on this event, |J3| ≥ ηR�

16 . Thus,
for any i ∈ J3,

∥
∥(Id − QJ3\{i})Vi

∥
∥2

2
= ‖Vi‖2

2 − ∥
∥QJ3\{i}Vi

∥
∥2

2
≥ ‖Vi‖2

2 − ∥
∥QJ1\{i}Vi

∥
∥2

2

≥ ‖Vi‖2
2 − 128R
/ηn ≥ ‖Vi‖2

2 /2

if we assume that R and c̃ are chosen so that

128Rc̃8.1η <
1
4
. (8.1)

Now, we assume that event Ω1∩Ω2 occurs and fix a realization of the set J3. The rest
of the proof follows [BT87, Theorem 1.2] and is deterministic. Arguing exactly as in
[BT87, Theorem 1.5], we conclude that there is a subset J4 ⊂ J3 with |J4| ≥ |J3|/3
such that for any z1, . . . , zn ∈ C,

∥∥
∥∥
∥

∑

i∈J4

ziVi

∥∥
∥∥
∥

2

≥ c̄ρ

√

η
k

n
· |J4|−1/2

∑

i∈J4

|zi|.

Then, following the second proof of [BT87, Theorem 1.2] and combining
Grothendieck’s theorem and the Pietsch factorization, we find a subset J5 ⊂ J4

with |J5| ≥ |J4|/2 such that
∥
∥∥
∥
∥

∑

i∈J5

ziVi

∥
∥∥
∥
∥

2

≥ c∗ρ

√

η
k

n
·
(
∑

i∈J5

|zi|2
)1/2

for any z1, . . . , zn ∈ C. Here, |J5| ≥ ηR�
96 . Choosing R = 100/η, we can select an


-element subset J6 ⊂ J5 such that the previous inequality holds with J6 in place
of J5. Now, choose c̃8.1 such that (8.1) is satisfied. We constructed the subset J6 of
cardinality 
 for which the assertion (3) of the Lemma holds. Assertion (2) holds as
well since J6 ⊂ J2.

It remains to recast the selection of J6 as a random choice. To this end, we
introduce independent Bernoulli(1/R) random variables η1, . . . , ηn and set βj =
σjηj , j ∈ [n]. Then βj are independent Bernoulli(
/n) random variables as required.
Recall that J1 = {i ∈ [n] : σi = 1}. Let Ω3 be the event that (1/2)R
 ≤ |J1| ≤ 2R
,
so P(Ωc

3) ≤ 1/8, and thus P(Ω1 ∩ Ω2 ∩ Ω3) ≥ 1/2. Condition on σ1, . . . , σn for which
Ω1 ∩ Ω2 ∩ Ω3 occurs. Set J = {i ∈ J1 : ηi = 1}. Then

P(J = J6 | σ1, . . . , σn) ≥ (1/R)� · (1 − 1/R)|J1|−� ≥
( η

100

)�
e−2� ≥ (cη)�,

so the proof is complete. �

Corollary 8.2. Let η, 
, ρ, and V be as in Lemma 8.1. Let I ⊂ [n] be a random set
uniformly chosen among the subsets of [n] of cardinality 
. Then with probability at
least (ĉ8.1η)�, the set I satisfies
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(1) ‖Vj‖2 ≤
√

C8.1k
ηn for all j ∈ I;

(2)
∥
∥
∥
∑

j∈I zjVj

∥
∥
∥

2
≥ c8.1ρ

√
η k

n ‖z‖2 for any z ∈ C
I .

Proof. Let J be the set appearing in Lemma 8.1. Conditionally on the event |J | = 
,
the set J is uniformly distributed among the 
–element subsets of [n]. Since the
conditional probability is at least as large as the unconditional one, the corollary
follows. �


If B is an n × n matrix, then sn−k+1(B) ≤ s if and only if there exists a linear
subspace E ⊂ C

n of complex dimension k, such that for any x ∈ E, ‖Bx‖2 ≤ s ‖x‖2.
The subspace E can be represented as V �

C
k, where V is a k × n matrix with

orthonormal rows row1(V ), . . . , rowk(V ). The bound on the singular value is thus
equivalent to

∥∥BV �∥∥ ≤ s. Assume that we managed to construct the matrix V so
that its rows are well spread. Then Corollary 8.2 allows us to relate the bound on
sn−k+1(B) to magnitudes of projections of columns of B onto orthogonal comple-
ments to spans of some other columns, thus eliminating the unknown matrix V . To
take advantage of this corollary, we will combine it with the following deterministic
lemma.

Lemma 8.3. Let η, 
, ρ be as in Lemma 8.1, and let V be the set of all k×n matrices
V with orthonormal rows such that (rowj(V ))∗


ηn� ≥ ρ/
√

n for all j ∈ [k]. Assume

that B is an n × n matrix such that
∥
∥BV �∥∥ ≤ s for some V ∈ V and s > 0. Let IV

be the set of all subsets I ⊂ [n] of cardinality 
 satisfying conditions (1) and (2) of
Corollary 8.2. Then for any I ∈ IV we have

‖PIcolj(B)‖2 ≤
√

2
c8.1ρ

√
n

ηk
s for at least 
/2 indices j ∈ I,

where PI denotes the orthogonal projection onto
(
span{colu(B) : u ∈ [n]\I})⊥

.

Proof. Fix a set I ∈ IV . We use the following identity valid for all vectors X(i) =
(x(i)1, . . . , x(i)n) ∈ C

n, i ∈ I:

∥
∥
∥
∑

i∈I

ViX
�
(i)

∥
∥
∥

2

HS
=

n∑

j=1

∥
∥
∥
∑

i∈I

x(i)jVi

∥
∥
∥

2

2
≥ inf

w∈CI , ‖w‖2=1

∥
∥
∥
∑

i∈I

wiVi

∥
∥
∥

2

2
·

n∑

j=1

∑

i∈I

|x(i)j |2

= inf
w∈CI , ‖w‖2=1

∥∥
∥
∑

i∈I

wiVi

∥∥
∥

2

2
·
∑

i∈I

‖X(i)‖2
2.

Applying the identity to vectors PIcoli(B), i ∈ I, and using the fact that I ∈ IV ,
we obtain that

c2
8.1ρ

2η
k

n
·
∑

i∈I

‖PIcoli(B)‖2
2 ≤

∥
∥∥
∥
∑

i∈I

Vi(PIcoli(B))�
∥
∥∥
∥

2

HS

.
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The Hilbert–Schmidt norm can be estimated as
∥
∥
∥
∥
∑

i∈I

Vi(PIcoli(B))�
∥
∥
∥
∥

HS

=
∥
∥
∥
∥PI

(∑

i∈I

coli(B)V �
i

)∥∥
∥
∥

HS

=
∥
∥
∥
∥PI

( n∑

i=1

coli(B)V �
i

)∥∥
∥
∥

HS

=
∥
∥
∥PIBV �

∥
∥
∥

HS
≤ ‖PI‖HS ·

∥
∥
∥BV �

∥
∥
∥ ≤

√

s.

Hence,

∃I ′ ⊂ I |I ′| = �
/2
 and ∀i ∈ I ′ ‖PIcoli(B)‖2 ≤
√

2s

c8.1ρ

√
n

ηk
,

as required. �

To make use of Lemma 8.3 in our random model, we will need sufficiently strong

anti-concentration estimates for ‖PJcolj(Ã)‖2, which are not always available. In-
deed, if 
 ≤ e−Cpnn then with a large probability the matrix Ã contains at least 

rows whose only non-zero elements are the diagonal ones. Then, whenever J is the
set of indices of those rows, the kernel ker((ÃJ

col)
�) is the coordinate subspace, and

‖PJcolj(Ã)‖2 = |z| with probability close to one for all j ∈ J . However, with J chosen
uniformly at random, we will be able to show that with very large probability corre-
sponding kernel contains a large orthonormal set of spread vectors, and the random
variables ker((ÃJ

col)
�) are well spread. Thus we are forced to introduce the excep-

tional set of realizations of J for which we do not have a good anti-concentration.
The key property is that the probability of J falling into this exceptional set is much
smaller than the probability of the event described in Corollary 8.2.

The next proposition is the main result of this section. We consider the case
when B is a random matrix with independent columns, and the matrix V can be
constructed to have sufficiently spread rows.

Proposition 8.4. Let η, ρ > 0, and let V be the set of all k × n matrices V with
orthonormal rows such that (rowj(V ))∗


ηn� ≥ ρ/
√

n for all j ∈ [k]. Let B be an n×n
random matrix with independent columns. Let


 := �c̃8.1η3ρ2k�,
For I ⊂ [n], denote by PI the n × n orthogonal projection matrix whose kernel is
the linear span of colj(B), j ∈ [n]\I.

For any 
-element subset I ⊂ [n], let F�(I) be a Borel-measurable set of (n−
)×n
matrices with columns indexed by the complement of the set I. Assume that for any
I, any j ∈ I, and any realization of BI

col from F�(I), we have

P

{
‖PIcolj(B)‖2 ≤

√
2

c8.1ρ

√
n

ηk
s
∣∣ BI

col

}
≤ t. (8.2)

Let J be a random subset of [n] uniformly chosen among the subsets of cardinality

. Let

F� :=
{

M ∈ C
n×n : PJ{MJ ′

col /∈ F�(J)} ≤ (ĉ8.1η/2)�
}

.
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Then

P

{
∃V ∈ V : ‖BV �‖ ≤ s & B ∈ F�

}
≤

(
C8.4

√
t

η

)�

.

Remark 8.5. In our proof, F�(I) will be the set of all matrices ÃI
col such that the

kernel of (ÃI
col)

� contains c
 orthonormal vectors with a good (cn/ log pn)-th order
statistic, ensuring estimates (8.2). Thus F� is the event that the kernel of (ÃJ

col)
�

has c
 orthonormal vectors with a good order statistic for a random set J .

Proof. As in Lemma 8.3, for a given V ∈ V let IV be the set of all subsets I ⊂ [n]
of cardinality 
 satisfying conditions (1) and (2) of Corollary 8.2.

For the random matrix B, define a random matrix Ṽ measurable with respect to
B, constructed as follows: whenever for a given realization of B there is a matrix V ∈
V with

∥∥BV �∥∥ ≤ s, choose Ṽ to be such a matrix; otherwise, let Ṽ be any matrix
from V. To avoid measurability problems, we can assume that B takes finitely many
values. This assumption can be easily removed after the proof of the proposition is
complete. Denote

q := PB,J

{∥
∥BṼ �∥∥ ≤ s & J ∈ IṼ & BJ

col ∈ F�(J) & B ∈ F�

}
.

We will estimate this probability in two ways. First, by Corollary 8.2, for any
matrices M ∈ F� and V ∈ V satisfying

∥
∥MV �∥∥ ≤ s, we have

P
{
J ∈ IV & MJ

col ∈ F�(J)
} ≥ P

{
J ∈ IV

} − P
{
MJ

col /∈ F�(J)
}

≥ (ĉ8.1η)� − (ĉ8.1η/2)� ≥ (ĉ8.1η/2)�.

Hence,

q = EB

(
P
{
J ∈ IṼ & BJ

col ∈ F�(J) | B
} · 1‖BṼ �‖≤s · 1B∈F�

)

≥ (ĉ8.1η/2)� · P{‖BṼ �‖ ≤ s & B ∈ F�

}
. (8.3)

On the other hand,

q ≤ PB,J

{∥∥BṼ �∥∥ ≤ s & J ∈ IṼ & BJ
col ∈ F�(J)

}

= EJ

[
EBJ

col

(
EBJc

col
(1‖BṼ �‖≤s · 1J∈IṼ

· 1BJ
col∈F�(J) | J, BJ

col) | J
)]

= EJ

[
EBJ

col

(
EBJc

col

(
1‖BṼ �‖≤s · 1J∈IṼ

| J, BJ
col

) · 1BJ
col∈F�(J) | J

) ]
.

Applying Lemma 8.3 we get that the event
{‖BṼ �‖ ≤ s and J ∈ IṼ

}
is contained

in the event
{

‖PJcolj(B)‖2 ≤
√

2
c8.1ρ

√
n

ηk
s for at least 
/2 indices j ∈ J

}
.
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Hence,

EBJc
col

(1‖BṼ �‖≤s · 1J∈IṼ
| J, BJ

col)

≤ P

(
∃J̃ ⊂ J |J̃ |=�
/2
 such that ∀i∈ J̃ ‖PJcoli(B)‖2 ≤

√
2s

c8.1ρ

√
n

ηk
| J, BJ

col

)
.

Note that conditioned on any realization of J and BJ
col, the projections PJcoli(B),

i ∈ J , are jointly independent. Therefore, on the event {BJ
col ∈ F�(J)} we can apply

(8.2) together with the union bound over all �
/2
-element subsets of J to get

EBJc
col

(1‖BṼ �‖≤s · 1J∈IṼ
| J, BJ

col) · 1BJ
col∈F�(J) ≤

(



�
/2�
)

· t�/2 ≤ (C
√

t)�.

In combination with the above inequalities, this yields

q ≤ (C
√

t)�.

Combining it with (8.3), we conclude the proof of the proposition. �


9 The Intermediate Singular Values

In this section we are concerned with bounding intermediate singular values sn−k(Ã)
for n/ logC n ≤ k ≤ n(pn)−c. Note that for pn polylogarithmic in n, the interval for k
is empty, and the results of this section do not enter into the proof of the circular law.
The estimates obtained here become important when pn ≤ log n, and will be used in
the next section to verify uniform integrability of logarithm with respect to empirical
measures of singular values of Ãn. Estimating the intermediate singular values in
the setting of random directed d–regular graphs was an important step in the proof
of the circular law for that model in the regime when the degree d is sub-logarithmic
in dimension [LLTTYc]. We note that in [LLTTYc] a completely different approach
based on bounding distances between matrix columns and uniform random normals
to certain random subspaces was employed.

Assume that the matrix Ã is such that the event Egood occurs. In this section, we
will show that for a random set J of a fixed cardinality, with high probability the
space ker((ÃJ

col)
� possesses a large orthonormal system of sufficiently spread vectors.

We start with a deterministic statement asserting the existence of an orthonormal
basis of spread vectors in any fixed subspace (see [LLTTYc, Lemma 4.3] for a related
statement).

Lemma 9.1 (Basis of spread vectors). Let E ⊂ C
n be a linear subspace of dimension

k ≥ C log n. Let

1 ≤ s ≤ c9.1
k

log(n/k)
,

where c9.1 > 0 is a sufficiently small universal constant. Then there exists an or-
thonormal basis u1, . . . , uk in E such that (uj)∗

s ≥ 1
2
√

n
for all j ∈ [k].
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Proof. Let uE be a random vector uniformly distributed on Sn−1(C)∩E. Let P crd
J be

the coordinate projection on C
J , J ⊂ [n]. We will show that with large probability

for any s–element subset J of [n], uE satisfies
∥
∥P crd

J uE

∥
∥

2
< 1/2. To this end, we

represent uE as PEg/ ‖PEg‖2 where PE is the projection on E, and g is the standard
Gaussian vector in C

n. Then by the Gaussian concentration

P
{ ‖PEg‖2 ≤

√
k/2

} ≤ exp(−ck).

Also, E
∥
∥P crd

J PEg
∥
∥2

2
≤ E

∥
∥P crd

J g
∥
∥2

2
= s since for any B ∈ C

n×n, E ‖Bg‖2
2 depends

only on the singular values of B. Using the Gaussian concentration again, we derive

P
{∥
∥
∥P crd

J PEg
∥
∥
∥

2
> t

} ≤ exp(−ct2)

for t ≥ 2
√

s. Choosing t :=
√

Cs log n
s (for a sufficiently large C > 0), we get

k

(
n

s

)
· P(

∥∥
∥P crd

J PEg
∥∥
∥

2
> t) ≤ exp

(
log k + s log

en

s
− Cs log

n

s

)
≤ 1

4
.

Hence,

P

{
∃J ∈

(
[n]
s

)
:
∥∥
∥P crd

J uE

∥∥
∥

2
≥ 2C

√
s

k
·
√

log
n

s

}

≤ P

{
∃J ∈

(
[n]
s

)
:
∥∥
∥P crd

J PEg
∥∥
∥

2
≥ C

√
s ·

√
log

n

s
& ‖PEg‖2 ≥

√
k

2

}

+ P

{
‖PEg‖2 ≤

√
k

2

}
≤ 1

2k
,

and by the union bound, a Haar–uniformly distributed random orthonormal basis
u1, . . . , uk in E satisfies

∀i ∈ [k] ∀J ∈
(

[n]
s

)
:
∥∥
∥P crd

J ui

∥∥
∥

2
≤ 2C

√
s

k
·
√

log
n

s
≤ 1

2

with probability at least 1/2. For any such realization, we have
∥∥(u∗

i )[s:n]

∥∥
2

≥ 1/2,
which implies the lemma. �


Lemma 9.1 above allows to construct an orthonormal basis with a good control of
the 
∞–norm of the vectors. Yet, it does not give sufficiently strong information on
the size of the vector support. On the other hand, Proposition 6.4 which we proved
earlier in this paper, provides lower bounds on the cn/ log(pn)–th order statistics of
almost null vectors but does not imply a strong upper bound on the 
∞ norm.

We would like to combine Lemma 9.1 with Proposition 6.4 to improve the
“spreadness” property of the vectors in the basis. Yet, this is not always possi-
ble since E := ker((ÃJ

col)
�) can be a coordinate subspace for some choice of J , as we

discussed in the previous section. Fortunately, even if constructing a good orthonor-
mal system in ker((ÃJ

col)
�) is impossible for all sets J , it is possible for a random set
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J with high probability. In view of Proposition 8.4, this would be enough. To show
this property of ker((ÃJ

col)
�), we will utilize the concept of the matrix compression:

for any realization of J , we replace ker((ÃJ
col)

�) with its subspace having the form
ker(φ(Ã�)), for a specially chosen compression φ. On the one hand, existence of
the compression is guaranteed with high probability by Lemma 4.12. On the other
hand, the required structural properties of ker(φ(Ã�)) can be verified by combining
Proposition 6.4 and Lemma 9.1. In this respect, the matrix compression allows to
replace the problem of describing the geometry of ker((ÃJ

col)
�) (which turns out to

be a complex mixture of spread and sparse vectors) with studying a relatively simple
subspace ker(φ(Ã�)) which typically contains only spread vectors.

Proposition 9.2. Let n, p, z and the matrix A satisfy assumptions (A1)–(A2)–
(A3). Fix a realization of A in Egood. Let 
 ≥ n1/2 be a natural number. Let J
be a random subset of [n] of cardinality 
 uniformly chosen from the sets of this
cardinality. Let

M :=
⌊
c̃6.3

n

log pn

⌋
,

and for every fixed I ⊂ [n], |I| = 
, let F�(I) be the set of all (n − 
) × n matrices B
(with rows indexed over Ic) such that the kernel of B contains �c9.2
� orthonormal
vectors v1, . . . , v
c9.2�� with

(vj)∗
M ≥ 1√

n
exp

(
−C9.2 log4(pn) log4

(n




))
, j = 1, 2, . . . , �c9.2
�. (9.1)

Then

P

{
(ÃJ

col)
� /∈ F�(J)

}
≤

(
ĉ8.1/2
log pn

)�

.

We will use this proposition to show that Egood can play the role of F� in Proposi-
tion 8.4.

Proof. Define K0 := pn
2α , K := K0/2 and ε := 1

215α . Since A belongs to E3.4 ∩ E4.14,
we can use Lemma 4.12. Namely, let E be the event (with respect to the randomness
of J) defined in the lemma. It is sufficient to show that for any realization of J from
E , we have (ÃJ

col)
� ∈ F�(J).

Fix any realization of J from E and let φ be the mapping defined in Lemma 4.12.
Observe that the kernel of (ÃJ

col)
� contains the kernel of the matrix φ(Ã�). Further,

by Lemma 9.1, there is an orthonormal basis v1, v2, . . . , v
ε�� in the kernel of φ((Ã)�),
such that for

q := min
(⌊

c9.1�ε
�/ log
n

�ε
�
⌋
, �c5.4/p�

)

we have (vi)∗
q ≥ 1

2
√

n
for all vectors from the basis.
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Observe that the matrix Ã� and the mapping φ satisfy conditions of Proposi-
tion 6.4. Hence, we have for all i:

(vi)∗
M ≥ (2α)−C6.4 log2 4n

q
log2(pn+log 4n

q
).

This implies that (ÃJ
col)

� ∈ F�(J), and the statement follows. �

We will now establish a bound for intermediate singular values necessary to derive

the circular law. Our main tool is Proposition 8.4 reducing the singular value bound
to the bound for the distances between a random set of rows of the matrix and
one row from the complement of this set. To apply it, we will construct a special
projection matrix PJ for any set J ⊂ [n], |J | = 
. Note that any such projection
matrix can be represented as PJ = QJQ�

J , where QJ is an n×
 matrix whose columns
form an orthonormal basis of the space HJ = (span(colj(Ã), j /∈ J))⊥. Any vector
in such basis is in the kernel of the (n − 
) × n matrix B which is obtained from the
matrix Ã� by deleting the rows from J . We will use Proposition 9.2 to construct an
orthonormal basis of spread vectors.

Theorem 9.3. Let β, δ ∈ (0, 1). Let n, p, z and the matrix A satisfy assumptions
(A1)–(A2)–(A3). Then

P

{
∃k ≥ n

log100 n
such that sn−k(Ã) ≤ e−C6.4 log

100 4n
k log100(pn) & Egood

}
≤

(
1
pn

)−c9.3
√
n

.

Proof. Fix an integer k ≥ n
log100 n

. Denote

τ := e−C6.4 log100 4n

k
log100(pn).

Fix for a moment any realization of Ã such that Egood occurs and such that sn−k(Ã) ≤
τ . Let E be the subspace spanned by the k singular vectors of Ã corresponding to
the smallest singular values. Then for any x ∈ Sn−1(C) ∩ E, we have ‖Ãx‖2 ≤ τ .
Choose an orthonormal basis v1, . . . , vk of E as in Lemma 9.1. Then for

s :=
⌊ c9.1k

log(n/k)

⌋

and for any j ∈ [k], we have (vj)∗
s ≥ 1

2
√

n
. Hence, assuming that C9.3 is large enough,

we have

‖Ãvj‖2 ≤ τ ≤ √
n(vj)∗

s

1
2α

(2α)−C6.4 log4 4n

s
log4(pn),

and, as long as s ≤ c/p, the assumptions of Proposition 6.4 are satisfied. By this
proposition,

(vj)∗
M ≥ (vj)∗

s exp
(

− C ′ log4 4n

s
log4(pn)

)
≥ 1√

n
ρ
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with

M :=
⌊ c̃6.4n

log pn

⌋
=: �ηn� and ρ := exp

(
− C ′′ log4 4n

k
log4(pn)

)
,

where we used log
(

n
s

) ≤ 2 log
(

n
k

)
to estimate ρ. On the other hand, for s ≥ c/p,

the bound (vj)∗
M ≥ 1

2
√

n
follows immediately from Lemma 9.1. This means that for

these η and ρ, the k × n matrix V with rows v1, . . . , vk belongs to the set V defined
in Proposition 8.4. Thus,

P

{
sn−k(Ã) ≤ τ & Egood

}
≤ P

{
∃V ∈ V ‖ÃV �‖ ≤ τ & Egood

}
. (9.2)

To apply this proposition, we will construct a projection PJ for a set J ⊂ [n] with

|J | = 
 := �c̃η3ρ2k�,

for which (ÃJ
col)

� ∈ F�(J), where F�(J) is defined in Proposition 9.2. This requires
checking that (8.2) holds for PJ . By the assumption on k, 4n1/2 ≤ 
.

Fix an 
–element subset J of [n], and condition on a realization of (ÃJ
col)

� from
F�(J). We define projection PJ as PJ := QJQ�

J , where QJ is an n × 
 matrix
whose columns Q1, . . . , Q� form an orthonormal basis of ker((ÃJ

col)
�). We will choose

a special orthonormal basis. Namely, we will choose �c9.2
� orthonormal vectors
Q1, . . . , Q
c9.2�� satisfying the condition (9.1) and complete them (arbitrarily) to an
orthonormal basis of ker((ÃJ

col)
�).

By (9.1), for any j ≤ c9.2
, we have

(Qj)∗
M ≥ 1√

n
exp

(
−C9.2 log4

(n




)
log4(pn)

)
,

where

log
(n




)
≤ C

[
log

(
1

log pn

)
+ log4

(
4n

k

)
log4(pn)

]
.

Therefore,

(Qj)∗
M ≥ 1√

n
exp

(
−C̃

[
log20(pn) log16

(
4n

k

)])
=:

ρ̄√
n

. (9.3)

This estimate will be instrumental in obtaining the small ball probability bound for∥∥
∥PJcoli(Ã)

∥∥
∥

2
, i ∈ J which is needed to apply Proposition 8.4.

Take j ≤ �c9.2
�, i ∈ J , and apply the Lemma 3.2 to the random variable
Yj = 〈Qj , coli(Ã)〉. In combination with (9.3), it yields
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L(Yj , ρ̄/(α
√

n)) = L
(
(α

√
n/ρ̄)

n∑

m=1

(Qj)mãmi, 1
)

≤ c
√∑n

m=1[1 − L((α
√

n/ρ̄)(Qj)mãmi, 1)]

≤ c
√

Mp/α
≤ c

√
α log pn

pn
≤ (pn)−1/4 =: t/8.

Now, we have to turn the estimates for individual inner products Yj into the
bound for ‖PJcoli(Ã)‖2

2 ≥ ∑
j≤c9.2�

|Yj |2. We have to deal with dependencies between

Yj ’s. Set Z :=
∑
c9.2��

j=1 1[0,ρ̄/
√

n](|〈Qj , coli(Ã)〉|). Then EZ ≤ (t/8)�c9.2
�, and so the
probability that Z > �c9.2
�/8 does not exceed t. This means that conditionally on
J and ÃJ

col,

P

{∥∥
∥PJcoli(Ã)

∥∥
∥

2
≤ ρ̄

√
c9.2
√
2n

}
≤ P

{ �∑

j=1

|〈Qj , coli(Ã)〉|2 ≤ ρ̄2c9.2


2n

}
≤ t.

Define s′ via the relation
√

2
c8.1ρ

√
n

ηk
s′ = ρ̄

√
c9.2
√
2n

.

We have checked that Ã satisfies (8.2) with s′ playing the role of s. By Proposi-
tion 9.2, PJ(ÃJ

col) ≤ (ĉ8.1η/2)�, so we can use Egood as F� in Proposition 8.4.
Applying Proposition 8.4, we conclude that

P

{
∃V ∈ V : ‖ÃV �‖ ≤ s′ & Egood

}
≤

(
Ct

η

)�

≤
(

1
pn

)−√
n

since 
 > 4
√

n. Substituting the values of η, ρ, and ρ̄, we see that s′ ≥ τ . This
inequality, in combination with (9.2), implies the desired estimate for a fixed k.
Taking the union bound, we obtain a similar estimate for all sn−k(Ã) simultaneously.
The proof is complete. �


10 Proof of the Circular Law

In this section, we apply the previously obtained singular value estimates to prove
the main result of this paper, Theorem 1.2. The derivation of the circular law relies
on [BC12, Lemma 4.3] (see also [TV10]), which we restate below.

Lemma 10.1. Let Mn be a sequence of n × n random matrices. Denote by μn,z the
empirical measure of the eigenvalues of Mn and by νn,z the empirical measure of the
singular values of Mn − zIdn. Assume that for a.e. z ∈ C,
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(1) the function f(x) = log x is uniformly integrable with respect to the measures
νn,z, i.e., for any ε > 0, there exists T > 0 (determined by ε and z) such that

lim sup
n∈N

P

{∫

| log s|>T
| log s| dνn,z(s) > ε

}

< ε;

(2) the measures νn,z converge vaguely in probability to a deterministic measure νz

supported on (0, ∞), i.e., for any compactly supported function h ∈ C((0, ∞)),
∫ ∞

0
h(s) dνn,z(s) →

∫ ∞

0
h(s) dνz(s) in probability.

Then μn converges weakly in probability to the unique probability measure μ on C

satisfying the equation
∫

C

log |λ − z| dμ(λ) =
∫ ∞

0
log s dνz(s) for all z ∈ C.

This lemma was employed in recent works [Coo,LLTTYc] on the spectrum of
d–regular directed graphs. Note that assumption (2) in [BC12, Lemma 4.3] required
the weak convergence. However, once the uniform integrability is established, the
weak and the vague convergence become equivalent.

We will apply this lemma with Mn = 1√
pnnAn. In our case, μ will be the uniform

measure on the unit disc. The derivation of (2) is standard and will be sketched at
the end of this section. We will not calculate the measures νz explicitly. Instead, it
will be enough to show that νn,z − νG

n,z converges vaguely to 0 in probability for a.e.
z ∈ C. Here νG

n,z is the empirical measure of singular values of 1√
n
Gn, and Gn is

the n × n matrix with i.i.d. N(0, 1) entries. Since the circular law for the Gaussian
matrices is known, this uniquely defines the measures νz.

The main effort will be devoted to proving (1). The logarithmic function has
singularities at 0 and ∞. Establishing uniform integrability at ∞ is very simple

and relies on the fact that E

∥∥
∥ 1√

pnnAn

∥∥
∥

2

HS
is bounded. The proof of uniform in-

tegrability at 0 uses the estimates for the smallest and the smallish singular val-
ues derived in Sections 7 and 9respectively. Yet, the bound for the singular values
sn−k( 1√

pnnAn − zIdn) obtained in Theorem 9.3 is too loose to be applied for all k.
We will be able to use it only for k < n

logC(pnn)
. For larger k, we need a tighter

bound. To this end, we use the idea of [Coo] based on the comparison of νn,z([0, s])
and νG

n,z([0, s]) for sufficiently large s. In our case, the comparison with the Gaussian
matrix does not seem to be feasible. Instead, we compare νn,z([0, s]) with the empir-
ical measure of the singular values of a new random matrix obtained by replacing
relatively small values of 1√

pnnAn − zIdn by i.i.d. N(0, 1) variables. This will require
bounding the Stieltjes transform of Gaussian matrices with partially frozen entries.
Such bound is obtained in Subsection 10.1. The uniform integrability is established
in Subsection 10.2. Finally, in Subsection 10.3, we establish the vague convergence
and complete the proof of Theorem 1.2.
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10.1 Gaussian matrices with partially frozen entries.

Lemma 10.2. Let n > k ≥ 1, and let E ⊂ C
n be a linear subspace of co-dimension

at least 2k. Let X = (X1, X2, . . . , Xn) be a random vector in C
n with mutually

independent coordinates, and assume that at least n−k coordinates are real Gaussian
variables of unit variance and possibly different means. Then

P
{

dist(X, E) ≤ c
√

k
} ≤ e−ck,

where c > 0 is a universal constant.

Proof. Denote by I the set of all indices corresponding to the Gaussian variables, so
that |I| ≥ n − k. Further, condition on any realization of coordinates Xi, i ∈ Ic.

Let Proj be the coordinate projection onto the span of ei, i ∈ I. Obviously, we
have

dist(X, E) ≥ dist(Proj(X), Proj(E)),

where Proj(E) has co-dimension at least k, when viewed as a subspace of CI . On the
other hand, Proj(X) is a real Gaussian vector in C

I with identity covariance matrix,
and the statement of the lemma follows as a consequence of standard concentration
inequalities. �


A combination of the above lemma with the negative second moment identity
yields

Proposition 10.3. Let n > k ≥ 1, let V = (vij) be an n × n random matrix with
mutually independent entries such that for any j ≤ n, at least n − k components of
the j-th column of V are real Gaussian variables of unit variance. Then

P
{
sn−3k+1(V ) ≤ ck/

√
n
} ≤ ne−ck,

where c > 0 is a universal constant.

Proof. Let Ṽ be the n × (n − 2k) matrix obtained from V by removing the last 2k
columns. Obviously, we have

sn−3k+1(V ) ≥ sn−3k+1(Ṽ ).

Further, to estimate sn−3k+1(Ṽ ), observe that, by the negative second moment iden-
tity,

k sn−3k+1(Ṽ )−2 ≤
n−2k∑

j=1

s−2
j (Ṽ ) =

n−2k∑

j=1

dist(colj(Ṽ ), span{coli(Ṽ ) : i 	= j})−2.

By the above Lemma, we have

P
{

dist(colj(Ṽ ), span{coli(Ṽ ) : i 	= j}) ≤ c
√

k
} ≤ e−ck

for any j ≤ n − 2k. Taking the union bound, we get the result. �
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Given an n×n matrix M and a complex number z, denote by Hz(M) the 2n×2n
matrix of the form

Hz(M) =
(

0 Bz(M)
B∗

z (M) 0

)
,

where Bz = 1√
n
M − z Idn. The eigenvalues of Hz(M) are the singular values of

Bz and their negatives. Further, given w ∈ C, denote by mw(M) = mw,z(M) the
Stieltjes transform of the empirical measure of the eigenvalues of Hz(M):

mw(M) :=
1
2n

· tr(Hz(M) − w Id2n)−1.

As an immediate corollary of Proposition 10.3, we get

Corollary 10.4. Let n > k ≥ 1, and let V be an n × n matrix with mutually
independent entries such that for every j ≤ n, at least n − k coordinates of the j-th
column of V are real Gaussian variables of unit variance. Let z ∈ C and let w ∈ C

be such that Re(w) = 0 and Im(w) ≥ k/n. Then with probability at least 1−n2 e−ck

we have

Im(mw(V )) ≤ C,

for some universal constants C, c > 0. In particular, if k ≥ C ′ log n for a sufficiently
large constant C ′ > 0 then necessarily

E Im(mw(V )) ≤ C ′.

Proof. Without loss of generality, we can assume that Im(w) = k/n. First, by ap-
plying Proposition 10.3 to matrix

√
nBz(V ) = V −z

√
n Idn, we get with probability

at least 1 − n2 e−ck:

sn−i(Bz(V )) ≥ ci

n
for all i ≥ Ck.

On this event we have

Im(mw(V )) =
1
2n

n∑

i=1

Im
(

1
si(Bz(V )) − w

+
1

−si(Bz(V )) − w

)

=
1
2n

n∑

i=1

2Im(w)
|w|2 + s2

i (Bz(V ))
≤ C̃ + C̃k

n∑

i=k+1

1
i2

≤ C̄.

On the complement of this event we can use the trivial bound Im(mw(V )) ≤ 1
Im(w) ≤

n. Hence, if k ≤ C1 log n for a sufficiently large constant C1, the combination of the
two bounds gives E Im(mw(V )) ≤ C2. �
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10.2 Uniform integrability of the logarithm. Here is the main result of the
subsection:

Proposition 10.5 (Uniform Integrability). Let An be a sequence of random matri-
ces as in Theorem 1.2. For any z ∈ C denote by νn,z the empirical measure of the
singular values of the matrix 1√

pnnAn − zIdn. Then for any z ∈ C with Im(z) 	= 0,

the function f(x) = log x is uniformly integrable with respect to measures νn,z, i.e.,
for any ε > 0, there exists T > 0 (determined by ε and z) such that

lim sup
n∈N

P

{∫

| log s|>T
| log s| dνn,z(s) > ε

}

< ε.

Before proving the proposition, let us consider some auxiliary lemmas. The first
is an elementary observation on conditional distributions.

Lemma 10.6. Let Λ = (ξij) be an n×n random matrix with i.i.d real valued entries
of mean θ and unit variance. Further, for any L ≥ 1 and any subset Q ⊂ [n] × [n],
let EL,Q be the event that |ξij − θ| > L for all (i, j) ∈ Q and |ξij − θ| ≤ L for all
(i, j) ∈ Qc. Then

• Conditioned on any EL,Q with P(EL,Q) > 0, the entries of Λ are mutually
independent;

• There is Cξ > 0 determined by the distribution of ξij ’s such that, whenever
L ≥ Cξ and Q ⊂ [n] × [n] satisfy EL,Q 	= ∅, for any (i, j) ∈ Qc we have
|E(ξij | EL,Q) − θ| ≤ 2

L and 1
2 ≤ Var(ξij | EL,Q) ≤ 1.

Moreover, denoting by PL the collection of all subsets Q ⊂ [n] × [n] such that
P(EL,Q) > 0 and

|{i ≤ n : (i, j) ∈ Q}|, |{i ≤ n : (j, i) ∈ Q}| ≤ 2n

L2
for all j ∈ [n],

we have for all L ≥ 1:

P

( ⋃

Q∈PL

EL,Q

)
≥ 1 − 2n e−2n/L4

.

Proof. Without loss of generality, θ = 0. The mutual independence of the entries
conditioned on EL,Q is obvious. Further, we have for any (i, j) ∈ Qc:

|E(ξij | EL,Q)| =
|E(ξij1|ξij |≤L)|
P{|ξij | ≤ L} =

|E(ξij1|ξij |>L)|
P{|ξij | ≤ L} ≤ 1

LP{|ξij | ≤ L} ≤ 2
L

,

if L ≥ √
2, where we used Cauchy–Schwartz’ and Markov’s inequalities. Denote

ψ := E(ξij | EL,Q). Then
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Var(ξij | EL,Q) = E(ξ2
ij | EL,Q) − ψ2 =

E(ξ2
ij1|ξij |≤L)

P{|ξij | ≤ L} − ψ2 ≥ 1
2
,

provided that L is sufficiently large.
Finally, observe that for any i ≤ n, the event

{|{j ≤ n : |ξij | > L}| ≥ 2n/L2
}

has probability at most e−2n/L4
(by applying Bernstein’s inequality). Taking the

union bound and combining this with the definition of PL, we get the result. �

In what follows, we will need the next result of Chatterjee [Cha05, Theorem 1.1].

Theorem 10.7. Let N be a natural number, and let X and W be independent
random vectors in R

N with independent components satisfying EXj = EWj , EX2
j =

EW 2
j for any j ∈ [N ]. Assume that

γ3 =: max
j∈[N ]

max
(
E|Xj |3,E|Wj |3

)
< ∞.

Let f ∈ C3(RN ) and denote

λ3(f) = sup
x∈RN

max
r=1,2,3

max
J∈[N ]3

|∂r
Jf(x)|3/r.

Then

|Ef(X) − Ef(W )| ≤ Cγ3λ3(f)N,

where C is a universal constant.

The next lemma appears as a combination of results from [Coo] and observations
made in the previous subsection.

Lemma 10.8. Let (An) be a sequence of random matrices from Theorem 1.2, and
set θ := Eξ. For any z ∈ C with Im(z) 	= 0 we have

E νn,z([0, η]) ≤ C10.8η for all η ≥ (pnn)−c,

where νn,z is defined as in Proposition 10.5, C10.8 > 0 depends only on z and θ (and
not on n) and c > 0 is a universal constant.

Proof. An elementary comparison between the indicator function and the Poisson
kernel implies that for any η > 0, n ∈ N and z ∈ C, for any n × n matrix M̃ , and
for miη defined the same way as in the previous subsection, we have

Eν([0, η]) ≤ C̃η E Im(miη(M̃)), (10.1)

where ν denotes the normalized counting measure of singular values of 1√
n
M̃ −z Idn

(see, e.g. [Tao12, Section 2.4.3]).
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Fix z ∈ C with Im(z) 	= 0. Let η ∈ [(pnn)−1/20, c′], for a small enough constant
c′ > 0. Set L := η−2 and fix for a moment any subset Q ∈ PL, where PL is
defined as in Lemma 10.6. Set ψ := E(ξ1|ξ−θ|≤L)

P{|ξ−θ|≤L} and τ := Var(ξ | |ξ − θ| ≤ L). We
assume that constant c′ is sufficiently small so that all assertions of Lemma 10.6
hold true for L; in particular, |ψ − θ| ≤ 2

L and τ ∈ [1/2, 1]. Observe that the random
matrix M := (pnτ)−1/2An = (pnτ)−1/2(δijξij)ij has mutually independent entries;
moreover, conditioned on EL,Q, for each (i, j) ∈ Qc the (i, j)–th entry of M has unit
variance, and all entries corresponding to (i, j) ∈ Qc are uniformly bounded (by
absolute value) by (L + |θ|)(pnτ)−1/2.

Let us represent the probability space Ω as the product space Ω := ΩQ × ΩQc ,
where the decomposition is generated by partitioning the set of entries of M into the
subset indexed over Q and the subset indexed over Qc. Fix any point (ωQ, ωQc) ∈
EL,Q, and define ẼL,Q := ({ωQ} × ΩQc) ∩ EL,Q. This way, everywhere on ẼL,Q the
entries of M indexed over Q are frozen whereas the conditional distribution of the
entries indexed over Qc is the same when conditioned on ẼL,Q and when conditioned
on EL,Q. Further, let N be the cardinality of Qc, let X = (Xs)s∈Qc be the random
vector of entries of M indexed over Qc, and let W = (Ws)s∈Qc be the vector of
independent real Gaussian variables of unit variance and mean

√
pn

τ ψ, indexed over
Qc.

We will apply Theorem 10.7 to vectors X and W . Conditioned on ẼL,Q, we have

E(Xs | ẼL,Q) = E
(
(pnτ)−1/2δξ | |ξ − θ| ≤ L

)
=

√
pn

τ
ψ = EWs, s ∈ Qc.

Further, E(X2
s | ẼL,Q) = 1 and

E(|Xs|3 | ẼL,Q) = E
(
(pnτ)−3/2δξ3 | |ξ − θ| ≤ L

)

≤ p−1/2
n τ−3/2(L + |θ|)E(ξ2 | |ξ| ≤ L)

≤ C ′(L + |θ|)p−1/2
n (1 + θ2), s ∈ Qc.

Thus,

γ3 ≤ C ′(L + |θ|)p−1/2
n (1 + θ2) ≤ CθLp−1/2

n ,

where γ3 is defined as in Theorem 10.7 and Cθ > 0 may only depend on θ. Now,
we construct the function f : RQc → R+ as follows. Take any vector V = (Vs)Qc

indexed over Qc. Then we construct an n×n matrix Ṽ = (ṽij) by setting ṽij := V(ij)

whenever (i, j) ∈ Qc, and setting ṽij , (i, j) ∈ Q to the values of the entries of M

fixed by our choice of event ẼL,Q. Finally, we set f(V ) := Im(miη(Ṽ )), where miη is
defined as in the previous subsection. The following bound for λ3(f) can be extracted
from [Coo, Proof of Proposition 8.2]:

λ3(f) ≤ C

n5/2η4
.
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Substituting the two above estimates in Theorem 10.7, we obtain

∣
∣E

(
f(X) | ẼL,Q

) − Ef(W )
∣
∣ ≤ C ′′Lp−1/2

n · 1
n5/2η4

· n2 ≤ C ′′′η,

by our choice of L and since η ≥ (pnn)−1/20. Next, we estimate Ef(W ) using Corol-
lary 10.4. Set k := �2n/L2� and observe that, by the definition of PL, we have
|{i ≤ n : (i, j) ∈ Qc}| ≥ n − k for all j ∈ [n]. Further, by our choice of L and η
we clearly have η ≥ k/n. Thus, by our definition of f and by Corollary 10.4, we
get Ef(W ) ≤ C̃. Note that the above estimate does not depend on the particular
realization of elements of M indexed over Q. This implies

E(miη(M) | EL,Q) ≤ C̄η,

and so, by (10.1),

E(νz,M ([0, η]) | EL,Q) ≤ C ′′η uniformly for all z ∈ C and η ∈ [(pnn)−1/20, c′],

where νz,M denotes the singular value distribution of the matrix 1√
n
M −z Idn. Using

that τ ≥ 1/2 and in view of the identity νn,z([0, τ1/2t]) = νz,M ([0, t]), t ∈ R+, we get

E(νn,z([0, η/2]) | EL,Q) ≤ C ′′η uniformly for all z ∈ C and η ∈ [(pnn)−1/20, c′],

where C ′′ > 0 may only depend on θ. As a final step, note that, by Lemma 10.6,
the union of the events EL,Q, with Q ∈ PL, has probability at least 2n e−2n/L4

. The
result follows. �

Proof of Proposition 10.5. For each n, z, denote the matrix 1√

pnnAn − zIdn by Vn,z.
The function f(x) = log(x) is unbounded as x → ∞ and x → 0. The first singularity
is much easier to handle. Let T be such that |z| < eT/2/2. Assume that T ≥ 1. Since
the function log x

x2 is decreasing for x ≥ e, we have
∫

s>eT

| log s| dνn,z(s) ≤
∫

s>eT

Te−2T s2 dνn,z(s) =
Te−2T

n

∑

sj(Vn,z)>eT

s2
j (Vn,z)

≤ Te−2T

n
‖Vn,z‖2

HS .

Since

E
1
n

‖Vn,z‖2
HS ≤ 2 + 2|z|2 ≤ 2 + eT ≤ 2eT ,

the uniform integrability at ∞ follows from Markov’s inequality.
Let us prove the uniform integrability at 0. Again, we take a parameter T ≥ 1.

For any n and z, let Emin = Emin(n, z) be the event that

smin

(
1√
pnn

An − zIdn

)
≥ exp

(−Cz log3 n
)
,
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where Cz > 0 depends only on z and is chosen in such a way that P(Emin) ≥
1−Cz(pnn)−c7.1 (this can be done because of Theorem 7.1). Further, let E1 = E1(n, z)
be the event that for any k ≥ n

log100 n
, we have

sn−k

(
1√
pnn

An − zIdn

)
≥ exp

(
−C log100

(
4n

k

)
· log100(pnn)

)
, (10.2)

where C > 0 (independent of n) is chosen so that P(E1) ≥ 1 − (pnn)−c′
(this is

possible by Theorem 9.3). Furthermore, let E2 = E2(n, z) be the event that for any
η ∈ [log−300(pnn), e−T ], we have

νn,z([0, η]) ≤ C10.8
√

η, (10.3)

where the constant C10.8 is taken from Lemma 10.8. Observe that

P(Ec
2) ≤ P

{∃i ∈ [T, 300 log log(pnn)] such that νn,z([0, e−i]) ≥ C10.8e
−i/2−1/2

}
.

Combining this with the bound for the expectation of νn,z([0, e−i]) from Lemma 10.8
and Markov’s inequality, we get

P(E2) ≥ 1 − C ′′e−T/2.

Let us introduce two quantiles of the measure νn,z. Set

t1 = sup
{

t ≥ 0 : νn,z([0, t]) ≤ 1
log4 n

}
, and

t2 = min
(

sup
{

t ≥ 0 : νn,z([0, t]) ≤ 1
log200(pnn)

}
,

1
log400(pnn)

)
.

Note that on the event E2 we have t2 ≥ c
log400(pnn)

. Assume that the event Emin∩E1∩E2

occurs. Then
∫ t1

0
| log s| dνn,z(s) ≤ C ′ log3 n · νn,z([0, t1]) ≤ C ′

log n
.

Assume for a moment that t1 ≤ t2. Denote

k1 :=
⌊ n

log4 n

⌋
and k2 :=

⌈ n

log200(pnn)

⌉
.

Then, by (10.2),
∫ t2

t1

| log s| dνn,z(s) ≤ 1
n

k2∑

k=k1

∣∣
∣ log sn−k

( 1√
pnn

An − z Idn

)∣∣
∣

≤ 1
n

k2∑

k=k1

C log100

(
4n

k

)

· log100(pnn) ≤ C ′ log100(pnn) ·
∫ log−200(pnn)

0
log100

(
4
x

)
dx

≤ 1
log50(pnn)

.
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Set t3 := max(t1, t2). For s ∈ [t3, e−T ] we use the bound

| log s| ≤ C

log(1/t3)∑

m=T

1[0,e−m](s),

which, by (10.3), yields

∫ e−T

t3

| log s| dνn,z(s) ≤ C

log(1/t3)∑

m=T

νn,z([0, e−m]) ≤ C ′′e−T/2.

Combining the three previous inequalities, we conclude that
∫ e−T

0
| log s| dνn,z(s) ≤ Ce−T/2 + β(n, pn),

where β(n, pn) is a deterministic term which tends to 0 as pnn → ∞. Since P(Emin ∩
E1 ∩ E2) → 1 as pnn, T → ∞, the uniform integrability is proved. �

10.3 Completion of the proof. Let μ be the uniform measure on the unit disc
in C. To complete the proof of Theorem 1.2, we have to check the vague convergence
of the measures νn,z to some deterministic measures νz such that

∫

C

log |λ − z| dμ(λ) =
∫ ∞

0
log s dνz(s). (10.4)

As in [BR, Lemma 9.1], it is enough to prove this convergence, assuming that the
random variable ξ (and so all entries of An) are bounded. The proof of this fact is
standard and relies on truncation, an application of the Hoffman-Weilandt inequality
and the fact that the weak convergence is metrized by the bounded Lipschitz metric.
We omit the details as they appear in a number of random matrix papers (see e.g.,
[BDJ06, Proposition 4.1]).

For the empirical measures νG
n,z of singular values of real Gaussian matrices, this

convergence and (10.4) are known, see, e.g. [Ede88]. Thus, it is enough to prove
that the measures νn,z − νG

n,z converge to 0 vaguely in probability. This step closely
follows the argument of [Coo], so we will only sketch it. Without loss of generality,
we can check the vague convergence only for Lipschitz functions. By [BR, Lemma
9.2], which is a variant of [Coo, Lemma 9.1],

∫
f(s) dνn,z(s) − E

∫
f(s) dνn,z(s) → 0 in probability

for any Lipschitz f : (0, ∞) → R with compact support. By the same lemma it also
holds for the measures νG

n,z. Therefore, it is enough to prove that

E

∫
f(s) dνn,z(s) − E

∫
f(s) dνG

n,z(s) → 0.
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This convergence would follow if we prove the convergence of the expectations of
Stieltjes transforms, more precisely from

Emw

(
1√
pn

An

)
− Emw

(
1√
n

Gn

)
→ 0 for all w ∈ C with Im(w) > 0,

where Gn is the standard n × n Gaussian matrix. The convergence above follows in
turn from [BR, Lemma 9.4], which is an extension of [Coo, Lemma 8.2] to general
random matrices with bounded entries.

This completes the proof of Theorem 1.2.
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Lévy. Ann. Inst. H. Poincaré, 16 (1958), 27–34
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