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Abstract

Proof-of-work blockchains reward each miner for one completed block by an amount that is,
in expectation, proportional to the number of hashes the miner contributed to the mining of the
block. Is this proportional allocation rule optimal? And in what sense? And what other rules
are possible? In particular, what are the desirable properties that any “good” allocation rule
should satisfy? To answer these questions, we embark on an axiomatic theory of incentives in
proof-of-work blockchains at the time scale of a single block. We consider desirable properties
of allocation rules including: symmetry; budget balance (weak or strong); sybil-proofness; and
various grades of collusion-proofness. We show that Bitcoin’s proportional allocation rule is the
unique allocation rule satisfying a certain system of properties, but this does not hold for slightly
weaker sets of properties, or when the miners are not risk-neutral. We also point out that a rich
class of allocation rules can be approximately implemented in a proof-of-work blockchain.

1 Introduction

The Bitcoin protocol was a remarkable feat: eleven years after its sudden appearance [7], and
without much adjustment and debugging, it has been used by millions of people and has launched
the blockchain industry. Arguably, the most crucial and ingenious aspect of its design lies in the
incentives the protocol provides to its miners to participate and follow it faithfully. We believe it is
of great importance and interest to understand and scrutinize the incentives provided by blockchain
protocols—and to do so through the point of view and the methodology of Economic Theory, the
science of incentives.

Flaws in the incentives of a blockchain protocol can manifest themselves at multiple timescales.
For longest-chain proof-of-work blockchains like Bitcoin, the most well-studied incentive-based at-
tacks, such as selfish mining [4, 10, 5] and transaction sniping [3], concern miners reasoning strate-
gically over multiple block creation epochs. For example, in selfish mining, a miner relinquishes
revenue in the short term to achieve greater revenue (in expectation) in the long run via a type of
forking attack.

This paper studies incentive issues and potential deviations from intended miner behavior at
the most basic time scale, that of a single block creation epoch. We focus on the allocation of block
rewards, which drives the incentive structure in Bitcoin and many other similar protocols. The
dominant paradigm in proof-of-work blockchains is to fix a per-block reward, and for each block
to allocate the entire reward to whichever miner first solves a difficult cryptopuzzle. Assuming
that miners independently and randomly guess and check possible solutions to the cryptopuzzle,
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the expected reward earned by a miner is proportional to their share of the total contributed
computational power.

The proportional reward allocation scheme is a simple, natural, and compelling idea, and in
all evidence it works quite well. But is there any sense in which it is “optimal”? To answer, one
has to start by considering the whole spectrum of options; next one must articulate appropriate
desiderata; and finally, characterize the full extent of possible solutions that satisfy these desiderata.
This is in line with the axiomatic methodology, which has been traditionally employed in Economic
Theory for the development of utility theory [13], of impossibility results in social choice [1], as well
as of cooperative game theory [12], to name three salient examples. The advantage of the axiomatic
approach is that through it one understands not only the domain of possibilities, but also the costs
of transgressing the boundaries of this domain. This is our focus in this paper.

1.1 The Proportional Allocation Rule and Its Alternatives

We formalize the question above through the concept of allocation rules, functions that map profiles
of contributed hashing power to profiles of expected block rewards. The input to such a function
is an n-tuple h = (h1, h2, . . . , hn) of positive integers, where hi is the hash rate contributed by
miner i in a given block creation epoch, and n is the number of distinct miners (i.e., distinct
public keys) that contribute a non-zero hash rate. When the epoch ends and a new block is
authorized, one unit of reward becomes available, and the question is, how should it be allocated to
the miners? The output of an allocation rule specifies an answer to this question, in the form of
an n-tuple p = (p1, p2, . . . , pn), where pi is the expected reward to miner i. As mentioned above,
the allocation rule corresponding to the Bitcoin protocol is the proportional rule, with

pi =
hi

∑n
j=1 hj

.

Is the proportional rule “optimal”? Or, an even more basic question: What alternatives to
the proportional allocation rule are possible? At first blush, it might seem as though a proof-of-
work blockchain has no choice but to implement the proportional allocation rule, as presumably
the probability distribution over which miner is first to produce a cryptopuzzle solution will be
proportional to the contributed computational power. However, as we discuss in Section 2.4, a rich
class of allocation rules can in principle be implemented (at least approximately) within a proof-
of-work blockchain. The key idea is to wait for a large number of solutions to a medium-difficulty
cryptopuzzle, rather than a single solution to a high-difficulty puzzle. Each solution acts as a single
sample from the distribution proportional to miner hash rates, and with a large enough number
of samples all miners’ hash rates can be estimated with high accuracy. This, in turn, permits the
(approximate) implementation of a wide range of allocation rules, even though the true miner hash
rates are not a priori known to the protocol.

1.2 Properties of Allocation Rules

The definition of an allocation rule is generic enough; the question is, what kinds of properties
should such allocation rules satisfy? We consider an array of possible properties, which a blockchain
designer may (or may not) require of an allocation rule. The first several properties are motivated
by economic viability and fairness rather than incentives per se.
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• Non-negativity. Expected rewards (the pi’s) should be nonnegative. That is, the protocol
cannot require payments from miners.

• Budget-balance. The protocol cannot be “in the red,” meaning the sum of expected block
rewards cannot exceed the unit of block reward available. Strong budget-balance insists that
the entire unit of block reward is allocated, while weak budget-balance allows the protocol to
withhold some of the block reward from miners.

• Symmetry. The allocation rule should not depend on the names of the miners (i.e., their
public keys), only on their contributed hash rates.

Finally, there are two further properties aimed at disincentivizing certain behaviors by the
miners that may be considered undesirable by the blockchain designer:

• Sybil-proofness. No miner can possibly benefit by creating many accounts and splitting its
mining power among them.

• Collusion-proofness. Two or more miners cannot benefit by pooling their mining resources
and somehow splitting the proceeds. This property has different variants depending on what
types of payments between colluding miners are permitted; see Section 2.2.

The proportional allocation rule satisfies all five properties (presumably by design), including the
strong version of budget-balance.

1.3 Our Results

We prove a number of characterization results that identify which allocation rules satisfy which sets
of desired properties. We begin with risk-neutral miners, who care only about expected rewards
(and no other details of the reward distribution). Our first result is:

1. The proportional allocation rule is the unique allocation rule that, with risk-neutral miners,
satisfies non-negativity, strong budget-balance, symmetry, sybil-proofness, and a weak form
of collusion-proofness (Theorem 1).

That Bitcoin’s block reward scheme is a singularly good idea hardly comes as a surprise. Neverthe-
less, we believe there is value in formally articulating what makes it unique. Further, if one relaxes
the requirements slightly, additional allocation rules become possible. For example:

(2) A family of allocation rules that we call the generalized proportional allocation rules con-
stitute the only allocation rules that, with risk-neutral miners, satisfy non-negativity, weak
budget-balance, symmetry, sybil-proofness, and a slightly stronger form of collusion-proofness
(Theorem 2).

But is it reasonable to assume that miners are risk-neutral? The phenomenon of mining pools
for Bitcoin and other cryptocurrencies (see e.g. [6]) is a behavior which, intuitively, aims to reduce
the risk of each miner, and thus suggests that miners in the real world are risk-averse.1 We prove
an impossibility result that makes this intuition precise:

1There may also be other reasons to join a mining pool, for example to avoid the cost of maintaining a full node,
but risk-aversion is undoubtedly a first-order factor. (Who is willing to wait an expected twenty years for their first
reward?)
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(3) If miners are risk averse (equivalently, their utility is the expectation of a strictly concave
function of the reward), then there is no non-zero allocation rule that is symmetric, (weakly)
budget-balanced, sybil-proof, and (weakly) collusion-proof (Theorem 3).

This result suggests that mining pools as a form of collusion are unavoidable. In contrast:

(4) If miners are risk-seeking, then Bitcoin’s proportional allocation rule satisfies (strong versions)
of all of the desired properties (Theorem 5).

(5) A deterministic implementation of the proportional rule—with the block reward split frac-
tionally between miners—satisfies all of the desired properties even with risk-averse miners
(Corollary 4).

The deterministic implementation in (5) can be viewed as a simulation of the functionality of a
mining pool inside the blockchain protocol itself, analogous to the “Revelation Principle” from
mechanism design theory.2

2 Model

2.1 Allocation Rules

Let N∗ = ∪n≥1N
n denote the set of all finite tuples of positive integers. For a positive integer n, we

write [n] to denote {1, 2, . . . , n}. An allocation rule is a function x over N
∗ that maps each tuple

h = (h1, . . . , hn) ∈ N
n of length n to an n-tuple p = (p1, . . . , pn) of nonnegative real numbers. Here

hi and pi are the hash rate and expected reward of miner i.3 We also write xi(h) for pi and x(h)
for p. We refer to a tuple h ∈ N

∗ as a configuration and x(h) as the corresponding allocation.
In this section and the next, we assume that miners care only about their expected rewards

(with more being better), and in particular are risk-neutral. Section 4 addresses the case of non-
risk-neutral miners and the interesting new issues that they raise.4

2.2 Axioms

With the language and notation of allocation rules, we can translate the properties in Section 1.2
into formal axioms.5 See Section 2.3 for examples of allocation rules that satisfy different subsets
of these properties.

2FruitChain [9] can be likewise interpreted as a lower-variance version of the proportional allocation rule, with
“fruits” playing the role of medium-difficulty puzzle solutions. Bobtail [2] gives still another implementation of the
proportional allocation rule using multiple puzzle solutions; their primary motivation was to reduce the variance in
time between consecutive blocks, rather than that of miners’ rewards per se.

3For example, hi could be in units of hashes per second. For convenience, we assume this is an integer. All of
our results for integral hash rates immediately imply the same results for arbitrary positive rational hash rates. (The
proofs hold verbatim for hash rates that are integral multiples of 1/m for some m ∈ N, and hence apply to all finite
rational tuples of hash rates.)

4With risk-neutral miners, there is no need to specify details of the reward distribution beyond the expected
reward for each miner. For example, xi(h) might represent a deterministic reward of xi(h) to miner i, or that miner i
has a xi(h) probability of winning the entire block reward (and with the remaining probability receives no reward).
We’ll be more specific about the semantics of an allocation rule in due time, when we consider non-risk-neutral miners
in Section 4.

5Non-negativity is already baked into our definition of an allocation rule.
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A1. Symmetry: An allocation rule x is symmetric if x(π(h)) = π(x(h)) for every configuration
h ∈ N

∗ and every permutation π.

That is, the expected reward of a miner does not depend on how the miners are ordered (or their
public keys). An example of an asymmetric rule is a dictator rule, which always allocates the
block reward to the miner with the (say) lexicographically smallest public key. We consider only
symmetric rules in this paper.

A2a. Strong budget-balance: An allocation rule x is strongly budget-balanced if
∑

i xi(h) = 1
for every configuration h.

A2b. Weak budget-balance: An allocation rule x is weakly budget-balanced if
∑

i xi(h) ≤ 1 for
every configuration h.

A3. Sybil-proofness: An allocation rule x is sybil-proof if: For every configuration h ∈ N
∗ and

every configuration h′ that can be derived from h by replacing a miner with hash rate hi by
a set S of miners with total hash rate at most hi (i.e., with

∑

j∈S h′j ≤ hi), the total expected
reward to miners of S under h′ is at most that of miner i in the original configuration:

∑

j∈S

xj(h
′) ≤ xi(h).

We consider several natural definitions of collusion-proofness, depending on the type of reward
sharing allowed inside the coalition and on whether a Pareto improvement for a coalition is required
to be strict. We consider both arbitrary revenue-sharing agreements and proportional sharing. The
latter corresponds to the reward schemes used in many Bitcoin mining pools (see e.g. [6]).

A4a. Collusion-proofness (under arbitrary reward sharing): An allocation rule x is collusion-
proof (under arbitrary reward sharing) if: For every configuration h ∈ N

∗ and every config-
uration h′ that can be derived from h by replacing a set T of miners with a new miner i∗

(representing the coalition) with hash rate at most the total hash rate of miners in T (i.e.,
with h′i∗ ≤ ∑

j∈T hj), the total expected reward to miner i∗ under h′ is at most the total
expected reward of miners of T in the original configuration:

xi∗(h
′) ≤

∑

j∈T

xj(h).

A4b. Strong collusion-proofness (under proportional sharing): An allocation rule x is
strongly collusion-proof (under proportional sharing) if: For every configuration h ∈ N

∗ and
every configuration h′ that can be derived from h by replacing a set T of miners with a new
miner i∗ with hash rate at most the total hash rate of miners in T , either: (i) no miner of T
has strictly higher expected reward in h′ (with proportional sharing) than in h; or (ii) some
miner of T has strictly lower expected reward in h′ (with proportional sharing) than in h.
That is, if

xi∗(h
′) · hi

∑

j∈T hj
> xi(h)
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for some miner i ∈ T , then

xi∗(h
′) · hℓ

∑

j∈T hj
< xℓ(h)

for some other miner ℓ ∈ T .

A4c. Weak collusion-proofness (under proportional sharing): An allocation rule x is weakly
collusion-proof (under proportional sharing) if: For every configuration h ∈ N

∗ and every
configuration h′ that can be derived from h by replacing a set T of miners with a new miner i∗

with hash rate at most the total hash rate of miners in T , some miner of T has expected
reward under h′ (with proportional sharing) at most that in the original configuration. That
is, for some miner i ∈ T ,

xi∗(h
′) · hi

∑

j∈T hj
≤ xi(h).

Every violation of (4c) also constitutes a violation of (4b), and similarly for (4b) and (4a). That is,
(4a)–(4c) are ordered from strongest (i.e., most difficult to satisfy) to weakest. Impossibility and
uniqueness results are most compelling for the weakest variants of budget-balance and collusion-
proofness; possibility results are most impressive for the strongest variants. The proportional
allocation rule satisfies the strongest versions of budget-balance and collusion-proofness (in addition
to symmetry and sybil-proofness).

2.3 Examples

This section gives several examples of allocation rules which satisfy different subsets of the axioms
in Section 2.2.

Example 1 (Proportional allocation rule). The proportional allocation rule is defined for each
configuration h of length n by

xi(h) =
hi

∑

j∈[n] hj
.

This allocation rule is symmetric, strongly budget-balanced, sybil-proof, and collusion-proof under
arbitrary reward sharing.

Example 2 (All-zero allocation rule). The all-zero allocation rule is defined for each configuration h
of length n by

xi(h) = 0

for i = 1, 2, . . . , n. The all-zero allocation rule is symmetric, weakly budget-balanced, sybil-proof,
and collusion-proof under arbitrary reward sharing.

Our next example comprises scaled versions of the proportional allocation rule, with the scaling
constant dependent on the total hash rate.

Example 3 (Generalized proportional allocation rules). For every nondecreasing function c : N →
[0, 1], the corresponding generalized proportional allocation rule is defined for each configuration h
of length n by

xi(h) = c





∑

j∈[n]

hj



 · hi
∑

j∈[n] hj
.
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Examples 1 and 2 are the generalized proportional allocation rules corresponding to the functions
c(y) = 1 and c(y) = 0, respectively.

Generalized proportional allocation rules are symmetric, weakly budget-balanced, sybil-proof, and
collusion-proof under arbitrary reward sharing. To check sybil-proofness, let h be a configuration
and h′ derived from h by replacing some miner i with hash rate hi by a set S of miners with total
hash rate at most hi (i.e., with

∑

j∈S h′j ≤ hi). Then, the total expected reward under h′ of the
miners in S is:

c





∑

j∈[n]

hj − hi +
∑

j∈S

h′j



 ·
∑

j∈S h′j
∑

j∈[n] hj − hi +
∑

j∈S h
′
j

= c





∑

j∈[n]

hj − hi +
∑

j∈S

h′j





(

1−
∑

j∈[n] hj − hi
∑

j∈[n] hj − hi +
∑

j∈S h′j

)

≤ c





∑

j∈[n]

hj





(

1−
∑

j∈[n] hj − hi
∑

j∈[n] hj

)

= c





∑

j∈[n]

hj



 · hi
∑

j∈[n] hj
,

with the inequality following from the fact that
∑

j∈S h′j ≤ hi. Since the final expression is miner i’s
expected reward in the original configuration, this verifies sybil-proofness. Collusion-proofness can
be checked using a similar argument.

Example 4 (Proportional-to-squares allocation rule). The proportional-to-squares allocation rule
is defined for each configuration h of length n by

xi(h) =
h2i

∑n
j=1 h

2
j

.

This allocation rule is symmetric, strongly budget-balanced, and sybil-proof. It is not even weakly
collusion-proof under proportional sharing.

Example 5 (Proportional-to-square-roots allocation rule). The proportional-to-square-roots allo-
cation rule is defined for each configuration h of length n by

xi(h) =

√
hi

∑n
j=1

√

hj
.

This allocation rule is symmetric, strongly budget-balanced, and collusion-proof under arbitrary
reward sharing. However, it is not sybil-proof.

2.4 Implementing Non-Proportional Rules

The proportional allocation rule is realizable, in that there is a proof-of-work blockchain protocol
(namely, Bitcoin) that implements it. Are non-proportional allocation rules purely hypothetical?
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This section demonstrates that, at least in principle, every weakly budget-balanced and continuous
allocation rule can be approximately implemented within a proof-of-work blockchain.

Fix a power-of-2 M , a cryptographic hash function f , and a difficulty level b. A full solution is
a preimage z such that f(z) has at least b trailing zeroes, and a partial solution is a z such that
f(z) has at least b− log2M trailing zeros. The parameter b is chosen so that random guessing by
miners produces a full solution in a prescribed amount of time (on average), such as 10 minutes.
One expects partial solutions to be discovered at M times the rate of full solutions.

Fix a weakly budget-balanced allocation rule x. A high-level description of one possible corre-
sponding protocol is then:

1. Miners attempt to find partial and full solutions of the form 〈pkey|σ|nonce〉, where pkey is
the miner’s public key, σ is derived from the current blockchain state (e.g., the hash of the
block of transactions at the end of the longest chain), and nonce is a number of free bits
specified by the miner.

2. A miner who discovers a partial (non-full) solution can add it to the blockchain.

3. A miner who discovers a full solution can authorize a new block of transactions and add it to
the blockchain (along with their full solution).

4. When a new full solution and corresponding block are published, block rewards are distributed
according to the number of partial solutions contributed by each miner since the preceding
full solution. Precisely, let [n] denote the miners contributing at least one partial solution, gi
the number contributed by miner i, and M ′ =

∑

i∈[n] gi the total number of partial solutions
reported in this epoch. Define an estimate ĥi of miner i’s hash rate by

ĥi = gi · ρ ·
M

M ′
,

where ρ denotes the hash rate that would produce (on average) one partial solution in the
prescribed amount of time. Define miner rewards by x(ĥ1, ĥ2, . . . , ĥn).

Several comments are in order. First, this protocol effectively simulates the typical functionality
of a mining pool inside the protocol itself. This is reminiscent of the Revelation Principle from
mechanism design (see e.g. [8]), which is a simulation argument that shows how to eliminate non-
truthful reporting of preferences by moving the deviations inside the mechanism itself.

Second, if we take M = 1, then partial and full solutions coincide, M = M ′ = 1, and the
protocol essentially recovers Bitcoin’s implementation of the proportional allocation rule.

Third, the larger we takeM , the more accurate the estimated hash rates ĥ. Thus any continuous
allocation rule can be approximated as closely as desired by taking M sufficiently large.

Fourth, we ignore incentive issues involving miners’ delaying the publication of full or partial
solutions; Schrivjers et al. [11] discuss (in the context of mining pools) methods for mitigating such
incentive issues.

Finally, we have deliberately avoided committing to the details of the implementation, such as
the best way to record the partial solutions on-chain. Our point is simply that there appears to
be no fundamental barrier to implementing a wide range of non-proportional allocation rules in a
proof-of-work blockchain.
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3 Characterizations with Risk-Neutral Miners

3.1 A Uniqueness Result for the Proportional Allocation Rule

We assume throughout this section that miners are risk-neutral and are concerned only with their
expected rewards. Our first main result is a uniqueness result for the proportional allocation rule:
It is the only rule that is symmetric, strongly budget-balanced, sybil-proof, and collusion-proof
(even weakly collusion-proof with proportional sharing).

Theorem 1 (Characterization of Rules with A1, A2a, A3, A4c). The proportional allocation rule
is the unique allocation rule that is symmetric, strongly budget-balanced, sybil-proof, and weakly
collusion-proof (with proportional sharing).

Proof. Let x be an allocation rule that is symmetric, strongly budget-balanced, sybil-proof, and
weakly collusion-proof (with proportional sharing). We prove by induction that for every configu-
ration h ∈ N

∗, x satisfies xi(h) = hi/
∑

j hj . The induction is on the number t of entries in h that
are larger than 1. The base case of t = 0 is trivial since h is then an all-1 tuple (of length n, say)
and symmetry and strong budget-balance imply that xi(h) = 1/n for every i.

For the inductive step, assume that the statement holds for all tuples with less than t entries
larger than 1. Now consider a configuration h ∈ N

n for some n ≥ t that sums to m and has
t entries larger than 1. Because x is symmetric, we can assume without loss of generality that
h1, h2, . . . , ht > 1 while ht+1, ht+2, . . . , hn = 1. Let p = (p1, . . . , pn) = x(h). We claim that
pi = hi/m for each i ∈ [t]. This claim, together with the assumptions that x is symmetric and
strongly budget-balanced, implies that xi(h) = 1/m for all i > t and hence x indeed agrees with
the proportional rule on h.

Suppose pi > hi/m for some i ∈ [t]. Then, consider the configuration h′ obtained by splitting
the miner i into hi sybils, each with hash rate 1. By the inductive hypothesis and the fact that h′

has t − 1 entries that are larger than 1, x is proportional on h′ and so each of these miners with
hash rate 1 receives 1/m which is strictly less than pi/hi. This means that, in h′, these hi players
with hash rate 1 would all be better off by colluding and sharing their results proportionally (i.e.,
uniformly). This contradicts the assumption that x is weakly collusion-proof (with proportional
sharing). We conclude that pi ≤ hi/m for all i ∈ [t].

On the other hand, suppose pi < hi/m for some i ∈ [t], and consider the configuration h′

obtained by splitting miner i into hi sybils with hash rate 1 each. By the inductive hypothesis,
each sybil receives expected reward 1/m under x in h′. The total expected reward earned by the
sybils therefore exceeds that of miner i in h. This contradicts the assumption that x is sybil-proof,
so we can conclude that pi ≥ hi/m (and hence pi = hi/m) for all i ∈ [t]. This completes the proof
of the claim, the inductive step, and the theorem.

3.2 Weak Budget-Balance and Generalized Proportional Rules

Example 3 shows that relaxing the strong budget-balance requirement to weak budget-balance en-
larges the design space. One might suspect that, analogous to Theorem 1, generalized proportional
allocation rules are the only ones that satisfy symmetry, weak budget-balance, sybil-proofness, and
weak collusion-proofness with proportional sharing. The next example shows that this is not the
case.
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Example 6. Consider the following allocation rule x. For a configuration h in which no miner has
more than half the overall hash rate (i.e., hi ≤ 1

2

∑

j∈[n] hj for every i), x agrees with the proportional
allocation rule. For a configuration in which one miner i has more than half of the overall hash
rate, miner i receives its fair share under the proportional rule (i.e., xi(h) = hi/

∑

j∈[n] hj), while
other miners receive 0 (xj(h) = 0 for j 6= i).

The rule x is symmetric, weakly budget-balanced, sybil-proof, and weakly collusion-proof under
proportional sharing. It is not strongly collusion-proof under proportional sharing, however.

Our second main result shows that if weak collusion-proofness is strengthened to strong collusion-
proofness (with proportional sharing), then generalized proportional allocation rules are indeed the
only ones that satisfy the axioms A1, A2b, A3, and A4b.

Theorem 2 (Characterization of Rules with A1, A2b, A3, A4b). Generalized proportional alloca-
tion rules are the only allocation rules that are symmetric, weakly budget-balanced, sybil-proof, and
strongly collusion-proof under proportional sharing.

Proof. Let x be an allocation rule that is symmetric, weakly budget-balanced, sybil-proof, and
strongly collusion-proof under proportional sharing. We claim that, for each positive integer m,
there is a nonnegative real number c(m) ≤ 1 such that

xi(h) = c(m) · hi
m

for every configuration h with total hash rate (
∑

j hj) equal to m.
To prove the claim, fix a positive integer m. First, let 1m ∈ N

m denote the all-1 tuple of length
m and define

c(m) =
∑

i∈[m]

xi(1
m).

Since h is symmetric and weakly budget-balanced, c(m) ≤ 1 and xi(1
m) = c(m)/m for every i ∈ [m].

Second, let h∗ denote the configuration with a single miner with hash rate m. Since x is sybil-proof
and strongly collusion-proof (under proportional sharing), the expected reward assigned by x to
the sole miner in h∗ is c(m).

We follow the approach in the proof of Theorem 1 and prove by induction that, for every
configuration h ∈ N

∗ with
∑

i hi = m,

xi(h) = c(m) · hi
m

for every miner i. The induction is again on the number t of entries in h that are larger than 1.
The base case of t = 0 is trivial by the choice of c(m).

For the inductive step, we consider a configuration h ∈ N
n for some n ≥ t with

∑

i∈[n] hi = m
and exactly t entries larger than 1. Without loss of generality (since x is symmetric), assume that
h1, . . . , ht > 1 and ht+1, . . . , hn = 1. Let p = (p1, . . . , pn) = x(h). With respect to the first tminers,
the same argument as in the proof of Theorem 1 shows that pi = c(m) · (hi/m) for every i ∈ [t].
(This part of the argument requires only weak collusion-proofness under proportional rewards.)
Example 6 shows that the rest of the proof (for miners t+ 1, t+ 2, . . . , n) must differ from that of
Theorem 1 and make use of strong collusion-proofness. The issue is that because x is only assumed
to be weakly budget-balanced, it does not follow directly from pi = c(m) · (hi/m) for all i ∈ [t] that
pi = c(m)/m for all i > t.
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So assume for contradiction that pi 6= c(m)/m for some i > t (and hence, by symmetry, for
all such i). If pi > c(m)/m, then x fails sybil-proofness: the sole miner in configuration h∗ can
increase its expected reward by splitting into n sybils with hash rates as in h. On the other hand,
if pi < c(m)/m, then x fails strong collusion-proofness under proportional sharing: if the n miners
in h form the grand coalition, then with proportional sharing, every miner i ∈ [t] receives the
same expected reward pi = c(m) · (hi/m) as in h while the expected reward of every miner i > t
strictly increases (from pi to c(m)/m). We conclude that pi = c(m)/m for every i > t and hence
pi = c(m) · (hi/m) for every miner i. This concludes the proof of the claim.

All that remains is to show that c(m) must be a nondecreasing function of m. This follows from
sybil-proofness: if c(m + 1) < c(m) for some m, then in the single-miner configuration with hash
rate m+1, the miner would have an incentive to replace itself with a miner with hash rate m.

4 Beyond Risk Neutrality: Possibility and Impossibility Results

We have been assuming so far that miners are risk-neutral and care only about the expectation of
their reward, as opposed to other distributional characteristics (like variance). Going beyond this
assumption reveals the interesting ways in which risk affects incentives in blockchain protocols.

4.1 Von Neumann-Morgenstern Utilities

The earliest, and most principled, treatment of risk in economics is through von Neumann and Mor-
genstern’s utility theory, articulated more than seven decades ago [13]. One starts from each agent
having a very general set of arbitrary preferences between lotteries (finite-support probabilistic dis-
tributions over different amounts of money), where the preferences of agents are assumed to satisfy
four very natural and plausible axioms: completeness, transitivity, continuity, and independence.
The remarkable result proved is that any such system of preferences of an agent is tantamount
to the agent possessing a utility function U , a function mapping amounts of money to the reals,
such that the agent prefers lottery L to lottery M if and only if EL[U(p)] ≥ EM [U(p)], where the
expectation is over the random variable p (which is in units of money). That is, any agent with
preferences satisfying the properties above can be modeled as an expected utility-maximizer.

For an agent with utility function U , we can interpret U(p) as the amount of utility the agent
receives from a reward of p. For ease of presentation, we assume throughout that U(0) = 0 and
that U is twice-differentiable and strictly increasing. The risk sensitivity of an agent can then be
gauged by the second derivative of U . Risk-neutrality corresponds to a linear utility function, with 0
second derivative; in this case, E[U(p)] = U(E[p]) for every distribution over rewards p. A risk-
averse agent is an expected utility maximizer with a strictly concave utility function—a function
with an everywhere negative second derivative. For a risk-averse agent, E[U(p)] ≤ U(E[p]) for every
distribution over p (by Jensen’s inequality). For example, a risk-averse agent may not risk flipping
a fair coin if the two outcomes are either losing 30% of their fortune, or doubling it. (Whereas a
risk neutral — or risk-seeking, see Section 4.5 — agent would be happy to flip the coin.)

4.2 Collusion-Proofness Revisited

In this section and the next, we consider (randomized) allocation rules that allocate the entire
reward to (at most) one miner. We interpret an output xi(h) of an allocation rule as the probability
that miner i receives the entire reward in the configuration h.

11



Of the four types of axioms in Section 2.2, symmetry and budget-balance are obviously inde-
pendent of any model of miner utility. The sybil-proofness axiom requires only cosmetic changes:

A3. Sybil-proofness (with general utility functions): An allocation rule x is sybil-proof
if: For every allowable miner utility function U , every configuration h ∈ N

∗, and every
configuration h′ that can be derived from h by replacing a miner with hash rate hi by a set S
of miners with total hash rate at most hi (i.e., with

∑

j∈S h
′
j ≤ hi), the total expected utility

to i in h′ is at most that in the original configuration:
∑

j∈S

xj(h
′) · U(1) ≤ xi(h) · U(1).

Assuming that every allowable utility function U is strictly increasing (and thus, U(1) > U(0) =
0), this axiom is equivalent to the definition of sybil-proofness for risk-neutral miners given in
Section 2.2.

We need to adjust the definition of collusion-proofness, since now the incentives of miners are
affected by their utility functions. Fix a class U of allowable utility functions — for example, all
linear functions, or all strictly concave functions. We next define analogs of axioms (4a) and (4c)
from Section 2.2 (we skip (4b) because we do not need it in our statements). A reward-sharing
scheme with miner set S specifies how the miners of S would split a block reward internally;
formally, it is a collection of nonnegative random variables {ri}i∈S that satisfy

∑

i∈S ri ≤ 1 with
probability 1.

A4a. Collusion-proofness against U (under arbitrary reward sharing): An allocation rule
x is collusion-proof against U (under arbitrary reward sharing) if: For every configuration h ∈
N
∗, every choice of utility function Ui ∈ U for each participating miner i, every configuration

h′ that can be derived from h by replacing a set T of miners with a new miner i∗ with hash
rate at most the total hash rate of miners in T , and every reward sharing scheme {ri}i∈T ,
either: (i) no miner of T has higher expected utility in h′ (with the given reward sharing
scheme) than in h; or (ii) some miner of T has strictly lower expected utility in h′ (with the
given reward sharing scheme) than in h. That is, if

xi∗(h
′) · E[Ui(ri)] > Ui(1) · xi(h)

for some miner i ∈ T , then

xi∗(h
′) ·E[Uℓ(rℓ)] < Uℓ(1) · xℓ(h)

for some other miner ℓ ∈ T .

A4c. Weak collusion-proofness against U (under proportional sharing): An allocation rule
x is weakly collusion-proof against U (under proportional sharing) if: For every configuration
h ∈ N

∗, every choice of utility function Ui ∈ U for each participating miner i, every configu-
ration h′ that can be derived from h by replacing a set T of miners with a new miner i∗ with
hash rate at most the total hash rate of miners in T , some miner of T has expected utility
under h′ (with proportional sharing) at most that in the original configuration. That is, for
some miner i ∈ T ,

xi∗(h
′) · Ui

(

hi∑
j∈T hj

)

≤ Ui(1) · xi(h).
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4.3 Risk Aversion and Impossibility

With risk-neutral miners, the proportional allocation rule implemented by the Bitcoin protocol
satisfies all of the axioms in Section 2.2, including collusion-proofness (even with arbitrary reward
sharing). In reality, however, Bitcoin is not collusion-proof, in that most miners join a mining pool
that effectively acts like a large single miner.6 There is anecdotal evidence that miners generally
join mining pools to lower the variance of the rewards received, analogous to an insurance policy,
and we view the ubiquity of mining pools as strong evidence that most miners are risk-averse. How
does risk aversion affect the set of possible allocation rules satisfying our standard axioms?

The following impossibility result shows that the incentive to form mining pools is not an artifact
of the specific allocation rule implemented in Bitcoin; rather, it is a fundamental difficulty with
risk-averse miners.

Theorem 3 (Impossibility with Risk-Averse Miners). Assume that all miners are expected utility-
maximizers with the same strictly concave utility function U satisfying U(1) > U(0) = 0. There
is no non-zero allocation rule that is symmetric, weakly budget-balanced, sybil-proof, and weakly
collusion-proof against U = {U} (with proportional sharing).

Note that this impossibility result holds even with our weakest notions of budget-balance (A2b)
and collusion-proofness (A4c). The assumption that all miners share the same utility function U
only makes the impossibility result more compelling.

Proof of Theorem 3. Let x be a non-zero and symmetric allocation rule. Let h be a configuration
such that xi(h) > 0 for some i, and assume for simplicity that hi is even. Obtain h′ from h by
replacing miner i with two miners i1 and i2 with hash rate hi/2 each. By symmetry, xi1(h

′) =
xi2(h

′); let q denote this common probability. If x is sybil-proof, then 2q ≤ xi(h); suppose this is
indeed the case. Starting now from h′, if the two miners i1 and i2 join forces and combine hash
rates to produce the configuration h (sharing rewards proportionally), then their expected utilities
change from

U(1) · q
to

U
(

1
2

)

· xi(h) ≥ 2 · U
(

1
2

)

· q.
Our assumption on U implies that 2U(1/2) > U(1) and hence both miners are strictly better off
in the coalition. We conclude that x is not weakly collusion-proof under proportional sharing.

4.4 Possibility with Deterministic Rewards

The impossibility result in Theorem 3 holds for randomized allocation rules x that always allocate
the entire block reward to a single miner according to the probability distribution specified by x(h).
At the other extreme are deterministic allocation rules, for which each xi(h) represents a (fractional)
block reward deterministically given to miner i. With risk-neutral miners, there is no difference
between the two types of rules, and both the randomized and deterministic implementations of the
proportional allocation rule satisfy all of our axioms.

6See https://www.blockchain.com/en/pools for the biggest Bitcoin mining pools. As of this writing, the largest
pool (BTC.com) controls roughly 20% of the total hash rate.
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With a deterministic allocation rule, the miner utility functions no longer matter—more (deter-
ministic) reward is always better than less. (Remember that utility functions are strictly increasing.)
In this case, miners effectively act as if they were risk-neutral, and so all results for risk-neutral
miners carry over to deterministic allocation rules and miners with arbitrary utility functions. For
example, the following corollary of Theorem 1 is immediate.

Corollary 4 (Possibility with Deterministic Rewards). For every family U of utility functions,
the deterministic implementation of the proportional allocation rule is the unique deterministic
allocation rule that is symmetric, strongly budget-balanced, sybil-proof, and weakly collusion-proof
against U (with proportional sharing).

Bitcoin’s implementation of the proportional allocation rule is inherently randomized. But a
deterministic version of the rule can be approximated as closely as desired using a protocol of the
type described in Section 2.4 (with a sufficiently large value of the parameter M).

In the proposed implementation in Section 2.4, the choice of the miner who can authorize a
new block of transactions and add it to the blockchain—the first miner to find a full solution—is
still effectively chosen randomly (see step (3)). This highlights the fact that there are really two
distinct problems to solve in each block creation epoch:

1. Electing a leader to authorize the next block of transactions.

2. Distributing block rewards.

In Bitcoin, the solutions to these problems are tightly coupled, in that the choices of the leader
and of the recipient of the block reward are always the same. The solutions are decoupled in the
deterministic implementation of the proportional allocation, with the leader elected randomly as
in Bitcoin but with rewards distributed deterministically.

4.5 The Case of Risk-Seeking Miners

For completeness, this section studies risk-seeking miners, meaning expected utility maximizers
with strictly convex utility functions. In a surprising contrast with the impossibility result for risk-
averse miners (Theorem 3), here the (randomized implementation of the) proportional allocation
rule satisfies all of the same axioms as in the case of risk-neutral miners.

Theorem 5 (The Proportional Rule with Risk-Seeking Miners). Let U be the set of all convex
functions U : [0, 1] → R≥0 with U(1) > U(0) = 0. The proportional allocation rule is symmetric,
strongly budget-balanced, sybil-proof, and collusion-proof against U under arbitrary reward sharing.

Proof. The proportional allocation rule is obviously symmetric and strongly budget-balanced. It
is sybil-proof for risk-neutral miners and hence also non-risk-neutral miners (see the discussion in
Section 4.2).

To complete the proof, assume for the purposes of contradiction that the proportional allo-
cation rule is not collusion-proof under arbitrary transfers against the set U of convex utility
functions U that satisfy U(1) > U(0) = 0. Then, there is a configuration h ∈ N

n, utility functions
U1, U2, . . . , Un ∈ U for the participating miners, a subset T ⊆ [n] of the miners, and a reward-sharing
scheme {ri}i∈T such that

∑

j∈T hj
∑

j∈[n] hj
· E[Ui(ri)] ≥

hi
∑

j∈[n] hj
· Ui(1) for every i ∈ T ,
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with the inequality strict for at least one miner i ∈ T .
Summing these inequalities over i ∈ T and using that Ui(1) > 0 for every miner i, we then have

∑

j∈T hj
∑

j∈[n] hj
·
∑

i∈T

E

[

Ui(ri)

Ui(1)

]

>
∑

i∈T

hi
∑

j∈[n] hj

and, thus,

E

[

∑

i∈T

Ui(ri)

Ui(1)

]

> 1.

However, since each Ui is convex with Ui(1) > Ui(0) = 0, we have Ui(ri) ≤ ri · Ui(1) (with
probability 1) and thus, since

∑

i∈T ri ≤ 1 (again with probability 1),

E

[

∑

i∈T

Ui(ri)

Ui(1)

]

≤ E

[

∑

i∈T

ri

]

≤ 1.

This completes the contradiction and the proof.
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