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Abstract—The Internet of Things (IoT) has attracted much
interest recently from the industry given its flexibility, conve-
nience and smartness. However, security issues are amongst the
most colossal concerns for IoT. This paper studies the security of
microcontroller (MCU) based IoT firmware. Given the varieties
of MCUs and their running environments, we perform case
studies to explore flaws and defense measures of the firmware
upgrade strategies. Specifically, we present two attacks, physical
attack through the UART port and remote attack through the
vulnerable Over-the-Air programming (OTA) update process,
against popular air quality monitoring devices from PurpleAir.
We investigate a prototype of a secure firmware upgrade system
on an ATmegal284P chip, and discuss potential pitfalls identified
through our own practice. These pitfalls may occur in the
implementation of firmware upgrade by other manufacturers.
To the best of our knowledge, we are the first to investigate
hardware security of air quality monitoring sensor networks.

Index Terms—MCU, Firmware Update, Security, OTA.

I. INTRODUCTION

The Internet of Things (IoT) is a novel paradigm that
has received a lot of attention, featuring a wide range of
applications, such as smart home, smart city, smart healthcare
and smart environment. For example, purpleAir.com offers
a popular low-cost air quality sensing service through a
web portal with Google Map, and has one of the largest
operational low-cost sensor networks worldwide. The network
is being used by individuals and non-profit and governmental
agencies for community air quality monitoring purposes (e.g.
Governmental agencies in California, Oregon and Washington;
non-profit in North Carolina, individuals in Utah and Illinois).
IoT offers unprecedented convenience to users. The market
of IoT is booming and estimated to reach 25 billion by 2021
according to Gartner [1], and Forbes [2] research also shows
that more than 51% of companies have launched IoT projects.

However, one of the biggest concerns is the rampant security
issues in IoT products, which hinder the development of
IoT market. According to SonicWall, there were 32.7 million
attacks against IoT in 2018, while these attacks have been
escalating throughout 2019 with an explosive growth [3]. The
attack surface of IoT involves various dimensions, including
hardware, operating system/fimrware, software, networking
and data. Among them, the firmware attacks are particularly
challenging to address due to its heterogeneousness. Even for a

specific type of attack, such as a buffer overflow attack, there
is no general countermeasure that can be adopted to work
unanimously across different platforms. This paper studies
attacks that may occur during a firmware update of MCU
based IoT systems and discusses potential defense measures.
Specifically, instead of proposing a general firmware update
attack or defense measure, which may not be realistic given
the variety of the hardware, we conduct case studies to gain
real world insight into these security issues. The motivation
of this paper is to offer guidelines for implementing secure
firmware updates, and to identify potential pitfalls during
implementation by IoT vendors.

We first demonstrate how an attacker can break IoT security
via a flawed firmware update mechanism. In this case study,
we investigate popular air quality monitoring devices from
PurpleAir [4]. For clarity, we use the wording “device” to refer
to the PurpleAir “sensor”, to different the air quality moni-
toring device from its actual particulate matter (PM) sensor
PMS5003 [5] inside the device. In [6], we have successfully
exploited the communication protocol of the device, breaking
its data integrity. In this paper, we exploit the firmware of
the device. We systematically analyze the firmware update
mechanism and find that the firmware update mechanism does
not involve any authentication or encryption strategies. We
therefore deploy two types of attacks, a physical hardware
attack and a remote attack. In the hardware attack, we assume
that the attacker can physically access the air quality device
and set up a connection to the MCU via its debugging UART
(Universal Asynchronous Receiver/Transmitter) interface. This
is a reasonable assumption since air quality monitoring devices
can be placed outside and free to touch by anyone. The attacker
can then either flash a malicious firmware into the device or
steal the sensitive information such as WiFi passcode from the
firmware. In the remote attack, the attacker can impersonate
as a server, fabricating a malicious firmware and sending it to
the device, which accepts the malicious firmware without no
verification.

Efforts have been taken to counter attacks [7], [8] against
MCU. MITRE Cyber Academy [9] proposes requirements for
designing a secure firmware update system for a legacy MCU
ATmegal284P, an AVR-architecture based chip, which does
not have WiFi or other networking capabilities. The firmware



shall be encrypted and distributed over the Internet. Autho-
rized parties with right credentials can update the firmware.
ATmegal284P features internal security features such as a
lock-bit mechanism to prevent hardware based I/O attacks.
Our implemented secure firmware update system contains
four components, including a secure bootloader, a firmware
protection tool, a firmware update tool, and a readback tool.
We assume that an AES key is predefined and known only by
the vendor tools and secure bootloader. The secure bootloader
is used to verify the integrity of the firmware and perform
decryption with the predefined key. The secure bootloader also
installs the firmware into the chip. The firmware protection
tool is used to encrypt the firmware when the firmware is re-
leased over the Internet. The firmware update tool works with
the secure bootloader cooperatively to install the firmware. The
readback tool is designed for vendors to extract the firmware
out of the chip when unexpected errors occur on the chip
after deployment so that the vendors can perform firmware
analysis to diagnose the issues. Although the firmware update
tool is design for legacy MCUs with no Internet capability,
the strategy can be easily extended to MCUs with Internet
capability with similar modules.

We discuss possible pitfalls that may occur during the
implementation of a firmware update system. We identify
these pitfalls through our own practice, and believe that
these pitfalls may occur during the implementation of other
applications. For example, misconfiguration of lock bits allows
read and write of the firemware through JTAG and SPI (Serial
Peripheral Interface). The clock glitch attack, which is caused
by overclocking [10] a microcontroller (MCU), may bypass
the encryption procedures in code. A key loss will allow
arbitrary change to the firmware. While we are aware that
the attacks and pitfalls we demonstrate are just the tip of the
iceberg, we hope that these issues can educate vendors and
help to avoid similar pitfalls.

Our major contributions can be summarized as follows:

1) We systematically analyze the firmware update mecha-
nisms of popular PurpleAir air quality monitoring de-
vices and present hardware and remote attacks against
these devices. We are the first to launch a firmware
exploit against air quality monitoring devices.

2) We design and implement a secure firmware update sys-
tem for a popular legacy MCU ATmegal284P according
to the requirements from MITRE Cyber Academy, ad-
dressing the attacks that may occur during the firmware
update. We provide guidelines on how to design and
implement firmware update security for such legacy
MCUs.

3) We present a variety of potential pitfalls of the secure
firmware update system based on our practice. Our goal
is to help vendors to avoid these pitfalls in their own
implementation.

Responsible disclosure: We have notified Purpleair our
findings. They are working with us cooperatively addressing
air quality monitoring sensor security.

Roadmap: The rest of this paper is organized as follows.
In Section II, we briefly introduce the primitives involved
in this paper, including MCU, Over-The-Air (OTA) and so
forth. In Section III, we present the attacks against air quality
devices from PrepleAir. We introduce the detailed design of a
secure firmware update system in Section IV. Related work
is presented in Section V and we conclude the paper in
Section VI.

II. BACKGROUND

In this section, first present a brief introduction to micro-
controllers (MCUSs), and then show how MCUs obtain Internet
connectivity. Finally we introduce the Over-The-Air (OTA)
firmware update mechanism.

A. Microcontrollers

A MCU is a small computer on a single chip designed for
embedded systems. Compared with other programmable chips,
MCUs are often characterized with low power consumption,
lower price, small size, but limited computation and memory
resources. MCU can be extended with additional functional
modules such as external flash and various sensors. These
features lead to a broad adoption of MCUs for lightweight
IoT applications such as air quality sensor networks.

An MCU chip often consists of a central processing unit
(CPU), system clock, memory, and peripherals [11]. The
firmware, also called the application image, can be burned to
the memory (internal or external) of the MCU and executed.
Due to its restricted resources and relatively simple architec-
ture, MCUs are often dedicated to one or more simple tasks
instead of processing multiple complex tasks simultaneously.

B. Internet Connection

In the context of IoT, the wireless Internet connection is
often an essential element for connecting the small gadgets to
much more powerful servers. The wireless Internet interfaces
of MCU can be categorized as internal or external based on
their integration methods. The module could also be further
categorized based on their functionality features. Some man-
ufacturers have integrated a network module into the MCU as
its basic component. These integrated interfaces can WiFi or
Bluetooth low energy (BLE), which are the most commonly
used interfaces in IoT gadgets [12]. MCU can be equipped
with integrated Ethernet and wired connectivity options and
often found in industry applications.

Even though modern MCUs often have integrated net-
work interfaces, a considerable number of MCUs, particularly
legacy ones, leave Internet connection as optional. Owing to
the extensibility of MCUs, a developer can still apply such
MCUs to the IoT gadgets by adding their choice of external
network interfaces. For instance, the ATWINC1500 add-on
WiFi module from Microchip provides a WiFi connection to
the microcontroller and the WL1831MOD module from Texas
Instrument offers both WiFi and Bluetooth connections.

In recent years, a new type of connectivity technology, cel-
lular low-power wide-area network (cellular LPWAN), came



into IoT applications. This technology provides a low-cost
solution to the Internet connection of IoT systems, particularly
fit for application sending small amounts of data through
the network. Based on the traditional Long-Term Evolution
(LTE) standard for mobile device wireless communication,
Narrowband IoT (NB-IoT) and Cat-M1 are two typical types
of cellular technology for IoT devices. The service of NB-
IoT and Cat-M1 are provided by the cellular providers such
as AT&T and Verizon within the U.S.. By connecting to the
nearby cellular towers of the service provider, IoT devices can
connect to the network using different bands from the standard
LTE. The cellular IoT modules that provide NB-IoT and Cat-
M1 can also be connected to the MCU externally to provide
Internet connection.

MCUs are often equipped with protocols such as Univer-
sal Asynchronous Receiver/Transmitter (UART) and Serial
Peripheral Interface (SPI), providing convenient connections
between the external Internet modules and MCU .

C. Over-The-Air mechanism

OTA is a mechanism that devices can use to wirelessly
download a newly released firmware from remote servers and
reprogram itself. Given the potential large scale of an IoT
system, the OTA mechanism is well suited for firmware up-
date. Upgrading through secure OTA is critical for improving
the lifetime of these smart gadgets [13]. Not only does OTA
increase the functionality and scalability of the devices, but
security vulnerabilities can be fixed even after the devices
have been launched. Costs for maintaining IoT applications
are largely reduced by automatically updating remotely.

However, network vulnerabilities may exist in the data
downloading process if the network protocol, e.g., WiFi or
BLE, is not secured. For instance, an OTA task built atop the
Hypertext Transfer Protocol (HTTP) sends the firmware to the
IoT devices without a firmware authentication process or data
encryption mechanism. Malware may get into the IoT device
through the OTA process. Therefore, to ensure the scalability
and security of the IoT devices, a secure OTA mechanism has
to be implemented.

III. CASE STUDY - PURPLEAIR

In this section, we first give a brief introduction to the
PurpleAir air quality monitoring device, and then present the
analysis of the firmware, revealing its layout. Finally, we
discuss the potential exploits against the device.

A. PurpleAir Air Quality Monitoring Devices

Fig. 1 (a) shows commercial Purpleair device. We removed
its case and Fig. 1 (b) shows its internal components, including
two air quality sensors PMS5003, an MCU, and a power
supply circuit board. The air quality sensor measures ambient
mass (e.g. particle number concentrations of PM2.5, humidity)
and is connected to the MCU through UART. The MCU is
an ESP8266 [14] chip and reads the measurements from the
air quality sensor through UART. ESP8266 features various
functionalities such as WiFi connectivity and peripheral ports.

The power supply circuit board is used to power all com-
ponents. Collectively, these components can monitor multiple
environmental metrics and report the measurements to the
cloud server. PurpleAir offers an OTA mechanism, allowing
the device to download a newly released firmware from the
cloud server.

(Cma
L

Micro USB Port
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(a) PurpleAir Device Without Case

(b) PurpleAir Device with Case

Fig. 1. PurpleAir Device

B. Access to Firmware

We now present the hardware attack to access the flash
of the device, which uses the ESP8266 MCU. The Purpleair
device comes with a “charge-only” Micro-USB cable without
data wires. However, a generic smartphone Micro-USB cable
enables the programming functionality through the cable. The
ESP8266 offers a universal asynchronous receiver-transmitter
(UART) port for data transmission, e.g. programming. To
enable the UART communication, we connect the device to
a debugging computer via a Micro-USB cable with a baud
rate of 115200. We use a Python based tool esptool [15] at
our testing computer to receive the data sent from the device.
Esptool is designed to communicate with the ROM bootloader
of Espressif Systems [16]. An example of the Espressif System
is the ESP family of MCUs, such as ESP8266 and ESP32 [17].
Esptool offers various functionalities. We list a few of these
functionalities that are closely related to our research.

1) “esptool.py -port PORT flash_id”. As shown in Fig.

2, this command can read the basic information of
a firmware, such as the device MAC address, flash
size and manufacturer information. The PORT argument
refers to the UART port number.

2) “esptool.py -port PORT -b 115200 read_flash 0
0x200000 flash_contents.bin”. As shown in Fig. 3, this
command reads the flash content out of the chip. In our
case, esptool reads 02200000 (~2M) bytes starting from
address 0 of the flash memory and saves it onto the local
disk with a file name “flash_contents.bin”.

3) “esptool.py erase_flash”. This command erases All bytes
of the flash will be replaced by meaningless “OxFF”
bytes. Similarly, “erase_region” erases a specific data
section of the flash memory, with specified parameters
including the starting address and flash size as shown in
previous commands.

4) “esptool.py -p PORT write_flash Ox1000 my_app.bin”.
This command flashes a binary file (my_app.bin in our



PS C:\Users\chao> esptool.py --port COM4 flash_id
esptool.py v2.6

Serial port COM4
Connecting....
Detecting chip type...
Chip is ESP8266EX
Features: WiFi

MAC: S5c:cf:7f:5c:9f:c4
Uploading stub...
Running stub...

Stub running...
Manufacturer: c8
Device: 4015

Detected flash size: 2MB
Hard resetting via RTS pin...
PS C:\Users\chao>

ESP8266

Fig. 2. Reading basic information of the ESP8266.

PS C:\Users\chao> esptool.py --port COM4 -b 115200 read_flash
© 0x200000 flash_content.bin

esptool.py v2.6

Serial port COM4
Connecting....
Detecting chip type...
Chip is ESP8266EX
Features: WiFi

MAC: 5c:cf:7f:5c:9f:c4
Uploading stub...
Running stub...

Stub running...
2097152 (100 %)
2097152 (100 %)

Read 2097152 bytes at ©@x@ in 188.8 seconds (88.8 kbit/s)...
Hard resetting via RTS pin...

ESP8266

Fig. 3. Reading flash contents from the ESP8266.

case) onto the chip. The parameters are similar to the
previous commands.

C. PurpleAir Flash Map

Based on the analysis above, we now present the flash map
from the PurpleAir device. The size of the flash is 2MB, while
the last IMB is meaningless padding data. The ESP8266’s on
die Read-Only Memory (ROM) contains some library code
and a first stage boot loader [18], [19]. The PurpleAir device
supports OTA and its flash is split into four sections, including
two program images, an Electrically Erasable Programmable
Read Only Memory (EEPROM) region, and a default data
section. As shown in Fig. 4, each program image contains two
sections, denoted as boot.bin and user.bin. boot.bin is used to
store the bootloader. user.bin is used to store the application
code. The two program images can be identical. EEPROM is a
type of non-volatile memory that provides persistent storage of
data across reboots. In the case of PurpleAir, the WiFi SSID
and password are stored in this region. Finally, the default
data section contains the images of esp_init_data_default.bin
file and blank.bin, which store default system parameters, such
as Wi-Fi configurations other than SSID and password [20].
The flash map of the PurpleAir device is customized and
different from the official OTA implementation of ESP8266
[21]. For example, the official OTA implementation has only

one boot.bin, which stores the address of the active program
image and runs that program at restart.

0x0000 0x1000 O0x7E000 0x7F000  O0xFBO00O Oxa?OOOO 0x200000

Not Used
! 1 1 | |
! I P ~
boot.bin boot.bin EEPROM.bin blank.bin
user.bin user.bin esp_init data_default.bin

Fig. 4. PurpleAir Firmware Flash Map

D. Exploits and Attacks

The ultimate goal of our attack is to change the firmware of
the device. To this end, two types of attacks will be presented,
namely the physical attack and remote attack. In the physical
attack, we assume that the adversary can physically access
the device. This assumption is reasonable since the air quality
device can be placed outside and free to access. Furthermore,
the device may be left unmonitored for an extended period of
time. However, in the remote attack, we assume that physical
access is unavailable to the adversary.

Physical attack: An adversary can deploy the physical
attack by connecting the MCU to a computer through a Micro-
USB cable. We list some potential exploits that can arise from
this attack to demonstrate its grave consequences : (i) Flashing
a malicious firmware. An attacker can program a malicious
firmware and flash it to the chip. The modified firmware can
inject fabricated data into the air quality sensor network, which
may misinform the public. (ii) Stealing Wi-Fi credentials. Due
to the lack of authentication and encryption of the firmware,
the flash contents are free to access. We can therefore extract
the Wi-Fi credentials out from the flash, which causes damages
beyond the air quality sensor network.

Remote attack: Recall that the PurpleAir offers an OTA
mechanism, which allows the device to update its firmware
after deployment. Through traffic analysis, we know that when
a PurpleAir device reboots and connects to the cloud server,
the device sends a request to the cloud server and queries
the current firmware version. If there is a new firmware,
OTA will be performed to synchronize the firmware with the
cloud server. This mechanism ensures the device is up-to-date.
After carefully analyzing the PurpleAir OTA mechanism, we
identify a severe vulnerability: the device does not authenticate
the server, and the server does not authenticate the device.
That is, there is no mutual authentication between the device
and server. Moreover, the communication is in plaintext. The
firmware is not protected with any mechanism and in plaintext.

The lack of mutual authentication raises security issues. As
shown in Fig. 5, an attacker can either pretend to be the
cloud server or a rogue device to cause mischief: (i) If the
attacker is able to impersonate the server, the attacker can
trivially fabricate a malicious firmware and send it to the
device, which updates the local firmware with the malicious
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Fig. 5. The overview of remote attack

firmware with no verification process. The malicious firmware
will execute after reboot. Here is one way to impersonate
the server. The attacker can jam the WiFi router that the
victim device is connected with. After a period of connection
failures, the PurpleAir device automatically resets itself to the
AP mode, which allows the attacker to configure the victim
device, which will connect to a rogue WiFi router. The rogue
WiFi router can then impersonate the server. (ii) When the
attacker impersonates a device, the attacker can obtain the
firmware at the server by sending a query to the cloud server,
as shown in Fig 6. We have confirmed these two attacks in
our experiments.

[ GET /firmware/update.asp HTTP/1.1
Accept-Encoding: identity
Host: update.purpleair.com
User-Agent: ESP8266-http-Update
| X-Esp8266-Free-Space: 516096
% X-Esp8266-Sketch-Size: 445232
| X-Esp8266-Chip-Size: 2097152
X-Esp8266-Sdk-Version: 3.8.0-dev(c@f7b44)
X-Esp8266-Version: PurpleAir_9fc4_3.00_5c:cf:7f:5¢:9f:cd4_30_-34_2.0_2.0+0PENLOGHNO-
| DISK+DS3231+BME280+PMSX003A+PMSX003B
\.Connection: close

Request

[ HTTP/1.1 260 OK
Cache-Control: private
Content-Length: 461440,461440
Content-Type: application/octet-stream; Charset=UTF-8
Server: Microsoft-IIS/7.0
| Content-Dispesition: attachment; filename=AirMonitorFirmware4.02.bin
| x-MD5: 1dd95b3f3b3a@d4e6a982b65e93b6dc5
Set-Cookie: UID=95894; expires=Mon, 22-Jul-2019 00:00:00 GMT; path=/
Set-Cookie: ASPSESSIONIDQABDBTQC=IAGPBIHCNCDKIPFKJIOIAKIAP; path=/
X-Powered-By: ASP.NET
Date: Sat, 22 Jun 2019 02:48:38 GMT
\_Connection: close

Respons
A

{-booUbod-bad
..... )080!..
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New Firmware

Fig. 6. PurpleAir update response packet with new firmware attached.

IV. SECURE FIRMWARE UPDATE

To counter attacks against the firmware update, many efforts
have been taken [7], [8], [22]. One major issue of the PurpleAir
device is that it uses the chip ESP8266, which does not have
any built-in hardware mechanism for security. For example,

there is no way to disable its UART port. An open UART
port is subject to the physical attack in Section III. A secure
IoT device needs hardware security features. To defeat remote
attacks against the firmware update, mutual authentication
and encryption shall be used. In this regard, MITRE Cyber
Academy [9] proposes requirements for designing a secure
firmware update system for legacy chips with no Internet con-
nection so that secure firmware can be downloaded from the
Internet and updated locally. We design and implement such
a secure firmware update system according to the proposed
requirements and discuss the potential pitfalls.

A. Overview

To guarantee a secure firmware update, we shall incorpo-
rate encryption and authentication during the update process.
Specifically, the vendor shall encrypt the firmware before
release, while the decryption key has to be secure inside
each product. Only the product can decrypt the firmware. The
product has to verify the integrity of the firmware too. To
this end, the hash value of the target firmware is encrypted
and attached together with the encrypted firmware. Finally,
to prevent the attacker from leveraging physical attacks and
obtaining sensitive data, such as the decryption key or the
firmware, the debug interfaces, such as JTAG, SPI and UART
ports, have to be disabled or at least have limited accessibility
(e.g. protected by a strong password). The lock bits should
also be enabled if the chip of the product supports it. In this
way, firmware analysis will fail.

The secure firmware update system as shown in Fig. 7
consists of four components, including a secure bootloader,
a firmware protection tool, a firmware update tool, and a
manufacturer readback tool. A typical use of the secure
firmware update system works as follows. The vendor uses the
firmware protection tool to encrypt the firmware with an AES
key and also uses the programmer board (AVR Dragon [23]) in
Fig. 8 to flash the secure bootloader into the chip’s bootloader
flash section through the programmer board’s ISP interface,
which is connected to a set of programmable I/O pins on the
ATmegal284P. The vendor’s AES key is hard coded into the
bootloader. During a firmware update process by a vendor or a
user, the firmware update tool sends the encrypted firmware to
the secure bootloader through the UART port. The bootloader
decrypts and verifies the firmware, and copies the decrypted
firmware into the application flash memory section. The device
then reboots to run the new firmware. The vendor can use the
readback tool to extract the (damaged) firmware from the chip
for debugging through the UART port. During the readback,
the bootloader encrypts the firmware and the vendor has to
decrypt the encrypted firmware.

In the real world scenario, the firmware update tool can
be replaced with the internal OTA mechanism introduced in
Section II. In this case, the bootloader obtains a firmware
from the cloud server, then flashes it into the chip. The other
functions of the bootloader and the other three tools will work
without any changes. However, in some cases, the firmware
update tool may be preferable—for instance, when the new
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Fig. 7. An overview of the secure firmware update System

firmware is too large to download without overwriting the
previous firmware. For the sake of brevity, we will not reiterate
details on MCU-based OTA, which were already discussed in
Section II.

B. Detailed Design

Power Supply

UART Cable =j
ATmegal284P

Programmer Board
(AVR Dragon)

Setting
Jumper

Fig. 8. A secure firmware update system

We now present a detailed design of the secure firmware
update system. As a demonstration, we implement the design
on an ATmegal284P chip shown in Fig. 8. ATmegal284P is
a high performance, low power CMOS 8-bit microcontroller
based on the AVR enhanced RISC architecture, featuring
128KB ISP flash memory, 16KB SRAM, 4KB EEPROM, 32
General Purpose Working Registers, two UART interfaces,
an SPI serial port, and a Joint Test Action Group (JTAG)

test interface. JTAG is provided for on-chip debugging and
programming. In regards to security, the ATmegal284P pro-
vides a program locking mechanisms for software security.
Specifically, the MCU has three fuse bytes, i.e. low fuse byte,
high fuse byte, and extended fuse byte, and a lock byte. The
low fuse byte is used to deal with the clock related operations.
The high fuse byte has several different settings, such as
enabling the JTAG/SPI programming port, watchdog timer and
bootloader size settings. The extended fuse byte is used to
set the brown-out detection trigger level, which refers to the
voltage level setting. The lock byte is employed to control the
read and write permissions between the bootloader section and
the application flash section. It can be used with the high fuse
byte to prevent unauthorized read and write access to the flash
memory and EEPROM through JTAG and SPI.

The ATmegal284P flash memory is divided into two sec-
tions: the application section and the bootloader section. The
high byte fuse is used to allocate the size of these two
sections. The bootloader section is typically used to write
the application firmware to the application flash section. To
modify the bootloader, we need an external programmer board
(such as the one shown in Fig. 8) to write the bootloader
to the MCU. The application firmware may use the code
built into the bootloader [24]. Overwriting the bootloader
section requires the use of Store Program Memory (SPM)
instructions [25]. To prevent the application firmware from
destroying the bootloader, SPM instructions are not allowed
to be executed in the address space of the application flash
section. However, it is shown [26] that the application has a
trick to modify the bootloader on the AVR microcontroller by



setting an interrupt in the application firmware and using the
“jmp” instruction to force the AVR to jump to the bootloader
section. The bootloader can then be overwritten by the existing
SPM instructions inside the bootloader section.

1) Secure Bootloader: In our current implementation, the
secure bootloader can work in three modes: firmware loading
mode, firmware booting mode, and readback mode. The boot-
loader is programmed to read the jumper setting in Fig. 8 to get
into different modes. During the firmware loading mode, the
bootloader receives an encrypted firmware from the firmware
update tool, and verifies its integrity, which prevents arbitrary
modification of the encrypted firmware. Once verification
succeeds, the secure bootloader decrypts the firmware and
copies it into the application flash memory section. Afterward,
the bootloader enters the firmware booting mode and boots the
image in the application flash memory. The bootloader may
also be in the readback mode. When the bootloader is in this
mode, the vendor can communicate with it and the bootloader
will copy and encrypt the firmware out of the chip. This
may occur when the chip has some unexpected errors and a
firmware analysis must be done for diagnosis. In this case, the
bootloader requires the readback tool to provide a username
and password for authentication, which avoids unauthorized
access. These credentials were predefined and stored in the
EEPROM by the vendor. Since we enable the hardware-based
lock bits of the ATmegal248P, an attacker cannot compromise
the firmware or the sensitive credentials via physical attacks.

2) Firmware Protection Tool: The firmware protection tool
is used to generate a secure firmware, which contains five
phases : (i) We generate an AES encryption key and configure
the firmware protection tool to have access to the key. Before
deployment, the AES key shall also be stored in the chip
where the firmware will be installed. This can be done by
installing an initial version of the firmware, where the key
is hard-coded. (ii) The firmware protection tool encrypts the
intended firmware with the AES key generated above. (iii)
The firmware protection tool feeds the encrypted firmware
into a hash function and computes the hash value. We denote
the hash value as the ID of the firmware, since it uniquely
refers to the firmware. (iv) The firmware protection tool feeds
the firmware ID and other basic information of the firmware
(e.g. the size, version number) into the hash function. The
generated hash value here is used as the firmware checksum
for the verification step. We then encrypt the hash checksum
with the pre-defined key. The encrypted checksum will be
a part of the secure firmware, so that the integrity of the
firmware is also guaranteed. (v) The firmware protection tool
uses the previous steps to generate a secure firmware. The
secure firmware can be split into three parts as shown in Fig. 9:
the header, the encrypted firmware and a release message. The
header contains the firmware size, firmware version number,
firmware ID, encrypted checksum and will be stored in the
EEPROM. The release message provides a basic description
of the secure firmware and will be written into the application
flash memory section following the firmware. When the device
boots, the bootloader can write the release message to UART

to display to the user.

Header

Release

Size
Message

Encrypted Firmware

Version

g
Checksum

Fig. 9. Secure firmware structure

3) Firmware Update Tool : The firmware update tool
assists the bootloader by copying the firmware into the ap-
plication flash memory, which contains two phases: (i) The
firmware update tool sends the header of the secure firmware
to the secure bootloader and waits for the verification response
from the bootloader. In this phase, the bootloader is in the
firmware loading mode and will perform the basic verification
of the firmware, as discussed earlier. (ii)) When the verification
passes, the firmware update tool sends the encrypted firmware
to the bootloader and waits for the verification response from
the bootloader. After the bootloader successfully receives the
encrypted firmware and verifies its integrity, the firmware
update tool terminates. The bootloader decrypts the firmware
and writes the firmware into the application flash memory
section.

4) Firmware Readback Tool: The readback tool communi-
cates with the secure firmware via the UART port after deploy-
ment, allowing the vendors to obtain an encrypted firmware
for analysis. To avoid unauthorized access to firmware, the
secure bootloader will require a username and password which
were predefined by the vendor. Moreover, all data transferred
between the readback tool and bootloader is encrypted by the
predefined AES key.

C. Potential Pitfalls

1) Misconfiguration: Misconfiguration of the chip may
lead to severe consequences. A common misconfiguration is
the failure to enable the fuse or lock bits, which prevents
hardware-based cracking after deployment.

Enabling the fuse bytes can prevent an attacker from access-
ing the memory via the JTAG/SPI port. Configuring the lock
bits can prevent an attacker from programming the flash and
EEPROM by utilizing the High Voltage Parallel Programming
(HVPP). The AVR Dragon programmer board can communi-
cate with the ATmegal284P in the HVPP mode by connecting
its HV_PROG interface to multiple programmable I/O pins
on the chip. With HVPP, if the lock bits are not configured
and fuse bytes are properly set, attackers can use the Atmel
Studio software [27] to rewrite the fuse bytes through the
programmer AVR Dragon board to enable the JTAG/SPI ports
and read the firmware and EEPROM memory through these
ports. Recall that sensitive information is stored in EEPROM
memory, such as decryption keys, credentials and firmware
information. Misconfiguration may allow an attacker to obtain
sensitive information and modify it. In fact, even with enabled



fuse bytes and lock bits, with the programmer board, an
attacker can rewrite the entire firmware and EEPROM while
she/she cannot read them. Therefore, ATmegal284P may not
be an ideal IoT chip if rewriting the flash is a concern.

2) Clock Glitch Attack: For most integrated circuits (ICs),
such as an MCU in our case, clock signals are used to synchro-
nize the various internal components in an integrated circuit.
The system clock frequency provided by the chip manufacturer
is the frequency at which the clock signal reaches each IC
component correctly, and all instructions can be executed
normally at this frequency.

Overclocking is a practice of increasing the system clock
frequency beyond the frequency provided by the manufacturer.
As a result, overclocking can improve the CPU/MCU perfor-
mance to some extent. However, this is not universally true due
to hardware limitations. Extra heat may be generated in this
case, which may hinder the performance as well. Therefore,
an IC may not work properly when overclocking occurs.
A clock glitch is a short period of time when the system
clock frequency suddenly increases. It may lead to incorrect
instruction execution and unstable data output. An attacker
can perform the clock glitch attack to bypass cryptographic
instructions such as encryption and integrity check.

3) The Leakage of the Key: An attacker may obtain the
encryption key in various ways due to the carelessness of
vendors or the flaws existing in tools. For example, the key
can be hard-coded in the firmware protection tool. In this
case, an attacker can perform the reverse engineering process
and extract the key from the binary file. Even if the key is
hard-coded in the encrypted firmware, another potential pitfall
involves using an insecure encryption algorithm, which may be
subject to cryptanalysis. Under such circumstances, an attacker
can break the encryption of the firmware and obtain the hard-
coded key that is stored in the EEPROM. Once the attacker
obtains the key, various other attacks can be deployed, such as
fabricating a malicious firmware. As a solution, the vendors
should keep their encryption keys in a safe location.

4) Bypassing the Firmware Verification: We now demon-
strate a flawed design of the firmware update process. The
firmware update tool loads the firmware page by page into
the chip. That is, the chip first receives the data from the
update tool and caches it into a buffer. The buffer will hold
the data until it reaches the size of one page, i.e., 256
bytes. The bootloader decrypts this page and write it into the
application flash memory section of the chip. This process
repeats until the entire firmware has been written to the chip.
The firmware update tool then sends a termination message
to the chip. Firmware integrity verification is then performed.
If the verification fails, the bootloader erases the application
flash memory given that the damaged/malicious firmware is
already written into the application flash memory section.

This firmware update strategy above is flawed. If an attacker
obtains the firmware update tool and tries to attack a device,
he can change the tool so that a junk firmware is uploaded
into the device, but the crooked firmware update tool does
not send the termination message so that the verification is

not performed. This will bypass the verification process and a
junk firmware is written into the device.

One patch to defeat this type of attack is to divide the entire
application flash program memory into two partitions: the first
partition for the current firmware and the second partition for
the new firmware. The update tool loads the new firmware in
the second partition and verifies its integrity. After the integrity
is verified, the new firmware is copied to the first partition. An
over-the-air update (OTA) often uses this strategy of multiple
partitions in the firmware update process although the actual
OTA process can be different.

5) Flaws Existing in Readback Tool: Recall that the boot-
loader requires user credentials (i.e username and password)
when the vendor tries to use the readback tool to communicate
with it. If the vendor remotely interacts with the bootloader
through the Internet and the communication channel is not
secured (e.g., no encryption), an adversary may intercept
the communication content, including the user credentials.
The adversary can use the credentials to read or modify the
firmware. Therefore, the readback tool must enforce proper
network security practices.

D. Discussion

Table I summarizes how to protect the I/O interfaces of
ATmegal284P. ATmegal284P cannot disable UART, which
shall be protected by a secure bootloader. The bootloader
can be programmed and control the interaction with the
chip through UART. As discussed above, ATmegal284P is
actually not an ideal chip for secure IoT applications. With the
programmer board in Fig. 8, the bootloader and firmware of
ATmegal284P can be overwritten arbitrarily even with enabled
fuse bytes and lock bits.

TABLE I
ATMEGA1284P 1/O SECURITY MEASURES

/0 Functionality Security Measures
for 1/0 Interfaces

JTAG | Test interface for on-chip debug- | Fuse bytes + lock bits
ging and programming. Flash, EEP-

ROM, fuse and lock bits can be
programmed via this interface.
SPI Used for serial communication and | Fuse bytes + lock bits
data exchange with peripherals;
Communicate with the programmer
board to download the bootloader.

UART | Used for data communication with | Secure bootloader
external devices; Communicate with | with integrity check
the firmware update tool and the | and password
firmware readback tool.

We have performed a thorough survey of recent advances of
secure MCU chips (such as ESP32 and CC3220SF) [28] which
may meet the requirements of a secure IoT application. A
chip for a secure IoT application should support security from
five aspects: hardware, operating system/firmware, software,
networking and data generated and maintained within the
system. (i) Hardware security: Hardware security is critical
when the adversary can physically access IoT devices. All
debugging ports such as UART/JTAG should be disabled in the



final products. (ii) Operating system (OS)/firmware security:
Mechanisms are needed to prevent the firmware from being
changed by physical hacks and malware. The file system,
processes, memory activities and network ports should be
constantly monitored to detect dynamic malicious activities.
(iii) Software security: Secure coding practices are needed
to reduce vulnerabilities in IoT applications. (iv) Network
security and privacy: An IoT system is a networked system,
and the whole system must be secured from end-to-end [29].
(v) Data security: Sensitive data should be encrypted and flash
encryption is preferred if the devices are deployed in the wild.

V. RELATED WORK

The firmware attacks and the corresponding defense mea-
sures have quite deservedly received much recent attention due
to the explosive growth of IoT market. In this section, we will
review some attacks against a few mainstream chips as well
as their countermeasures.

The Harvard architecture device is one of the most popular
chips widely used all over the world. It was originally be-
lieved to defend against code injection attacks, since the data
region and program region are physically separated. However,
Francillon et al. [30] demonstrated a remote code injection
attack against the Harvard architecture-based wireless sensor
network. A fake stack (containing malware) is injected into
the victim’s data memory, and then a specially-crafted packet
is sent to poke the vulnerabilities existing in the bootloader,
leading the bootloader to copy the fake stack from data
memory to program memory. In such a way, the malware
is injected and allows the attacker to gain full control of
the victim sensor. More recently, Krzysztof Cabaj et.al [31]
showed that the Harvard architecture based MCU is prone to
code reuse attacks, which are a variant of the code injection
attack. Their main contribution is a demonstration of the
attacks on the Arduino family of devices that use the Webduino
web server, which is one of the most popular options for
IoT devices. To counter code injection attacks running on
sensor nodes, Tan [32] proposed and implemented a remote
attestation protocol. Compared with other attestation protocols
which may be subject to unauthorized alteration, they run their
protocol on a tamperresistant Trusted Platform Module (i.e. an
Atmel AT97SC3203S chip), where unauthorized alteration will
fail. Sergio et al. [33] proposed a software-based defense for
Harvard architectures such as AVR MCUs, which thwart code
reuse attacks. To this end, they randomize the code memory of
MCUs. The main contribution of this work is a software-based
implementation rather than hardware, targeting endpoint users
rather than manufacturers.

Shoei Nashimoto et al. [34] showed how buffer overflow
attacks, together with multiple fault code injection attacks,
can control the program flow of MCUs. They demonstrated
their attacks on an AVR ATmegal63 microcontroller and
a 32-bit ARM Cortex-M0O+ microcontroller. To counter the
control flow attacks, Francillon et al. [35] proposed a control
flow enforcement. The control flow attacks often involve the
manipulation of the return stack. In this paper, the authors

stored the return stack in protected hardware rather than the
typical location. They implemented the solution on an AVR
MCU and showed that overhead was minimal.

Sergio et al. [36] implemented a proof-of-concept malware
named ArduWorm that can compromise Arduino Yun, a pop-
ular IoT platform, by exploiting a memory corruption vulner-
ability existing in the victims bridge library. Their insight is
that the current design of the bridge library lacks proper access
control and authentication. The exploit uses code reuse attacks,
allowing malware to establish a backdoor and spread through
neighbor nodes. The work also proposed possible remedies to
mitigate the problem. John et al. [37] addressed two crucial
issues in terms of creating stack-safe embedded software:
security and efficiency. To address the security problem, they
perform a whole program security analysis based on a context-
sensitive abstract interpretation of machine codes. To address
the efficiency issue, they adopt goal-directed global functions
to reduce the stack memory requirements.

We now review related firmware update attacks. Zachry
Basnight et al. [38] examine how an attacker can modify the
firmware on a Programmable Logic Controller (PLC) [39].
They proposed a firmware analysis methodology to attack
such a device. A proof-of-concept attack on an Allen-Bradley
ControlLogix L61 PLC was also performed to validate the
flexibility of their methodology. However, they do not propose
any countermeasures. The effort that is closely related to ours
is the research by Ang Cui et al. [40], who also poke the design
flaws of the update mechanism of the embedded devices, and
demonstrate that an attacker can inject malicious firmware
and take control of embedded devices trivially. The examples
used in their paper are the Laser-Jet printer. However, the
example used in our paper is an air quality sensor. The
compromised air quality sensor may inject fake data into the
server, which may misinform the public and even mislead
policy makers. Additionally, in this paper, the authors discuss
possible countermeasures for the update mechanism of the
embedded devices, but do not propose the design details
and implementation criteria. One major contribution of our
paper is that we demonstrate how to implement a defense to
firmware update attacks, and we discuss the possible pitfalls.
Checkoway et al. [41] show that the CD-based firmware
update mechanism of automobiles can also be susceptible
to remote compromise, and they offer possible remedies for
mitigation. Jong-Hyouk Lee et al. [42] proposed a secure
update system based on blockchain [43]. Their observation is
that a blockchain system can provide an alternative software
solution for data integrity and tamper resistance.

VI. CONCLUSION

This paper investigates the security issues that may ex-
ist in the firmware update process of microcontroller based
IoT applications. We demonstrate that the firmware update
mechanism of the popular PurpleAir air quality device is
subject to both physical hardware attack and remote attack. To
counter these attacks, we investigate secure firmware update
mechanisms for a legacy micrcontroller ATmegal284P and



discuss pitfalls that may occur in implementations. This work
and our survey of recent advances of MCUs in [28] will help
vendors understand the importance of the secure firmware
update mechanism for MCU based IoT systems and avoid
potential pitfalls.
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