
Planning for Robotic Dry Stacking with
Irregular Stones

Yifang Liu, Jiwon Choi and Nils Napp

Abstract Dry stacking with found, minimally processed rocks is a useful capabil-
ity when it comes to autonomous construction. However, it is a difficult planning
problem since both the state and action space are continuous, and structural sta-
bility is strongly affected by complex friction and contact constraints. We propose
an algorithmic approach for autonomous construction from a collection of irreg-
ularly shaped objects. The structure planning is calculated in simulation by first
considering geometric and physical constraints to find a small set of feasible actions
and then refined by using a hierarchical filter based on heuristics. These plans are
then executed open-loop with a robotic arm equipped with a wrist RGB-D camera.
Experimental results show that the proposed planning algorithm can significantly
improve the state of the art robotics dry-stacking techniques.

1 Introduction

As humans, we critically depend on modifying our environment by constructing
shelter, infrastructure for transportation, water, energy, and waste management, as
well as structures that regulate the natural environment such as dams, drainage, and
avalanche protection. Labor and materials are the main cost drivers of the construc-
tion industry, which also produces approximately 500 million tons of demolition

Yifang Liu
Department of Computer Science and Engineering, University at Buffalo, NY.
e-mail: yifangli@buffalo.edu

Jiwon Choi
Department of Computer Science and Engineering, University at Buffalo, NY.
e-mail: jiwoncho@buffalo.edu

Nils Napp
Department of Computer Science and Engineering, University at Buffalo, NY.
e-mail: nnapp@buffalo.edu

1



2 Yifang Liu, Jiwon Choi and Nils Napp

Fig. 1: System overview.

waste, mostly in the form of concrete [1]. Cement production accounts for (≈ %5)
of global CO2 emission [2]. Robotic construction with in-situ (found) materials si-
multaneously addresses primary cost drivers of construction while mitigating its
environmental impact. This idea has been explored in specialized situations. Driven
by the need for resource conservation in space, NASA has studied in-situ mate-
rial use for extraterrestrial environments. Launching building materials into space
is very costly, yet simple structures–such as berms, walls, and shelters–might be
readily built from minimally processed but rearranged materials [3]. Such utility
structures, i.e., structures that have a specific function but whose exact shape mat-
ters less, are also important on Earth, for example, erosion barriers for changing
coastlines, temporary support structures in disaster sites, or containment structures
made from contaminated materials from a nuclear or chemical leak. One particularly
well-suited construction method for such types of utility structures is dry-stacking
stones. This ancient method was practiced by humankind since 3500 B.C. [4], and
some of the oldest man-made structures used this method. Theoretically, robots are
ideally suited for this work, since robots make work safer and physically less de-
manding. However, a lack of understanding of how to pose and solve assembly
planning problems of irregular natural material into in-situ functional structures is
currently hindering robots from performing such useful construction tasks.

We present an algorithmic approach for solving the planning problem of assem-
bling stable structures from a collection of irregularly shaped rigid objects. The ap-
plication is to enable dry-stacking with found, minimally processed rocks. We focus
on the problem of high-level placement planning for rocks to build stable struc-
tures, and dry-stack structures with tens of rocks, which significantly improves the
state of the art. These plans are executed open-loop without additional tactile sens-
ing. Although, our results suggest that large-scale dry-stacking robots would benefit
from better physical feedback during the construction process. The whole process



Planning for Robotic Dry Stacking with Irregular Stones 3

is shown in Fig 1. To the best of our knowledge, this is the first work that can auto-
matically dry-stack a wall with 4 courses using natural irregular rocks, which could
significantly benefit the large-scale outdoor construction robots.

The rest of the paper is structured as follows: Section 2 provides a brief overview
of related work; Section 3 describes the planning algorithm; results are presented in
Section 4. Finally, Section 5 concludes the paper and discusses future work.

2 Related Work

The fundamental questions in autonomous construction are how to specify, plan, and
execute the placement of building elements to achieve a final structure. Approaches
[5, 6, 7, 8] differ in each of these aspects, and range from determining the assembly
order of elements whose position is known in advance [5] to formulating building
plans that need to pick the type, shape, and pose of elements to build approximate
shapes, or to build structures that fulfill specific functions [9].

There has been work in multi-robot construction [10, 11, 12, 13]. There are ap-
proaches that multiple robots build structures that are large compared to themselves,
such as decentralized approximation of large 2D structures [13], construction of 3D
structures with robots that can navigate partial structures [11], and flying robots [10]
use building elements that snap together. These works address the issue of decen-
tralized coordination between building agents and use uniform building materials.

Using deformable and amorphous materials in a distributed setting has been ex-
plored in [14, 9, 15, 16, 17]. In contrast to the presented work, the complicated
material model simplifies the planning, because the deformable nature of the build-
ing material can compensate for inaccuracies in placement and irregularity of the
environment.

When building with rigid irregular objects, small surface features substantially
affect the friction and stability. Compounding this difficulty, microfracture forma-
tion during execution can deform the surface. This makes planning and stably plac-
ing irregular objects fundamentally different from building with regular objects that
have predictable contact geometry. In our previous work [18, 19, 8], we proposed
an architecture for solving the dry-stacking problem, based on heuristics and deep
Q-learning to build stable large-scale structures using physics simulation in 2D.

From instructional books for dry-stacked masonry, e.g. [20, 21, 22], there are
guidelines for building a stable structure. For example, it is good to place large
stones with inward-sloping top surfaces on the corners. Filler stones may be used
to fill small voids created by the irregular shapes of the natural stones and can help
to produce a more solid footing to the layers above. Such heuristics can provide a
structured approach in making assembly decisions, but in their description, much is
left to experience and human judgment.

The methods presented by Furrer et al. [6] propose a pose searching algorithm
that considers structural stability using a physics simulator. In addition, they present
an autonomous system, using a robot manipulator, for stacking balancing vertical



4 Yifang Liu, Jiwon Choi and Nils Napp

towers with irregular stones. The pose searching cost function considers support
polygon area, kinetic energy, the deviation between thrust line direction and the
normal of the support polygon surface, and the length between the new object and
the CoM of the previously stacked object.

3 Methods

In this section, we first describe the notations used in this paper; then we elaborate
the planning algorithm for stacking irregular stones. Finally, we provide the object
pose detection pipeline used in physical execution.

3.1 Notation

The world frame is a 3-D coordinate system where the gravity is in the negative
z-direction, and the goal is to construct a target structure T ⊂ R3, i.e., a subset of
the world space that should be filled by selecting and placing elements from a set of
objects O. Each object is a connected subset of R3 with the origin at the center of
mass (CoM).

An assembly A = (a1,a2, ...,aI) is a set of I assembled objects, where each ele-
ment ai = (oi,Pi) is a pair containing an object oi ∈ O and its pose Pi = (pi,Ri) ∈
SE(3). The position pi ∈ R3 denotes the CoM position of object oi in the world
frame, and Ri ∈ SO(3) is its orientation. Empty space set is a set E ⊂ T s.t. every
point e ∈ E can be connected by a straight line from ∂T to ∂A without passing
through any other ai and ∂T , and ∂A denote the boundaries of T and the assem-
bly, respectively. This definition excludes the complicated internal voids created by
stacking irregular objects from counting as empty space. The top surface is given by
S = ∂E∩∂A, i.e., the overlapping area of the empty set E and the assembly A, where
∂E denotes the boundaries of empty space E. We define the action space X(oi) of
object oi to be restricted to have the CoM in E:

X(oi) = {(pi,Ri)|p ∈ E}. (1)

The world is initially assumed to be empty of objects, aside from a support surface
at the bottom of T . We want to find an assembly strategy for autonomous agents,
i.e., picking a sequence of elements oi and actions from X(oi) to build an assembly
that occupies the target structure T subject to physical contact, friction, and gravity
constraints.



Planning for Robotic Dry Stacking with Irregular Stones 5

3.2 Structure Planning

This section presents an assembly planning algorithm for irregular objects. Similar
to [8], we design a greedy heuristic approach to find the next best pose from a set
of feasible poses for a given object. For each object, we use a physics simulator
to generate a finite set of feasible stable poses, strategically reduce this set, and
choose the best available pose. By repeating this sequence, we incrementally build
the structure in a systematic fashion.

Algorithm 1: Feasible Poses Generation
Data: oi: object
Result: Feasible Poses Set

1 {(x j,y j,z j)}← discretize position;
2 for each (x,y,z) in {(x j,y j,z j)} do
3 for Nori← 0 to N do
4 R← random generate an orientation;
5 reset oi pose to (x,y,z,R);
6 while Ncontact(oi)< 3 do
7 step physics simulation once;
8 end
9 pause physics simulation;

10 reset oi linear and angular velocity to 0;
11 step physics simulation once;
12 while oi is not stable do
13 step physics simulation once;
14 end
15 if distance between current pose Pi and (x,y,z,R)< Threshold then
16 add current pose Pi to Feasible Poses Set XF ;
17 else
18 continue;
19 end
20 end
21 end

3.2.1 Feasible Poses Generation

Autonomously understanding the physical aspects of a system requires interaction
with it in order to obtain feedback. Here, we simplify the problem of learning the
system behavior by using a physics simulator to find Physically Stable configura-
tions. We approximate the real-world state with simulation and provide a practical
and efficient stability estimate of the system without actually having to physically
interact with the external world. This helps us to acquire a good prior estimate for
the system.



6 Yifang Liu, Jiwon Choi and Nils Napp

Since the action space (p and R) is continuous (Eq. 1), we first sample the action
space in such a way that the position p is discretized, and each position p corre-
sponds to a set of randomly sampled orientation R. We then make use of a rigid
body simulator to find physically stable configurations. The simulator proceeds by,
first selecting an initial placement (position and orientation) for a given object on
the surface of the built structure, and then simulating the forces acting on the object
until it settles into a stable pose, see Algorithm 1. Although the number of possible
initial placement is large, a substantial amount of them settles down into a small
subset of feasible poses. This set of feasible poses for an object oi denotes XF(oi).
Even though all the poses in the feasible poses set are stable ones, many of these
feasible poses are poor choices and result in low stability. In the next section, we
will discuss how to refine this set by using heuristics gathered from instructional
literature for masonry books [20, 21, 22].

3.2.2 Action Space Reduction

The refinement of action space is a hierarchical filtering approach, where each filter
removes poses that do not meet the minimum requirement for a satisfactory place-
ment according to a specific heuristic. The set of filters used in this work is presented
below:

• Support polygon area: the area of an object’s support polygon. A higher value of
support polygon correlates to a stable footing for the object. Similar to method
[6], in order to robustly find the support polygon from the sparse contacts, we
update the simulator 10 steps and collect all the contacts. Then Principal Com-
ponent Analysis (PCA) is used to reduce the 3D contacts to 2D points. Finally,
the convex hull of these 2D points is calculated as support polygon area.

• Normal of support polygon: the normal direction of the support polygon. It mea-
sures how much the normal direction deviates from the thrust line direction vec-
tor [6].

• Neighbor height: the difference in heights of the object, after its placement, with
its left and right neighboring objects. It helps maintain leveled surfaces in the
structure. The height of an object is represented by CoM height.

• Stone top surface sloping: the top surface angle of the object at a given pose. In
building a wall, we prefer inward sloping angles to prevent stones from the top
layers to fall down from the structure ([22, Pg. 49]).

• Interlocking: the number of objects in the structure that are in contact with the
current object at a given pose. The use of this feature allows for staggered layer-
ing and thus helps to prevent vertical stacking in the structure, see [21, Pg. 19].

Each filter applies each one of the features aforementioned. The reductions are
applied hierarchically for each object as follows:

• The original feasible poses set denotes XF .
• At Filter 1, only select poses that have an inward sloping top surface angle. The

remaining poses after applying this filter denotes XF1.



Planning for Robotic Dry Stacking with Irregular Stones 7

• At Filter 2, discard poses with dot product ‖ni ·vi‖ less than the mean of all poses
from XF1, where ni represents the normal direction of the contact polygon, and
vi is the thrust line direction vector. The set of poses after applying this filter
denotes XF2.

• At Filter 3, remove poses with support polygon area less than the mean of the
support polygon area value of all stable poses. The remaining poses after apply-
ing this filter denotes XF3.

• At Filter 4, this is based on the current state of the structure. If it is not a corner
placement, only choose poses whose centroid heights are lower than the average
centroid heights of corner stones at the current course. The set of poses after
applying this filter denotes XF4.

• At Filter 5, remove the poses whose number of interlocking objects are smaller
than the mean number of interlocking. The set of poses after applying this filter
denotes XF5.

This hierarchical reduction model is carefully designed such that a random pose
at each level is more desirable than a random pose drawn at the earlier filtered levels.
It is also designed such that no good possible stable poses are removed earlier before
reaching the final selection filter. The relation between the various sets of poses is
shown in Eq. 2.

XF ⊃ XF1 ⊃ XF2 ⊃ XF3 ⊇ XF4 ⊃ XF5, (2)

where XF is defined in Section 3.2.1.
Unlike the pose searching algorithm used in [6], which combines terms similar

to Filters 2 and 3, as well as other heuristics into a single scalar cost function and
finds poses by gradient descent, the planning algorithm proposed in this paper first
considers geometric and physical constraints using a simulator to find a discrete set
of feasible actions and further refines this set by using a hierarchical filter based on
heuristics gathered from the instructional materials. This approach eliminates the
need for tuning the relative weights in a scalar cost function. Without the need of
cost-tuning the algorithm is more adaptable to different stones with various physical
properties, such as size, density, friction, etc. The reason is that with a single scalar
function the weights are coupled and the relative importance depends on the object
sets physical properties. However, in the hierarchical filter each term is assessed in
isolation and thus the method is less sensitive to the change of the object physical
property for a given task.

3.2.3 Proposed Algorithm

Algorithm 2 describes how a structure is constructed. The inputs are the set of avail-
able objects along with the target structure to be built. During construction, it builds
the structure course by course, and within courses, it first places the corner stones
with the inward slope in the two course extrema, as shown in Algorithm 2 Line 2;



8 Yifang Liu, Jiwon Choi and Nils Napp

Fig. 2: Object pose detection pipeline.

then it builds the middle area within the course (Lines 3-5). The output is the set of
assembly steps.

Algorithm 3 describes the steps to select an object and its pose for the placement.
The inputs are the set of remaining objects and their type (corner stone or random
stone), since different object types may require different hierarchical filters. The first
step is to choose a random object (Line 3) and collect feasible poses (Section 3.2.1)
of this object (Line 4). Then it applies Hierarchical Filter (Section 3.2.2) to reduce
the action space at Line 5. If the reduced action space is not empty, we select one
pose from it; otherwise, we try this procedure again for a different object until it
reaches the maximum number of trials (Lines 6-11).

Algorithm 2: Proposed Assembly Approach
Data: O: object dataset, T : target structure
Result: Assembly steps

1 while target area T still has room left to build do
2 place Corner stones with inward slope in the two course extrema;
3 while current course still has room left to build do
4 place stone in the current course ;
5 end
6 end

3.3 Object Pose Detection

In physical execution, we need first to detect the pose of the object in the scene.
We start by capturing a set of point cloud data of an object from different views
via an RGB-D camera; second step is to filter out the points that do not belong to
the current object by removing the plane points from point cloud data using Point
Cloud Library (PCL) [23]; third, the set of remaining point cloud data are merged
together. We apply global registration to provide an initial transformation and Itera-
tive Closest Point (ICP) algorithm to further refine the transformation using Open3D
library[24]; finally, we run registration on merged point cloud data and pre-scanned
3D mesh of the object to get the relative pose between them. Similar to the third
step above, the registration also contains global registration and ICP. The whole
pose detection pipeline is shown in Fig. 2.



Planning for Robotic Dry Stacking with Irregular Stones 9

Once the relative pose between the current object and the 3D mesh is detected,
we use the manipulator to pick up the stone and apply the same transformation to
the end-effector of the manipulator to place the stone as the planned pose.

Algorithm 3: Place Stone
Data: B: set of available objects (B⊆ O), object type
Result: Placed object pose

1 n← 0;
2 while n ≤ Maximum Number of Trials do
3 b← randomly choose one object from B;
4 XF ← feasible poses set;
5 X f inal ← apply Hierarchical Filter to XF ;
6 if X f inal 6= /0 then
7 place one of the X f inal poses;
8 return;
9 else

10 n← n+1;
11 end
12 end

4 Experiments

In this section, we first describe the experimental setup, then we show the stone tow-
ers and stone walls using the proposed planning, as well as the comparison between
the pose searching algorithm proposed in [6] and the proposed method.

4.1 Experimental Setup

As shown in Fig. 4, a UR5 (Universal Robots) manipulator equipped with a ROBO-
TIQ 2-Finger gripper is used in the manipulation task. An Intel®RealSenseTM

SR300 RGB-D camera is attached to the UR5 arm for point cloud data acquisi-
tion. MoveIt! [25] package is employed for motion planning. We collect 23 shale
stones as irregular objects, which are specifically selected in order to fit the size
of the gripper. The average weight of selected stones is 193g with a standard de-
viation of 90g. The outer bounding box size of the stones are 0.0791±0.0144m,
0.0585±0.0086m, and 0.04±0.0088m. During physical execution, objects are man-
ually fed into pickup area. The gripper grasping position varies depending on the
detected object position, but the gripper orientation remains the same. The stone 3D
model is acquired with a Matter and Form 3D Desktop Scanner. Fig. 3 shows some
samples of the stones and their corresponding 3D mesh models. The object pose
detection and manipulation parts are implemented using Robot Operating System.



10 Yifang Liu, Jiwon Choi and Nils Napp

Fig. 3: Irregular shale stones and their corresponding 3D meshes.

Fig. 4: An overview of the experimental setup.

4.2 Results

The autonomous building system is shown in Fig. 1. In this section, we first compare
the proposed algorithm with other work in simulation and physical execution; then
we will show the physical execution results of building the walls.

4.2.1 Stone Tower

The goal is to build a vertical stone tower using the pre-scanned 3D mesh models as
a test structure to evaluate planning under stability constraints. We compare the pro-
posed method with the pose searching algorithm proposed in [6]. The comparisons
are conducted in Pybullet physics simulation [26].

The pose searching method used in [6] places each object on the top object of the
existing stacking using a physics engine. A cost function is introduced to evaluate
the “goodness” of each pose, which considers 4 elements: contacts area Ci, kinetic
energy Ekin, the length between the newly placed object pose Pj and the previously
placed object pose Pi (denoted as rPjPi ), and the dot product between normal of the
contact polygon and the trust line direction vector ‖ni · vi‖. The cost function is
defined as:

f (Pi) = w1C−1
i +w2Ekin(Pi)+w3‖rPjPi‖+w4‖ni ·vi‖ , (3)

where w j are tuned for the object set. After assigning the cost to the valid contact
pose, gradient descent is used to search the local optimal pose P∗i .

Since we use a different type of stone from that of [6], and the size of the stones
are also different given that we use different arms and grippers, the w j given by [6]



Planning for Robotic Dry Stacking with Irregular Stones 11

Table 1: Average stone number comparison

Random Area Kinetic Energy Distance Deviation(m) Deviation(d) Weighted Cost Proposed

3.4565 4.3944 4.0845 3.9362 3.2 4.0207 4.75 5.4118

Table 2: Physical execution (7 represents the stone drops down, X represents the stone can be
successfully placed to the desired pose, /0 means no more planned object left.)

Stone Number Tower 1 Tower 2 Tower 3 Tower 4 Tower 5 Tower 6 Tower 7 Tower 8 Tower 9

4th X X 7 X X X X X X
5th X X 7 7 X X X X
6th X X X 7 X 7
7th 7 7 /0 7

are no longer optimal in this application. Furthermore, we modify the last compo-
nent of Eq. 3 as w4‖ni · vi‖−1 given the fact that the larger the dot product is, the
smaller the cost should be. At last, we apply Bayesian optimization for Gaussian
process modeling called GPyOpt [27] to optimize the weights.

Fig. 5 depicts the results of using different cost functions and the proposed hier-
archical filter based algorithm (Algorithm 1). Since the heuristics used in building
a vertical tower is different from that of a wall, we modify the filters to fit the task.
The filter contains contact polygon area C, distance rPjPi , and top surface slope. We
also evaluate each cost component used in Eq. 3 separately. We can see that the pro-
posed hierarchical filter algorithm has more chances to build a vertical towers that
have more than 5 stones than all other compared methods. Table 1 gives the average
number of stones each algorithm can build. It also shows that the proposed method
can build more stones than other methods. We randomly select 9 towers planned by
the proposed method from all of the towers that have a height of at least 6 stones for
physical execution. Table 2 shows the building process. Since the first three stones
can always be placed successfully, we start the table from the 4th stone. We can see
that 4/9 can be built up to 6 stones, and only 1/9 drops at the 4th stone. Compared
to the towers built in work [6], which only builds up to 4 stones with a chance of
2/11, our method can build higher stone towers both in simulation and physical ex-
ecution. The reasons for the failures in our execution could be: object pose detection
error, pickup error, opening gripper moves already placed objects, the difference be-
tween object 3D mesh and the real object, error in contacts modeling in simulation,
etc. Fig. 6 (a) and (b) illustrates one tower example of the proposed algorithm in the
simulation environment and physical execution.



12 Yifang Liu, Jiwon Choi and Nils Napp

Fig. 5: Vertical tower building results. For each method, we build 150 different vertical stone
towers in simulation. The x-axis shows the number of stones each tower has, and on the left figure
the y-axis shows the percentage of each height; on the right figure, the y-axis represents cumulative
percentage of each height. “random” means that we randomly pick a pose from feasible poses set;
“area” represents that the cost function only contains contact polygon area (C) one element, so
as “kinetic energy” (Ekin), “distance” (rPjPi ) and “deviation” (‖ni · vi‖). For “deviation”, we test
both multiplication ‖ni · vi‖ and division ‖ni · vi‖−1. The “weighted cost” uses the optimized cost
function. The proposed “hierarchical filter” significantly outperforms the other methods.

Table 3: Stone wall execution failure rate

Course 1 Course 2 Course 3 Course 4

Poor placement 0.14 0.18 0.29 0.48
Structure collapse 0 0.04 0.07 0.05

4.2.2 Stone Wall

In this experiment, the goal is to build a stone wall. The structure is planned in sim-
ulation using Algorithm 2, and then the UR5 manipulator places the stones to the
planned pose. The planned wall has 4 courses, and each course has 3 to 5 stones.
The execution order is manually calculated but complies with the assembly order in
the simulation if there is no collision during assembly due to the gripper, i.e., the
simulated assembly order does not take into account clearances for the fingers or
grippers, but if problems exist reordering stones within a course often fixes potential
collisions. As mentioned in the previous section, several reasons may yield failures
during the execution process. We categorize the failure cases into two classes: poor
placement and structure collapse. Poor placement contains bad grasping, wrong ob-
ject pose detection, and the drop of current stone after placement. Structure collapse
is the case that after placing the current stone, more than 1 stone falls down. In this
experiment, 7 out of 13 walls can be successfully built without collapsing. Table 3
shows the failure rate during execution. We separate the execution process based on
different courses. We can see that as the course increases, the poor placement rate
also increases. All the previous minor errors building up to larger errors lead to more
failure cases. Fig. 6 (c) and (d) shows an example of a planned wall in the simulation
and the wall built in the real world using the robotic arm without collapsing.



Planning for Robotic Dry Stacking with Irregular Stones 13

Fig. 6: Vertical tower and wall in simulation and corresponding physical execution results.

5 Conclusion and Future work

The proposed method is able to plan placements for a set of irregularly shaped rocks
and build stable dry-stacked structures. Similar to the previous work, we use a rigid
body simulation engine in order to find stable poses for rocks. We introduce two
primary innovations, first is that we only use the physics engine to create a finite
set of feasible poses, second is a layered refinement architecture that significantly
improves performance compared to optimized scalar cost functions in evaluating the
quality of feasible poses. We also introduce new filtering terms, which are specific
for building walls with interlocking layers, compared to vertical stacks.

We focus on high-level placement planning as it is a central issue in dry-stacking.
The overall system could be significantly improved with a more specialized and ro-
bust execution system, specifically reactively re-planing in the face of errors and
unmodeled action outcomes, and in incorporating tactile feedback during placement
and pose evaluation. The instructional literature suggests this approach for human
builders as well: candidate stones are placed, wiggled, and then either removed or
stabilized by wedging small rocks into crevices until the newly placed rock is stable.
In any of these situations, having better high-level placement plans that can be exe-
cuted in an open-loop fashion will be beneficial and this paper represents significant
progress in that direction.

Acknowledgements We would like to thank Hironori Yoshida and Dr. Marco Hutter for their
valuable input regarding the comparison algorithm, and Jackie Chan for scanning the stones. This
work was partially supported by NSF Grant #1846340 and the SMART CoE at UB.

References

1. USEPA. Advancing sustainable materials management: 2014 fact sheet. United States Envi-
ronmental Protection Agency, Office of Land and Emergency Management, Washington, DC
20460, (November):22, 2016.

2. Green in Practice 102 - Concrete, Cement, and CO2.



14 Yifang Liu, Jiwon Choi and Nils Napp

3. Gerald B Sanders and William E Larson. Progress Made in Lunar In Situ Resource Utilization
under NASA’s Exploration Technology and Development Program. Journal of Aerospace
Engineering, 26(1):5–17, 2013.

4. Wikipedia contributors. History of construction — Wikipedia, the free encyclopedia, 2019.
5. I-Ming Chen and Joel W Burdick. Determining task optimal modular robot assembly configu-

rations. In Proceedings of 1995 IEEE International Conference on Robotics and Automation,
volume 1, pages 132–137. IEEE, 1995.

6. Fadri Furrer, Martin Wermelinger, Hironori Yoshida, Fabio Gramazio, Matthias Kohler,
Roland Siegwart, and Marco Hutter. Autonomous robotic stone stacking with online next best
object target pose planning. In Robotics and Automation (ICRA), 2017 IEEE International
Conference on, pages 2350–2356. IEEE, 2017.

7. Volker Helm, Selen Ercan, Fabio Gramazio, and Matthias Kohler. Mobile robotic fabrication
on construction sites: Dimrob. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 4335–4341. IEEE, 2012.

8. Vivek Thangavelu, Yifang Liu, Maira Saboia, and Nils Napp. Dry stacking for automated
construction with irregular objects. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 1–9. IEEE, 2018.

9. Nils Napp and Radhika Nagpal. Distributed amorphous ramp construction in unstructured
environments. In Distributed Autonomous Robotic Systems, pages 105–119. Springer, 2014.

10. Quentin Lindsey, Daniel Mellinger, and Vijay Kumar. Construction with quadrotor teams.
Autonomous Robots, 33(3):323–336, 2012.

11. Kirstin Petersen, Radhika Nagpal, and Justin Werfel. Termes: An autonomous robotic system
for three-dimensional collective construction. June 2011.

12. Kirstin H Petersen, Nils Napp, Robert Stuart-Smith, Daniela Rus, and Mirko Kovac. A review
of collective robotic construction. Science Robotics, 4(28):eaau8479, 2019.

13. Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Programmable self-assembly
in a thousand-robot swarm. Science, 345(6198):795–799, 2014.

14. Kathrin Doerfler, Sebastian Ernst, Luka Piškorec, Jan Willmann, Volker Helm, Fabio Gra-
mazio, and Matthias Kohler. Remote material deposition. In International Conference, COAC,
ETSAB, ETSAV, pages 101–107, 2014.

15. Maira Saboia, Vivek Thangavelu, Walker Gosrich, and Nils Napp. Autonomous adaptive
modification of unstructured environments. Proc. Robotics: Science & Systems XIV (RSS
2018), 2018.

16. Touraj Soleymani, Vito Trianni, Michael Bonani, Francesco Mondada, and Marco Dorigo.
Autonomous construction with compliant building material. In Intelligent Autonomous Sys-
tems 13, pages 1371–1388. Springer, 2016.

17. Maira Saboia, Vivek Thangavelu, and Nils Napp. Autonomous multi-material construction
with a heterogeneous robot team. In Distributed Autonomous Robotic Systems. Springer, 2018.

18. Yifang Liu, Maira Saboia, Vivek Thangavelu, and Nils Napp. Approximate stability analysis
for drystacked structures. In 2019 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2019.

19. Yifang Liu, Seyed Mahdi Shamsi, Le Fang, Changyou Chen, and Nils Napp. Deep q-learning
for dry stacking irregular objects. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1569–1576. IEEE, 2018.

20. Kevin Gardner. Stone Building. The Countryman Press, 2017.
21. Charles McRaven. Building stone walls, volume 217. Storey Publishing, 1999.
22. John Vivian. Building Stone Walls. Storey Publishing, 1976.
23. Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library (PCL). In IEEE

International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13
2011.

24. Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern library for 3D data
processing. arXiv:1801.09847, 2018.

25. Ioan A Sucan and Sachin Chitta. Moveit! Online at http://moveit. ros. org, 2013.
26. E Coumans, Y Bai, and J Hsu. Pybullet physics engine, 2018.
27. GPyOpt. Gpyopt: A bayesian optimization framework in python. http://github.com/

SheffieldML/GPyOpt, 2016.


