A Case Study of the Security Vetting Process of
Smart-home Assistant Applications

Hang Hu?, Limin Yang!, Shihan Lin®, Gang Wang'

'University of Illinois at Urbana-Champaign

2Virginia Tech *Fudan University

hanghu@vt.edu, liminy2@illinois.edu, shlinl5@fudan.edu.cn, gangw @illinois.edu

Abstract—The popularity of smart-home assistant systems such
as Amazon Alexa and Google Home leads to a booming third-
party application market (over 70,000 applications across the
two stores). While existing works have revealed security issues in
these systems, it is not well understood how to help application
developers to enforce security requirements. In this paper, we
perform a preliminary case study to examine the security vetting
mechanisms adopted by Amazon Alexa and Google Home app
stores. With a focus on the authentication mechanisms between
Alexa/Google cloud and third-party application servers (i.e. end-
points), we show the current security vetting is insufficient as
developers’ mistakes cannot be effectively detected and notified.
A weak authentication would allow attackers to spoof the cloud
to insert/retrieve data into/from the application endpoints. We
validate the attack through ethical proof-of-concept experiments.
To confirm vulnerable applications have indeed passed the
security vetting and entered the markets, we develop a heuristic-
based searching method. We find 219 real-world Alexa endpoints
that carry the vulnerability, many of which are related to critical
applications that control smart home devices and electronic cars.
We have notified Amazon and Google about our findings and
offered our suggestions to mitigate the issue.

I. INTRODUCTION

Smart home assistant systems such as Amazon Alexa and
Google Home are entering tens of millions of households
today [12]. As a result, the corresponding app marketplace
is also expanding quickly. Just like installing apps on smart-
phones, users can enable third-party applications for smart-
assistant devices. These applications are called “skills” or
“actions”. So far there are collectively more than 70,000 skills
available [2], [1], many of which are security/safety-critical.
For example, there are skills that allow users to manage
bank accounts, place shopping orders, and control smart-home
devices through a voice interface.

Considering the sensitive nature of smart-home assistants,
researchers have looked into the security aspects of these
systems and their third-party applications. For example, re-
cent studies show that it is possible to craft a voice clip
with hidden commands embedded that are recognizable by
the Alexa device but not by human observers [7], [19]. In
addition, researchers demonstrate the feasibility of a “skill
squatting” attack to invoke a malicious application whose
name sounds like the legitimate one [13]. A recent survey
study [4] investigated the network interfaces of many IoT
devices (including smart-assistant devices) to reveal their weak
encryptions and unpatched OS/software. While most existing

studies focus on the system and device-level flaws, limited
efforts are investigated to vetting the security of third-party
applications, and more importantly, helping developers to
improve the security of their applications.

In this paper, we perform a preliminary case study to exam-
ine the mechanisms that Amazon and Google implemented to
vet the security of third-party applications for their smart home
assistants. More specifically, before a third-party application
(or “skill”) can be published to the app stores, they must go
through a series of automated tests and manual vetting. In this
paper, we seek to understand (1) what aspects the security
vetting process is focused on, and (2) how effective the vetting
process is to help developers to improve security.

As a preliminary study, we focus on the authentication
mechanism used by the third-party application’s server (called
“endpoint”) to authenticate the cloud (namely, cloud au-
thentication). We choose cloud authentication because cloud-
endpoint interaction is a key component that makes smart-
home assistant skills structurally different from the conven-
tional smartphone apps. Smart assistant skills need to route
their traffic to a central cloud to translate a voice command to
an API call in order to interact with the application server.

Amazon Alexa runs both automated vetting and manual
vetting before a skill can be published, while Google Home
only runs manual vetting. Our methodology is to build our own
(vulnerable) skills and walk them through the required testing
to understand the vetting process. Our results show concerning
issues in terms of the enforcement of cloud authentication.
First, we find that the Google Home vetting process does
not require the endpoints to authenticate the cloud and their
queries, which leaves the endpoints vulnerable to spoofed
queries. Second, Amazon Alexa requires skills to perform
cloud authentication, but does a poor job enforcing it on third-
party developers. Alexa performs automated vetting that is
supposed to detect and inform developer mistakes in the skill
implementation. However, the security tests are erroneous and
have missed important checks (e.g., application identifiers). As
a result, a vulnerable skill, in theory, can pass the vetting to
enter the app store.

To illustrate the problem, we run controlled experiments to
show how an outsider can spoof the cloud to query the target
endpoint. More specifically, an attacker can build its own skill
application, and use this skill to obtain a valid signature from
the cloud for the attack traffic. Then the attacker can replay

the signed traffic to attack the target endpoints. The attack is
possible because the cloud uses the same private key to sign
all the traffic for all the skills. The signature obtained by the
attacker’s skill works on the victim’s endpoint too. We validate
the feasibility of the attack and show that vulnerable skills can
bypass both the automated tests and the manual vetting process
to enter the app markets.

To confirm that there are indeed vulnerable skills in practice,
we perform a scanning experiment. Since all Google Home
skills are by default vulnerable, this experiment focused on
searching for vulnerable Alexa skills. We leverage ZMap
to locate live HTTPS hosts and replay a spoofed but non-
intrusive query to see if a given HTTPS host returns a valid
response. In this way, we located 219 vulnerable real-world
Alexa endpoints. A closer analysis shows that some of these
vulnerable endpoints are related to important skills such as
those that control electric cars, smart locks, security cameras,
and watering systems.

We make three main contributions:

o First, we present an empirical analysis of the security
vetting process used by Amazon and Google to vet
their smart-home assistant skills. We find that the cur-
rent vetting process is insufficient to identify and notify
developers of the authentication issues in their endpoints.

e Second, we validate the problem by running a proof-of-
concept cloud spoofing attack, in an ethical manner.

o Third, we discover real-world applications that carry the
vulnerability. We notified Amazon and Google about our
findings and offered our suggestions to mitigate the issue.

II. BACKGROUND & MOTIVATION

Alexa and Google Home Skills. Both platforms support
third-party applications, which are called “Skills” on Alexa
and are called “Actions” on Google Home. For convenience,
we refer to applications of both platforms as “skills”. Figure 1
shows how a user interacts with a skill. (@) a user talks to
the edge device to issue a voice command. (@) the edge
device passes the audio to the Alexa cloud. (®) the cloud is
responsible to convert the speech to text and recognize which
skill the user is trying to interact with. In addition, the cloud
infers the “intent” of the command and match it with the
known intents pre-defined by the skill developers. Here, intent
is a short string to represent the functionality of the skill. After
that, the cloud sends an HTTPS request to the skill’s endpoint
(i.e., a web server). (@) the endpoint sends the response back,
and (®) the cloud converts the text-based response to audio,
and (®) plays it at the edge-device. Note that the edge device
never directly interacts with the endpoint, and every request
is routed through the cloud. For certain skills, users need to
explicitly “enable” them, but many other skills can be directly
triggered/used by calling the skill’s name.

Skill developers need to implement the endpoint to respond
to user requests. For simple skills that do not require a
database, both Alexa and Google provide a “serverless” option
for developers to hard-code the responses in the cloud. For
sophisticated skills, an endpoint is needed.

User Edge Device
@ ‘Alexa, open AmEx” @) -

@ “Welcome to AmEx” @)

6,0

Reply “Alexa,
in Audio| [Open AmEx”

Byd
ORepIyinText -

9 Intent: Launch Request

AmEx
Endpoint

Alexa Cloud

Fig. 1: The execution of a simple voice command.

Authentication between Entities. The system contains
three main entities: the edge device, the cloud, and the
endpoint. Both Alexa and Google require HTTPS for all
communications, which also helps the clients to authenticate
the servers. In order for the servers to authenticate the clients,
first, in step @, the cloud needs to authenticate the edge
device. This can be done because an “access token” has been
exchanged when the user first sets up the edge device at home.
Second, in step ®, the endpoint also needs to authenticate the
cloud. This step helps the endpoint to ensure that the queries
are indeed coming from the Alexa/Google cloud instead of
outsiders. We call it “cloud authentication”, which is done in
different ways for Alexa and Google. Amazon Alexa uses a
public-key based method. The cloud signs its request payload
with a private key, and the skill endpoints can verify the
signature using the cloud’s public key when receiving the
request. The verification is required. Google Home does not
require authentication between the cloud and the endpoints.

Security Vetting Process. To make sure the skill and the
endpoint are implemented properly, there are two types of
vetting deployed by Amazon Alexa and Google Home.

o Automated Skill Vetting. Alexa requires a skill to pass a
series of tests before allowing the skill to enter the app
store. The test is fully automated and covers both func-
tional tests and security tests. Google Home, however,
doesn’t have an automated test for the skill endpoint.

e Manual Vetting. For both Alexa and Google, there are
dedicated teams that perform manual vetting on the skill
before publishing the skill.

Our Focus. Our goal is to perform a case study to learn
how effective the security vetting is and how well it helps de-
velopers to develop secure skills. We primarily focus on cloud
authentication between the cloud and the third-party endpoints
because it is entirely implemented by the skill developers. In
addition, the cloud-to-endpoint communication is also the key
reason why smart-assistant skills are fundamentally different
from conventional mobile apps — there is a need for the
cloud in the middle to translate a voice command to an
API call. Considering app developers often lack the security
experience [3], [15]. Amazon and Google are in the best
position to act as the gatekeeper to ensure all the developer
components that interact with their infrastructure (i.e., the
cloud) are securely implemented.

Certificate Options
Implementation Standard Wildcard Invalid
Pass? #Req. | Pass? #Req. | Pass? #Req.

Valid v 30 v 30 X 23
Ignore App-ID v 30 v 30 X 23
Ignore Time v 30 v 30 X 23
Accept All X 30 X 30 X 23
Reject All X 35 X 35 X 33
Offline X 0 X 0 X 0

TABLE I: Results of Alexa automated test. We report whether
the skill passed the test, and the number of testing requests that the
endpoint received.

III. AUTOMATED SKILL VETTING

We start with Alexa’s automated skill vetting (since Google
Home does not have an automated vetting process). Our goal
is to understand what security tests are running against the
skill under vetting. We build our own skills, deliberately leave
mistakes, and examine if the automated tests can detect them.

A. Setting Up Vulnerable Skills

We implement an Alexa skill with 6 different versions and
each version contains different security or functional errors.

Supported Intents. Every Alexa skill should support 6 de-
fault command-lines defined by Amazon Alexa, and at least 1
custom command-lines defined by the developer. The 6 default
command-lines are mapped to 6 built-in infents. These intents
include “LaunchRequest”, “StopIntent”, “Cancellntent”, “Fall-
backIntent”, “Helplntent”, and “NavigateHomelntent”, which
are used to perform the basic controls of the skill. We
implement the skill to support all 6 default intents and 1
custom intent that takes an integer parameter.

HTTPS Certificate. Both Alexa and Google require
HTTPS for the endpoints. Two types of certificates are allowed
including standard certificate and wildcard certificate. For our
experiment, we test both types of valid certificates, and use a
self-signed certificate as the baseline.

Implementing the Cloud Authentication. The cloud
authentication is used for the endpoints to authenticate the
incoming requests from the cloud. According to the Alexa
documentation, the request from the cloud will contain the
signature from the cloud. In addition, each request also
contains an application-ID which indicates which application
(skill) this request is intended for; and a timestamp. Below,
we develop 6 different versions of the endpoints:

1) Valid implementation: For a given request, we validate
the cloud signature, application-ID, and timestamp be-
fore sending a response.

2) Ignoring application-ID: Everything is implemented
correctly, except that we ignore the application-ID.

3) Ignoring timestamp: Everything is implemented cor-
rectly, except that we ignore the timestamp.

4) Accepting all requests: We do not perform authentica-
tion, and always return a legitimate response.

5) Rejecting all requests: We drop all the requests.

6) Offline endpoint: The endpoint is not online.

B. Skill Testing Results

We tested our skill with 18 different settings (3 certificates x
6 endpoint implementations) in September 2019. As shown in
Table I, standard certificate and the wildcard certificate return
the same results. However, when using an invalid certificate
(self-signed), even the correct implementation could not pass
the test. The test was terminated immediately when the invalid
certificate was detected. This result indicates that the auto-
mated tests have successfully identified invalid certificates.

As shown in Table I, the “Accept AIl” implementation failed
to pass the test. Analyzing the server logs shows that Alexa
cloud has sent a number of queries that carry empty or invalid
signatures. If we accept these requests, Alexa will determine
the endpoint is vulnerable and should not be published in the
store.

However, we notice that the “Ignore Application-ID” and
“Ignore Timestamp” implementations both passed the auto-
mated test. This means that if the endpoint validates the
signature but ignores the application-1D or the timestamp, the
skill can still proceed to be published. The result raises a major
concern. Without validating the application-ID, an endpoint
may accept a (malicious) request that is not intended for itself.

IV. SPOOFING THE CLOUD

The above experiment has two takeaways. First, Alexa
enforces the endpoint to validate the signature of the incoming
request; This means that published skills only accept incoming
requests signed by Alexa. Second, Alexa does not enforce the
endpoint to validate the application-ID or the timestamp. This
means it’s possible a skill endpoint may accept and process
outdated requests or requests that are not intended for itself.
This can lead to a cloud spoofing attack.

Attacking Method. Given a target skill (the victim), the
attacker’s goal is to spoof the cloud to interact with the
endpoint to insert or retrieve data. We use Figure 2 to describe
the attack process. The idea is that the attacker builds its own
skill, and use this skill to sign the malicious request that will
be used for the attack. (@) the attacker registers its own skill
and the mocking intent. The mocking intent should mimic
one of the victim skill’s intents (so that the crafted payload
is understandable by the victim endpoint). (@) Both Alexa
and Google have a text interface that allows the developers
to type in their command-lines for testing purposes. Using
this text interface, the attacker can trigger the cloud to send
a request with malicious payload to its own endpoint. (&) At
this point, the request already carries a valid signature signed
by the Alexa cloud. (@) The attacker can record this request
and replay it to the target endpoint. The victim endpoint will
believe the request is from the Alexa cloud. Since Alexa cloud
uses the same private key to sign all the requests for all skills,
the signature signed for one skill works for another skill.

An endpoint can detect this attack if the endpoint checks
the application-1D in the request: the application-ID inside of
the request is still the ID of the attacker’s skill. Because the
application-ID is inserted by the Alexa cloud before signing
the payload, the attacker cannot modify this field.

-
[

Legit. Request F‘E %
Alexa Cloud Target Endpoint
9 o Register Mocking Intent
Send Request
with Malicious
Payload

QTrigger Mocking Intent
with Malicious Payload
Using Text Interface

U

Malicious Attacker
Endpoint

Replay Request with
Malicious Payload

v

Fig. 2: The cloud spoofing attack.

Proof-of-Concept Experiment. The ability to spoof the
cloud can lead to different attacks. This is different from
public-facing web services since skill endpoints are not de-
signed to be public-facing: they only expect incoming requests
from the cloud. To validate the attack feasibility, we set up
our own target skill A as the victim. The victim endpoint A
is configured to “ignore application-ID and timestamp”. Then
we simulate an attacker by building another skill B, and use
the endpoint of B to collect the malicious requests that will
be replayed. We perform this test for both Alexa and Google
Home to trigger all 6 default command lines in A (e.g., to
launch or pause the skills). All the attacks were successful.

SQL Injection Attack. Attackers may perform SQL
injection attacks on top of the cloud spoofing. The idea is
to design a malicious SQL statement and then get the payload
signed by the cloud using her own skill. Then the attacker
can replay the signed SQL statement to the victim endpoint.
To validate the feasibility, we run an attack on our own
skill. We target the skill’s Custom Intent that has an integer
parameter. The skill server does not have any SQL injection
defense (e.g., input sanitization). We run a series of SQL
injection attacks (e.g., inserting data, dropping a table), all
of which are executed successfully. In practice, this attack
might be more difficult since attackers may not have the
full knowledge of the victim endpoints. The attacker needs
to guess: (1) the intent name and its parameter name; (2)
the name of the target table; (3) the name of the target
column. For example, existing SQL injection tools such as
SQLMap and web vulnerability scanners [8] would crawl the
corresponding websites, find candidate URLs, and issue a large
volume of testing queries. It might take hundreds or thousands
of automated guesses to search for an injection opportunity
(out of the scope of this paper). For Items (2)—(3), there is a
way to find related metadata in many mainstream databases.
For example, the MySQL database has a metadata table that
contains information about table names and column names.

Ethical Considerations. The experiments above are ethical
since both the attacker endpoint and the victim endpoint are
developed by us. There are no other skill endpoints or users
involved in the experiments. The experiment only sends a few
requests to the cloud service, and then forwards the traffic
to our own endpoints. Those requests won’t overwhelm or
damage the cloud service.

Free to Enable

AAAAA

clence programs of @ university n the Us. The ranks are b

Fig. 3: Vulnerable skill in the Alexa Skill Store.

4 on the cata from U.S. News 2019, I partcular,you ned to provide the full name of a university, .

V. MANUAL VETTING

Before publishing, a skill needs to be vetted manually by
the platform. To understand the manual vetting process, we
send our vulnerable skills (vulnerable to spoofing and SQL
injection) for publishing. During the submission process, we
did not receive any suggestions related to security issues.
Both skills received approval to be released within 1-2 weeks.
Figure 3 shows the screenshot of our published skill page (the
screenshot for Google is omitted for brevity). We immediately
took the skill down from both stores after the experiment and
informed Google and Amazon about our research. The result
suggests that the current vetting process is not rigorous enough
to help developers to detect vulnerabilities.

Ethical Considerations. We took active steps to ensure
research ethics. At the high level, this skill is a “vulnerable”
skill instead of a “malicious” skill. It is supposed to be the
victim instead of the attacker in the threat model, which should
not introduce any malicious impact. One concern of publishing
a vulnerable skill is that the skill may be accidentally used by
an innocent user. To avoid this, we have closely monitored
our skill endpoint throughout the releasing process. Once the
skill received the approval, we immediately performed a quick
test to ensure the skill is truly available on the store, and then
took it down from the store right away. During this process,
we monitored our server and we did not see any incoming
requests (except those from our own). This means no real
users have ever used this vulnerable skill. In addition, the skill
is designed to provide information (about Computer Science
programs in the US), without collecting any user data. Even
if a user accidentally used the skill, there is no actual harm.

VI. ALEXA VULNERABLE ENDPOINTS

So far, we show that the security vetting process is not
rigorous enough to prevent a vulnerable skill from entering the
app store. Next, we focus on Alexa skills and examine whether
there are indeed real-world vulnerable skill endpoints. Google
Home skills are by default vulnerable to spoofing and thus are
omitted in this measurement.

A. Methodology to Locate Skill Endpoints

For this analysis, we aim to detect endpoints vulnerable
to cloud spoofing. We did not further test SQL injection
considering the intrusive nature of SQL injection attacks. We
face two main challenges. First, the smart assistant devices
(edge device) do not directly interact with the skill endpoints.
Instead, all the network traffic is first routed to the Amazon
cloud. As such, it is difficult for outsiders (i.e., researchers) to
know the IP or domain name of the endpoint. Second, even

IPs enable Round 1 Round 2 Total
Po 1443 Domain | Candidate Vul. Vul. Vul.
N Set Hosts EPoints EPoints EPoints
[48,141,053 [3,196 [3,346,425 [122 [100 [219]

TABLE II: Searching results of vulnerable endpoints.

if the IP is known, the skill service is not necessarily always
hosted under the root path.

Method Overview. We propose a heuristic-based searching
method, based on two intuitions. First, a skill endpoint is re-
quired to support HTTPS, which means the port 443 should be
open. Second, an Alexa endpoint should support the default in-
tents such as “LaunchRequest” and “StopIntent”. The response
for a default intent request should follow the special JSON
format defined by Alexa. As such, we search for vulnerable
skill endpoints by scanning the HTTPS hosts with a testing
query. The query carries the spoofed “LaunchRequest” intent
which is a default intent that every Alexa skill should support.
We choose this intent because “LaunchRequest” won’t cause
any internal state change or reveal any non-public information.

Implementation. Given the large number of HTTPS hosts
and the need for guessing the path, it is not feasible to test a
large number of possible paths on all HTTPS hosts. As such,
we prioritize search efficiency by sacrificing some coverage.
First, we focus on a small set of HTTPS hosts and test many
possible paths. Then we select the most common path to scan
the rest HTTPS hosts.

For round-1, we select a small set of HTTPS hosts that are
more likely to be the skill endpoints. More specifically, we
crawled 32,289 Alexa skills pages from Amazon store, and
extract their URLs of the privacy policies. Our hypothesis is
that the skill endpoint might share the same domain name
with the privacy policy URL. Note that some skills host their
privacy policy on cloud services (e.g., “amazonaws.com”).
As such, we make a whitelist of web hosting services and only
consider the hostname (instead of the domain name) in their
privacy policy URLs as the candidate.

Then we test a list of possible paths. We obtain the path
information by analyzing the example code on the Developer
Forum of Alexa and related question threads in StackOverflow.
For each host, we test the root path “/”, and other possible
paths including “/alexa”, “/echo”, “/api”, “/endpoint”, “/skill”,
“fiot”, “/voice”, “/assistant”, and ‘“/amazon”.

After round-1, we expect to find some real-world skill
endpoints. Then, we select the most common non-root path
name. We use this pathname and the root path to test all the
HTTPS hosts that have not been tested in round-1.

Ethical Considerations. We have taken active steps to
ensure research ethics. First, for each host, we only send a
handful of queries that have minimal impact on the target
host. Second, as detailed below, we re-use the ZMap scan-
ning results [9] instead of performing our own network-wise
scanning to identify HTTPS hosts. The scope is aligned with
ZMap port 443 scanning which excludes a list of hosts that
don’t want to be scanned. We respect Internet hosts that don’t
want to be scanned by ZMap and did not test these hosts.

Third, we only test a non-intrusive Intent that does not cause
any internal state change of the skill service or reveal any
non-public information.

B. Detecting Vulnerable Skill Endpoints

We start with a list of 48,141,053 IPv4 addresses with an
open 443 port from ZMap’s scanning result archive [9].

Round-1 Search. As shown in Table II, we obtained the
Privacy policy URLs from all the 32,289 skills available in
the Alexa U.S. skill store. We extracted 3,196 unique domain
names. By matching these domain names with those of the 48
million HTTPS hosts, we got 3,346,425 candidate hosts.

By testing the spoofed intent (and candidate paths), we
found 122 Alexa skill endpoints that provided a valid response.
Here we use an IP address to uniquely represent an endpoint
server. In fact, we have identified 174 URLs that have returned
a valid response. Some of the URLs are actually mapped to
the same IP address.

Round-2 Search. Based on the round-1 result, we find that
“/alexa” is the most common path (88 out of 174), followed
by the root path (30 out of 174). Next, we use these two paths
to perform the round-2 searching. As shown in Table II, we
discovered 100 additional vulnerable endpoints.

Vulnerable Skill Endpoints. From the two rounds of
searching, we detected in total 219 vulnerable Alexa end-
points. It should be noticed that the searching result is only
a lower-bound considering the incomplete guessing of path-
names. There could be even more vulnerable skill endpoints.

We then examine the geolocation distribution of these
vulnerable endpoints based on their countries. We observe
that more than half of vulnerable endpoints (115, 52.5%) are
located in the United States, followed by Germany (35, 16.0%)
and Ireland (16, 7.3%). The top 3 countries cover 75.8% of
all vulnerable endpoints.

Case Studies. We send another spoofed “HelpIntent”
request to each endpoint, and the returned information helps
to identify the actual skills. Some vulnerable skills are less
“safety-critical” which are related to games, sports, and news.
However, there are indeed skills that are providing critical
services. For example, one vulnerable skill on Alexa is used
for controlling electric cars. At least three vulnerable skills are
from online banking services. A number of vulnerable skills
are used to control other smart-home or IoT devices to adjust
the air purifier and thermostats, set an alarm for the home
security system, and keep track of water and electricity usage.
We give a few specific examples below.

“Brunt” is an automated home furnishing accessory com-
pany, and its products include smart plugs, wireless chargers,
air purifiers, blind controllers, and power sockets. The vulnera-
ble skill “Brunt” supports turning on and off Brunt devices and
changing their configurations. “My Valet” is one of the most
popular skills that can control Tesla cars. The skill can be used
remotely to lock and unlock the car, obtain information of the
car’s current location, and open the roof and the trunk. Note
that the skill is not officially developed by Tesla, and the skill’s

endpoint is vulnerable to cloud spoofing. “Newton Mail” is an
email application, supporting reading recent emails and other
common operations such as deleting an email.

VII. RELATED WORK

IoT Security & Privacy. With the wide adoption of IoT
devices, security and privacy have become a pressing issue [5].
A related research direction looks into the user authentica-
tion schemes of IoT devices [18], malicious command-lines
injection [6] and controlling the device through inaudible
voice [19] due to a lack of authentication. A recent work
that incorrect endpoint side checks can lead to severe attacks
including password brute-forcing, leaked password probing,
and security access token hijacking [20]. Our work is different
since we look into smart-home assistant systems and examine
the interaction between the cloud and third-party endpoints
(instead of user-end authentication).

App Developers and Security Coding. A related body
of work focuses on understanding the mistakes made by
app developers. For example, researchers show that many
poorly implemented security mechanisms in mobile apps
are due to developers who are inexperienced, distracted or
overwhelmed [3], copying and pasting code from online fo-
rums [16], asking more permission than they need [17], [11] or
failing to use cryptographic API correctly [10]. Even with tools
to help the developers in the Android development environ-
ment [14], it is often not enough to prevent insecure apps [17].
While most existing works are focused on smartphone apps,
we for the first time investigate this issue in smart assistant
systems. Our result shows that more work needs to be done
to help the developers.

VIII. DISCUSSION & CONCLUSION

The problem described in the paper comes from the insuffi-
cient security vetting process before releasing the applications
into the market. There is a confusion between cloud and
application-level authentication in Alexa’s automated testing.
Alexa enforced an endpoint to verify the cloud identity but did
not enforce the verification of the application identity. This
makes endpoints vulnerable to replayed requests that were
intended for other applications (e.g., the attacker’s skill). We
have reported our findings to the Alexa and Google Home
team and informed them about our experiments. The coun-
termeasure is to implement dedicated skill tests and enforce
developers to check the application-ID and the timestamp.

Our work has a few limitations. First, our search only
covers a limited number of “paths”. The number of vulnerable
endpoints can only be interpreted as a lower bound. Second,
we only confirmed that the endpoints were vulnerable to cloud
spoofing attacks. We did not further test SQL injection attacks
for ethical considerations. An open question is how to design
the security vetting process to effectively help developers.
First, we need to improve the coverage of the automated tests
to perform more security checks. Second, we need to provide
informative and actionable feedback to developers. Such a

mechanism can be integrated into the software development
kit (SDK) for developers.

ACKNOWLEDGMENT

This project was supported in part by NSF grants CNS-
1750101 and CNS-1717028, and Google Research.

REFERENCES
[

—

Google assistant actions up 2.5x in 2018 to reach 4,253 in the
us. https://techcrunch.com/2019/02/18/google-assistant-actions-up-2-
5x-in-2018-to-reach-4253-in-the-u-s/, 2019.

[2] The number of alexa skills in the u.s. more than doubled in
2018. https://techcrunch.com/2019/01/02/the-number- of-alexa- skills-
in-the-u-s-more-than-doubled-in-2018/, 2019.

[3] ACAR, Y., BACKES, M., FAHL, S., KiM, D., MAZUREK, M. L., AND

STRANSKY, C. You get where you're looking for: The impact of

information sources on code security. In Proc. of IEEE S&P’16 (2016).

ALRAWI, O., LEVER, C., ANTONAKAKIS, M., AND MONROSE, F. Sok:

Security evaluation of home-based iot deployments. In Proc. of IEEE

S&P’19 (2019).

APTHORPE, N., VARGHESE, S., AND FEAMSTER, N. Evaluating the

contextual integrity of privacy regulation: Parents’ iot toy privacy norms

versus coppa. In Proc. of USENIX Security’19 (2019).

BispHAM, M. K., AGRAFIOTIS, 1., AND GOLDSMITH, M. Nonsense

attacks on google assistant. arXiv preprint arXiv:1808.01947 (2018).

CARLINI, N., MISHRA, P., VAIDYA, T., ZHANG, Y., SHERR, M.,

SHIELDS, C., WAGNER, D., AND ZHOU, W. Hidden voice commands.

In Proc. of USENIX Security’16 (2016).

[8] DOUPE, A., CAVEDON, L., KRUEGEL, C., AND VIGNA, G. Enemy of
the state: A state-aware black-box web vulnerability scanner. In Proc.
of USENIX Security’12 (2012).

[9] DURUMERIC, Z., WUSTROW, E., AND HALDERMAN, J. A. Zmap: Fast
internet-wide scanning and its security applications. In Proc. of USENIX
Security’13 (2013).

[10] FAHL, S., HARBACH, M., MUDERS, T., BAUMGARTNER, L.,
FREISLEBEN, B., AND SMITH, M. Why eve and mallory love android:
An analysis of android ssl (in) security. In Proc. of CCS’12 (2012).

[11] FELT, A. P., WANG, H. J., MOSHCHUK, A., HANNA, S., AND CHIN,
E. Permission re-delegation: Attacks and defenses. In Proc. of USENIX
Security’11 (2011).

[12] KOETSIER, J. Amazon echo, google home installed base hits 50 million;
apple has 6% market share, report says. https://www.forbes.com/sites/
johnkoetsier/2018/08/02/amazon-echo-google-home-installed-base-
hits-50-million-apple-has-6-market-share-report-says, 2018.

[13] KUMAR, D., PACCAGNELLA, R., MURLEY, P., HENNENFENT, E.,
MASON, J., BATES, A., AND BAILEY, M. Skill squatting attacks on
amazon alexa. In Proc. of USENIX Security’18 (2018).

[14] L1, T., AGARWAL, Y., AND HONG, J. I. Coconut: An ide plugin for
developing privacy-friendly apps. In Proc. of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies (2018).

[15] Liu, F., WANG, C., Pico, A., YAO, D., AND WANG, G. Measuring

the insecurity of mobile deep links of android. In Proc. of USENIX

Security’17 (2017).

MIRYUNG KIM, BERGMAN, L., LAU, T., AND NOTKIN, D. An

ethnographic study of copy and paste programming practices in oopl.

In Proc. of ISESE’04 (2004).

[17] NGUYEN, D. C., WERMKE, D., ACAR, Y., BACKES, M., WEIR, C.,
AND FAHL, S. A stitch in time: Supporting android developers in writing
secure code. In Proc. of CCS’17 (2017).

[18] TIAN, Y., ZHANG, N., LIN, Y.-H., WANG, X., UR, B., Guo, X., AND
TAGUE, P. Smartauth: User-centered authorization for the internet of
things. In Proc. of USENIX Security’17 (2017).

[19] ZHANG, G., YAN, C., J1, X., ZHANG, T., ZHANG, T., AND XU, W.
Dolphinattack: Inaudible voice commands. In Proc. of CCS’17 (2017).

[20] Zuo, C., WANG, W., LIN, Z., AND WANG, R. Automatic forgery of

cryptographically consistent messages to identify security vulnerabilities

in mobile services. In Proc. of NDSS’16 (2016).

[4

=

[5

=

[6

=

[7

[16

	introduction
	Background & Motivation
	Automated Skill Vetting
	Setting Up Vulnerable Skills
	Skill Testing Results

	Spoofing the Cloud
	Manual Vetting
	Alexa Vulnerable Endpoints
	Methodology to Locate Skill Endpoints
	Detecting Vulnerable Skill Endpoints

	related work
	Discussion & Conclusion
	References

