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Abstract. This paper studies structural consequences of supercompact-
ness of wi under ZF. We show that the Axiom of Dependent Choice (DC)
follows from “w; is supercompact”. “w; is supercompact” also implies
that AD", a strengthening of the Axiom of Determinacy (AD), is equiv-
alent to ADg. It is shown that “w; is supercompact” does not imply AD.
The most one can hope for is Suslin determinacy. We show that this
follows from “w is supercompact” and Hod Pair Capturing (HPC), an
inner-model theoretic hypothesis that imposes certain smallness condi-
tions on the universe of sets. “w; is supercompact” on its own implies that
every Suslin set is the projection of a determined (in fact, homogenously
Suslin) set. “w; is supercompact” also implies all sets in the Chang model
have all the usual regularity properties, like Lebesgue measurability and
the Baire property.
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1 Introduction

Under ZFC, successor cardinals (like wy) are “small”. If o = 87 is a successor
cardinal, then there is an injection from « into P(3).> Without the Axiom of
Choice, it is possible for successor cardinals like w; to exhibit large cardinal
properties. For instance, it has been known since the 1960’s that w; can be
measurable under ZF; this in particular implies that w; is regular and there is
no injection of wy into P(w). We believe this result is independently due to Jech
([4]) and Takeuti ([18]). Furthermore, Takeuti, in the same paper [18], is able
to show that “ZF + w; is supercompact” is consistent relative to “ZFC+ there
is a supercompact cardinal”. Takeuti’s model 7 in which w; is supercompact is

3This is equivalent to “there is a surjection from P(8) onto o under ZFC. Without
the Axiom of Choice, the equivalence can fail.
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the same as Solovay’s model while Takeuti used the method of Boolean valued
models to describe his model. Suppose ZFC holds and there is a supercompact
cardinal. Let x be a supercompact cardinal. Let g C Coll(w, < k) be V-generic
for the collapse forcing. Let R* = RV19], Takeuti’s model 7 is (in modern terms)
the symmetric model V (R*).

Another major development started in the 1960’s in set theory concerns the
theory of infinite games with perfect information. The Axiom of Determinacy
(AD) asserts that in an infinite game where players take turns to play integers,
one of the players has a winning strategy (see the next section for more detailed
discussions on AD and its variations). It is well-known that AD contradicts the
Axiom of Choice. Solovay has shown that AD implies w; is measurable and ADg
implies that there is a supercompact (countably complete, normal, fine) measure
on P, R. Structural consequences of AD have been extensively investigated, most
notably by the Cabal seminar members. Through work of Harrington, Kechris,
Neeman, Woodin amongst others, we know that w; is a-supercompact for every
ordinal & < © under AD™, a strengthening of AD.* By [22], AD and ADg cannot
imply w; is supercompact. Woodin (see below) shows that AD is consistent with
“wy is supercompact.”

It can be shown that the theory “ZF 4 w; is measurable” is equiconsistent
with “ZFC+ there is a measurable cardinal”. The question of whether “ZF+w; is
supercompact” is equiconsistent with “ZFC+ there is a supercompact cardinal”
is much more subtle. Woodin, in an unpublished work in the 1990’s, is able
to show that the former is much weaker than the latter. Woodin’s model is a
variation of the Chang model.> For each A, let F) be the club filter on P, A\“.
Woodin’s model is defined as

ct = L(Uxcora A)(Fr | A € Ord)].

The model CT is the least inner model M of ZF such that for all A, \ € M and
MNF, € MS

Woodin shows that if there is a proper class of Woodin cardinals which are
limits of Woodin cardinals, then C* satisfies AD and w; is supercompact. We
note that in Takeuti’s model, AD fails.” This is because the model V(R*) satisfies
that © = wy (that is x* in V) while AD implies © > wy.®

4Harrington and Kechris [2] proved that under AD, w; is a-supercompact for all
a below a Suslin cardinal. Neeman [11] improved the result to that in L(R), wy is
a-supercompact for all & < ©. Woodin extended Neeman’s result by replacing the
assumption V = L(R) with AD'. Unfortunately, Woodin’s result is unpublished.

®The Chang model is defined as L(Uxcora A”), the least inner model N of ZF such
that for all A\, A\ € N.

5We need a suitable coding of the sequence (Fx | A € Ord) to let the model satisfy
the above properties of M.

"This gives a proof that “w; is supercompact” does not imply AD.

8This argument is due to the anonymous referee, which is simpler than what the
authors presented in the previous manuscript. We thank the referee for showing us this
argument.
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The theory “w; is supercompact” and variations of Woodin’s model C* are
intimately related to determinacy theory as well as modern developments in
descriptive inner model theory, cf. [13, Conjecture 1.8]. The following conjec-
ture captures some of these relationships and is an important test question for
the future development of descriptive inner model theory and the core model
induction.

Conjecture 1. The following theories are equiconsistent.

(i) ZF + wy is supercompact.
(ii) ZF + AD + w; is supercompact.
(iii) ZFC+ there are proper class many Woodin cardinals which are limits of
Woodin cardinals.

[22], [20], [21] made some progress in resolving the conjecture by exploring con-
sistency strength and structural consequences of various fragments of supercom-
pactness of w;.

This paper studies structural consequences of (full) supercompactness of wq
under ZF. We first show the following basic structural consequences.

Theorem 1. Assume that wy is supercompact. Then

1. the Aziom of Dependent Choices (DC) holds, while
2. (Folklore) there is no injection from wy to 2“.

The useful fact that DC holds can be used to derive other determinacy-like
consequences such as:

Theorem 2. Assume wy is supercompact. Then every tree is weakly homoge-
neous.

Remark 1. Note that under ZF+DC, every weakly homogeneously Suslin set is
co-Suslin. So if w; is supercompact, then every Suslin set is also co-Suslin.

Theorem 3. Assume wy is supercompact and Hod Pair Capturing (HPC). Then
for any A such that A is Suslin, A is determined.

See Section 7 for more detailed discussions on the hypothesis HPC. Under
“w; is supercompact”, we also show that AD' and ADg are equivalent.

Theorem 4. Assume wy is supercompact. Then the following theories are equiv-
alent:

1. AD".
2. ADg.

“wy is supercompact” also implies a large collection of sets of reals are deter-
mined ([22]) and perhaps an even larger collection of sets of reals admit co-Borel
representations.
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Theorem 5. Assume that wy is supercompact. Then every subset of 2% in the
Chang model L(Jy¢ oyq A”) is 00-Borel.

The paper is organized as follows. Section 2 summarizes basic concepts and
definitions used in this paper. In Section 3, we prove Theorem 1. The proof of
Theorem 5 is given in Section 4. In Section 5, we prove Theorem 2. Section 6
proves Theorem 4. Finally, Section 7 explains HPC and proves Theorem 3.

Acknowledgement. We would like to thank Hugh Woodin for communicating
his insights on this subject as well as his results concerning the model C*. We
are grateful to the anonymous referee for numerous helpful comments. The first
author would like to thank the Japan Society for the Promotion of Science (JSPS)
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15K17586 and 19K03604. He is also grateful to the Sumitomo Foundation for its
generous support through Grant for Basic Science Research. The second author
would like to thank the National Science Foundation (NSF) for its generous
support through Grants DMS-1565808 and DMS-1849295.

2 Definitions and basic concepts

Throughout this paper, we work in ZF without the Axiom of Choice. For a
nonempty set A, the axiom DCy4 states that for any relation R on A such that
for any element = of A there is an element y of A with (z,y) € R, there is a
function f: w — A such that for all natural numbers n, (f(n), f(n+ 1)) € R.
The Axiom of Dependent Choices (DC) states that for any nonempty set
A, DC4 holds.

For a set X, X<% denotes the set of all finite sequences of elements of X,
and X“ denotes the set of all functions from w to X. In particular, 2* denotes
the set of all function from w to 2 = {0, 1}, not an ordinal or a cardinal. For a
set X, we often consider X“ as a topological space whose basic open sets are
of the form Oy, = {z € X¥ | s C a} for s € X<“. For a set X and an infinite
cardinal k, let P, X be the set of all subsets o of X such that o is well-orderable
and its cardinality is less than &.

Let us review some basic terminology on filters. For a set Z, a filter on Z
is a collection of subsets of Z closed under supersets and finite intersections. A
filter on Z is o-complete if it is closed under countable intersections. A filter
on Z is non-trivial if the empty set () does not belong to the filter. A filter on
Z is an ultrafilter (or a measure) if it is non-trivial and for any subset A of
Z, either A or Z \ A is in the filter. Given a formula ¢ and an ultrafilter u on
Z,iftheset A= {0 € Z|¢(o)} is in u, then we say “for y-measure one many
o, ¢(o) holds”.

Let us introduce fineness and normality of ultrafilters on P, X. An ultrafilter
@ on P, X is fine if for any element x of X, for y-measure one many o, z is in
o. An ultrafilter g on P, X is normal if for any set A in g and f: A — P X
with () #£ f(o) C o for all o € A, there is an xy € X such that for y-measure one
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many o in A, zg € f(o). Notice that this definition of normality is equivalent to
the closure under diagonal intersections in ZF while it may not be equivalent to
the standard definition of normality with regressive functions f: A — X without
the axiom of choice. An ultrafilter on P, X is a fine measure on P, X if it is
o-complete and fine. A fine measure on P, X is a normal measure on P, X if
it is normal.

We now introduce the main definitions of this paper:

Definition 1. Let k be an infinte cardinal.

1. Let X be a set.
(a) k is X-strongly compact if there is a fine measure on Py X.
(b) Kk is X -supercompact if there is a normal measure on P, X.
2. Kk is strongly compact if for any set X, k is X-strongly compact.
3. k is supercompact if for any set X, k is X -supercompact.

We now review basic notions on determinacy axioms. For a nonempty set
X, the Axiom of Determinacy in X“ (ADx) states that for any subset A of
X% in the Gale-Stewart game with the payoff set A, one of the players must
have a winning strategy. We write AD for AD,,. The ordinal ® is defined as the
supremum of ordinals which are surjective images of R. Under ZF4+AD, O is
very big, e.g., it is a limit of measurable cardinals while under ZFC, © is equal
to the successor cardinal of the continuum |R|. Ordinal Determinacy states
that for any A < @, any continuous function 7: A — w*, and any A C w*, in
the Gale-Stewart game with the payoff set 7=1(A), one of the players must have
a winning strategy. In particular, Ordinal Determinacy implies AD while it is
still open whether the converse holds under ZF+DC.

We will introduce the notion of co-Borel codes. Before that, we review some
terminology on trees. Given a set X, a tree on X is a collection of finite se-
quences of elements of X closed under initial segments. Given an element ¢ of
X < 1h(t) denotes its length, i.e., the domain or the cardinality of ¢t. Given a tree
T on X and elements s and ¢ of T', s is an immediate successor of t in T if s is
an extension of ¢t and lh(s) = lh(¢)+1. Given a tree T on X and an element ¢ of T,
Sucer (t) denotes the collection of all immediate successors of ¢ in 7. An element
t of a tree T on X is terminal if Succr(t) = (). For an element ¢ of a tree T on
X, term(T') denotes the collection of all terminal elements of T. Given a tree T
on X,[T] denotes the collection of all z € X“ such that for all natural numbers
n,z | nisin T. A tree T on X is well-founded if [T] = (). We often identify a
tree T on X x Y with a subset of the set {(s,t) € X< x Y<% | lh(s) = lh(¢)},
and p[T] denotes the collection of all z € X* such that there is a y € Y* with

(z,y) € [T].
Definition 2. Let A be a non-zero ordinal.

1. An co-Borel code in \* is a pair (T, p) where T is a well-founded tree on
some ordinal v, and p is a function from term(T) to A<%.

2. Given an oo-Borel code ¢ = (T, p) in A\¥, to each element t of T, we assign
a subset Boy of A* by induction on t using the well-foundedness of the tree
T as follows:
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(a) Ift is a terminal element of T, let B be the basic open set O,y in .

(b) If Sucer(t) is a singleton of the form {s}, let B., be the complement of
Be..

(c) If Sucer(t) has more than one element, then let B, be the union of all
sets of the form B, where s is in Succr(t).

We write B, for B.g.
8. A subset A of A is co-Borel if there is an oco-Borel code ¢ in \* such that
A= B..

Usually, we use co-Borel codes and co-Borel sets only in the spaces w* or 2¢.
We use them for general spaces A\“ in Section 4.

In section 4, we will use the following characterization of co-Borelness in the
space A“:

Fact 1 Let \ be a non-zero ordinal and A be a subset of \. Then the following
are equivalent:

1. A is co-Borel, and

2. for some formula ¢ and some set S of ordinals, for all elements x of A, x
is in A if and only if L[S, x] F “¢(S,z)”.

Proof. For the case A = 2, one can refer to [38, Theorem 9.0.4]. The general case
can be proved in the same way. O

Remark 2. In fact, the second item of Fact 1 is equivalent to the following using
Lévy’s Reflection Principle:

— for some v > A, some formula ¢, and some set S of ordinals, for all elements
xz of A, z isin A if and only if L[S, z] F “¢(S,z)”.

Throughout this paper, we will freely use either of the equivalent conditions of
oo-Borelness.

We now introduce the axiom AD™, and reivew some notions on Suslin sets.
The axiom AD™ states that (a) DCg holds, (b) Ordinal Determinacy holds, and
(c) every subset of 2¢ is co-Borel. Since ADT demands Ordinal Determinacy,
AD™ implies AD while it is open whether the converse holds in ZF+DC. A subset
A of 2 (ot w*) is Suslin if there are some ordinal A and a tree T on 2 x A (w X A
respectively) such that A = p[T]. A is co-Suslin if the complement of A is Suslin.
An infinite cardinal X is a Suslin cardinal if there is a subset A of 2¥ (w®)
such that there is a tree on 2 X A (w x A) such that A = p[T] while there are no
v < Xand atree S on 2 x 7y (wx \) such that A = p[S]. Under ZF4+-DCg, AD" is
equivalent to the assertion that Suslin cardinals are closed below @ in the order
topology of (0, <).
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3 Choice principles and supercompactness of w;

In this section, we prove Theorem 1.

Proof (Theorem 1). 1. Let A be any nonempty set and R be any relation on
A such that for any € A there is a y € A such that (z,y) € R. We will
show that there is a function f: w — A such that for all natural numbers n,
(f(n),f(n—i— 1)) € R.

Since wy is supercompact, there is a fine normal measure on P,, A. We fix
such a measure p.

Claim 1 For p-measure one many elements o of Py, A, the following holds:
(Vzxeo) (Fyeo) (z,y) €R

Proof (Claim 1). Suppose not. We will derive a contradiction using u. Since
w is an ultrafilter on P,, A, for u-measure one many elements o of P, A, the
following holds:

(Bxe€o) (Vye€o) (z,y) ¢ R

By normality of p, there is an zy € A such that for y-measure one many elements
o of P, A with zg € o, for all y € o, (zo,y) ¢ R.

On the other hand, by the assumption on R, there is a yy € A such that
(z0,Y0) € R. By fineness of p, for p-measure one many elements o of P, A,
both zg and yg are elements of o.

Since p is a filter, for u-measure one many elements o of P, A with z¢ € o,
forally € o, (xo,y) ¢ R while both zy and yg are elements of o and (zg,yo) € R.
This gives us both (zg,y0) ¢ R and (z0,y0) € R, a contradiction. This finishes
the proof of the claim. O

We now know that for y-measure one many elements o of P, A, the following
holds:

(Vxeo) (Jyeo) (z,y) €R

Let us pick such a o. Then for any = € o, thereis a y € o such that (z,y) € R.
Since o is an element of P, A, it is countable, so we can fix a surjection 7: w — o.
Using this 7, the above property of o, and the well-orderedness of (w, <), one
can easily construct a desired f: w — A. This finishes the proof of 1..

2. This is a well-known fact to the experts. Nevertheless, we will give a proof
for the sake of completeness. Suppose that there was an injection i: w; — 2.
We will derive a contradiction using supercompactness of w;. For each a < w1,
we write z,, for i(«a).

We first note that there is a non-principal o-complete ultrafilter on wy, i.e.,
w1 is measurable. Since w; is supercompact, we can fix a fine normal measure p
on P, wi. Let v be as follows:

v ={A Cw; | for y-measure one many elements o of P, wy, supo € A}
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Then it is easy to see that v is a non-principal o-complete ultrafilter on ws.
Using this v, we will derive a contradiction as follows. Since v is an ultrafilter
on wi, for any natural number n, there is an k, € {0,1} such that the set
A, ={a <wi | z4(n) =k} is of v-measure one. Since v is o-complete, the set
A= ﬂ A, is of v-measure one. By the property of each A,, for any « in A,

new
for all natural numbers n, z,(n) = k,. But since i is injective, A has at most

one element. This contradicts that A is of v-measure one and v is non-principal.
This finishes the proof of 2.. This completes the proof of Theorem 1. O

Remark 3. (2) of Theorem 1 is the best one can hope for. “w; is supercompact”
does not imply “there is no injection f : ws — P(w1)”. To see this, assume ZFC
and there is a supercompact cardinal . Let f : KT — P(k) be an injection in V.
Let 7 be the Takeuti model defined at . Then clearly f € 7 and in T, k = w;
and (k7)Y = wy.

4 Chang model and supercompactness of w;

In this section, we prove Theorem 5. As a corollary, one can obtain usual regu-
larity properties for sets of reals in the Chang model:

Corollary 1. Assume that wy is supercompact. Then every subset of 2* in the
Chang model is Lebesgue measurable and has the Baire property.

Corollary 1 directly follows from Theorem 1, Theorem 5, and the following
fact:

Fact 2 (Essentially Solovay) Assume that there is no injection from wy to
2%, Let A be a subset of 2* which is co-Borel. Then A is Lebesgue measurable
and has the Baire property.

For the proof of Fact 2, one can refer to e.g., [3, Theorem 2.4.2 & Proposi-
tion 3.2.13].
To prove Theorem 5, we use the following lemma:

Lemma 1. L(Uyc0ma ) = Uneona LO).

Proof. Given a set X, let J(X) be the rudimental closure of X U {X}. Let
(Co | @ € Ord) be the following sequence: Cy = Ly, Coy1 = J(Co U a®), and
Cp = Uy<p Ca when S is a limit ordinal. Set C' = {J,co.q Ca-

We first argue that C' is equal to the Chang model L({Jy¢p,q A¥). It is easy
to see that C' is contained in the Chang model because the construction of the
sequence (C, | a € Ord) is absolute between the Chang model and V. So it is
enough to prove that C contains the Chang model. For that it is enough to show
that C' is an inner model of ZF containing all sets in Ord”. By the construction
of (Cy | @ € Ord), it is easy to see that C' contains all the sets in Ord”, is
rudimentarily closed, satisfies Comprehension Scheme, and for any subset X of
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C in V, there is a set Y in C such that X C Y (namely C, for some big «).
Therefore, C' is an inner model of ZF containing all the sets in Ord®, as desired.

Next, we claim that for all ordinals A, C\ € L(\¥). For this, it is enough
to see that the construction of the sequence (Cy | o < \) is absolute between
L(A*) and V, which follows by observing that A“ is in L(A%).

We now argue that the Chang model L({UJ,c.q A“) is equal to (Jycopq L(A).
The inclusion Jycopq LIAY) € L(Uxcora A) is clear. We will see the other
inclusion. Let A be any set in the Chang model. By the second to last paragraph,
A is in C and hence there is an ordinal A such that A is in C). By the last
paragraph, C) is in L(A\*). Therefore, A is in L(\*), as desired. This completes
the proof of Lemma, 1. O

We now come to the proof of Theorem 5.

Proof (Theorem 5).

We assume that w; is supercompact and will show that every subset of 2* in
the Chang model is oo-Borel.

By Lemma 1, to obtain Theorem 5, it is enough to prove that for all A, every
subset of 2 in L(A\*) is co-Borel.

Throughout the rest of this section, we fix an infinite ordinal A and a fine
measure g on P, A whose existence is ensured by the supercompactness of
wi. We will show that every subset of \* in L(A\¥) is co-Borel using p, which
will give us that every subset of 2¢ in L(A¥) is co-Borel. The arguments are a
generalization of the proof of Woodin’s theorem in [1, Theorem 1.9].

By Fact 1, it is enough to show that for any subset A of \* in L(A%), there
are some formula ¢ and a set S of ordinals such that for all elements x of \“,

z €A < L[S, z] E ¢[S, x]. (1)

If () holds for all elements = of A\, then we say that A is defined from
the pair (¢, 5) and we write B, g) for A.
The following is the key claim in this section:

Claim 2 There is a function F which is OD from u such that

1. F is defined for all pairs (¢,S) where ¢ is a formula and S is a set of
ordinals,

2. F(¢,8) is of the form (1, T) such that if A is a subset of (A\*)"T! defined
from (¢,S), then pA = {x € (A\)"| (Jy) (x,y) € A} is defined from (¢, T),
i.e., ’LfA = B(¢,S); then pA = BF(¢75).

To prove Claim 2, we use a variant of Vopénka algebra: Let S be a set of
ordinals and ¢ be an element of P,,, \. We fix an injection ¢: ODg, N P(c) —
HODg , which is OD from S and o such that for all ¢ € A<¥, +(O,) = ¢ where
Or={ze€o|tCux}?Set B, = {t(A) | A € ODs, NP(c)}. For p,q € By,

9We are demanding that for all t € A<%, 1(O;) = t to have that “z is in L[S, B,][G4]”
in Fact 3. Namely, x should be easily computable from B, and G, without referring
to ¢ because ¢ may not be definable in L[S, B,][G<].
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p < qif t7!(p) €7 !(q). Note that the structure (B,, <) is in HODg,. For an
element z of o, set G, = {p € B, |z € .7 (p)}.

Fact 3 (Vopénka) 1. In HODs,, B, is a complete Boolean algebra, and
2. for any element x of 0, G4 is By-generic over HODg ,, and x is in L[S, B,][G4],
which is a subclass of HODg »[G].

Recall that we have fixed the fine measure 1 on P,, A\“. For each o € \*, let
Qo = (B,)*57). We will consider the ultraproducts [], L[S, Q,][z]/u for = €
A¥. Using the fineness of p, one can prove Los’ theorem for these ultraproducts
(the proof is essentially the same as the one given in [19, Lemma 2.3]).'° By DC
from Theorem 1, the above ultraproducts are all well-founded and we identify
them with their transitive collapses. For each y € (N, L[S, Qo] let yoo =1, y/p-
In particular, So = [], S/p. Let h: X = Ord be such that h(a) = a for all

a < X. We also set Qo =[], Qo/pt
We are now ready to prove Claim 2.

Proof (Claim 2).
For simplicity, we will assume n = 1 (the general case is treated in the same
way). Let A C (\*)? be defined from (¢, S), i.e., A = B(y,5)- Then for all z € A\,

x € pA
<~ (Hy € /\w) (I,y) € B(¢,S)
<= for y-measure one many o, L(S,0) F “(Jy) (z,y) € By,s)”

<~ for g-measure one many o,
L[S, Q. 0] F “(3p € Coll(w, [P(Q0)]) )p - (By) (#.4) € Biy,s)"

= JTLIS.Qoal/uF “(3p € Coll(w,[P(@uc)]) ) pIF (By) (v56,4) € Bigs)”

= LlSuc, Qoes o] F “(p € Coll (w,[P(Quo)]) ) p I (B) (#50,9) € Bigs.)”

The first equivalence follows from the assumption that A is defined from
(¢, S). The second equivalence follows from the fineness of u. The forward direc-
tion of the third equivalence follows from the property of the Vopénka algebra
Q. given in Fact 3: Given a y in ¢ with (z,y) € By_g, letting z code « and y in
a simple way, z € L[S, Q,|[G.] by Fact 3. Hence y is in a set generic extension
of L[S, Q., 2] whose poset is of size at most |Q,| in L[S, Q,,x]. In particular, in
L[S, Qs,x], one can force to add such a y over Coll (w, |P(QU)|). The backward

direction of the third equivalence follows from the fact that P(P(QU))L[S’QU’M

is countable in V because @, is countable by the fact that OD™5%) N P(g) is
well-orderable and o is countable in V, and because L[S, Q,,x] is a transitive
model of ZFC. The fourth & fifth equivalences follow from Los’ theorem for the
ultraproduct [], L[S, Q,][z]/1 and the definitons of Su, Qo, and z.

10For the proof of Los’ theorem, we do not need the normality of x because for each
o, one can define a well-order on L[S, Q,][x] uniformly in o.
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Now let T be the set of ordinals simply coding S, Qv, and h. Then for
each © € A\, zo € L[T,z] because xo = h[z]. Let ¢ be the formula stating

“L[Suo, Qoo oo E (ap € Coll(w, |P(QOO)|)> p Ik (3y) (&) € Big.s.)”- Then
for each x € \¥,

T € pA

= L[Su, Qoo oo] “(ap € Coll(w, |P(QOO)|)> pIF (3y) (@5 y) € Big.s.)”
> L[T, 2] E “Y[T,z]”

Therefore, F(¢,S) = (1, T) satisfies the desired equivalence. This completes the
proof of Claim 2. O

As is mentioned before Claim 2, we shall prove that for all subsets A of A\¥
in L(\), A is defined from some pair (¢, S) as in (), which gives us Theorem 5.
The idea is to look at the hierarchy (Lo (A“) | a € Ord, & > w), and by induction
on «, to each definition of an element A of L,(\¥), we assign certain ¢ and S
such that A is defined from (¢, S). We fix an F' from Claim 2.

Definition 3. The hierarchy (Lo (A\*) | o € Ord, o0 > w) is defined as follows:

L,(A*) =
2 La+1()\ )
3. Lg(A”) =

>\

= ( a(A¥), €), and

U A¥) when B is a limit ordinal bigger than w.
a<B

Note that the above definition is not standard in the following two senses: One
is that the indexing of the hierarchy starts with o = w, not @ = 0. The other
is that the first stage L, (A¥) is not transitive. However, the above definition
satisfies that for all @ > w + w, L, (A\¥) is transitive and that the union of all
Lo (A¥) (a0 > w) coincides with L(A%), the least inner model of ZF containing A%
as an element. These two properties are enough for us to prove Theorem 5. We
start the indexing with a@ = w to ensure that one can code any formula with a
natural number smaller than « in the arguments below. Also we use the above
definition of Ly, (A¥) for convenience of proving Claim 3 below.

Remark 4. There is a sequence of partial surjections (7ra: a<¥ X A = Lo (AY) |
a € O0rd,a > w) which is OD such that

for all o > w, 7, (0,2) = x,

mo(3,x) = z(0) when 3 # 0,

ifw<pf <a,then 13 =7, [ B¢ x A, and

if a > w, (/Bax) € as¥ x )‘wv ’/Ta(/@vx) is deﬁnedv and B = (507&17 T 7ﬂk)a
then 7, (8, z) is an element of Lg,11(A*) which is defined in the structure
(Lg, (A*), €) via a formula coded by 8; with some parameters of the form
74, (7Y, y) where v here depends only on 3, not on z.

Ll s
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Definition 4. For an ordinal o > w, a formula ¢, and B°,--- , 8"~ € a<%, let

TG po,... gn—1) = {(zo, + y2n_1) € (A“)" | Lo (X)) E gi)[wa(ﬁo,xo), e ,Wa(ﬁn_l,xn,l)]}

Claim 3 There is a function which is OD from u sending («,p) to an oco-Borel
code ¢ = (¥, 5), where a is an ordinal with o > w and p = (¢,8°,---, 8" 1)
is as in Definition 4, such that T} is defined from g .

Proof (Claim 3).

We prove the claim by induction on «. Let us fix a. Then we prove the
statement by induction on the complexity of ¢.

Case 1: When ¢ is of the form v € w or v = w.

Suppose that @ = w. This is the base case of the double induction. Let
3%, 81 € a<¥. Then the set Tgﬁo g1 18 of the form 0, {(zo,21) [ 20(0) € z1(0)},

{(z0,21) | 21(0) € 20(0)}, {(wo,21) [ 20(0) = 21(0)}, or {(wo,#1) | wo = x1}. In
each case, one can assign a suitable code g, in a simple way.

Suppose that a > w. Let 3, = max{f{, 5}. Then 8* < o and by Remark 4,
both 7, (8°, 29) and 7, (B, z1) are definable in the structure (Lg, (A\*), €) with
some parameters of the form 73, (v, y) where « here depends only on 8% and 3!.

Then one can find a formula ¢ and some ’yo, 'yl such that Tgﬁo g = T(f,*,yo -y
By induction hypothesis, one can find a desired code q;.

Case 2: When ¢ is of the form —¢'.

In this case, by induction hypothesis, letting p’ = (¢’,3%,--- , 8"~ 1), we have
ap = (¢, 5). Then g = (=, S) is the desired code.

Case 3: When ¢ is of the form ¢; A ¢s.

In this case, by induction hypothesis, letting p; = (¢1,8% ---,8"!) and
p2 = (¢2,8%---,B" 1), we have ¢5, = (¢1,51) and ¢3, = (12, 52). Then let
gy = (1, 5) where S is a set of ordinals simply coding S and Sz, and (S, z)
states that both “L[S1,z] F 1[5y, 2]” and “L[S2, ] F 92[S2,z]” hold. Then g7
is the desired code.

Case 4: When ¢ is of the form v ¢'.
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In this case, by induction hypothesis, for each 8 € o<, setting pg =

(¢',3,8° -+, 8" 1), we have the code dp,- We write gg for g, Note that

TS g0.... s
—{(20,201) | (By € La(A))
La(X) E “¢'[y, 7a(8%, 70), -+, 7a(B" Y 2n 1)}
—{(20, -+ no1) | (3B € ™) Gz € A)
La(X¥) E “0'[7a(B,2), 7a(B% 20), -+ s 7 (8" 2 1))}

= U U Ta),ﬁﬁo_,“.,gnf1

TEAY BEQ<W

:U UB%

TEAY BEa<w
= U Bvﬁe(,y<w qaB
TEAY
=B
F(Vﬁ€a<“’ qﬂ),

where By, is the subset of A* defined from the code gg as in (7), Vgeo<o 48
is the pair (¢, S) defining the union Uﬁ€a<“’ By, in a simliar way as Case 3,
and F is from Claim 2. Therefore, g = F(\/Bea<w qﬁ) is the desired code. This
completes the proof of the claim. O

We are now ready to finish the proof of Theorem 5.

Let A be a subset of A in L(A*). By Fact 1, it is enough to find a pair (¢, S)
which defines A as in (). Since A is in L(A¥), there is an ordinal a such that Ae
La+1(A*) \ La(X*). Let ¥ be a formula defining A in the structure (Lo (A*), €
with some parameters 7,(8%, z0), -+ , 7o (8"}, 2,,_1). By Remark 4, 7, ((ZJ x) =
x for all z € A\“. Hence

A={z | La(\*) F “Ylra(@,2), 70 (8% 0), -, 7a(B" ™ 201)]"}
:{.’L’ | (l‘va»' o 7xn71) S TQZZ’@’BO,.“,ﬂn—l}
:{x | (a:7$0, e ’xn—l) E Bq;x}7

where p = (v,0,8°,---,8"1) and qy is from Claim 3. This shows that A is

defined from g, with parameters zg,- -, z,—1, which easily gives us that A is
defined from (¢, S) for some ¢ and S.
This completes the proof of Theorem 5. O

5 Weak homogeneity and supercompactness of w;

In this section, we prove Theorem 2. A tree T is said to be on w x k if T' C
(wx K)<¥. For a tree T on w X k, for s € w<¥, let Ty = {t € x'"*) | (s,t) € T}.
Let also po[T] = {x € w* | Af¥n(z [ n,f [ n) € T}, pi[T]) = {f € k| FaVn(z |
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n,f | n) € T}. Every tree T considered in the following will be on w x & for
some K.

Following [9], we define what it means for a tree T on w x k to be weakly
homogeneous. First, for n < w, x an infinite cardinal, A a nonzero ordinal,
let MEAS®* be the set of all k-complete measures on \"”. For m < n < w, for
X C N let extn,(X) ={t € X" |t | m € X}. A \-tower of measures is a
sequence (fi, | » < w) such that

(i) for each n, pu,, € MEAS®1* and
(i) for m. < 1, fim = projm(tin), Where projm(jin) = {X C ™ | exty(X) €
fin}

A tower (u, | n < w) is countably complete if for every sequence (X, |
n < w) such that X,, € p, for all n < w, there is a function f : w — A such that
fIneX, for all n.

Definition 5. Let T be a tree on w x X. T is weakly homogeneous if there is
a sequence (M | s € w<¥) such that

(i) ]1‘?7“ each s, My is a countable subset of MEAS‘Z"hl(’:‘) and for each p € My,
s € Ms-
(i) for all x € po[T], there is a countably complete A-tower of measures (ti, |
n < w) such that for each n, pn, € Mypp.

Remark 5. We will not work directly with weakly homogenous trees in the proof
of Theorem 2. Rather, the conclusion that T is weakly homogeneous is reached
by verifying that the hypotheses needed to run the proof in [9] follow from our
hypothesis that w; is supercompact. Theorem 2 is similar to one of the main

results of [9], which states that “every tree is weakly homogeneous” follows from
ADg.

Proof (Theorem 2). Let T be a tree on w x A. [9] shows that T is weakly homo-
geneous provided the following conditions hold:

(A) There is a countably complete, normal fine measure on Py, (IJ,,(P(A") U
MEAS®1%)).

(B) The Axiom of Dependent Choice holds for relations on P(A).

(C) There is a wellorder on | J, MEAS®A.

We need to verify (A), (B), (C) follow from the supercompactness of wy. (A) is
obvious. (B) follows from Theorem 1. Now we verify (C). Let X = |J, MEAS®1A.
We need to show that X is wellorderable.!

It is enough to prove that MEAS‘Ile is well-orderable. This is because for
each n > 1, there is a bijection from MEAST“’\ onto MEAS“1*. Such a bi-
jection is induced by a bijection between A and A". Hence, MEAS®1* is well-
orderable. Using a definable bijection from A onto A<“, we conclude that X is
well-orderable.

1This is similar to Kunen’s proof that under AD, every countably complete measure
on an ordinal is OD. See [5, Corollary 28.21].
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Let Z = P(A). Let U be a countably complete, normal fine measure on P, Z.
Given p eMEASY* and o € P, Z, let

fulo) = min (o N p).
So f, is a function from P, Z into the ordinals.

Claim 4 Suppose u # v are in ME'AS‘{“’)‘. Then V0 fu(o) # fu(o); here
Nyop(o)” abbreviates the statement “the set of o such that ¢(o) is in U”.

Proof. Let A witness p # v. Without loss of generality, assume A € p and
—A € v. By fineness of U, V{;0, {A, A} C 0. Fix such a 0. Then f,(c) € A and
fu(o) € ~A. Since A, A are disjoint, f,(o) # f.(0). O
Let 7 : X — [[,ep. zOrd/U be defined as: () = [fu]u. The claim gives us
that 7 is an injectionl. By DC, Hﬂepwl 5 Ord/U is well-founded and furthermore
is well-ordered. Therefore, X is well-ordered as desired. O

6 AD™, ADg, and supercompactness of w,

In this section, we prove Theorem 4. The following fundamental fact about AD™
is due to W.H. Woodin (cf. [7]).

Theorem 6 (Woodin). The following are equivalent.

1. AD*.
2. AD + the class of Suslin cardinals is closed below ©.

We will also need the following results due to D.A. Martin and Woodin.
Theorem 7. Assume ZF + DC. The following are equivalent.

1. ADg.
2. AD"+ every set is Suslin.

We now use Theorem 6 and Theorem 7 to prove Theorem 4.

Proof (Theorem /). First, note that by Theorem 1, DC follows from supercom-
pactness of wy. The (<) direction follows immediately from Theorem 7. For
the (=) direction, suppose ADg fails. Let x < © be the largest Suslin cardinal
and I' = S(k). The existence of & follows from Theorems 6 and 7. By [6, The-
orem 1.3], there is a universal I'-set. Let A be such a universal set. Then by
results of Section 5, A is weakly homogeneously Suslin. By the Martin-Solovay
construction, =4 is Suslin. But =A € I'\I". This contradicts the fact that I is
the largest Suslin pointclass.

Remark 6. Wilson’s methods, cf. [23], using the theory of envelopes of point-
classes can be used to show that ZF + DC+ w; is strongly compact implies every
Suslin set of reals is co-Suslin directly, without using weak homogeneity.

The following may be a more approachable version of a well-known conjecture
that AD is equivalent to AD™.

Congjecture 2. Assume w; is supercompact. AD is equivalent to AD™.
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7 HPC and supercompactness of w;

In this section, we will prove Theorem 3. First, we note that we do not need the
full “w; is supercompact” hypothesis in the proof of the theorem; one just needs:

— w1 is R-supercompact, and
— =0, .

Both of these are consequences of w; is supercompact, cf. [22, Section 1].

Now we explain Hod Pair Capturing (HPC). This hypothesis and the notion
of least branch hod pair (Ibr hod pair) are formulated by John Steel. The reader
can see [16] for a detailed discussion regarding topics concerning least-branch
hod premice, lbr hod pairs, and HPC. The main thing one needs from HPC are
the facts given by Theorem 8. For basic facts about inner model theoretic notions
such as iteration strategies, see [15]. In particular, a complete strategy for P is
an iteration strategy X' that acts on all finite stacks (of normal trees) on P that
are according to Y.

Definition 6 (lbr hod pair, [16]). (P,X) is an lbr hod pair if P is an lpm
(least-branch hod premouse) and X is a complete strategy for P that normalizes
well and has strong hull condensation.

Definition 7 (HPC, [16]). Suppose A is Suslin co-Suslin. Then there is an lbr
hod pair (P, X) such that A is Wadge reducible to Code(X).

Remark 7. We caution the reader that the formulation of HPC here in Definition
7 is slightly different from Steel’s formulation of HPC. The difference is that we
do not work under AD™T in this section. In applications using the core model
induction, we are proving that HPC or its variations holds in a universe where
AD typically fails (assuming certain smallness hypotheses). From our hypotheses
and Steel’s results in [16] and [17], we get that such a X as in Definition 7 is
Suslin co-Suslin.

It is conjectured that AD™ implies HPC. HPC and its variations have been
shown to hold in very strong models of determinacy, cf. [12].

In the above, a complete strategy acts on all countable stacks of countable
normal trees. The reader can consult [16] for more details on lbr hod pairs. The
basic theory of lbr hod pairs has been worked out in [16]. What we need are a
couple of facts about them. In the following, we fix a canonical coding Code of
subsets of HC by subsets of R.'? Given an lbr hod pair (P, ), for n < w, M
is the minimal, active X-mouse that has n Woodin cardinals. See for instance
[14] for a precise definition. The following facts are relevant for us.

Lemma 2. Let (P,X) be an Ibr hod pair. Let M = M2 and A be M’s
canonical strategy. Let \ be the largest Woodin cardinal of M. There is a term
Ts € MCOMWN) such that whenever i : M — N is an iteration embedding via
an iteration according to A\, and g C Coll(w,i(\)) is N-generic, then

120ne way of defining Code is as follows. Let 7 : R — HC be a surjection defined as:
for any x that codes a well-founded relation E, on w, let 7(z) be the transitive collapse
of the structure (w, F,). Then for any A C HC, Code(A) is defined to be 7~ [A].



w1 supercompact 17

[i(T5)]g = Code(X) N Nlg].

Theorem 8. Suppose w; is R-supercompact, -0O,,. Suppose (P, X) is an lbr
hod pair. Then

1. ([17, Section 2]) Code(X) is Suslin co-Suslin.
2. ([22, Section 3]) M3 eists.

Remark 8. We note that in the above theorem, the hypothesis w; is R-supercompact
is used in (1) to extend X' to act on all stacks W such that there is a surjection
of R onto W. The proof of (2) just needs w; is R-strongly compact and -0, .

The following theorem, due to Neeman, is our main tool for proving deter-
minacy.

Theorem 9 (Neeman, [10]). Suppose A C R. Suppose (M, A, ) is such that

1. M is a countable, transitive model of ZFC;

2. M E ¢ is Woodin;

3. Ais an wy + 1-iteration strategy for M ;'3

4. there is a term 7 € M@0 sych that whenever i : M — N is an iteration
map according to A, g C Coll(w,i(d)) is N-generic, then i(1)g = AN Ng].

Then A is determined.

Proof (Theorem 3). Let A be Suslin. Then A is also co-Suslin by Remark 1. By
HPC, let (P, X) be an lbr hod pair such that A is Wadge reducible to Code(X).
Let z € R witness this; we let 7, be the continuous function given by = such
that 7, 1[Code(X)] = A.'* By Theorem 8, Code(X) is Suslin co-Suslin and
M;"F exists. Let A be the canonical iteration strategy for Mf’ﬁ and dp < 01
be the Woodin cardinals of ./\/122 *# Let 7 be an iteration tree with the following
properties:

- Tis accordin%to A.

— Letting 7 : M, * 5 N be the corresponding iteration embedding, then x is

N -generic for the extender algebra at i(dp).'°

Now we can construe N[z] as a X-mouse over z, which we will call M. Note
that i(d1) is a Woodin cardinal of M and A induces a strategy ¥ on M.

We note that (M, ¥, i(d1)) satisfies the hypothesis of Theorem 9 for A. Let
75 be given as in Lemma 2 for (MQE’”,A,(L), then i(7y) induces a term oy €
MCeUw:i(%1)) gatisfying (3) of Theorem 9. Let P = Coll(w,i(d1)). The term 7
consists of (1p, o) where 1p IFp “o is a real and o € 7, '[ox]”.

By Theorem 9, A is determined. This completes the proof of Theorem 3. [J

13Neeman [10] needs less iterability than w + 1-iterability. wq 4 1-iterability is avail-
able to us in this context.

"We can construe x as a function w<* — w<* and this naturally gives rise to a
continuous (in fact Lipschitz) function oy : w* — w®.

5The reader can see [15] for more detailed discussions about the extender algebra
and genericity iteration trees. All we need here is the fact there is some forcing Q € N/
such that card'(Q) < i(61) and that there is some N -generic filter h C Q with 2 €
NTH].

<w w
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We conjecture that HPC is not needed in Theorem 3. [22] has shown that w;
supercompact implies that all sets in L(R) are Suslin and co-Suslin and are

determined and much more.'® One may hope to prove Conjecture 3 by showing
that every Suslin set is homogeneously Suslin. Theorem 2 shows that every Suslin
set is a projection of a homogenously Suslin, hence determined, set.

Conjecture 3. Assume w; is supercompact. For any Suslin set A, A is determined.
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