
On the Computational Power of Online Gradient Descent

Vaggos Chatziafratis†, Tim Roughgarden?, and Joshua R. Wang‡

†Department of Computer Science, Stanford University
?Department of Computer Science, Columbia University

‡Google Research, Mountain View

February 7, 2019

Abstract

We prove that the evolution of weight vectors in online gradient descent can encode arbitrary
polynomial-space computations, even in very simple learning settings. Our results imply that,
under weak complexity-theoretic assumptions, it is impossible to reason efficiently about the
fine-grained behavior of online gradient descent.

1 Introduction
In online convex optimization (OCO), an online algorithm picks a sequence of points w1,w2, ... from a
compact convex set K ⊆ Rd while an adversary chooses a sequence f1, f2, ... of convex cost functions (from K
to R). The online algorithm can choose wt based on the previously-seen f1, ..., f t−1 but not later functions;
the adversary can choose f t based on w1, ...,wt. The algorithm incurs a cost of f t(wt) at time t. Canonically,
in a machine learning context, K is the set of allowable weight vectors or hypotheses (e.g., vectors with
bounded `2-norm), and f t is induced by a data point xt, a label yt, and a loss function ` (e.g., absolute,
hinge, or squared loss) via f t(wt) = `(wt, (xt, yt)).

One of the most well-studied algorithms for OCO is online gradient descent (OGD), which always chooses
the point wt+1 := wt − η · ∇f t(wt) (Zinkevich, 2003), projecting back to K if necessary. This algorithm
enjoys good guarantees for OCO problems, such as vanishing regret (see e.g. Hazan (2016)).

The main message of this paper is:

OGD captures arbitrary polynomial-space computations, even in very simple settings.

For example, this result is true for binary classification using soft-margin support vector machines (SVMs) or
neural networks with one hidden layer, ReLU activations, and the squared loss function. (For even simpler
models, like ordinary linear least squares, such a result appears impossible; see Appendix A.)

A bit more precisely: for every polynomial-space computation, there is a sequence of data points
(x1, y1), . . . , (xT , yT) that have polynomial bit complexity such that, if these data points are fed to OGD
(specialized to one of the aforementioned settings) in this order over and over again, the consequent sequence
of weight vectors simulates the given computation. Figure 1 gives a cartoon view of what such a simulation
looks like.1

Our simulation implies that, under weak complexity-theoretic assumptions, it is impossible to reason
efficiently about the fine-grained behavior of OGD. For example, the following problem is PSPACE-hard2:
given a sequence (x1, y1), . . . , (xT , yT) of data points, to be fed into OGD over and over again (in the same

1Our actual simulation in Section 3 and Section 4 is similar in spirit to but more complicated than the picture in Figure 1.
For example, we use a constant number of OGD updates to simulate each circuit gate (not just one), and each weight can take
on up to a polynomial number of different values.

2In fact, for the case where we are promised that the weights are bounded and only require polynomial bits of precision
(they are so in our constructions), the problem is PSPACE-complete, because we can store the weights in our polynomially-sized
memory and can keep a polynomially-sized timer to check whether we are cycling.

1

ar
X

iv
:1

80
7.

01
28

0v
2

 [c
s.L

G
]

6
Fe

b
20

19

Figure 1: Cartoon view of simulating a computation using a sequence of weight vectors. On the left, the
evaluation of a Boolean circuit on a specific input (with “T” and “F” indicating which inputs and gates
evaluate to true and false, respectively). On the right, a corresponding sequence of weight vectors (with
updates triggered by a carefully chosen data set), with each vector evaluating one more gate of the circuit
than the previous one. Weights of +1,−1, and 0 indicate that an input has been assigned true, has been
assigned false, or has not yet been assigned a value, respectively.

order), with initial weights w1 = 0, does any weight vector wt produced by OGD (with soft-margin SVM
updates) have a positive first coordinate?3

In the case of soft-margin SVMs, for the instances produced by our reduction, the optimal point in
hindsight converges over time to a single point w∗ (the regularized ERM solution for the initial data set),
and the well-known regret guarantees for OGD imply that its iterates grow close to w∗ (in objective function
value and, by strong convexity, in distance as well). Viewed from afar, OGD is nearly converging; viewed up
close, it exhibits astonishing complexity.

Our results have similar implications for a common-in-practice variant of stochastic gradient descent
(SGD), where every epoch performs a single pass over the data points, in a fixed but arbitrary order. Our
work implies that this variant of SGD can also simulate arbitrary PSPACE computations (when the data
points and their ordering can be chosen adversarially).

1.1 Related Work
There are a number of excellent sources for further background on OCO, OGD, and SVMs; see e.g. Hazan
(2016); Shalev-Shwartz and Ben-David (2014). We use only classical concepts from complexity theory, covered
e.g. in Sipser (2006).

There is a long history of PSPACE-completeness results for reasoning about iterative algorithms. For
example, PSPACE-completeness results were proved for computing the final outcome of local search (Johnson,
Papadimitriou, and Yannakakis, 1988) and other path-following-type algorithms (Goldberg, Papadimitriou,
and Savani, 2013). For a more recent example that concerns finding a limit cycle of certain dynamical systems,
see Papadimitriou and Vishnoi (2016).

This paper is most closely related to a line of work showing that certain widely used algorithms inadvertently
solve much harder problems than what they were originally designed for. For example, Adler, Papadimitriou,
and Rubinstein (2014), Disser and Skutella (2015), and Fearnley and Savani (2015) show how to efficiently
embed an instance of a hard problem into a linear program so that the trajectory of the simplex method

3PSPACE is the set of decision problems decidable by a Turing machine that uses space at most polynomial in the input
size, and it contains problems that are believed to be very hard (much harder than NP-complete). For example, the problem
of deciding which player has a winning strategy in chess (for a suitable asymptotic generalization of chess) belongs to (and is
complete for) PSPACE (Storer (1983)).

2

immediately reveals the answer to the instance. Roughgarden and Wang (2016) proved an analogous
PSPACE-completeness result for Lloyd’s k-means algorithm.

More distantly related are previous works that treat stochastic gradient descent as a dynamical system
and then show that the system is complex in some sense. Examples include Van Den Doel and Ascher (2012),
who provide empirical evidence of chaotic behavior, and Chaudhari and Soatto (2018), who show that, for
DNN training, SGD can converge to stable limit cycles. We are not aware of any previous works that take a
computational complexity-based approach to the problem.

2 Preliminaries

2.1 Soft-Margin SVMs
We begin with the following special case of OCO, corresponding to soft-margin support vector machines
(SVMs) under a hinge loss.4 For some fixed regularization parameter λ, every cost function f t will have the
form

`hinge(w
t, (xt, yt)) + λ

2 ‖w
t‖22

for some data point xt ∈ Rd and label yt ∈ {−1,+1}, where the hinge loss is defined as `hinge(wt, (xt, yt)) =
max{0, 1− yt(wt · xt)}.5 In this case, the weight updates in OGD have a special form (where η is the step
size):

wt+1 = (1− λη)wt + η ·
{
yt(xt) if yt(wt · xt) < 1

0 if yt(wt · xt) > 1.

2.2 Complexity Theory Background
A decision problem L ⊆ {0, 1}∗ is in the class PSPACE if and only if there exists a Turing machine M and a
polynomial function p(·) such that, for every n-bit string z, M correctly decides whether or not z is in L
while using space at most p(n).

PSPACE is obviously at least as big as P, the class of polynomial-time-decidable decision problems (it takes
s operations to use up s tape cells). It also contains every problem in NP (just try all possible polynomial-
length witnesses, reusing space for each computation), co-NP (for the same reason), the entire polynomial
hierarchy, and more. A problem L is PSPACE-hard if every problem in PSPACE polynomial-time reduces to
it, and PSPACE-complete if additionally L belongs to PSPACE. While the current state of knowledge does
not rule out P = PSPACE (which would be even more surprising than P = NP), the widespread belief is that
PSPACE contains many problems that are intrinsically computationally difficult (like the aforementioned
chess example). Thus a problem that is complete (or hard) for PSPACE would seem to be very hard indeed.

Our main reduction is from the C-Path problem. In this problem, the input is (an encoding of) a Boolean
circuit C with n inputs, n outputs, and gates of fan-in 2; and a target n-bit string s∗. The goal is to decide
whether or not the repeated application of C to the all-false string ever produces the output s∗. This problem
is PSPACE-complete (see Adler et al. (2014)), and in this sense every polynomial-space computation is just a
thinly disguised instance of C-Path.

3 PSPACE-Hardness Reduction
In this section, we present our main reduction from the C-Path problem. Our reduction uses several types of
gadgets, which are organized into an API in Subsection 3.2.

The implementation of two gadgets is given in Section 4 and the remaining implementations can be
found in Appendix B. After presenting the API, this section concludes by showing how the reduction can be
performed using the API.

4Neural networks with ReLU activations and squared loss are discussed in Appendix D.
5For simplicity, we have omitted the bias term here; see also Section 5.1.

3

3.1 Simplifying Assumptions
For this section, we make a couple of simplifying assumptions to showcase the main technical ideas used in
our proof. We later show how to extend the proof to remove these assumptions in Section 5. Our simplifying
assumptions are:

(i) There is no bias term, i.e. b is fixed to 0.

(ii) The learning rate η is fixed to 1.

(iii) The loss function is not regularized, i.e. λ = 0.

3.2 API for Reduction Gadgets
We use a number of gadgets to encode an instance of C-Path into training examples for OGD. The high
level plan is to use the weights wt to encode boolean values in our circuit. A weight of +1 will represent a
true bit, while a weight of −1 will represent a false bit. Additionally, we use a weight of 0 to represent a bit
that we have not yet computed (which we refer to as “unset”). For example, our simplest gadget is reset(i1),
which takes the index of a weight that is set to either +1 or -1, and provides a sequence of training examples
that causes that weight to update to 0 (thus unsetting the bit). Our next simplest gadget is not(i1), which
takes the index of a weight that is set to either +1 or -1, and provides a sequence of training examples that
causes the weight to update to -1 or +1, respectively (thus setting it to the not of itself). Note that our main
reduction does not use the not gadget directly, but it serves as a subgadget for our other gadgets and is also
useful for performing other reductions.

It is well known that every {±1} Boolean circuit can be efficiently converted into a circuit that only has
NAND gates (where the output is −1 if both inputs are +1, and +1 otherwise), and so we focus on such
circuits. We would like a gadget that takes two true/false bits and an unset bit and writes the NAND of
the first two into the third. Unfortunately, the nature of the weight updates makes it difficult to implement
NAND directly. As a result, we instead use two smaller gadgets that can together be used to compute a
NAND. The bulk of the work is done by destructive_nand(i1, i2, i3), which performs the above but has the
unfortunate side-effect of unsetting the first two bits. As a result, we need a way to increase the number of
copies we have of a boolean value. The copy(i1, i2) gadget takes a true/false bit and an unset bit and writes
the former into the latter. Taken together, we can compute NAND by copying our two bits of interest and
then using the copies to compute the NAND.

Our next gadget allows the starting weights w0 to be the all-zeroes vector. The gadget
set_false_if_unset(i1) takes a weight that may correspond to either a true/false bit or to an unset bit. If
the weight is already true/false, it does nothing. Otherwise, it takes the unset bit and writes false into it.

Finally, we have a simple gadget for the purpose of presenting a concrete PSPACE-hard decision problem
about the OGD process. The question we aim for is, does any weight vector wt produced by OGD (with
soft-margin SVM updates) have a positive first coordinate? Correspondingly, the set_if_true gadget takes
a true/false bit and a zero-weight coordinate (intended to be the first coordinate). If the first bit is true,
this gadget gives the zero-weight coordinate a weight of +1. If the first bit is false, this gadget leaves the
zero-weight coordinate completely untouched, even in intermediate steps between its training examples. This
property is not present in the implementation of our other gadgets, so this will be the only gadget that we
use to modify the first coordinate.

This API is formally specified in Table 1.

3.3 Performing the Reduction using the API
We now show how to use our API to transform an instance of the C-Path problem into a set of training
examples for a soft-margin SVM that is being optimized by OGD.

Theorem 3.1. There is a reduction which, given a circuit C and a target binary string s∗, produces a set of
training examples for OGD (with soft-margin SVM updates) such that repeated application of C to the all-false
string eventually produces the string s∗ if and only if OGD beginning with the all-zeroes weight vector and
repeatedly fed this set of training examples (in the same order) eventually produces a weight vector wt with
positive first coordinate.

4

Table 1: Public API

Function Precondition(s) Description

reset(i1) i1 ∈ {1, . . . , d} wi1 ← 0
(for implementation, see Table 2) wi1 ∈ {−1,+1}
not(i1) i1 ∈ {1, . . . , d} wi1 ← NOT(wi1)
(for implementation, see Table 3) wi1 ∈ {−1,+1}
copy(i1, i2) i1, i2 ∈ {1, . . . , d} wi2 ← wi1
(for implementation, see Table 5) wi1 ∈ {−1,+1}

wi2 = 0

destructive_nand(i1, i2, i3) i1, i2, i3 ∈ {1, . . . , d} wi3 ← NAND(wi1 , wi2)
(for implementation, see Table 6) wi1 ∈ {−1,+1} wi1 ← 0

wi2 ∈ {−1,+1} wi2 ← 0
wi3 = 0

set_false_if_unset(i1) i1 ∈ {1, . . . , d} If wi1 == 0, wi1 ← −1
(for implementation, see Table 7) wi1 ∈ {−1, 0,+1}
copy_if_true(i1, i2) i1, i2 ∈ {1, . . . , d} If wi1 > 0, wi2 ← +1
(for implementation, see Table 8) wi1 ∈ {−1,+1} If wi1 < 0, wi2 remains at 0

wi2 = 0 (including in intermediate steps)

Proof. Our reduction begins by converting C into a more complex circuit C′. First, we assume that C has
only NAND gates (see above). Next, we augment our circuit with an additional input/output bit, intended
to track if the current output is s∗. The circuit C′ ignores its additional input bit, and its additional output
bit is true if the original output bits are s∗ and false otherwise. These transformations keep the size of C′
polynomial in the input/output size.

Let n denote the input/output size of C′ and let m denote the number of gates in C′. Our reduction
produces training examples for an SVM with a d-dimensional weight vector, where d = n+m+3. We denote
the first three indices for this weight vector using ⊥, �, and ♦: notably, ⊥ denotes the first coordinate whose
weight should remain zero unless the input to the C-Path problem should be accepted. We denote the next
n indices 1, . . . , n and associate each with an input bit. We denote the last m indices n+ 1, . . . , n+m and
associate them with gates of C′, in some topological order.

We begin with an empty training set. Each time we call a function from our API (which can be found
in Table 1), we append its training examples to the end of our training set. We now give the construction,
and then finish the proof by proving the resulting set of training examples has the desired property. Our
construction proceeds in five phases.

In the first phase of our reduction, we set the starting input for the C-Path problem. We iterate in order
through i = 1, 2, . . . , n. In iteration i, we call set_false_if_unset(i).

In the second phase of our reduction, we simulate the computation of the circuit C′. We iterate in order
through i = n+1, n+2, . . . , n+m. In iteration i, we examine the NAND gate in C′ associated with i. Suppose
its inputs are associated with indices i1 and i2. We call copy(i1,�), copy(i2,♦), destructive_nand(�,♦, i)
in that order.

In the third phase of our reduction, we check if we have found s∗. Let the additional output bit of C′ be
at index i1. We call copy_if_true(i1,⊥).

In the fourth phase of our reduction, we copy the output of the circuit back to the input. We iterate in
order through i = 1, 2, . . . , n. In iteration i, let the ith output bit of C′ correspond to the gate associated
with index i1. We call reset(i) and copy(i1, i), in that order.

In the fifth phase of our reduction, we reset the circuit for the next round of computation. We iterate in
order through i = n+ 1, n+ 2, . . . , n+m. In iteration i, we call reset(i).

We now explain why the resulting training data has the desired property. Let’s consider what OGD does
in (i) the first pass over the training data and (ii) in later passes over the data. We begin with case (i).

5

Before the first phase of our reduction, all weights are zero, corresponding to unset bits. The first phase of
our reduction hence sets the weights at indices 1, . . . , n to correspond to an all-false input. The second phase
of our reduction then computes the appropriate output for each gate and sets it. Note that it is important
we proceeded in topological order, so that the inputs of a NAND gate are set before we attempt to compute
its output. The third phase of our reduction checks if we have found s∗, and if the ⊥ weight gets set to a
positive coordinate, this implies that C immediately produced s∗ when applied to the all-false string. The
fourth phase of our reduction unsets the weights at indices 1, . . . , n and then copies the output of C′ into
them. The fifth phase of our reduction then unsets the weights at indices n+ 1, . . . , n+m.

If we are continuing after this first pass, then the weights at indices ⊥, �, ♦, and n+1, . . . , n+m are unset
while the weights at indices 1, . . . , n are set to the next circuit input. We now analyze case (ii), assuming it
also leaves the weights in this state after each pass. In the first phase of our reduction, nothing happens
because the input is already set. The second through fifth phases of our reduction then proceed exactly as in
case (i), computing the circuit based on this input, checking if we found s∗, copying the output to the input,
and resetting the circuit for another round of computation. As a result, we again arrive at a state where the
weights at indices ⊥, �, ♦, and n+ 1, . . . , n+m are unset while the weights at indices 1, . . . , n are set to the
next circuit input.

In other words, repeatedly passing over our training data causes OGD to simulate the repeated application
of C, as desired. By construction, our first coordinate ⊥ has a positive weight if and only if our simulated C
computation manages to find s∗. This completes the proof.

Remark 1. Although our decision question about OGD asked whether the first coordinate ever became positive,
our reduction technique is flexible enough to result in many possible decision questions. For example, we
might ask if OGD, after a single complete pass over the training examples, winds up producing the same
weight vector wt that it had produced immediately preceding the complete pass (since C may be rewired so that
its only stationary point is s∗). As another example, with a simple modification of our copy_if_true(i1, i2)
gadget to place a high value into wi2 , we could ask whether OGD ever produces a weight vector wt with norm
above some threshold.

4 API Implementation
Now that we have described at a high level how to simulate the circuit computation using OGD updates, we
proceed by giving the technical details of the implementation for each gadget operation on the circuit bits:
reset, not, copy, destructive_nand, input_false, set_if_true. Note that in all of our constructions the
training examples required are extremely sparse; each construction involves at most 3 non-zero coordinates.

4.1 Implementation of reset(i1)

The reset gadget (see Table 2) takes as input one index i1 and resets the corresponding weight coordinate
to zero independent of what this coordinate used to be (either −1 or +1). The plan is to collapse the two
possible states into a single state, then force the weight coordinate to zero.

Since this is our first gadget, we will need to do some legwork and write down the gradients involved in
an update. For a datapoint (x, y), the hinge loss function is: `hinge(w,x, y) = max{0, 1− yw · x)} and the
update is:

∂`hinge(w,x, y)

∂wi
=

{
−yxi if yw · x < 1

0 if yw · x > 1

Following our plan, we don’t know wi1 but want to collapse the two possible states to a single state. What
is an appropriate training example that will allow us to do so? Consider the first training example listed in
Table 2; we have that xi1 = −2, x is zero on the remainder of its coordinates, and y = +1. There are two
cases to consider when we apply this training example.

• In the case of wi1 = −1, we have yw · x = (−1)(−2) > 1 and so there is no update since the gradient of
the hinge loss is zero. Hence wi1 remains −1.

6

Table 2: Training data for reset(i1).

xi1 y Effect on (wi1)

−2 1 (−1)→ (−1)
(1)→ (−1)

1 1 (−1)→ (0)
(add trick) (−1)→ (0)

Table 3: Training data for not(i1).

xi1 y Effect on (wi1)

4 1 (−1)→ (3)
(1)→ (1)

−2 1 (3)→ (1)
(add trick) (1)→ (−1)

• If wi1 = +1, we have yw · x = (+1)(−2) < 1, and so there is an update. After this update we get:
wi1 ← wi1 + (+1)(−2) =⇒ wi1 ← −1, as desired.

We have now successfully collapsed into a single state. The next step of our plan was to force the weight
coordinate to zero; we want to add +1 to −1. As it turns out, adding a positive amount to a negative weight
(or a negative amount to a positive weight) is easy, and can be done in a single training example. The signs
work out so that we can ignore the hinge criterion and choose values that would result in the correct update,
and the hinge criterion is naturally satisfied. In the implementation of other gadgets, we will refer to this as
the add trick.

Consider the second training example listed in Table 2; we have that xi1 = +1, x is zero on the remainder
of its coordinates, and y = +1. Since we know that wi1 = −1, we have that yw · x = (+1)(−1) < 1 and so
there is an update. After this update we get: wi1 ← wi1 + (+1)(+1) =⇒ wi1 ← 0, as desired.

4.2 Implementation of not(i1)

The not gadget (see Table 3) takes as input one index i1 and negates the corresponding weight coordinate.
The gadget construction plan is to first swap the roles of high state/low state while maintaining a gap of two,
then lower states to the proper values.

Following our plan, we don’t know wi1 but want to reverse the order of the states. The more important
training example is the first training example listed in Table 3; we have that xi1 = +4, x is zero on the
remaining coordinates, and the label is +1.

• If wi1 = −1, we have yw · x = (−1)(+4) < 1, and so there is an update. After this update we get:
wi1 ← wi1 + (+1)(+4) =⇒ wi1 ← +3.

• In the case of wi1 = +1, we have yw · x = (+1)(+4) > 1 and so there is no update since the gradient of
the hinge loss is zero. Hence wi1 remains +1.

Hence we have swapped the low-value state with the high-value state, while maintaining a difference of
two between the two states. The second training example is the same add trick that we used before; we add
−2 to two possible (positive) states, resulting in our desired final values.

All the necessary technical details on how one can implement copy, destructive_nand,
set_false_if_unset and copy_if_true are provided in Appendix B.

5 Extensions
In this section, we give extensions to our proof techniques to remove the assumptions we made in Section 3.

5.1 Handling a Bias Term
In this subsection, we show how to remove assumption (i) and handle an SVM bias term. With the bias term
added back in, the loss function is now:

`hinge(w, b,x, y) = max{0, 1− y(w · x− b)}

7

Table 4: Training data to correct the bias term.

xb1 xb2 y Effect on (wb1 , wb2)

−1 −1 1 (−1, −1)→ (−1, −1)
(0, 0)→ (−1, −1)

−1 −1 −1 (−1, −1)→ (0, 0)
(−1, −1)→ (0, 0)

Using a standard trick, we can simulate this bias term by adding an extra dimension b1 and insisting that
xb1 = −1 for every training point; the corresponding wb1 entry plays the role of b. We now explain how to
modify the reduction to follow the restriction that xb1 = −1 for every training point.

The key insight is that if we can ensure that the value of this bias term is wb1 = 0 immediately preceding
every training example from the base construction, then y(w·x) will remain the same and the base construction
will proceed as before. The problem is that whenever a base construction training example is in the first case
for the derivative (namely y(w · x) < 1), this will result in an update to wb1 . Since every base construction
training example chooses y = +1, we know the first case causes wb1 to be updated from 0 to −1. We need to
insert an additional training example to correct it back to 0. To complicate matters further, we sometimes
don’t know whether we are in the first or second case for the derivative, so we don’t know whether wb1 has
remained at 0 or has been altered to −1. We need to provide a gadget such that for either case, wb1 is
corrected to 0.

In order to avoid falling on the border of the hinge loss function (y(w · x) = 1), we will be using two
mirrored bias terms. In other words, we add two extra dimensions, b1 and b2 and insist that xb1 = xb2 = −1
for every training point. We ensure that wb1 = wb2 = 0 before every base construction training example.
Since they always have the same weight, the two points always receive the same update, and the situtation is
now that either (i) they both remained at 0 or (ii) they both were altered to −1. We would like to correct
them both to 0.

The two training examples that implement this behavior can be found in Table 4. The first training
example combines cases by transforming case (i) into case (ii) and resulting in no updates when in case
(ii). The second training example then resets both values to 0. To fix the base construction, we insert this
gadget immediately after every base training example. As stated previously, this guarantees that wb1 = 0
immediately before every base construction training example, which thus proceeds in the same fashion.

5.2 Handling a Fixed Learning Rate
In this subsection, we show how to remove our assumption that the learning rate η = 1. Suppose we have
some other step size η, possibly a function of T , the total number of steps to run OGD. We perform our
reduction from C-Path as before, pretending that η = 1. This yields a value for T , which we can then use to
determine η(T).

We then scale all training vectors x (but not labels y) by 1√
η . We claim that our analysis holds when

the weight vectors w are scaled by √η. To see why, we reconsider the updates performed by OGD. First,
consider the gradient terms:

∂`hinge(w,x, y)

∂wi
=

{
−yxi if y(w · x) < 1

0 if y(w · x) > 1

Notice that the scaling of x and the scaling of w cancel out when computing w · x, so we stay in the same
case. Since x was scaled by 1√

η , our gradients scale by that amount as well. However, since the updates
performed are η times the new gradient, the net scaling of updates to w is by a factor of √η. Since our
analysis of w is scaled up by exactly this amount as well, w is updated as we previously reasoned.

As an aside, one common use case is annealing the learning rate, e.g. ηt = 1/
√
t. For this case, it is

possible to use our machinery to perform a circuit to OGD reduction, but the result would be that determining
the exact result of OGD after it is fed a series of examples once (not repeatedly) is P -complete (computable

8

in polynomial time, but probably not parallelizable). The issue is that different passes over the training data
would be performed at different scales, but we can still get some complexity out of a single pass.

5.3 Handling a Regularizer
In this subsection, we discuss how to handle a regularization parameter λ which is not too large. Consider
the hinge loss objective with a regularizer:

`reg(w,x, y) = max{0, 1− y(w · x)}+ λ
2 ‖w‖

2
2

∂`reg(w,x, y)

∂wi
=

{
−yxi if y(w · x) < 1

0 if y(w · x) > 1

+ λwi

Conceptually, the regularizer causes our weights to slowly decay over time. In particular, this new λwi
term in the gradient means that weights decay by α = (1− λ) at each step. We assume that this decay rate
is not too fast: α ∈

(
1√
2
, 1
)
. Equivalently, λ ∈

(
0, 1− 1√

2

)
. Due to this decay, we will no longer be able

to maintain the association that a true bit is +1, a false bit is −1, and an unset bit is 0. Instead, for each
weight index i the reduction will need to maintain a counter εi which represents the current magnitude of
any true/false bit being stored in that weight variable wi. A true bit will be +εi, a false bit will be −εi, and
an unset bit will still be 0. After each training example it adds, the reduction should multiply each counter εi
by α.

Correspondingly, our API will need to grow more complex as well. The new API, the modified reduction
which uses it, and the formal implementation can all be found in Appendix C.

9

References
Ilan Adler, Christos Papadimitriou, and Aviad Rubinstein. On simplex pivoting rules and complexity theory. In
International Conference on Integer Programming and Combinatorial Optimization, pages 13–24. Springer,
2014.

Pratik Chaudhari and Stefano Soatto. Stochastic gradient descent performs variational inference, converges
to limit cycles for deep networks. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=HyWrIgW0W.

Yann Disser and Martin Skutella. The simplex algorithm is np-mighty. In Proceedings of the twenty-sixth
annual ACM-SIAM symposium on Discrete algorithms, pages 858–872. Society for Industrial and Applied
Mathematics, 2015.

John Fearnley and Rahul Savani. The complexity of the simplex method. In Proceedings of the forty-seventh
annual ACM symposium on Theory of computing, pages 201–208. ACM, 2015.

Paul W Goldberg, Christos H Papadimitriou, and Rahul Savani. The complexity of the homotopy method,
equilibrium selection, and lemke-howson solutions. ACM Transactions on Economics and Computation, 1
(2):9, 2013.

Elad Hazan. Introduction to online convex optimization. Foundations and Trends R© in Optimization, 2(3-4):157–
325, 2016. ISSN 2167-3888. doi: 10.1561/2400000013. URL http://dx.doi.org/10.1561/2400000013.

David S Johnson, Christos H Papadimitriou, and Mihalis Yannakakis. How easy is local search? Journal of
computer and system sciences, 37(1):79–100, 1988.

Christos H Papadimitriou and Nisheeth K Vishnoi. On the computational complexity of limit cycles in
dynamical systems. In Itcs" 16: Proceedings Of The 2016 Acm Conference On Innovations In Theoretical
Computer Science, pages 403–403. Assoc Computing Machinery, 2016.

Tim Roughgarden and Joshua R Wang. The complexity of the k-means method. In LIPIcs-Leibniz
International Proceedings in Informatics, volume 57. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2016.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algorithms.
Cambridge university press, 2014.

Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course Technology, 2006.

James A Storer. On the complexity of chess. Journal of computer and system sciences, 27(1):77–100, 1983.

Kees Van Den Doel and Uri Ascher. The chaotic nature of faster gradient descent methods. Journal of
Scientific Computing, 51(3):560–581, 2012.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proceedings
of the 20th International Conference on Machine Learning (ICML-03), pages 928–936, 2003.

10

https://openreview.net/forum?id=HyWrIgW0W
http://dx.doi.org/10.1561/2400000013

A Barrier for Quadratic Models
In this appendix, we explain why our reductions cannot go through for a large class of models. This class
includes the method of least squares, in which the loss function for the current choice of weights wt and a
point (xt, yt) is given by:

`LS(w
t, (xt, yt)) = (yt −wt · xt)2

More specifically, this barrier applies to any model where the loss function is quadratic in the weights, i.e.
of the following form.

`(wt, (xt, yt)) =
d∑
i=1

d∑
j=1

αi,j(x
t, yt)wiwj +

d∑
i=1

βi(x
t, yt)wi + γ(xt, yt)

Note that the quadratic coefficients α, β, γ may be arbitrary functions of the training points, and without
loss of generality we consider the coefficients α to be symmetrized so that αi,j = αj,i.

The key point about such functions is that the gradient update with respect to point (xt, yt) is a linear
transformation of the weights. In particular, notice that the derivative with respect to the kth weight is:

∂`

∂wk
= 2

d∑
i=1

αi,k(x
t, yt)wi + βk(x

tyt)

Hence an OGD with fixed step size η will have the form:

wt+1
k = wtk − η

[
2

d∑
i=1

αi,k(x
t, yt)wi + βk(x

tyt)

]

We can hence write our update as a matrix-vector product if we augment our weight vector with a one:
wt+1

1

wt+1
2
...

wt+1
d

1

 =

Id+1 − η


2α1,1 2α1,2 . . . 2α1,d β1
2α2,1 2α2,2 . . . 2α2,d β2
...

...
. . .

...
...

2αd,1 2αd,2 . . . 2αd,d βd
0 0 . . . 0 0




︸ ︷︷ ︸

denote this as Mt


wt1
wt2
...
wtd
1



Hence, for such a “quadratic” model, each training example (xt, yt) is equivalent to a specific linear6
transformation M t. However, we know that circuit gates (e.g. NAND) are nonlinear! Since the composition
of linear transformations is still linear, we cannot encode a general circuit as a series of training examples for
OGD.

As an aside, this suggests a fast method for approximately computing the weights of OGD on such a
quadratic model after τ iterations. Specifically, consider the situtation where we OGD is repeatedly fed a
sequence of T points (x1, y1), (x2, y2), ..., (xT , yT) over and over again (in the same order) with initial weights
w1. We want to know wτ , the resulting weights after τ − 1 iterations of OGD; we can compute these weights
with only O(T + log τ) matrix multiplications.

First, we compute the product M =MTMT−1 · · ·M1, which can be done with (T − 1) = O(T) matrix
multiplications. Next, let τ ′ = b(τ − 1)/T c. We compute Mτ ′

using the standard exponentiating by
squaring trick, which requires 2 log2 τ ′ = O(log τ) matrix multiplications. Finally, we can apply the remaining
(τ − 1) − Tτ ′ < T matrices through O(T) more matrix multiplications. We take the resulting matrix
and multiply it with our original weight vector. As claimed, we computed the new weight vector in only
O(T + log τ) matrix multplications.

The slight issue with the above method is that if we want to compute the weight vector exactly, the
repeated squaring will rapidly increase the magnitude of the matrix entries and make multiplication expensive.
It is possible to circumvent this issue by working with limited precision or over a finite field.

6Strictly speaking, these transformations are actually affine.

11

Table 5: Training data for copy(i1, i2).

xi1 xi2 y Effect on (wi1 , wi2)

−4 2 1 (−1, 0)→ (−1, 0)
(1, 0)→ (−3, 2)

2 0 1 (−1, 0)→ (1, 0)
(add trick) (−3, 2)→ (−1, 2)

not(i1) (1, 0)→ (−1, 0)
(−1, 2)→ (1, 2)

0 −1 1 (−1, 0)→ (−1, −1)
(add trick) (1, 2)→ (1, 1)

B API Implementation (Continued)
In this appendix, we implement the remaining functions of our API for soft-margin SVMs, which were listed
in Table 1.

B.1 Implementation of copy(i1, i2)

Suppose we want to copy the i1-th coordinate of the weight vector to its i2-th coordinate. How can we do
that using only gradient updates? The plan is to have a training example with both xi1 and xi2 nonzero.
Intuitively, this first training example will “read” from wi1 and “write” to wi2 (it actually writes to both). We
then perform some tidying so that the two possible states for each weight coordinate become −1 and +1.
The sequence of operations together with the resulting weight vector after the gradient updates are provided
in Table 5. Observe that in the end, the value of the i2-th coordinate of the weight vector is exactly the same
as the i1-coordinate and the operation copy(i1, i2) is performed correctly.

The aforementioned read-write training example has label +1, xi1 = −4, xi2 = +2 and xi = 0, ∀i 6= i1, i2.
After this example, we use a not(i1) gadget and the add trick to clean up.

• Let’s focus in the case where wi1 = −1 (upper half of every row in Table 5). Without loss of generality
let wi2 = 0 since otherwise we can just perform reset(i2) using previously defined gadgets.

The gradient update on the first example will not affect the weight vector as yw · x = (+1)(−1)(−4) =
4 > 1. Then we just add +2 to get (wi1 , wi2) = (+1, 0). After the not and the add trick, we end up
with the desired (wi1 , wi2) = (−1,−1) outcome.

• This is similar to the previous case and by tracking down the gradient updates we end up with the
desired (wi1 , wi2) = (+1,+1) outcome.

B.2 Implementation of destructive_nand(i1, i2, i3)

We want to implement a NAND gate with inputs the coordinates wi1 , wi2 and output the result in wi3 .
Following our intuition, we will need a training example that is nonzero in xi1 , xi2 , and xi3 , so that it can
read the first two and write to the third. However, as before, such a training example necessarily modifies all
three weights. To keep things simple, we will only ask our gadget to zero out wi1 and wi2 , not restore them
to their original values. This loss of input values is why we refer to this gadget as destructive NAND. The
operations needed are provided in Table 6, and we only give the intuition regarding how this gadget was
constructed.

As stated, our main training example will have nonzero values in all three coordinates. We would like to
set things up so that the hinge criterion is satisfied only in the false case of NAND. To do so, we begin with
an add trick which adds −1 to the third weight coordinate. Now, the sum of the three weights is either −3,
−1, or +1, and this last case is the one we want to single out. For our main training example, we choose a

12

Table 6: Training data for destructive_nand(i1, i2, i3).

xi1 xi2 xi3 y Effect on (wi1 , wi2 , wi3)

0 0 −1 1 (−1, −1, 0)→ (−1, −1, −1)
(add trick) (−1, 1, 0)→ (−1, 1, −1)

(1, −1, 0)→ (1, −1, −1)
(1, 1, 0)→ (1, 1, −1)

−2 −2 −2 1 (−1, −1, −1)→ (−1, −1, −1)
(−1, 1, −1)→ (−1, 1, −1)
(1, −1, −1)→ (1, −1, −1)
(1, 1, −1)→ (−1, −1, −3)

reset(i1) (−1, −1, −1)→ (0, −1, −1)
(−1, 1, −1)→ (0, 1, −1)
(1, −1, −1)→ (0, −1, −1)
(−1, −1, −3)→ (0, −1, −3)

reset(i2) (0, −1, −1)→ (0, 0, −1)
(0, 1, −1)→ (0, 0, −1)
(0, −1, −1)→ (0, 0, −1)
(0, −1, −3)→ (0, 0, −3)

0 0 2 1 (0, 0, −1)→ (0, 0, 1)
(add trick) (0, 0, −1)→ (0, 0, 1)

(0, 0, −1)→ (0, 0, 1)
(0, 0, −3)→ (0, 0, −1)

magnitude of 2 for our training values so that the possible sums become −6, −2, and +2; this puts the hinge
threshold of +1 firmly between the two cases we care about. We finish with two reset gadgets and an add
trick.

B.3 Implementation of set_false_if_unset(i1)

The effect of set_false_if_unset(i1) is to map the i1-th coordinate (which is either −1, 0,+1) to −1, unless
it is +1 in which case it should remain +1. The 4 steps in Table 7 with the add gadgets should be clear
by now. Here we give the calculations of the gradients and updates for the 3 steps that contain training
examples.

• The training example has label y = +1, with xi1 = +3 and xi = 0, ∀i 6= i1. If wi1 = 0 then
yw · x = (+1)(0) = 0 < 1 so the gradient step will add yxi1 = (+1)(+3) = 3 to wi1 . If wi1 = +1 then
yw · x = (+1)(+1)(+3) = 3 > 1 so there is no update. If wi1 = +2, then again there is no update.

• The training example has label y = +1, with xi1 = +2 and xi = 0, ∀i 6= i1. If wi1 = +2 then
yw ·x = (+1)(+2)(+2) = +4 > 1 so there is no update. If wi1 = 0, then yw ·x = 0 < 1, so the gradient
step will add yxi1 = (+1)(+2) = 2 to wi1 . If wi1 = +1 then yw · x = (+1)(+1)(+2) = 2 > 1 so there is
no update.

• Training on the final training example is similar to the first case above.

B.4 Implementation of copy_if_true(i1, i2)

This short gadget is given two coordinates i1, i2 and sets wi2 = +1 only if wi1 = +1, otherwise everything
stays unchanged. We use it to decide if at any point in the circuit computation, the target binary string s∗ is
ever reached, in which case a specially reserved bit in the weight vector (e.g. the first bit of the w) is set to 1
to signal this fact.

13

Table 7: Training data for set_false_if_unset(i1).

xi1 y Effect on (wi1)

− 1
4 1 (−1)→ (− 5

4)
(0)→ (− 1

4)
(1)→ (3

4)

−1 1 (− 5
4)→ (− 5

4)
(− 1

4)→ (− 5
4)

(3
4)→ (− 1

4)

−3 1 (− 5
4)→ (− 5

4)
(− 5

4)→ (− 5
4)

(− 1
4)→ (− 13

4)

9
4 1 (− 5

4)→ (1)
(add trick) (− 5

4)→ (1)
(− 13

4)→ (−1)
not(i1) (1)→ (−1)

(1)→ (−1)
(−1)→ (1)

Table 8: Training data for copy_if_true(i1, i2).

xi1 xi2 y Effect on (wi1 , wi2)

−4 1 1 (−1, 0)→ (−1, 0)
(1, 0)→ (−3, 1)

2 0 1 (−1, 0)→ (1, 0)
(add trick) (−3, 1)→ (−1, 1)

not(i1) (1, 0)→ (−1, 0)
(−1, 1)→ (1, 1)

We are going to use one training example, an add trick and then a not gadget and the calculations
explaining the derivations of Table 8 are given below:

• The first training example has label y = +1, with xi1 = −4, xi2 = +1 and xi = 0, ∀i 6= i1, i2. If
wi1 = −1, wi2 = 0 then yw · x = (+1)(+4) = +4 > 1 so there is no update. If wi1 = +1, wi2 = 0 then
yw · x = (+1)(+1)(−4) = −4 < 1, so the gradient step will add yxi1 = (+1)(−4) = −4 to wi1 (which
now becomes −3) and yxi2 = (+1)(+1) = +1 to wi2 (which now becomes +1).

• Then, we perform the add trick mentioned above with the training example that has label y = +1,
with xi1 = 2, xi2 = 0 and xi = 0, ∀i 6= i1, i2 and finally we use a not gadget. The corresponding weight
updates are shown in Table 8.

C Proof Extension for Regularization (Continued)
In this appendix, we give an augmented API for regularization, show how to modify the original reduction to
use the augmented API, and then give an implementation of the API.

14

C.1 Augmented API for Regularization
Our augmented API is listed in Table 10. These five functions serve the same purpose as the functions of
our original API (see Table 1), but now accept additional parameters and have return values so that our
reduction can keep track of the magnitude of each weight.

All gadgets here, reset(i1, ε1), d_nand(i1, i2, i3, ε1, ε2), set_false_if_unset(i1, ε1), and copy_if_true(i1, i2, ε1)
have essentially the same behavior as before, but now accept magnitude parameters and output the final
magnitude of the weights that they write to. A more drastic change was made to copy2(i1, i2, i3, ε1), which
now destroys the bit stored in its input weight. To compensate, it now makes two copies, so that using it
increases the total number of copies of a weight.

C.2 Reduction Modifications for Regularization
Our reduction still performs the same transformation of C into C′. However, we will use an additional
dimension (now d = n+m+ 4), which we also denote with a new special: 4. As stated before, we keep a
counter εi for each dimension i, decaying all counters by α after each training example we produce.

In most cases, the appropriate εi to pass to our gadgets is clear: we take the last εi we received from a
gadget writing to this coordinate and decay it appropriately. There is one major exception: in the first phase
of the reduction, we need to iterate over i = 1, 2, . . . , n and call set_false_if_unset(i, εi). The correct
input magnitude is actually based on the last time these weights were possibly edited, which is actually in
the (previous pass over the data) fourth phase of the reduction! Luckily, in our implementation of this API
the number of training examples to implement a gadget does not depend on the inputs εi. As a result, we can
either pick the appropriate values knowing the contents of all the phases, or we can run the reduction once
with εi = 1 and then perform a second pass once we know the total number of training examples and which
training examples are associated with which API calls. One important consequence of this reasoning is that
since the reduction touches each coordinate at least once as we pass over all training examples, the maximum
decay of any weight is only singly-exponential in the number of training examples (which is polynomial in the
original circuit problem size), which is better than the naive bound of double-exponential. As a result, we
only require polynomial bits of precision are needed to represent the weights at any point in time. Note that
if one does not care about regularization, then all of our other constructions only required fixed precision.

Other than managing these magnitudes, we also alter the second and fourth phase of our reduction to
account for a revised copy function (this is why we need an additional dimension). In the new second phase
of our reduction, we iterate over i = n+ 1, n+ 2, . . . , n+m. Again, we look at the associated NAND gate
with inputs i1, i2. We call:

• copy2(i1,�,4, ·),

• reset(�, ·),

• copy2(4, i1,�, ·),

• copy2(i2,♦,4, ·),

• reset(♦, ·),

• copy2(4, i2,♦, ·), and

• d_nand(�,♦, i, ·, ·),

in that order with appropriate εi.
Similarly, in the fourth phase of our reduction, we iterate over i = 1, 2, . . . , n and call reset(i, ·),

copy2(i1, i,�, ·), copy2(�, i1,♦, ·), reset(♦, ·), in that order with appropriate εi.
The reason the reduction works is the same as before: the reduction forces the weights to simulate

computation of the circuit and a check for s∗ with each pass through the training data. This completes the
description of how to modify the reduction.

15

Table 9: Training data for reset(i1, ε1).

xi1 y Effect on (wi1)

1
2ε1α2 1 (−ε1)→ (1

2ε1α2 − ε1α)
(ε1)→ (1

2ε1α2 + ε1α)

2ε1α
2 1 (1

2ε1α2 − ε1α)→ (1
2ε1α

+ ε1α
2)

(1
2ε1α2 + ε1α)→ (1

2ε1α
+ ε1α

2)

− 1
2ε1
− ε1α3 1 (1

2ε1α
+ ε1α

2)→ (0)

(1
2ε1α

+ ε1α
2)→ (0)

Table 10: Augmented API for Regularization. σ(wi) denotes the sign function.

Function Precondition(s) Returns Description

reset(i1, ε1) i1 ∈ {1, . . . , d} None wi1 ← 0
(for implementation, see Table 9) wi1 ∈ {−ε1,+ε1}
copy2(i1, i2, i3, ε1) i1, i2, i3 ∈ {1, . . . , d} (ε2, ε3) wi2 ← σ(wi1)ε2
(for implementation, see Table 11) wi1 ∈ {−ε1,+ε1} wi3 ← σ(wi1)ε3

wi2 = 0
wi3 = 0

d_nand(i1, i2, i3, ε1, ε2) i1, i2, i3 ∈ {1, . . . , d} (ε3) wi3 ← NAND (σ(wi1), σ(wi2)) ε3
(for implementation, see Table 12) wi1 ∈ {−ε1,+ε1} wi1 ← 0

wi2 ∈ {−ε2,+ε2} wi2 ← 0

set_false_if_unset(i1, ε1) i1 ∈ {1, . . . , d} (ε′1) If wi1 = 0, wi1 ← −ε′1
(for implementation, see Table 13) wi1 ∈ {−ε1, 0,+ε1} Else, wi1 ← σ(wi1)ε

′
1

copy_if_true(i1, i2, ε1) i1, i2 ∈ {1, . . . , d} (ε′1, ε2) If wi1 > 0, wi2 ← +ε2
(for implementation, see Table 14) wi1 ∈ {−ε1,+ε1} If wi1 < 0, wi2 remains at 0

wi2 = 0 (including in intermediate steps)
wi1 ← σ(wi1)ε

′
1

C.3 Implementation of reset(i1, ε1)

At a high level, the idea behind this implementation is as follows. We are given a weight that either contains
a small negative or a small positive value. We would like to add the difference between these two potential
values, but only in the case where the original value is negative. In order to do so, we must first increase
both possible values so that when multiplied by their original difference, one falls below and one falls above
our comparison threshold of +1.

The training data that executes this plan is given in Table 9. The first training example has a small
magnitude so that both possibilities receive a gradient update:

1

2ε1α2
· ε1 =

1

2α2
.

Note that the RHS is at most 1 due to the range of α. This update sets up for the second training example.
Observe that:

2ε1α
2 · 1

2ε1α2
= 1

so that the loss or gain of ε1α pushes our first possibility below the threshold and our second possibility
above the threshold of +1. We have now collapsed our two possibilities into only a single possibility. The
third training example triggers an update because x and w have a negative dot product, and the term is
chosen to cancel out the remaining value.

16

Table 11: Training data for copy2(i1, i2, i3, ε1).

xi1 xi2 xi3 y Effect on (wi1 , wi2 , wi3)

2
ε1

−2 −2 1 (−ε1, 0, 0)→ (2
ε1
− ε1α, −2, −2)

(ε1, 0, 0)→ (ε1α, 0, 0)

− α
ε1

α α 1 (2
ε1
− ε1α, −2, −2)→ (α

ε1
− ε1α2, −α, −α)

(ε1α, 0, 0)→ (− α
ε1

+ ε1α
2, α, α)

reset
(
i1,

α
ε1
− ε1α2

)
(α

ε1
− ε1α2, −α, −α)→ (0, −α4, −α4)

(− α
ε1

+ ε1α
2, α, α)→ (0, α4, α4)

Return (ε2 = α4, ε3 = α4).

C.4 Implementation of copy2(i1, i2, i3, ε1)

At a high level, the idea behind this implementation is as follows. We are given a weight that either contains
a small negative or a small positive value. Using a large multiplier, we can detect the sign of this weight and
copy the sign into two other weights. We then cleanup and make the original weight zero.

The training data that executes this plan is given in Table 11. The first training example has enough
magnitude so that the resulting product has magnitude 2:

2

ε1
· ε1 = 2

In the second update, we recenter around zero. In particular, we observe that + 2
ε1
− ε1α is positive, so every

component of (w · x) in this step is in fact negative, triggering an update.
We finish by using our reset gadget to clean up wi1 , noting that it uses three training examples and our

other weights continue to decay in the meantime.

C.5 Implementation of d_nand(i1, i2, i3, ε1, ε2)

At a high level, the idea behind this implementation is as follows. The idea is similar to our original NAND
gate, where we used the observation that if two weights are ±1, we can use a threshold on their sum to
compute NAND: when the sum is −2 or 0, the result is true, and when the sum is +2, the result is false. We
use this sum to put the result of the NAND computation into the third weight. Unfortunately, this results in
the first two weights being in one of three possible states each, and some work is needed to clean them up as
well. Finally, the third state should be made into the form ±ε3.

The training data that executes this plan is given in Table 12. Note that the training examples with
entries (+ 4

ε1
, 0, 0,+1) and (0,+ 4α

ε2
, 0,+1) only have the listed effect due to our bounds on α. In particular,

one possible value of (w · x) is:
+
4α

ε2
· ε2α3 = 4α4

which is only greater than +1 due to our bounds on α.

C.6 Implementation of set_false_if_unset(i1, ε1)

At a high level, the idea behind this implementation is as follows. We have three possible states. Our first
training example only triggers on the nonnegative cases, while our second training example triggers on the
negative case. The difference between these two updates is designed so that the negative case and zero case
map to the same value. After that, we finish by performing a translation so that the cases fall into the form
±ε′1.

The training data that executes this plan is given in Table 13. Note that although the returned ε′1 is not
a power of α, we can use two additional coordinates and the following sequence of API calls to provide such a
guarantee:

17

Table 12: Training data for d_nand(i1, i2, i3, ε1, ε2).

xi1 xi2 xi3 y Effect on (wi1 , wi2 , wi3)

0 0 −1 1 (−ε1, −ε2, 0)→ (−ε1α, −ε2α, −1)
(−ε1, ε2, 0)→ (−ε1α, ε2α, −1)
(ε1, −ε2, 0)→ (ε1α, −ε2α, −1)
(ε1, ε2, 0)→ (ε1α, ε2α, −1)

− 4
ε1α

− 4
ε2α

−2α 1 (−ε1α, −ε2α, −1)→ (−ε1α2, −ε2α2, −α)
(−ε1α, ε2α, −1)→ (−ε1α2, ε2α

2, −α)
(ε1α, −ε2α, −1)→ (ε1α

2, −ε2α2, −α)
(ε1α, ε2α, −1)→ (− 4

ε1α
+ ε1α

2, − 4
ε2α

+ ε2α
2, −3α)

4
ε1

0 0 1 (−ε1α2, −ε2α2, −α)→ (4
ε1
− ε1α3, −ε2α3, −α2)

(−ε1α2, ε2α
2, −α)→ (4

ε1
− ε1α3, ε2α

3, −α2)

(ε1α
2, −ε2α2, −α)→ (ε1α

3, −ε2α3, −α2)
(− 4

ε1α
+ ε1α

2, − 4
ε2α

+ ε2α
2, −3α)→ (ε1α

3, − 4
ε2

+ ε2α
3, −3α2)

0 4α
ε2

0 1 (4
ε1
− ε1α3, −ε2α3, −α2)→ (4α

ε1
− ε1α4, 4α

ε2
− ε2α4, −α3)

(4
ε1
− ε1α3, ε2α

3, −α2)→ (4α
ε1
− ε1α4, ε2α

4, −α3)

(ε1α
3, −ε2α3, −α2)→ (ε1α

4, 4α
ε2
− ε2α4, −α3)

(ε1α
3, − 4

ε2
+ ε2α

3, −3α2)→ (ε1α
4, ε2α

4, −3α3)

− 2α2

ε1
0 0 1 (4α

ε1
− ε1α4, 4α

ε2
− ε2α4, −α3)→ (2α2

ε1
− ε1α5, 4α2

ε2
− ε2α5, −α4)

(4α
ε1
− ε1α4, ε2α

4, −α3)→ (2α2

ε1
− ε1α5, ε2α

5, −α4)

(ε1α
4, 4α

ε2
− ε2α4, −α3)→ (− 2α2

ε1
+ ε1α

5, 4α2

ε2
− ε2α5, −α4)

(ε1α
4, ε2α

4, −3α3)→ (− 2α2

ε1
+ ε1α

5, ε2α
5, −3α4)

reset
(
i1,+

2α2

ε1
− ε1α5

)
(2α2

ε1
− ε1α5, 4α2

ε2
− ε2α5, −α4)→ (0, 4α5

ε2
− ε2α8, −α7)

(2α2

ε1
− ε1α5, ε2α

5, −α4)→ (0, ε2α
8, −α7)

(− 2α2

ε1
+ ε1α

5, 4α2

ε2
− ε2α5, −α4)→ (0, 4α5

ε2
− ε2α8, −α7)

(− 2α2

ε1
+ ε1α

5, ε2α
5, −3α4)→ (0, ε2α

8, −3α7)

0 − 2α6

ε1
0 1 (0, 4α5

ε2
− ε2α8, −α7)→ (0, 2α6

ε2
− ε2α9, −α8)

(0, ε2α
8, −α7)→ (0, − 2α6

ε2
+ ε2α

9, −α8)

(0, 4α5

ε2
− ε2α8, −α7)→ (0, 2α6

ε2
− ε2α9, −α8)

(0, ε2α
8, −3α7)→ (0, − 2α6

ε2
+ ε2α

9, −3α8)

reset
(
i2,+

2α6

ε2
− ε2α9

)
(0, 2α6

ε2
− ε2α9, −α8)→ (0, 0, −α11)

(0, − 2α6

ε2
+ ε2α

9, −α8)→ (0, 0, −α11)

(0, 2α6

ε2
− ε2α9, −α8)→ (0, 0, −α11)

(0, − 2α6

ε2
+ ε2α

9, −3α8)→ (0, 0, −3α11)

0 0 2α12 1 (0, 0, −α11)→ (0, 0, α12)
(0, 0, −α11)→ (0, 0, α12)
(0, 0, −α11)→ (0, 0, α12)
(0, 0, −3α11)→ (0, 0, −α12)

Return (ε3 = α12).

18

Table 13: Training data for set_false_if_unset(i1, ε1).

xi1 y Effect on (wi1)(
− 1
ε1
− ε1α

)
1 (−ε1)→ (−ε1α)

(0)→ (− 1
ε1
− ε1α)

(ε1)→ (− 1
ε1

)

− α
ε1

1 (−ε1α)→ (− α
ε1
− ε1α2)

(− 1
ε1
− ε1α)→ (− α

ε1
− ε1α2)

(− 1
ε1

)→ (− α
ε1

)

α
ε1

+ ε1α
3

2 1 (− α
ε1
− ε1α2)→ (− ε1α

3

2)

(− α
ε1
− ε1α2)→ (− ε1α

3

2)

(− α
ε1

)→ (ε1α
3

2)

Return (ε′1 = ε1α
3

2).

Table 14: Training data for copy_if_true(i1, i2, ε1).

xi1 xi2 y Effect on (wi1 , wi2)(
− 1
ε1
− ε1α

)
1 1 (−ε1, 0)→ (−ε1α, 0)

(ε1, 0)→ (− 1
ε1

, 1)

− α
ε1

0 1 (−ε1α, 0)→ (− α
ε1
− ε1α2, 0)

(− 1
ε1

, 1)→ (− α
ε1

, α)

α2

ε1
+ ε1α

3

2 0 1 (− α
ε1
− ε1α2, 0)→ (− ε1α

3

2 , 0)

(− α
ε1

, α)→ (ε1α
3

2 , α2)

Return (ε′1 = ε1α
3

2 , ε2 = α2).

• set_false_if_unset(i1, ε1), which returns (ε′1)

• copy2(i1, i2, i3, ε′1), which returns (ε2, ε3)

• reset(i3, ε3)

• copy2(i2, i1, i3, ε2), which returns (ε′′1 , ε′3)

• reset(i3, ε′3)

Of course, we need to remember to decrease the various ε parameters while other operations are running, to
account for weight decay.

C.7 Implementation of copy_if_true(i1, i2, ε1)

At a high level, we mimic the implementation of set_false_if_unset(i1, ε1), but piggyback on a threshold
check to read the first weight.

The training data that executes this plan is given in Table 14. Again, the returned ε′1 is not a power of α,
but we can correct this with two additional coordinates and copying around values, as before.

19

D Proof Extensions for Additional Models
In this appendix, we show how to extend our proofs to work for two additional, more complex models. In
the first (easier) model, we consider a network with a single dense layer followed by a ReLU activation
(dense-ReLU); the output of this network is compared against the training output using squared loss. In the
second (harder) model, we consider a network with a dense layer followed by a ReLU activation followed by
another dense layer (dense-ReLU-dense); the output of this network is also evaluated against the training
output using squared loss.

D.1 Dense-ReLU under Squared Loss
Written in terms of the training example and weights, our network has the following loss function (note that
we only have a single hidden node).

`DR(w
t, (xt, yt)) = (yt − σ(wt · xt))2

where σ(·) is the coordinate-wise ReLU activation. At a fixed iteration, on a given example, the partial
derivative7 with respect to the one weight wi at that step is:

∂`DR(w,x, y)

∂wi
=

{
2(w · x− y)xi if w · x > 0

0 if w · x < 0

Theorem D.1. There is a reduction which, given a circuit C and a target binary string s∗, produces a set
of training examples for OGD (where the updates are based on the `DR loss function) such that repeated
application of C to the all-false string eventually produces the string s∗ if and only if OGD beginning with
the all-zeroes weight vector and repeatedly fed this set of training examples (in the same order) eventually
produces a weight vector wt with positive first coordinate.

The proof is the same as that of Theorem 3.1, except we use the modified API found in Table 15.
As a consequence of using this modified API, we keep an additional special coordinate, on, denoting the
fourth coordinate whose weight is +1 in between calls to our API. When we invoke destructive_nand or
set_false_if_unset, we pass the fourth or second argument, respectively, to be on.

D.2 Dense-ReLU-Dense under Squared Loss
Having an additional layer gives us the following loss function.

`DRD((w
t, vt), (xt, yt)) = (yt − vtσ(wt · xt))2

where, as before, σ(·) denotes a ReLU activation function. At a fixed iteration, on a given example, the
partial derivative w. r. t. the weight (w, v) at that step is:

∂`DRD(w, v,x, y)

∂wi
=

{
2(vw · x− y)xiv if w · x > 0

0 if w · x < 0

∂`DRD(w, v,x, y)

∂v
=

{
2(vw · x− y)w · x if w · x > 0

0 if w · x < 0

Theorem D.2. There is a reduction which, given a circuit C and a target binary string s∗, produces a set
of training examples for OGD (where the updates are based on the `DRD loss function) such that repeated
application of C to the all-false string eventually produces the string s∗ if and only if OGD beginning with
the all-zeroes weight vector and repeatedly fed this set of training examples (in the same order) eventually
produces a weight vector wt with positive first coordinate.

7Notice that the derivative of σ(0) is undefined, so our gadgets never result in a zero input to the ReLU activation unit.

20

Table 15: Modified API for Dense-ReLU under Squared Loss.

Function Precondition(s) Description

reset(i1) i1 ∈ {1, . . . , d} wi1 ← 0
(for implementation, see Table 16) wi1 ∈ {−1,+1}
not(i1) i1 ∈ {1, . . . , d} If wi1 == −1, wi1 ← +1
(for implementation, see Table 17) wi1 ∈ {−1,+1} If wi1 == +1, wi1 ← −1
copy(i1, i2) i1, i2 ∈ {1, . . . , d} wi2 ← wi1
(for implementation, see Table 18) wi1 ∈ {−1,+1}

wi2 = 0

destructive_nand(i1, i2, i3, i4) i1, i2, i3, i4 ∈ {1, . . . , d} wi3 ← NAND(wi1 , wi2)
(for implementation, see Table 19) wi1 ∈ {−1,+1} wi1 ← 0

wi2 ∈ {−1,+1} wi2 ← 0
wi3 = 0 wi4 ← +1
wi4 = +1

set_false_if_unset(i1, i2) i1, i2 ∈ {1, . . . , d} If wi1 == 0, wi1 ← −1
(for implementation, see Table 20) wi1 ∈ {−1, 0,+1} wi2 ← +1

wi2 = +1

copy_if_true(i1, i2) i1, i2 ∈ {1, . . . , d} If wi1 > 0, wi2 ← +1
(for implementation, see Table 21) wi1 ∈ {−1,+1} If wi1 < 0, wi2 remains at 0

wi2 = 0 (including in intermediate steps)

Table 16: Training data for reset(i1) for Dense-ReLU under Squared Loss.

xi1 y Effect on (wi1)

1 0 (−1)→ (−1)
(1)→ (−1)

−1 1
2 (−1)→ (0)

(−1)→ (0)

Table 17: Training data for not(i1) for Dense-ReLU under Squared Loss.

xi1 y Effect on (wi1)

1 −2 (−1)→ (−1)
(1)→ (−5)

− 1
2 − 3

2 (−1)→ (1)
(−5)→ (−1)

21

Table 18: Training data for copy(i1, i2) for Dense-ReLU under Squared Loss.

xi1 xi2 y Effect on (wi1 , wi2)

1 −1 7
8 (−1, 0)→ (−1, 0)

(1, 0)→ (3
4 ,

1
4)

−1 1 7
8 (−1, 0)→ (− 3

4 , −
1
4)

(3
4 ,

1
4)→ (3

4 ,
1
4)

−1 0 7
8 (− 3

4 , −
1
4)→ (−1, − 1

4)
(3

4 ,
1
4)→ (3

4 ,
1
4)

1 0 7
8 (−1, − 1

4)→ (−1, − 1
4)

(3
4 ,

1
4)→ (1, 1

4)

0 −1 5
8 (−1, − 1

4)→ (−1, −1)
(1, 1

4)→ (1, 1
4)

0 1 5
8 (−1, −1)→ (−1, −1)

(1, 1
4)→ (1, 1)

Again, the proof is the same as that of Theorem 3.1, except we use the modified API found in Table 22.
Just as in the previous model, we need to keep an additional special coordinate, on, denoting the fourth
coordinate whose weight is +1 in between calls to our API. Whenever we invoke any method of our API, we
pass it on as its final argument. The other big difference for this case is we have an additional (scalar) weight
variable v representing the sole weight in the second layer of our network. Before and after any method of our
API, we require v to be one and ensure that v is one again. Modulo this requirement, the idea behind all of
our gadgets is essentially the same as the previous section; at a high level we simply insert additional training
points to correct the special coordinate on and the second-layer weight v to one between every previous pair
of training points.

22

Table 19: Training data for destructive_nand(i1, i2, i3, i4) for Dense-ReLU under Squared Loss.

xi1 xi2 xi3 xi4 y Effect on (wi1 , wi2 , wi3 , wi4)

−1 0 0 0 3
2

(−1, −1, 0, 1)→ (−2, −1, 0, 1)
(−1, 1, 0, 1)→ (−2, 1, 0, 1)
(1, −1, 0, 1)→ (1, −1, 0, 1)
(1, 1, 0, 1)→ (1, 1, 0, 1)

0 −1 0 0 3
2

(−2, −1, 0, 1)→ (−2, −2, 0, 1)
(−2, 1, 0, 1)→ (−2, 1, 0, 1)
(1, −1, 0, 1)→ (1, −2, 0, 1)
(1, 1, 0, 1)→ (1, 1, 0, 1)

1 1 1 0 1
2

(−2, −2, 0, 1)→ (−2, −2, 0, 1)
(−2, 1, 0, 1)→ (−2, 1, 0, 1)
(1, −2, 0, 1)→ (1, −2, 0, 1)
(1, 1, 0, 1)→ (−2, −2, −3, 1)

−1 0 0 0 1
2

(−2, −2, 0, 1)→ (1, −2, 0, 1)
(−2, 1, 0, 1)→ (1, 1, 0, 1)
(1, −2, 0, 1)→ (1, −2, 0, 1)
(−2, −2, −3, 1)→ (1, −2, −3, 1)

1 0 0 0 1
2

(1, −2, 0, 1)→ (0, −2, 0, 1)
(1, 1, 0, 1)→ (0, 1, 0, 1)
(1, −2, 0, 1)→ (0, −2, 0, 1)
(1, −2, −3, 1)→ (0, −2, −3, 1)

0 −1 0 0 1
2

(0, −2, 0, 1)→ (0, 1, 0, 1)
(0, 1, 0, 1)→ (0, 1, 0, 1)
(0, −2, 0, 1)→ (0, 1, 0, 1)
(0, −2, −3, 1)→ (0, 1, −3, 1)

0 1 0 0 1
2

(0, 1, 0, 1)→ (0, 0, 0, 1)
(0, 1, 0, 1)→ (0, 0, 0, 1)
(0, 1, 0, 1)→ (0, 0, 0, 1)
(0, 1, −3, 1)→ (0, 0, −3, 1)

0 0 1 1 − 3
2

(0, 0, 0, 1)→ (0, 0, −5, −4)
(0, 0, 0, 1)→ (0, 0, −5, −4)
(0, 0, 0, 1)→ (0, 0, −5, −4)
(0, 0, −3, 1)→ (0, 0, −3, 1)

0 0 −1 0 2 (0, 0, −5, −4)→ (0, 0, 1, −4)
(0, 0, −5, −4)→ (0, 0, 1, −4)
(0, 0, −5, −4)→ (0, 0, 1, −4)
(0, 0, −3, 1)→ (0, 0, −1, 1)

0 0 0 −1 3
2

(0, 0, 1, −4)→ (0, 0, 1, 1)
(0, 0, 1, −4)→ (0, 0, 1, 1)
(0, 0, 1, −4)→ (0, 0, 1, 1)
(0, 0, −1, 1)→ (0, 0, −1, 1)

23

Table 20: Training data for set_false_if_unset(i1, i2) for Dense-ReLU under Squared Loss.

xi1 xi2 y Effect on (wi1 , wi2)

1 1
2 0 (−1, 1)→ (−1, 1)

(0, 1)→ (−1, 1
2)

(1, 1)→ (−2, − 1
2)

0 1 0 (−1, 1)→ (−1, −1)
(−1, 1

2)→ (−1, − 1
2)

(−2, − 1
2)→ (−2, − 1

2)

0 −2 3
2 (−1, −1)→ (−1, 1)

(−1, − 1
2)→ (−1, − 5

2)
(−2, − 1

2)→ (−2, − 5
2)

0 −1 3
4 (−1, 1)→ (−1, 1)

(−1, − 5
2)→ (−1, 1)

(−2, − 5
2)→ (−2, 1)

−1 0 3
4 (−1, 1)→ (− 1

2 , 1)
(−1, 1)→ (− 1

2 , 1)
(−2, 1)→ (1

2 , 1)

−1 0 3
4 (− 1

2 , 1)→ (−1, 1)
(− 1

2 , 1)→ (−1, 1)
(1

2 , 1)→ (1
2 , 1)

1 0 3
4 (−1, 1)→ (−1, 1)

(−1, 1)→ (−1, 1)
(1

2 , 1)→ (1, 1)

Table 21: Training data for copy_if_true(i1, i2) for Dense-ReLU under Squared Loss.

xi1 xi2 y Effect on (wi1 , wi2)

1 −2 3
4 (−1, 0)→ (−1, 0)

(1, 0)→ (1
2 , 1)

1 0 3
4 (−1, 0)→ (−1, 0)

(1
2 , 1)→ (1, 1)

24

Table 22: Augmented API for Dense-ReLU-Dense under Squared Loss.

Function Precondition(s) Description

reset(i1, i2) i1, i2 ∈ {1, . . . , d} wi1 ← 0
(for implementation, see Table 23) wi1 ∈ {−1,+1} wi2 ← +1

wi2 = +1, v = +1 v ← +1

not(i1, i2) i1, i2 ∈ {1, . . . , d} If wi1 == −1, wi1 ← +1
(for implementation, see Table 24) wi1 ∈ {−1,+1} If wi1 == +1, wi1 ← −1

wi2 = +1, v = +1 wi2 ← +1, v ← +1

copy(i1, i2, i3) i1, i2, i3 ∈ {1, . . . , d} wi2 ← wi1
(for implementation, see Table 25) wi1 ∈ {−1,+1} wi1 remains unchanged

wi2 = 0, wi3 = +1, v = +1 wi3 ← +1, v ← +1

destructive_nand(i1, i2, i3, i4) i1, i2, i3, i4 ∈ {1, . . . , d} wi3 ← NAND(wi1 , wi2)
(for implementation, see Table 27) wi1 ∈ {−1,+1} wi1 ← 0

wi2 ∈ {−1,+1} wi2 ← 0
wi3 = 0 wi4 ← +1
wi4 = +1, v = +1 v ← +1

set_false_if_unset(i1, i2) i1, i2 ∈ {1, . . . , d} If wi1 == 0, wi1 ← −1
(for implementation, see Table 30) wi1 ∈ {−1, 0,+1} wi2 ← +1

wi2 = +1, v = +1 v ← +1

copy_if_true(i1, i2, i3) i1, i2, i3 ∈ {1, . . . , d} If wi1 > 0, wi2 ← +1
(for implementation, see Table 32) wi1 ∈ {−1,+1} If wi1 < 0, wi2 remains at 0

wi2 = 0 (including in intermediate steps)
wi3 = +1, v = +1 wi3 ← +1, v ← +1

25

Table 23: Training data for reset(i1, i2) for Dense-ReLU-Dense under Squared Loss.

xi1 xi2 y Effect on (wi1 , wi2 , v)

1 0 3
4 (−1, 1, 1)→ (−1, 1, 1)

(1, 1, 1)→ (1
2 , 1, 1

2)

0 1 1 (−1, 1, 1)→ (−1, 1, 1)
(1

2 , 1, 1
2)→ (1

2 ,
3
2 ,

3
2)

0 1 17
4 (−1, 1, 1)→ (−1, 15

2 , 15
2)

(1
2 ,

3
2 ,

3
2)→ (1

2 ,
15
2 , 15

2)

0 2
15

17
4 (−1, 15

2 , 15
2)→ (−1, 1, 1)

(1
2 ,

15
2 , 15

2)→ (1
2 , 1, 1)

1 0 − 1
4 (−1, 1, 1)→ (−1, 1, 1)

(1
2 , 1, 1)→ (−1, 1, 1

4)

0 1 3
4 (−1, 1, 1)→ (−1, 1

2 ,
1
2)

(−1, 1, 1
4)→ (−1, 5

4 ,
5
4)

0 1 31
16 (−1, 1

2 ,
1
2)→ (−1, 35

16 ,
35
16)

(−1, 5
4 ,

5
4)→ (−1, 35

16 ,
35
16)

0 16
35

51
32 (−1, 35

16 ,
35
16)→ (−1, 1, 1)

(−1, 35
16 ,

35
16)→ (−1, 1, 1)

−1 0 3
4 (−1, 1, 1)→ (− 1

2 , 1, 1
2)

(−1, 1, 1)→ (− 1
2 , 1, 1

2)

0 1 1 (− 1
2 , 1, 1

2)→ (− 1
2 ,

3
2 ,

3
2)

(− 1
2 , 1, 1

2)→ (− 1
2 ,

3
2 ,

3
2)

0 2
3

5
4 (− 1

2 ,
3
2 ,

3
2)→ (− 1

2 , 1, 1)
(− 1

2 ,
3
2 ,

3
2)→ (− 1

2 , 1, 1)

−1 0 1
4 (− 1

2 , 1, 1)→ (0, 1, 3
4)

(− 1
2 , 1, 1)→ (0, 1, 3

4)

0 1 5
4 (0, 1, 3

4)→ (0, 7
4 ,

7
4)

(0, 1, 3
4)→ (0, 7

4 ,
7
4)

0 4
7

11
8 (0, 7

4 ,
7
4)→ (0, 1, 1)

(0, 7
4 ,

7
4)→ (0, 1, 1)

26

Table 24: Training data for not(i1, i2) for Dense-ReLU-Dense under Squared Loss.

xi1 xi2 y Effect on (wi1 , wi2 , v)

1 0 −4 (−1, 1, 1)→ (−1, 1, 1)
(1, 1, 1)→ (−9, 1, −9)

0 1 − 17
2 (−1, 1, 1)→ (−1, −18, −18)

(−9, 1, −9)→ (−9, −8, −8)
0 −1 − 1063

2 (−1, −18, −18)→ (−1, −7488, −7488)
(−9, −8, −8)→ (−9, −7488, −7488)

0 − 1
7488 − 7487

2 (−1, −7488, −7488)→ (−1, 1, 1)
(−9, −7488, −7488)→ (−9, 1, 1)

− 1
2 0 3

2 (−1, 1, 1)→ (−2, 1, 2)
(−9, 1, 1)→ (−6, 1, −26)

0 1 5
2 (−2, 1, 2)→ (−2, 3, 3)

(−6, 1, −26)→ (−6, −1481, 31)

0 −1 91803
2 (−2, 3, 3)→ (−2, 3, 3)

(−6, −1481, 31)→ (−6, −1450, −1450)
0 − 1

1450
1447
2 (−2, 3, 3)→ (−2, 3, 3)

(−6, −1450, −1450)→ (−6, 3, 3)

0 1
3 2 (−2, 3, 3)→ (−2, 1, 1)

(−6, 3, 3)→ (−6, 1, 1)

− 1
2 0 −2 (−2, 1, 1)→ (1, 1, −5)

(−6, 1, 1)→ (−1, 1, −29)
0 1 − 9

2 (1, 1, −5)→ (1, −4, −4)
(−1, 1, −29)→ (−1, −1420, 20)

0 −1 56799
2 (1, −4, −4)→ (1, 227320, 227320)

(−1, −1420, 20)→ (−1, −1400, −1400)
0 1

227320 112960 (1, 227320, 227320)→ (1, −1400, −1400)
(−1, −1400, −1400)→ (−1, −1400, −1400)

0 − 1
1400

1399
2 (1, −1400, −1400)→ (1, 1, 1)

(−1, −1400, −1400)→ (−1, 1, 1)

27

Table 25: Training data for copy(i1, i2, i3) for Dense-ReLU-Dense under Squared Loss (Part 1 of 2)(
here ρ = 47 1272583

3125000

)
.

xi1 xi2 xi3 y Effect on (wi1 , wi2 , wi3 , v)

1 −1 0 7
8

(−1, 0, 1, 1)→ (−1, 0, 1, 1)
(1, 0, 1, 1)→ (3

4
, 1

4
, 1, 3

4
)

0 0 1 5
4

(−1, 0, 1, 1)→ (−1, 0, 3
2
, 3

2
)

(3
4
, 1

4
, 1, 3

4
)→ (3

4
, 1

4
, 7

4
, 7

4
)

0 0 1 119
16

(−1, 0, 3
2
, 3

2
)→ (−1, 0, 273

16
, 273

16
)

(3
4
, 1

4
, 7

4
, 7

4
)→ (3

4
, 1

4
, 273

16
, 273

16
)

0 0 16
273

289
32

(−1, 0, 273
16

, 273
16

)→ (−1, 0, 1, 1)
(3

4
, 1

4
, 273

16
, 273

16
)→ (3

4
, 1

4
, 1, 1)

−1 1 0 7
8

(−1, 0, 1, 1)→ (− 3
4
, − 1

4
, 1, 3

4
)

(3
4
, 1

4
, 1, 1)→ (3

4
, 1

4
, 1, 1)

0 0 1 5
4

(− 3
4
, − 1

4
, 1, 3

4
)→ (− 3

4
, − 1

4
, 7

4
, 7

4
)

(3
4
, 1

4
, 1, 1)→ (3

4
, 1

4
, 3

2
, 3

2
)

0 0 1 119
16

(− 3
4
, − 1

4
, 7

4
, 7

4
)→ (− 3

4
, − 1

4
, 273

16
, 273

16
)

(3
4
, 1

4
, 3

2
, 3

2
)→ (3

4
, 1

4
, 273

16
, 273

16
)

0 0 16
273

289
32

(− 3
4
, − 1

4
, 273

16
, 273

16
)→ (− 3

4
, − 1

4
, 1, 1)

(3
4
, 1

4
, 273

16
, 273

16
)→ (3

4
, 1

4
, 1, 1)

−1 0 0 7
8

(− 3
4
, − 1

4
, 1, 1)→ (−1, − 1

4
, 1, 19

16
)

(3
4
, 1

4
, 1, 1)→ (3

4
, 1

4
, 1, 1)

0 0 1 27
16

(−1, − 1
4
, 1, 19

16
)→ (−1, − 1

4
, 35

16
, 35

16
)

(3
4
, 1

4
, 1, 1)→ (3

4
, 1

4
, 19

8
, 19

8
)

0 0 1 3871
256

(−1, − 1
4
, 35

16
, 35

16
)→ (−1, − 1

4
, ρ, ρ)

(3
4
, 1

4
, 19

8
, 19

8
)→ (3

4
, 1

4
, ρ, ρ)

0 0 1
ρ

ρ+1
2

(−1, − 1
4
, ρ, ρ)→ (−1, − 1

4
, 1, 1)

(3
4
, 1

4
, ρ, ρ)→ (3

4
, 1

4
, 1, 1)

1 0 0 7
8

(−1, − 1
4
, 1, 1)→ (−1, − 1

4
, 1, 1)

(3
4
, 1

4
, 1, 1)→ (1, 1

4
, 1, 19

16
)

0 0 1 27
16

(−1, − 1
4
, 1, 1)→ (−1, − 1

4
, 19

8
, 19

8
)

(1, 1
4
, 1, 19

16
)→ (1, 1

4
, 35

16
, 35

16
)

0 0 1 3871
256

(−1, − 1
4
, 19

8
, 19

8
)→ (−1, − 1

4
, ρ, ρ)

(1, 1
4
, 35

16
, 35

16
)→ (1, 1

4
, ρ, ρ)

0 0 1
ρ

ρ+1
2

(−1, − 1
4
, ρ, ρ)→ (−1, − 1

4
, 1, 1)

(1, 1
4
, ρ, ρ)→ (1, 1

4
, 1, 1)

0 −1 0 5
8

(−1, − 1
4
, 1, 1)→ (−1, −1, 1, 19

16
)

(1, 1
4
, 1, 1)→ (1, 1

4
, 1, 1)

28

Table 26: Continuing Table 25 (Part 2 of 2)
(
here ρ = 47 1272583

3125000

)
.

xi1 xi2 xi3 y Effect on (wi1 , wi2 , wi3 , v)

0 0 1 27
16

(−1, −1, 1, 19
16
)→ (−1, −1, 35

16
, 35

16
)

(1, 1
4
, 1, 1)→ (1, 1

4
, 19

8
, 19

8
)

0 0 1 3871
256

(−1, −1, 35
16
, 35

16
)→ (−1, −1, ρ, ρ)

(1, 1
4
, 19

8
, 19

8
)→ (1, 1

4
, ρ, ρ)

0 0 1
ρ

ρ+1
2

(−1, −1, ρ, ρ)→ (−1, −1, 1, 1)

(1, 1
4
, ρ, ρ)→ (1, 1

4
, 1, 1)

0 1 0 5
8

(−1, −1, 1, 1)→ (−1, −1, 1, 1)
(1, 1

4
, 1, 1)→ (1, 1, 1, 19

16
)

0 0 1 27
16

(−1, −1, 1, 1)→ (−1, −1, 19
8
, 19

8
)

(1, 1, 1, 19
16
)→ (1, 1, 35

16
, 35

16
)

0 0 1 3871
256

(−1, −1, 19
8
, 19

8
)→ (−1, −1, ρ, ρ)

(1, 1, 35
16
, 35

16
)→ (1, 1, ρ, ρ)

0 0 1
ρ

ρ+1
2

(−1, −1, ρ, ρ)→ (−1, −1, 1, 1)

(1, 1, ρ, ρ)→ (1, 1, 1, 1)

29

Table 27: Training data for destructive_nand(i1, i2, i3, i4) for Dense-ReLU-Dense under Squared Loss. (Part
1 of 3).

xi1 xi2 xi3 xi4 y Effect on (wi1 , wi2 , wi3 , wi4 , v)

−1 0 0 0 3
2

(−1, −1, 0, 1, 1)→ (−2, −1, 0, 1, 2)
(−1, 1, 0, 1, 1)→ (−2, 1, 0, 1, 2)
(1, −1, 0, 1, 1)→ (1, −1, 0, 1, 1)
(1, 1, 0, 1, 1)→ (1, 1, 0, 1, 1)

0 0 0 1 5
2

(−2, −1, 0, 1, 2)→ (−2, −1, 0, 3, 3)
(−2, 1, 0, 1, 2)→ (−2, 1, 0, 3, 3)
(1, −1, 0, 1, 1)→ (1, −1, 0, 4, 4)
(1, 1, 0, 1, 1)→ (1, 1, 0, 4, 4)

0 0 0 1 73
2

(−2, −1, 0, 3, 3)→ (−2, −1, 0, 168, 168)
(−2, 1, 0, 3, 3)→ (−2, 1, 0, 168, 168)
(1, −1, 0, 4, 4)→ (1, −1, 0, 168, 168)
(1, 1, 0, 4, 4)→ (1, 1, 0, 168, 168)

0 0 0 1
168

169
2

(−2, −1, 0, 168, 168)→ (−2, −1, 0, 1, 1)
(−2, 1, 0, 168, 168)→ (−2, 1, 0, 1, 1)
(1, −1, 0, 168, 168)→ (1, −1, 0, 1, 1)
(1, 1, 0, 168, 168)→ (1, 1, 0, 1, 1)

0 −1 0 0 3
2

(−2, −1, 0, 1, 1)→ (−2, −2, 0, 1, 2)
(−2, 1, 0, 1, 1)→ (−2, 1, 0, 1, 1)
(1, −1, 0, 1, 1)→ (1, −2, 0, 1, 2)
(1, 1, 0, 1, 1)→ (1, 1, 0, 1, 1)

0 0 0 1 5
2

(−2, −2, 0, 1, 2)→ (−2, −2, 0, 3, 3)
(−2, 1, 0, 1, 1)→ (−2, 1, 0, 4, 4)
(1, −2, 0, 1, 2)→ (1, −2, 0, 3, 3)
(1, 1, 0, 1, 1)→ (1, 1, 0, 4, 4)

0 0 0 1 73
2

(−2, −2, 0, 3, 3)→ (−2, −2, 0, 168, 168)
(−2, 1, 0, 4, 4)→ (−2, 1, 0, 168, 168)
(1, −2, 0, 3, 3)→ (1, −2, 0, 168, 168)
(1, 1, 0, 4, 4)→ (1, 1, 0, 168, 168)

0 0 0 1
168

169
2

(−2, −2, 0, 168, 168)→ (−2, −2, 0, 1, 1)
(−2, 1, 0, 168, 168)→ (−2, 1, 0, 1, 1)
(1, −2, 0, 168, 168)→ (1, −2, 0, 1, 1)
(1, 1, 0, 168, 168)→ (1, 1, 0, 1, 1)

1 1 1 0 1
2

(−2, −2, 0, 1, 1)→ (−2, −2, 0, 1, 1)
(−2, 1, 0, 1, 1)→ (−2, 1, 0, 1, 1)
(1, −2, 0, 1, 1)→ (1, −2, 0, 1, 1)
(1, 1, 0, 1, 1)→ (−2, −2, −3, 1, −5)

0 0 0 1 − 9
4

(−2, −2, 0, 1, 1)→ (−2, −2, 0, −10, −10)
(−2, 1, 0, 1, 1)→ (−2, 1, 0, −10, −10)
(1, −2, 0, 1, 1)→ (1, −2, 0, −10, −10)
(−2, −2, −3, 1, −5)→ (−2, −2, −3, −4, −4)

0 0 0 −1 − 311
2

(−2, −2, 0, −10, −10)→ (−2, −2, 0, −1120, −1120)
(−2, 1, 0, −10, −10)→ (−2, 1, 0, −1120, −1120)
(1, −2, 0, −10, −10)→ (1, −2, 0, −1120, −1120)
(−2, −2, −3, −4, −4)→ (−2, −2, −3, −1120, −1120)

30

Table 28: Continuing Table 27 (Part 2 of 3).

xi1 xi2 xi3 xi4 y Effect on (wi1 , wi2 , wi3 , wi4 , v)

0 0 0 − 1
1120

− 1119
2

(−2, −2, 0, −1120, −1120)→ (−2, −2, 0, 1, 1)
(−2, 1, 0, −1120, −1120)→ (−2, 1, 0, 1, 1)
(1, −2, 0, −1120, −1120)→ (1, −2, 0, 1, 1)
(−2, −2, −3, −1120, −1120)→ (−2, −2, −3, 1, 1)

−1 0 0 0 1
2

(−2, −2, 0, 1, 1)→ (1, −2, 0, 1, −5)
(−2, 1, 0, 1, 1)→ (1, 1, 0, 1, −5)
(1, −2, 0, 1, 1)→ (1, −2, 0, 1, 1)
(−2, −2, −3, 1, 1)→ (1, −2, −3, 1, −5)

0 0 0 1 − 9
2

(1, −2, 0, 1, −5)→ (1, −2, 0, −4, −4)
(1, 1, 0, 1, −5)→ (1, 1, 0, −4, −4)
(1, −2, 0, 1, 1)→ (1, −2, 0, −10, −10)
(1, −2, −3, 1, −5)→ (1, −2, −3, −4, −4)

0 0 0 −1 − 311
2

(1, −2, 0, −4, −4)→ (1, −2, 0, −1120, −1120)
(1, 1, 0, −4, −4)→ (1, 1, 0, −1120, −1120)
(1, −2, 0, −10, −10)→ (1, −2, 0, −1120, −1120)
(1, −2, −3, −4, −4)→ (1, −2, −3, −1120, −1120)

0 0 0 − 1
1120

− 1119
2

(1, −2, 0, −1120, −1120)→ (1, −2, 0, 1, 1)
(1, 1, 0, −1120, −1120)→ (1, 1, 0, 1, 1)
(1, −2, 0, −1120, −1120)→ (1, −2, 0, 1, 1)
(1, −2, −3, −1120, −1120)→ (1, −2, −3, 1, 1)

1 0 0 0 1
2

(1, −2, 0, 1, 1)→ (0, −2, 0, 1, 0)
(1, 1, 0, 1, 1)→ (0, 1, 0, 1, 0)
(1, −2, 0, 1, 1)→ (0, −2, 0, 1, 0)
(1, −2, −3, 1, 1)→ (0, −2, −3, 1, 0)

0 0 0 1 1
2

(0, −2, 0, 1, 0)→ (0, −2, 0, 1, 1)
(0, 1, 0, 1, 0)→ (0, 1, 0, 1, 1)
(0, −2, 0, 1, 0)→ (0, −2, 0, 1, 1)
(0, −2, −3, 1, 0)→ (0, −2, −3, 1, 1)

0 −1 0 0 1
2

(0, −2, 0, 1, 1)→ (0, 1, 0, 1, −5)
(0, 1, 0, 1, 1)→ (0, 1, 0, 1, 1)
(0, −2, 0, 1, 1)→ (0, 1, 0, 1, −5)
(0, −2, −3, 1, 1)→ (0, 1, −3, 1, −5)

0 0 0 1 − 9
2

(0, 1, 0, 1, −5)→ (0, 1, 0, −4, −4)
(0, 1, 0, 1, 1)→ (0, 1, 0, −10, −10)
(0, 1, 0, 1, −5)→ (0, 1, 0, −4, −4)
(0, 1, −3, 1, −5)→ (0, 1, −3, −4, −4)

0 0 0 −1 − 311
2

(0, 1, 0, −4, −4)→ (0, 1, 0, −1120, −1120)
(0, 1, 0, −10, −10)→ (0, 1, 0, −1120, −1120)
(0, 1, 0, −4, −4)→ (0, 1, 0, −1120, −1120)
(0, 1, −3, −4, −4)→ (0, 1, −3, −1120, −1120)

0 0 0 − 1
1120

− 1119
2

(0, 1, 0, −1120, −1120)→ (0, 1, 0, 1, 1)
(0, 1, 0, −1120, −1120)→ (0, 1, 0, 1, 1)
(0, 1, 0, −1120, −1120)→ (0, 1, 0, 1, 1)
(0, 1, −3, −1120, −1120)→ (0, 1, −3, 1, 1)

31

Table 29: Continuing Table 27 (Part 3 of 3).

xi1 xi2 xi3 xi4 y Effect on (wi1 , wi2 , wi3 , wi4 , v)

0 1 0 0 1
2 (0, 1, 0, 1, 1)→ (0, 0, 0, 1, 0)

(0, 1, 0, 1, 1)→ (0, 0, 0, 1, 0)
(0, 1, 0, 1, 1)→ (0, 0, 0, 1, 0)
(0, 1, −3, 1, 1)→ (0, 0, −3, 1, 0)

0 0 0 1 1
2 (0, 0, 0, 1, 0)→ (0, 0, 0, 1, 1)

(0, 0, 0, 1, 0)→ (0, 0, 0, 1, 1)
(0, 0, 0, 1, 0)→ (0, 0, 0, 1, 1)
(0, 0, −3, 1, 0)→ (0, 0, −3, 1, 1)

0 0 1 1 − 3
2 (0, 0, 0, 1, 1)→ (0, 0, −5, −4, −4)

(0, 0, 0, 1, 1)→ (0, 0, −5, −4, −4)
(0, 0, 0, 1, 1)→ (0, 0, −5, −4, −4)
(0, 0, −3, 1, 1)→ (0, 0, −3, 1, 1)

0 0 0 − 1
4 − 3

2 (0, 0, −5, −4, −4)→ (0, 0, −5, 1, 1)
(0, 0, −5, −4, −4)→ (0, 0, −5, 1, 1)
(0, 0, −5, −4, −4)→ (0, 0, −5, 1, 1)
(0, 0, −3, 1, 1)→ (0, 0, −3, 1, 1)

0 0 −1 0 2 (0, 0, −5, 1, 1)→ (0, 0, 1, 1, −29)
(0, 0, −5, 1, 1)→ (0, 0, 1, 1, −29)
(0, 0, −5, 1, 1)→ (0, 0, 1, 1, −29)
(0, 0, −3, 1, 1)→ (0, 0, −1, 1, −5)

0 0 0 1 − 57
2 (0, 0, 1, 1, −29)→ (0, 0, 1, −28, −28)

(0, 0, 1, 1, −29)→ (0, 0, 1, −28, −28)
(0, 0, 1, 1, −29)→ (0, 0, 1, −28, −28)
(0, 0, −1, 1, −5)→ (0, 0, −1, 236, −52)

0 0 0 1 − 24543
2 (0, 0, 1, −28, −28)→ (0, 0, 1, −28, −28)

(0, 0, 1, −28, −28)→ (0, 0, 1, −28, −28)
(0, 0, 1, −28, −28)→ (0, 0, 1, −28, −28)
(0, 0, −1, 236, −52)→ (0, 0, −1, 184, 184)

0 0 0 1
184 78 (0, 0, 1, −28, −28)→ (0, 0, 1, −28, −28)

(0, 0, 1, −28, −28)→ (0, 0, 1, −28, −28)
(0, 0, 1, −28, −28)→ (0, 0, 1, −28, −28)
(0, 0, −1, 184, 184)→ (0, 0, −1, −28, −28)

0 0 0 − 1
28 − 27

2 (0, 0, 1, −28, −28)→ (0, 0, 1, 1, 1)
(0, 0, 1, −28, −28)→ (0, 0, 1, 1, 1)
(0, 0, 1, −28, −28)→ (0, 0, 1, 1, 1)
(0, 0, −1, −28, −28)→ (0, 0, −1, 1, 1)

32

Table 30: Training data for set_false_if_unset(i1, i2) for Dense-ReLU-Dense under Squared Loss.

xi1 xi2 y Effect on (wi1 , wi2 , v)

1 1
2 0 (−1, 1, 1)→ (−1, 1, 1)

(0, 1, 1)→ (−1, 1
2 ,

1
2)

(1, 1, 1)→ (−2, − 1
2 , −

7
2)

0 −1 − 9
4 (−1, 1, 1)→ (−1, 1, 1)

(−1, 1
2 ,

1
2)→ (−1, 1

2 ,
1
2)

(−2, − 1
2 , −

7
2)→ (−2, −4, −4)

0 1 5
4 (−1, 1, 1)→ (−1, 3

2 ,
3
2)

(−1, 1
2 ,

1
2)→ (−1, 3

2 ,
3
2)

(−2, −4, −4)→ (−2, −4, −4)
0 −1 − 245

16 (−1, 3
2 ,

3
2)→ (−1, 3

2 ,
3
2)

(−1, 3
2 ,

3
2)→ (−1, 3

2 ,
3
2)

(−2, −4, −4)→ (−2, 3
2 ,

3
2)

0 2
3

5
4 (−1, 3

2 ,
3
2)→ (−1, 1, 1)

(−1, 3
2 ,

3
2)→ (−1, 1, 1)

(−2, 3
2 ,

3
2)→ (−2, 1, 1)

−1 0 3
4 (−1, 1, 1)→ (− 1

2 , 1, 1
2)

(−1, 1, 1)→ (− 1
2 , 1, 1

2)
(−2, 1, 1)→ (1

2 , 1, −4)
0 1 1 (− 1

2 , 1, 1
2)→ (− 1

2 ,
3
2 ,

3
2)

(− 1
2 , 1, 1

2)→ (− 1
2 ,

3
2 ,

3
2)

(1
2 , 1, −4)→ (1

2 , −39, 6)

0 −1 467
2 (− 1

2 ,
3
2 ,

3
2)→ (− 1

2 ,
3
2 ,

3
2)

(− 1
2 ,

3
2 ,

3
2)→ (− 1

2 ,
3
2 ,

3
2)

(1
2 , −39, 6)→ (1

2 , −33, −33)
0 −1 47893

44 (− 1
2 ,

3
2 ,

3
2)→ (− 1

2 ,
3
2 ,

3
2)

(− 1
2 ,

3
2 ,

3
2)→ (− 1

2 ,
3
2 ,

3
2)

(1
2 , −33, −33)→ (1

2 ,
3
2 ,

3
2)

0 2
3

5
4 (− 1

2 ,
3
2 ,

3
2)→ (− 1

2 , 1, 1)
(− 1

2 ,
3
2 ,

3
2)→ (− 1

2 , 1, 1)
(1

2 ,
3
2 ,

3
2)→ (1

2 , 1, 1)

−1 0 3
4 (− 1

2 , 1, 1)→ (−1, 1, 5
4)

(− 1
2 , 1, 1)→ (−1, 1, 5

4)
(1

2 , 1, 1)→ (1
2 , 1, 1)

0 1 7
4 (−1, 1, 5

4)→ (−1, 9
4 ,

9
4)

(−1, 1, 5
4)→ (−1, 9

4 ,
9
4)

(1
2 , 1, 1)→ (1

2 ,
5
2 ,

5
2)

33

Table 31: Continuing Table 30.

xi1 xi2 y Effect on (wi1 , wi2 , v)

0 1 263
16 (−1, 9

4 ,
9
4)→ (−1, 855

16 , 855
16)

(−1, 9
4 ,

9
4)→ (−1, 855

16 , 855
16)

(1
2 ,

5
2 ,

5
2)→ (1

2 ,
855
16 , 855

16)

0 16
855

871
32 (−1, 855

16 , 855
16)→ (−1, 1, 1)

(−1, 855
16 , 855

16)→ (−1, 1, 1)
(1

2 ,
855
16 , 855

16)→ (1
2 , 1, 1)

1 0 3
4 (−1, 1, 1)→ (−1, 1, 1)

(−1, 1, 1)→ (−1, 1, 1)
(1

2 , 1, 1)→ (1, 1, 5
4)

0 1 7
4 (−1, 1, 1)→ (−1, 5

2 ,
5
2)

(−1, 1, 1)→ (−1, 5
2 ,

5
2)

(1, 1, 5
4)→ (1, 9

4 ,
9
4)

0 1 263
16 (−1, 5

2 ,
5
2)→ (−1, 855

16 , 855
16)

(−1, 5
2 ,

5
2)→ (−1, 855

16 , 855
16)

(1, 9
4 ,

9
4)→ (1, 855

16 , 855
16)

0 16
855

871
32 (−1, 855

16 , 855
16)→ (−1, 1, 1)

(−1, 855
16 , 855

16)→ (−1, 1, 1)
(1, 855

16 , 855
16)→ (1, 1, 1)

Table 32: Training data for copy_if_true(i1, i2, i3) for Dense-ReLU-Dense under Squared Loss.

xi1 xi2 xi3 y Effect on (wi1 , wi2 , wi3 , v)

1 −2 0 3
4

(−1, 0, 1, 1)→ (−1, 0, 1, 1)
(1, 0, 1, 1)→ (1

2
, 1, 1, 1

2
)

0 0 1 1 (−1, 0, 1, 1)→ (−1, 0, 1, 1)
(1

2
, 1, 1, 1

2
)→ (1

2
, 1, 3

2
, 3

2
)

0 0 1 17
4

(−1, 0, 1, 1)→ (−1, 0, 15
2
, 15

2
)

(1
2
, 1, 3

2
, 3

2
)→ (1

2
, 1, 15

2
, 15

2
)

0 0 2
15

17
4

(−1, 0, 15
2
, 15

2
)→ (−1, 0, 1, 1)

(1
2
, 1, 15

2
, 15

2
)→ (1

2
, 1, 1, 1)

1 0 0 3
4

(−1, 0, 1, 1)→ (−1, 0, 1, 1)
(1

2
, 1, 1, 1)→ (1, 1, 1, 5

4
)

0 0 1 7
4

(−1, 0, 1, 1)→ (−1, 0, 5
2
, 5

2
)

(1, 1, 1, 5
4
)→ (1, 1, 9

4
, 9

4
)

0 0 1 263
16

(−1, 0, 5
2
, 5

2
)→ (−1, 0, 855

16
, 855

16
)

(1, 1, 9
4
, 9

4
)→ (1, 1, 855

16
, 855

16
)

0 0 16
855

871
32

(−1, 0, 855
16

, 855
16

)→ (−1, 0, 1, 1)
(1, 1, 855

16
, 855

16
)→ (1, 1, 1, 1)

34

	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Soft-Margin SVMs
	2.2 Complexity Theory Background

	3 PSPACE-Hardness Reduction
	3.1 Simplifying Assumptions
	3.2 API for Reduction Gadgets
	3.3 Performing the Reduction using the API

	4 API Implementation
	4.1 Implementation of reset(i1)
	4.2 Implementation of not(i1)

	5 Extensions
	5.1 Handling a Bias Term
	5.2 Handling a Fixed Learning Rate
	5.3 Handling a Regularizer

	A Barrier for Quadratic Models
	B API Implementation (Continued)
	B.1 Implementation of copy(i1, i2)
	B.2 Implementation of destructive_nand(i1, i2, i3)
	B.3 Implementation of set_false_if_unset(i1)
	B.4 Implementation of copy_if_true(i1, i2)

	C Proof Extension for Regularization (Continued)
	C.1 Augmented API for Regularization
	C.2 Reduction Modifications for Regularization
	C.3 Implementation of reset(i1, 1)
	C.4 Implementation of copy2(i1, i2, i3, 1)
	C.5 Implementation of d_nand(i1, i2, i3, 1, 2)
	C.6 Implementation of set_false_if_unset(i1, 1)
	C.7 Implementation of copy_if_true(i1, i2, 1)

	D Proof Extensions for Additional Models
	D.1 Dense-ReLU under Squared Loss
	D.2 Dense-ReLU-Dense under Squared Loss

