Supporting Knowledge Acceleration
for Programming from a Sensemaking

Perspective

Michael Xieyang Liu

HCI Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA
xieyangl@cs.cmu.edu

Shaun Burley

HCI Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA
me@shaunburley.com

Emily Deng

HCI Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA
edeng@cs.cmu.edu

Angelina Zhou

HCI Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA
ajzhou@andrew.cmu.edu

Aniket Kittur

HCI Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA
nkittur@cs.cmu.edu

Brad A. Myers

HCI Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA
bam@cs.cmu.edu

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author. Copyright is held by the owner/author(s).

Sensemaking Workshop: CHI 2018
April 21, 2018, Montreal, QC, Canada.

Abstract

Programmers spend a significant proportion of their time
searching for and making sense of complex information.
However, they often lack effective tools to help them make
sense of the information, turn it into knowledge, or share

it with their respective communities. In this position paper,
we aim to help programmers collect, navigate, and organize
knowledge to meet their goals while capturing this knowl-
edge and making it useful for later programmers with similar
needs. We describe barriers and challenges to creating this
sustainable cycle, and we explore the design space and
opportunities for effective tools and systems.

Author Keywords

Empirical Studies of Programmers; Development Tools;
Sensemaking; Collaboration; Knowledge Transfer; Ex-
ploratory Search.

ACM Classification Keywords
H.5.2 [User interfaces (User-centered design)]: Miscella-
neous

Introduction

Programming is highly cognitively demanding, requiring
programmers to perform many activities at the same time,
for which there is little direct support. For example, pro-
grammers often must understand existing code written

by others, determine how to write new code based on a
large number of constraints and requirements, identify re-
lationships and design rationale of code in order to make
changes that work correctly, select among a set of appli-
cation programming interfaces (APIs, also called libraries,
toolkits or software development kits — SDKs), each hav-
ing different properties and constraints. In fact, researchers
have identified hundreds of questions that programmers ask
and want to find answers for [28, 15], from basic questions
like “what is the syntax for writing a while loop in Python”

to more strategical and high-level ones like “how to pro-
gressively adopt React.js (a JavaScript library developed by
Facebook) in my existing project”.

All of these cognitive tasks can be classified as attempts

by the programmers to gain knowledge about their code,
APls, requirements, etc. Although there are many tools that
focus on helping programmers find that knowledge (e.g.,
[16, 2, 24, 31, 25, 34]), there are surprisingly few that help
programmers leverage that knowledge after it is discovered.

It is well known that programmers do not like to comment
their code (for example, to add in “design rationale” for why
the code is the way it is) or do extra work that they do not
envision as being of immediate benefit to their main task of
getting code to work [30]. However, recent research (e.g.,
[12,6, 11,13, 3,1, 5, 8]) in other domains have identified
needs and mechanisms relating to people performing com-
plex cognitive tasks on the Internet, which have a high ben-
efit and low cost for the individual as well as providing ben-
efits for others later. For example, people spend a signifi-
cant amount of time and effort trying to capture information
and save it in structured ways. Wikipedia lists more than
20 commercial social bookmarking systems in which users
provide keyword tags for web pages; in 2008, Delicious
alone reported more than 5.3 million users and 180 million

unique bookmarked URLs. For note-taking and organiza-
tional tools, Wikipedia lists more than 60 systems; Ever-
note, one of the more popular, claims more than 200 million
users. Research has demonstrated the usefulness of cues
from others to help an individual find what they want. Such
approaches range from social navigation to social filtering
to social bookmarking to social search [7, 19, 17, 33, 20,
18]. Our preliminary findings show that programmers simi-
larly are often also collecting and organizing information for
themselves, and programmers are often willing to help oth-
ers when there is a clear benefit, such as answering Stack
Overflow questions. We propose to leverage these trends
to make it easier for programmers to collect, navigate, or-
ganize, and share knowledge. In particular, the specific
research questions of our proposed research include:

+ After a programmer develops knowledge for them-
selves, what about what they have done is generaliz-
able for others?

» How do we capture that in a sustainable and incen-
tivized way that will have a low cost and high per-
ceived benefit for the initial programmer?

+ How can we combine the knowledge from multiple
programmers who are investigating related issues so
that it will be useful for later programmers?

* How can we extract design rationale, discovered con-
straints, requirements and features, facts about code
and APls, and other useful information from the accu-
mulated knowledge?

* How can we organize and present the accumulated
knowledge in a way that would help the initial and
later programmers?

» Where can such knowledge be surfaced so that pro-
grammers will encounter it when it is useful to them?

Our approach to start answering these research questions

will elicit theories and practices in cognitive psychology,
human-computer interaction (HCI), and software engineer-
ing, and will include both new studies and novel tools. The
studies will help better understand programmers’ knowl-
edge needs and activities. The tools will include extensions
for browsers, text editors and integrated development envi-
ronments (IDEs) to help programmers gather (“forage” [22]),
navigate, organize, and share that knowledge. We envision
that programmers will be able to generate and discover the
knowledge they need at an accelerated pace with our sup-
porting tools acting as a programming copilot.

Preliminary Pilot Studies

In preparation for the research and to better motivate the
problem, we conducted retrospective walkthroughs with 16
experienced programmers about a complex programming
task they had recently done as part of their normal pro-
gramming. The goal was to identify common activities and
leverage points related to the cost structure of sensemak-
ing. While significant prior work has examined the sense-
making process [26, 4, 14, 6, 13, 12, 23], including in the
context of programming [10, 9, 32], our focus here was

on identifying common activities and their key costs and
benefits that could inform tools to help the initial program-
mer while at the same time capturing their cognitive work to
benefit others.

Participants engaged in a variety of tasks involving signifi-
cant sensemaking activities, ranging from learning the Re-
act.js library for JavaScript (reactjs.org) to issuing bug re-
ports, and used a variety of tools to annotate and save the
information they encountered, including browser tabs and
bookmarks, note-taking tools such as Workflowy, Notes,
Evernote, Google Docs, or even building their own cus-
tom websites. Although the specific information needs var-
ied across tasks, they generally fell into the two high-level

sensemaking categories of gathering information and or-
ganizing that information into useful models to take action
[26, 4, 23]. Interestingly, as a result of using a web browser
to gather this information and trying to keep track of it, we
also noticed a need to navigate and keep track of the vari-
ous branches of options being considered, with participants
encountering and queuing up possibilities to consider later
[21, 29]. The types of tasks we observed programmers do-
ing to try to accomplish these activities included:

Deciding on a framework, API, approach, pattern, or code
example to use. Prior work has shown that 34% of a pro-
grammer’s search sessions are aimed at finding or learn-
ing about an API [27], with each option having different
strengths or limitations depending on the programmer’s
goals and constraints (e.g., existing coding stack, style pref-
erences, level of expertise, etc.). We observed two partici-
pants at the beginning stages of a project, both having trou-
ble deciding what framework or API to use. One program-
mer noted difficulties with foraging for information: “The
hardest part is figuring out if an API actually has the func-
tionality I'm looking for.” Programmers often organized the
information they collected to foster comparisons. One par-
ticipant stated, “Because there are so many tools [for web
development], you almost want to read something that tells
you, React is a good idea. Even though it's hard at first, this
is why it's powerful.” They often started following one lead
but switched to another when they ran into difficulties, sug-
gesting the need for support for branching and backtracking
navigation.

Learning the structure of an unfamiliar framework, API, or
unfamiliar code. A majority of our interviewees cited learn-
ing unfamiliar code as a significant challenge, including new
concepts (e.g., “Promise” in next-generation JavaScript) or
terms (e.g., “event-driven”). One participant stated, “A /ot

Sensemaking

Task types involving sensemaking

grammers

or on relevant search pages)

activity
Deciding on a framework, API, Learning the structure of an . i
-) Implementing a specific fea-
approach, pattern, or code ex- unfamiliar framework / API; . .
. - ture/functionality
ample to use understanding unfamiliar code
Identifying pros and cons, impor- | Annotating unfamiliar concepts Marking pages where code was
Foraging tant constraints, and contexts of | or code; capturing useful expla- copied; annotating how it was
use nations adapted
o Keeping track of and switching Suppqrtlng deep lelqg into gx- Queumg potential .optl.ons to
Navigating among different options planations and resuming main implement and switching among
thread them
Oraanizin Building a comparison table of Filtering foraged tutorials and Visualizing trees of potential
9 9 functionality examples by users’ goals options
Exposing design decisions as Exposing best practices where Shortcutting bad “rabbit holes”;
Sharing design rationale for other pro- they are relevant (e.g., in code showing different styles of solu-

tions

Table 1: Design space we plan to explore, with example opportunities in each cell.

of times | was looking at the [React] tutorial, and | didn’t un-
derstand what it was doing or why it was useful...” This led
the programmer to want an explanation on the underlying
concepts. Another participant said, “The React documenta-
tion was very example-heavy and not concept-heavy. If you
weren'’t careful you could miss it.” This participant found

a blog post including more detailed explanations. Sub-
searches for these concepts or terms often led to naviga-
tion challenges with using tabs to keep track of branching,
drilling down, and resuming their tasks.

Implementing a specific feature/functionality. In multiple
interviews, programmers cited having trouble implementing
new code even when they conceptually understood what
they wanted to accomplish, e.g., “Conceptually, | under-

stand what’s going on... how do | [load data via an http re-
quest] again? | had done it with jQuery before, but | had
never done it with straight JavaScript.”

Design Space

These initial results suggest a design space to profitably
explore ways to understand and help programmers forage,
navigate, and organize different resources they encounter
in order to achieve their own programming goals, and to
share the results with others. Table 1 shows a preliminary
depiction of this design space, with different types of pro-
gramming tasks commonly occurring in our preliminary pilot
study as the columns, and different activities that people
engage in while interacting with information for these tasks
as the rows. Within the cells are examples of opportunities

for helping support that activity for that task. For example,
when deciding on a mapping API to use, the programmer
might gather important constraints (e.g., whether it supports
geolocation; how much does an API call cost; whether it
supports overlays) and the contexts in which it can be used
(e.g., if it plays well with the React framework). We propose
an important advance in the addition of the sharing row, in
which our main focus is the implicit sharing where a pro-
grammer’s cognitive work might be used by others later. For
example, if one programmer has already gathered the con-
straints and contexts in which they decided to use one API
over others, those constraints and contexts might be sur-
faced as design rationale in that user’s code, or they might
be surfaced if another user did a similar search or visited
the same web pages as the initial programmer.

One of the key goals of our research is to make this table
more complete by filling out the rows and columns and the
opportunities within each cell. The top three rows will help
us find leverage points to create tools that capture the work
that people do during sensemaking and are perceived as
being useful by themselves; the last row embodies how that
captured work can be made useful for others.

Conclusion

Programming has been highly cognitively demanding. We
propose to go beyond previous approaches to understand
and support sensemaking in programming by focusing

on the opportunities to capture the cognitive work that
programmers engage in while making sense of infor-
mation in order to help them and others with similar
knowledge activities. We aim to better understand the
cost structure of sensemaking in programming, and use it to
build tools that directly reduce the cost and/or increase
the benefit to the initial users in making sense of informa-
tion. To do so we will engage in two primary thrusts: empir-

ical studies to better understand the activities, information
needs, results and cost structure of sensemaking across
various types of programming-related activities, and the de-
velopment and evaluation of prototype tools to explore the
design space of supporting those activities.

REFERENCES
1. Krishna Bharat. 2000. SearchPad: explicit capture of
search context to support Web search. Computer
Networks 33, 1 (June 2000), 493-501. DOI:
http://dx.doi.org/10.1016/51389-1286(00) 00047-5

2. Joel Brandt, Mira Dontcheva, Marcos Weskamp, and
Scott R. Klemmer. 2010. Example-centric
Programming: Integrating Web Search into the
Development Environment. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI °’10). ACM, New York, NY, USA,
513-522. DOI:
http://dx.doi.org/10.1145/1753326.1753402

3. Joseph Chee Chang, Nathan Hahn, and Aniket Kittur.
2016. Supporting Mobile Sensemaking Through
Intentionally Uncertain Highlighting. In Proceedings of
the 29th Annual Symposium on User Interface
Software and Technology (UIST '16). ACM, New York,
NY, USA, 61-68. D0OI:
http://dx.doi.org/10.1145/2984511.2984538

4. Brenda Dervin. 1983. An overview of sense-making
research concepts, methods, and results to date.
(1983). http://faculty.washington.edu/wpratt/
MEBI598/Methods/An%200verview’200f%
20Sense-Making%20Research’%201983a.htm

5. Mira Dontcheva, Steven M. Drucker, Geraldine Wade,
David Salesin, and Michael F. Cohen. 2006.
Summarizing Personal Web Browsing Sessions. In

http://dx.doi.org/10.1016/S1389-1286(00)00047-5
http://dx.doi.org/10.1145/1753326.1753402
http://dx.doi.org/10.1145/2984511.2984538
http://faculty.washington.edu/wpratt/MEBI598/Methods/An%20Overview%20of%20Sense-Making%20Research%201983a.htm
http://faculty.washington.edu/wpratt/MEBI598/Methods/An%20Overview%20of%20Sense-Making%20Research%201983a.htm
http://faculty.washington.edu/wpratt/MEBI598/Methods/An%20Overview%20of%20Sense-Making%20Research%201983a.htm

10.

Proceedings of the 19th Annual ACM Symposium on
User Interface Software and Technology (UIST '06).
ACM, New York, NY, USA, 115-124. DOI:
http://dx.doi.org/10.1145/1166253.1166273

Kristie Fisher, Scott Counts, and Aniket Kittur. 2012.
Distributed Sensemaking: Improving Sensemaking by
Leveraging the Efforts of Previous Users. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’12). ACM, New
York, NY, USA, 247-256. DOI:
http://dx.doi.org/10.1145/2207676.2207711

Jill Freyne, Rosta Farzan, Peter Brusilovsky, Barry
Smyth, and Maurice Coyle. 2007. Collecting
Community Wisdom: Integrating Social Search &
Social Navigation. In Proceedings of the 12th
International Conference on Intelligent User Interfaces
(IUI1'07). ACM, New York, NY, USA, 52—-61. DOI:
http://dx.doi.org/10.1145/1216295.1216312

Matthias Geel, Timothy Church, and Moira C. Norrie.
2012. Sift: An End-user Tool for Gathering Web
Content on the Go. In Proceedings of the 2012 ACM
Symposium on Document Engineering (DocEng '12).
ACM, New York, NY, USA, 181-190. DOI:
http://dx.doi.org/10.1145/2361354.2361395

Valentina Grigoreanu, James Brundage, Eric Bahna,
Margaret Burnett, Paul EIRIif, and Jeffrey Snover. 2009.
Males’ and Females’ Script Debugging Strategies. In
International Symposium on End User Development.
Springer, Berlin, Heidelberg, 205-224. DO :
http://dx.doi.org/10.1007/978-3-642-00427-8_12

Valentina Grigoreanu, Margaret Burnett, Susan
Wiedenbeck, Jill Cao, Kyle Rector, and Irwin Kwan.
2012. End-user Debugging Strategies: A Sensemaking

11.

12.

13.

14.

15.

Perspective. ACM Trans. Comput.-Hum. Interact. 19, 1
(May 2012), 5:1-5:28. DOI:
http://dx.doi.org/10.1145/2147783.2147788

Nathan Hahn, Joseph Chang, Ji Eun Kim, and Aniket
Kittur. 2016. The Knowledge Accelerator: Big Picture
Thinking in Small Pieces. In Proceedings of the 2016
CHI Conference on Human Factors in Computing
Systems (CHI °’16). ACM, New York, NY, USA,
2258-2270. DOI:
http://dx.doi.org/10.1145/2858036.2858364

Aniket Kittur, Andrew M. Peters, Abdigani Diriye, and
Michael Bove. 2014. Standing on the Schemas of
Giants: Socially Augmented Information Foraging. In
Proceedings of the 17th ACM Conference on Computer
Supported Cooperative Work & Social Computing
(CSCW ’14). ACM, New York, NY, USA, 999-1010.
DOI:http://dx.doi.org/10.1145/2531602.2531644

Aniket Kittur, Andrew M. Peters, Abdigani Diriye, Trupti
Telang, and Michael R. Bove. 2013. Costs and Benefits
of Structured Information Foraging. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems (CHI '13). ACM, New York, NY,
USA, 2989-2998. DOI:
http://dx.doi.org/10.1145/2470654.2481415

G. Klein, B. Moon, and R. R. Hoffman. 2006. Making
Sense of Sensemaking 1: Alternative Perspectives.
IEEE Intelligent Systems 21, 4 (July 2006), 70-73.
DOI:http://dx.doi.org/10.1109/MIS.2006.75

Thomas D. LaToza and Brad A. Myers. 2010.
Hard-to-answer Questions About Code. In Evaluation
and Usability of Programming Languages and Tools
(PLATEAU ’10). ACM, New York, NY, USA, 8:1-8:6.
DOI:http://dx.doi.org/10.1145/1937117.1937125

http://dx.doi.org/10.1145/1166253.1166273
http://dx.doi.org/10.1145/2207676.2207711
http://dx.doi.org/10.1145/1216295.1216312
http://dx.doi.org/10.1145/2361354.2361395
http://dx.doi.org/10.1007/978-3-642-00427-8_12
http://dx.doi.org/10.1145/2147783.2147788
http://dx.doi.org/10.1145/2858036.2858364
http://dx.doi.org/10.1145/2531602.2531644
http://dx.doi.org/10.1145/2470654.2481415
http://dx.doi.org/10.1109/MIS.2006.75
http://dx.doi.org/10.1145/1937117.1937125

16.

17.

18.

19.

20.

21.

T. D. LaToza and B. A. Myers. 2011. Visualizing call
graphs. In 2011 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC).
IEEE, 117-124. D0I:
http://dx.doi.org/10.1109/VLHCC.2011.6070388

David R. Millen, Jonathan Feinberg, and Bernard Kerr.
2006. Dogear: Social Bookmarking in the Enterprise. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI °06). ACM, New
York, NY, USA, 111-120. DOI:
http://dx.doi.org/10.1145/1124772.1124792

Dan Morris, Meredith Ringel Morris, and Gina Venolia.
2008. SearchBar: A Search-centric Web History for
Task Resumption and Information Re-finding. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’08). ACM, New
York, NY, USA, 1207-1216. DOI:
http://dx.doi.org/10.1145/1357054.1357242

Meredith Ringel Morris and Eric Horvitz. 2007.
SearchTogether: An Interface for Collaborative Web
Search. In Proceedings of the 20th Annual ACM
Symposium on User Interface Software and
Technology (UIST '07). ACM, New York, NY, USA,
3-12.D0I:
http://dx.doi.org/10.1145/1294211.1294215

Alan Munro, Kristina HACAGACAk, and David
Benyon. 1999. Footprints in the Snow. Springer,
London, 1—14. http:
//link.springer.com/10.1007/978-1-4471-0837-5_1
DOI: 10.1007/978-1-4471-0837-5_1.

David Piorkowski, Austin Z. Henley, Tahmid Nabi,
Scott D. Fleming, Christopher Scaffidi, and Margaret
Burnett. 2016. Foraging and Navigations,

22.

23.

24.

25.

Fundamentally: Developers’ Predictions of Value and
Cost. In Proceedings of the 2016 24th ACM SIGSOFT

International Symposium on Foundations of Software
Engineering (FSE 2016). ACM, New York, NY, USA,
97-108. DOI:
http://dx.doi.org/10.1145/2950290.2950302

Peter Pirolli and Stuart Card. 1995. Information
Foraging in Information Access Environments. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’95). ACM
Press/Addison-Wesley Publishing Co., New York, NY,
USA, 51-58. D0I:
http://dx.doi.org/10.1145/223904.223911

Peter Pirolli and Stuart Card. 2005. The Sensemaking
Process and Leverage Points for Analyst Technology
as Ildentified Through Cognitive Task Analysis. In
Proceedings of International Conference on
Intelligence Analysis. http:
//www.phibetaiota.net/wp-content/uploads/2014/
12/Sensemaking-Process-Pirolli-and-Card.pdf

Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza.
2013. Seahawk: Stack Overflow in the IDE. In 2013
35th International Conference on Software Engineering
(ICSE). IEEE, San Francisco, CA, USA, 1295-1298.
DOI:http://dx.doi.org/10.1109/ICSE.2013.6606701

M.P. Robillard and G.C. Murphy. 2003. Automatically
Inferring Concern Code from Program Investigation
Activities. In 18th IEEE International Conference on
Automated Software Engineering, 2003. Proceedings.
IEEE Comput. Soc, Montreal, Que., Canada, Canada,
225-234.D0I:
http://dx.doi.org/10.1109/ASE.2003.1240310

http://dx.doi.org/10.1109/VLHCC.2011.6070388
http://dx.doi.org/10.1145/1124772.1124792
http://dx.doi.org/10.1145/1357054.1357242
http://dx.doi.org/10.1145/1294211.1294215
http://link.springer.com/10.1007/978-1-4471-0837-5_1
http://link.springer.com/10.1007/978-1-4471-0837-5_1
http://dx.doi.org/10.1145/2950290.2950302
http://dx.doi.org/10.1145/223904.223911
http://www.phibetaiota.net/wp-content/uploads/2014/12/Sensemaking-Process-Pirolli-and-Card.pdf
http://www.phibetaiota.net/wp-content/uploads/2014/12/Sensemaking-Process-Pirolli-and-Card.pdf
http://www.phibetaiota.net/wp-content/uploads/2014/12/Sensemaking-Process-Pirolli-and-Card.pdf
http://dx.doi.org/10.1109/ICSE.2013.6606701
http://dx.doi.org/10.1109/ASE.2003.1240310

26.

27.

28.

29.

30.

Daniel M. Russell, Mark J. Stefik, Peter Pirolli, and
Stuart K. Card. 1993. The Cost Structure of
Sensemaking. In Proceedings of the INTERACT 93
and CHI '93 Conference on Human Factors in
Computing Systems (CHI ’93). ACM, New York, NY,
USA, 269-276. DOI:
http://dx.doi.org/10.1145/169059.169209

Caitlin Sadowski, Kathryn T. Stolee, and Sebastian
Elbaum. 2015. How Developers Search for Code: A
Case Study. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering
(ESEC/FSE 2015). ACM, New York, NY, USA,
191-201. DOI:
http://dx.doi.org/10.1145/2786805.2786855

Jonathan Sillito, Gail C. Murphy, and Kris De Volder.
2006. Questions Programmers Ask During Software
Evolution Tasks. In Proceedings of the 14th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering (SIGSOFT '06/FSE-14). ACM,
New York, NY, USA, 23-34. DOI:
http://dx.doi.org/10.1145/1181775.1181779

Justin Smith, Chris Brown, and Emerson Murphy-Hill.
2017. Flower: Navigating Program Flow in the IDE. In
IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC’17). Raleigh, NC,
USA, 19-23. http://wwwé.ncsu.edu/~ jssmit11l/
Publications/VLHCCl?_Flower.pdf

Diomidis Spinellis. 2003. Reading, Writing, and Code.
Queue 1, 7 (Oct. 2003), 84-89. DOI:
http://dx.doi.org/10.1145/957717.957782

31.

32.

33.

34.

J. Stylos and B.A. Myers. 2006. Mica: A Web-Search
Tool for Finding APl Components and Examples. In

Visual Languages and Human-Centric Computing
(VL/HCC’06) (VL/HCC'06). IEEE, 195-202. DOI :

http://dx.doi.org/10.1109/VLHCC.2006.32

Neeraja Subrahmaniyan, Laura Beckwith, Valentina
Grigoreanu, Margaret Burnett, Susan Wiedenbeck,
Vaishnavi Narayanan, Karin Bucht, Russell Drummond,
and Xiaoli Fern. 2008. Testing vs. Code Inspection vs.
What else?: Male and Female End Users’ Debugging
Strategies. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI '08).
ACM, New York, NY, USA, 617-626. DOI:
http://dx.doi.org/10.1145/1357054.1357153

Michael B. Twidale, David M. Nichols, and Chris D.
Paice. 1997. Browsing is a collaborative process.
Pergamon Infarmation Processing & Management 33,
6 (Nov. 1997), 761-783. DOI:
http://dx.doi.org/10.1016/80306-4573(97)00040-X

Jeremy Warner and Philip J. Guo. 2017. CodePilot:
Scaffolding End-to-End Collaborative Software
Development for Novice Programmers. In Proceedings
of the 2017 CHI Conference on Human Factors in
Computing Systems (CHI ’17). ACM, New York, NY,
USA, 1136-1141.D0I:
http://dx.doi.org/10.1145/3025453.3025876

http://dx.doi.org/10.1145/169059.169209
http://dx.doi.org/10.1145/2786805.2786855
http://dx.doi.org/10.1145/1181775.1181779
http://www4.ncsu.edu/~jssmit11/Publications/VLHCC17_Flower.pdf
http://www4.ncsu.edu/~jssmit11/Publications/VLHCC17_Flower.pdf
http://dx.doi.org/10.1145/957717.957782
http://dx.doi.org/10.1109/VLHCC.2006.32
http://dx.doi.org/10.1145/1357054.1357153
http://dx.doi.org/10.1016/S0306-4573(97)00040-X
http://dx.doi.org/10.1145/3025453.3025876

	Introduction
	Preliminary Pilot Studies
	Design Space
	Conclusion
	REFERENCES

