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Abstract

Programmers spend a significant proportion of their time
searching for and making sense of complex information.
However, they often lack effective tools to help them make
sense of the information, turn it into knowledge, or share

it with their respective communities. In this position paper,
we aim to help programmers collect, navigate, and organize
knowledge to meet their goals while capturing this knowl-
edge and making it useful for later programmers with similar
needs. We describe barriers and challenges to creating this
sustainable cycle, and we explore the design space and
opportunities for effective tools and systems.
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Introduction

Programming is highly cognitively demanding, requiring
programmers to perform many activities at the same time,
for which there is little direct support. For example, pro-
grammers often must understand existing code written



by others, determine how to write new code based on a
large number of constraints and requirements, identify re-
lationships and design rationale of code in order to make
changes that work correctly, select among a set of appli-
cation programming interfaces (APIs, also called libraries,
toolkits or software development kits — SDKs), each hav-
ing different properties and constraints. In fact, researchers
have identified hundreds of questions that programmers ask
and want to find answers for [28, 15], from basic questions
like “what is the syntax for writing a while loop in Python”

to more strategical and high-level ones like “how to pro-
gressively adopt React.js (a JavaScript library developed by
Facebook) in my existing project”.

All of these cognitive tasks can be classified as attempts

by the programmers to gain knowledge about their code,
APls, requirements, etc. Although there are many tools that
focus on helping programmers find that knowledge (e.g.,
[16, 2, 24, 31, 25, 34]), there are surprisingly few that help
programmers leverage that knowledge after it is discovered.

It is well known that programmers do not like to comment
their code (for example, to add in “design rationale” for why
the code is the way it is) or do extra work that they do not
envision as being of immediate benefit to their main task of
getting code to work [30]. However, recent research (e.g.,
[12,6, 11,13, 3,1, 5, 8]) in other domains have identified
needs and mechanisms relating to people performing com-
plex cognitive tasks on the Internet, which have a high ben-
efit and low cost for the individual as well as providing ben-
efits for others later. For example, people spend a signifi-
cant amount of time and effort trying to capture information
and save it in structured ways. Wikipedia lists more than
20 commercial social bookmarking systems in which users
provide keyword tags for web pages; in 2008, Delicious
alone reported more than 5.3 million users and 180 million

unique bookmarked URLs. For note-taking and organiza-
tional tools, Wikipedia lists more than 60 systems; Ever-
note, one of the more popular, claims more than 200 million
users. Research has demonstrated the usefulness of cues
from others to help an individual find what they want. Such
approaches range from social navigation to social filtering
to social bookmarking to social search [7, 19, 17, 33, 20,
18]. Our preliminary findings show that programmers simi-
larly are often also collecting and organizing information for
themselves, and programmers are often willing to help oth-
ers when there is a clear benefit, such as answering Stack
Overflow questions. We propose to leverage these trends
to make it easier for programmers to collect, navigate, or-
ganize, and share knowledge. In particular, the specific
research questions of our proposed research include:

+ After a programmer develops knowledge for them-
selves, what about what they have done is generaliz-
able for others?

» How do we capture that in a sustainable and incen-
tivized way that will have a low cost and high per-
ceived benefit for the initial programmer?

+ How can we combine the knowledge from multiple
programmers who are investigating related issues so
that it will be useful for later programmers?

* How can we extract design rationale, discovered con-
straints, requirements and features, facts about code
and APls, and other useful information from the accu-
mulated knowledge?

* How can we organize and present the accumulated
knowledge in a way that would help the initial and
later programmers?

» Where can such knowledge be surfaced so that pro-
grammers will encounter it when it is useful to them?

Our approach to start answering these research questions



will elicit theories and practices in cognitive psychology,
human-computer interaction (HCI), and software engineer-
ing, and will include both new studies and novel tools. The
studies will help better understand programmers’ knowl-
edge needs and activities. The tools will include extensions
for browsers, text editors and integrated development envi-
ronments (IDEs) to help programmers gather (“forage” [22]),
navigate, organize, and share that knowledge. We envision
that programmers will be able to generate and discover the
knowledge they need at an accelerated pace with our sup-
porting tools acting as a programming copilot.

Preliminary Pilot Studies

In preparation for the research and to better motivate the
problem, we conducted retrospective walkthroughs with 16
experienced programmers about a complex programming
task they had recently done as part of their normal pro-
gramming. The goal was to identify common activities and
leverage points related to the cost structure of sensemak-
ing. While significant prior work has examined the sense-
making process [26, 4, 14, 6, 13, 12, 23], including in the
context of programming [10, 9, 32], our focus here was

on identifying common activities and their key costs and
benefits that could inform tools to help the initial program-
mer while at the same time capturing their cognitive work to
benefit others.

Participants engaged in a variety of tasks involving signifi-
cant sensemaking activities, ranging from learning the Re-
act.js library for JavaScript (reactjs.org) to issuing bug re-
ports, and used a variety of tools to annotate and save the
information they encountered, including browser tabs and
bookmarks, note-taking tools such as Workflowy, Notes,
Evernote, Google Docs, or even building their own cus-
tom websites. Although the specific information needs var-
ied across tasks, they generally fell into the two high-level

sensemaking categories of gathering information and or-
ganizing that information into useful models to take action
[26, 4, 23]. Interestingly, as a result of using a web browser
to gather this information and trying to keep track of it, we
also noticed a need to navigate and keep track of the vari-
ous branches of options being considered, with participants
encountering and queuing up possibilities to consider later
[21, 29]. The types of tasks we observed programmers do-
ing to try to accomplish these activities included:

Deciding on a framework, API, approach, pattern, or code
example to use. Prior work has shown that 34% of a pro-
grammer’s search sessions are aimed at finding or learn-
ing about an API [27], with each option having different
strengths or limitations depending on the programmer’s
goals and constraints (e.g., existing coding stack, style pref-
erences, level of expertise, etc.). We observed two partici-
pants at the beginning stages of a project, both having trou-
ble deciding what framework or API to use. One program-
mer noted difficulties with foraging for information: “The
hardest part is figuring out if an API actually has the func-
tionality I'm looking for.” Programmers often organized the
information they collected to foster comparisons. One par-
ticipant stated, “Because there are so many tools [for web
development], you almost want to read something that tells
you, React is a good idea. Even though it's hard at first, this
is why it's powerful.” They often started following one lead
but switched to another when they ran into difficulties, sug-
gesting the need for support for branching and backtracking
navigation.

Learning the structure of an unfamiliar framework, API, or
unfamiliar code. A majority of our interviewees cited learn-
ing unfamiliar code as a significant challenge, including new
concepts (e.g., “Promise” in next-generation JavaScript) or
terms (e.g., “event-driven”). One participant stated, “A /ot



Sensemaking

Task types involving sensemaking

grammers

or on relevant search pages)

activity
Deciding on a framework, API, Learning the structure of an . i
- ) Implementing a specific fea-
approach, pattern, or code ex- unfamiliar framework / API; . .
. - ture/functionality
ample to use understanding unfamiliar code
Identifying pros and cons, impor- | Annotating unfamiliar concepts Marking pages where code was
Foraging tant constraints, and contexts of | or code; capturing useful expla- copied; annotating how it was
use nations adapted
o Keeping track of and switching Suppqrtlng deep lelqg into gx- Queumg potential .optl.ons to
Navigating among different options planations and resuming main implement and switching among
thread them
Oraanizin Building a comparison table of Filtering foraged tutorials and Visualizing trees of potential
9 9 functionality examples by users’ goals options
Exposing design decisions as Exposing best practices where Shortcutting bad “rabbit holes”;
Sharing design rationale for other pro- they are relevant (e.g., in code showing different styles of solu-

tions

Table 1: Design space we plan to explore, with example opportunities in each cell.

of times | was looking at the [React] tutorial, and | didn’t un-
derstand what it was doing or why it was useful...” This led
the programmer to want an explanation on the underlying
concepts. Another participant said, “The React documenta-
tion was very example-heavy and not concept-heavy. If you
weren'’t careful you could miss it.” This participant found

a blog post including more detailed explanations. Sub-
searches for these concepts or terms often led to naviga-
tion challenges with using tabs to keep track of branching,
drilling down, and resuming their tasks.

Implementing a specific feature/functionality. In multiple
interviews, programmers cited having trouble implementing
new code even when they conceptually understood what
they wanted to accomplish, e.g., “Conceptually, | under-

stand what’s going on... how do | [load data via an http re-
quest] again? | had done it with jQuery before, but | had
never done it with straight JavaScript.”

Design Space

These initial results suggest a design space to profitably
explore ways to understand and help programmers forage,
navigate, and organize different resources they encounter
in order to achieve their own programming goals, and to
share the results with others. Table 1 shows a preliminary
depiction of this design space, with different types of pro-
gramming tasks commonly occurring in our preliminary pilot
study as the columns, and different activities that people
engage in while interacting with information for these tasks
as the rows. Within the cells are examples of opportunities



for helping support that activity for that task. For example,
when deciding on a mapping API to use, the programmer
might gather important constraints (e.g., whether it supports
geolocation; how much does an API call cost; whether it
supports overlays) and the contexts in which it can be used
(e.g., if it plays well with the React framework). We propose
an important advance in the addition of the sharing row, in
which our main focus is the implicit sharing where a pro-
grammer’s cognitive work might be used by others later. For
example, if one programmer has already gathered the con-
straints and contexts in which they decided to use one API
over others, those constraints and contexts might be sur-
faced as design rationale in that user’s code, or they might
be surfaced if another user did a similar search or visited
the same web pages as the initial programmer.

One of the key goals of our research is to make this table
more complete by filling out the rows and columns and the
opportunities within each cell. The top three rows will help
us find leverage points to create tools that capture the work
that people do during sensemaking and are perceived as
being useful by themselves; the last row embodies how that
captured work can be made useful for others.

Conclusion

Programming has been highly cognitively demanding. We
propose to go beyond previous approaches to understand
and support sensemaking in programming by focusing

on the opportunities to capture the cognitive work that
programmers engage in while making sense of infor-
mation in order to help them and others with similar
knowledge activities. We aim to better understand the
cost structure of sensemaking in programming, and use it to
build tools that directly reduce the cost and/or increase
the benefit to the initial users in making sense of informa-
tion. To do so we will engage in two primary thrusts: empir-

ical studies to better understand the activities, information
needs, results and cost structure of sensemaking across
various types of programming-related activities, and the de-
velopment and evaluation of prototype tools to explore the
design space of supporting those activities.
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