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Abstract. Optimization of complex systems often involves running a
detailed simulation model that requires large computational time per
function evaluation. Many methods have been researched to use a few
detailed, high-fidelity, function evaluations to construct a low-fidelity
model, or surrogate, including Kriging, Gaussian processes, response sur-
face approximation, and meta-modeling. We present a framework for
global optimization of a high-fidelity model that takes advantage of low-
fidelity models by iteratively evaluating the low-fidelity model and pro-
viding a mechanism to decide when and where to evaluate the high-
fidelity model. This is achieved by sequentially refining the prediction
of the computationally expensive high-fidelity model based on observed
values in both high- and low-fidelity. The proposed multi-fidelity algo-
rithm combines Probabilistic Branch and Bound, that uses a parti-
tioning scheme to estimate subregions with near-optimal performance,
with Gaussian processes, that provide predictive capability for the high-
fidelity function. The output of the multi-fidelity algorithm is a set of
subregions that approximates a target level set of best solutions in the
feasible region. We present the algorithm for the first time and an anal-
ysis that characterizes the finite-time performance in terms of incorrect
elimination of subregions of the solution space.

Keywords: Global optimization - Multi-fidelity models -
Meta-models - Probabilistic Branch and Bound - Gaussian processes

1 Introduction

Complex systems are often represented and evaluated by means of a detailed,
high-fidelity simulation model that requires significant computational time to
execute. Since the high-fidelity model is time consuming to run, a low-fidelity
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model is often constructed that takes far less computational time to run, but
whose output is affected by error. For example, in engineering design, the high-
fidelity model may involve a finite element analysis with a fine grid, whereas
a low-fidelity version may use a coarse grid in the finite element analysis. The
coarse grid is faster to execute, but provides less accurate performance met-
rics of the design. As another example, in manufacturing, a high-fidelity model
may include a detailed discrete-event simulation with a complicated network of
queues, whereas a low-fidelity version may be an analytical Markov chain model
that is constructed by making simplifying assumptions.

An interesting and relevant question is how to make use of low-fidelity mod-
els to increase the likelihood of determining a solution, or set of solutions, that
achieve good high-fidelity performance. The importance of the problem is well
documented by the rich literature on the topic across different areas of engi-
neering and computer science [4,7,11,14,16,20]. Most of the approaches can be
brought back to the large category of Bayesian optimization methods.

Bayesian optimization is a well-established approach [12,13,17] to optimiz-
ing a complex system described by a potentially multi-modal, non-differentiable,
black-box objective function such as the high-fidelity model we refer to. A
Bayesian method starts with an a priori distribution, commonly a Gaussian dis-
tribution with a special covariance matrix, that represents the unknown objective
function. Given several function evaluations of the objective function, the poste-
rior (conditional) distribution of the objective function is updated. A tutorial on
Bayesian optimization is given in [2]. We follow the basic procedure of updating
the spatial covariance matrix using the observed function values.

There are several alternatives to Gaussian distributions to describe the objec-
tive function. In particular, radial basis functions have shown a remarkable
success [19], additive Gaussian Processes that assume a dependency structure
among the co-variates exists and can be learned [3,8]. Moreover, embeddings
have been investigated in order to tackle the problem of scalability of model-
based approaches [9,18].

Our approach is to use the statistical power of Gaussian distributions to
relate the low-fidelity model to the high-fidelity model, and thus use fewer high-
fidelity function evaluations. Several other papers have used a combination of
low- and high-fidelity models, however, our approach is unique in that it embeds
the Gaussian process into Probabilistic Branch and Bound [5,23], which pro-
vides a statistical confidence interval on how close the solutions obtained in the
algorithm are to the global optimum.

In the literature relevant to this work, Xu et al. [21] proposed MO?TOS
(Multi-Fidelity Optimization with Ordinal Transformation and Optimal Sam-
pling) that relies on the concept of Ordinal Transformation (OT). OT is a
mapping X — H, where X is a d-dimensional discrete space and H is a one-
dimensional rank space constructed by associating to each point of X, the rank
computed according to the evaluation returned by the low-fidelity model. This
mapping, as defined by the authors, can be applied to any finite space X. Once
the mapped space is computed, the solutions are grouped in subsets defined using
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'H, and sampled according to the Optimal Sampling (OS) scheme. The theoret-
ical analysis performed by the authors provides properties that a low-fidelity
model should have to guarantee an improved performance of the proposed algo-
rithm with respect to a benchmark version not using any low-fidelity informa-
tion. Xu et al. [22] further extends the previous contribution by proposing an
innovative optimal sampling methodology that maximizes the estimated proba-
bility of selecting the best solution. In [6], the authors extend the framework to
continuous optimization by proposing a novel additive model that captures the
relationship between the high- and low-fidelity functions and trying to sample
mostly with the low-fidelity model. A potential drawback of this approach is
that it assumes that a unique additive model can be used that fits the function
across the entire solution space. In the direction to consider different behaviors,
in [10], a multi-fidelity algorithm for global optimization was introduced that
used Probabilistic Branch and Bound (PBnB) [5,23] to approximate a level set
for the low-fidelity model, and under assumptions of consistency between the
low-fidelity and high-fidelity models, the paper showed an increased probability
of sampling high-quality solutions within a low-fidelity level set.

In this paper, we relax the assumption in [10] that the low-fidelity level set
and high-fidelity level set need to intersect and the assumption of a unique model
in [6], by combining the work in [10] with [6]. The new approach derives several
predictive models of the original high-fidelity function using both high- and low-
fidelity evaluations, in the subregions identified by PBnB. Specifically, when
the predictive model(s) fails a certification test, it indicates that either more
high-fidelity observations are needed, or that the subregion should be branched
into smaller subregions. When the predictive model is good, we use it to decide
which subregion should be explored more to discover global optima. A theoretical
analysis of this new algorithm provides a probability of correctly focusing on
good subregions on any iteration k, providing new finite-time results.

2 Framework

We consider an optimization problem with a high-fidelity black-box function fg
mzin fu(x) (1)

subject to x € S

where S C R is the feasible region, and fz : S — R. We also consider a low-
fidelity model, fr, : S — R, and assume that the computation time to evaluate
fr(x) is much less than that to evaluate fg(x).

We are interested in determining near-optimal solutions in a target set that
consists of the best §-quantile of solutions, which can be defined as a level set
bounded by a quantile yg(9,.5),

yu (0,8) = argmin{ P(fg(X) <ylr € ) >}, for 0 < < 1, (2)
y
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where X is uniformly distributed over S. Using yp (0, .5), the target level set is
defined as

Ly(6,S)={ze€S: fulx) <yn(s,9)}, for 0 < < 1. (3)

Similarly, we define yr,(6,.5) and Ly, (d, S) as quantile and target set associated

with the low-fidelity model, respectively. We note that for quantile level §, § =

”(Llf’(g)’s)) = V(L:(gs),s)), where v(-) is the d-dimensional volume (i.e., Lebesgue

measure) of a set.

The goal of the algorithm introduced in this paper is to approximate the
target level set Ly (0,5) using relatively few high-fidelity function evaluations
and allow many more low-fidelity function evaluations.

2.1 Using Statistical Learning to Bridge High and Low Fidelity
Models

As is common in Bayesian optimization [2], we use Gaussian processes as a
framework to provide a statistical relationship between the low-fidelity function
and the high-fidelity function, so that we can use the low-fidelity function eval-
uations to predict improving regions and focus the execution of the high-fidelity
function. We next briefly summarize a Gaussian process modeling framework
and introduce notation.

Within the Gaussian process modeling framework, a function f(z) is inter-
preted as a realization from an infinite family of random functions, i.e., a sta-
tionary Gaussian process Y (z). The statistical model estimating the behavior of
the unknown function Y is characterized in terms of an optimal predictor §(x)
and predictive error s?(x) based on a set of k observations, z; € S, with func-

tion evaluations f(x;), for i =1,..., k. We let X represent the set of observed
locations X = {x1,...,2x}, and let f be a k-vector of the observed function
evaluations f(x;), for i =1,... k.
The statistical model of Y, conditional on the sampled observations, is:
Y (2) ~ N (§(2),5° (x)) (4)
for any x € S that has not yet been observed,! such that:
- 1TK-1f
SN A TR (F N
g(z):=p+c"K ' (f—pl) and fi: TTR=I1 (5)
and
T —10)2
20 ._ 2 Tye—1 (1-1"K"'c)
S(CC).—’T (1—CK C+W . (6)

Here, 1 is a k-vector having all elements equal to 1, K is a k x k spatial
variance-covariance matrix parameterized over ¢, and ¢ is a d-dimensional vector
of weighting parameters, obtained upon the sampling of k points.

! For an observed point x;, § (z;) = f(z:) and s (z;) = 0.
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The scale correlation coefficients in the d-dimensional vector ¢ are sensi-
tivity parameters that control how fast the correlation decays with the distance
between two observed points (z;, z;). Given k observations, the d+1 parameters
(r and ¢;,i =1,...,d) are estimated using maximum likelihood [15].

The spatial variance-covariance matrix often appears in its exponential form,
where the (i, j)th element of K is

d
K(X,9),; =exp l— Z o (zig — fj,l)t] (7)
=1

and z;; is the Ith element of x;. The parameter ¢ controls the smoothness of the
response. When ¢ = 1, Eq. (7) is known as the exponential correlation function,
and when ¢ = 2 it is known as the Gaussian correlation function [15]. In this
paper, we adopt the Gaussian correlation function, with ¢ = 2.

The k-vector ¢ contains the spatial correlation between the prediction point
z € S and the sampled locations z;, j = 1,...,k, where the jth element of c
uses the [th element of the prediction point z; and the sampled location z;:

d
c(x,X,¢); = exp [— > (- z5,) (8)
=1

where, again, we let t = 2.
Given k observations, it is straight-forward to build a Gaussian process model
Y (x) with predictor § (x) as in (5) and predictive error s(z) as in (6) (Fig. 1).
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(a) Tllustration using four observations.  (b) Illustration using seven observations.

Fig. 1. Illustration of a one-dimensional function f(z) with a predictor function §(z)
and predictive error s*(z), using four observations in (a) and seven observations in (b).

Our approach to determine a relationship between the high-fidelity function
fr and the low-fidelity function fr, is to build several Gaussian process models
based on high- and low-fidelity function observations. Following the approach
in [6], we let X represent the set of observations that are sampled in S and only
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evaluated with high-fidelity (computationally expensive) function evaluations;
let X, represent the set of observations which are sampled and only evaluated
with the low-fidelity (very fast computation) function; and let Xp be the set
of points independently sampled that are evaluated with both high- and low-
fidelity functions. The observations in Xp are used to estimate the bias using
both cheap and expensive function evaluations, as a type of training set.
Under a Gaussian process multi-fidelity perspective, consider the following
high-fidelity, low-fidelity, and bias statistical models used in the algorithm:

Y (2) ~ N (9. (2), 57 (x)) 9)
. (z) = . + <TK (f — 1)

Tre—1.)2

2 2 Tre—1 (1_1K~ C')

sfx)=1*(1-cKle. 4 —— — 7
(@)= ( 1TK- 1

where the subscript - is replaced by either H, L, or B indicating which function
evaluations are used in the statistical model (high-fidelity, low- fidelity or bias,
respectively). Specifically, the high-fidelity model uses fz (z;) = fu(x;) for x; €
Xg, the low-fidelity model uses fr(x;) = fr(x;) for 2; € Xz, and the bias model
uses fp(zi) = fu(xi) — fr(a;) for z; € Xp.

The statistical relationship between the high- and low-fidelity models is:

Yair (z) =Y (2) + Yp (2) (10)

and use the set of observations Xp to reconstruct the prediction of the low-
fidelity model conditional on the high-fidelity simulations performed, namely,

Yoia () = Yy () — Yp (2) (11)

for x € S. This model will be at the basis of the certificate that we use to decide
whether or not evaluations in high-fidelity are required.

Our objective is to embed this statistical modeling into the partitioning logic
of PBnB to reduce the number of high-fidelity function evaluations and focus
them on subregions of interest.

2.2 Algorithm Details and Behavior

The main idea for the algorithm is to make a few high-fidelity function evalua-
tions and more low-fidelity function evaluations, construct the statistical mod-
els, and use them to focus the location of more high-fidelity observations to
eventually obtain subregions that are likely to contain the target set Ly (d,.9).
We iteratively partition subregions of S, take additional high- and low-fidelity
function evaluations, refine the statistical models, and subdivide the subregions
maintaining statistical confidence that they contain the target set.

In the algorithm, we test whether Y7, generates a good predictor 4z, on a
subregion of S. The hypothesis is that the model in (11) generates an accurate
prediction of the low-fidelity response. Such a test is relevant to the search since
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the model in (11) is built using also the high-fidelity observations. The ratio-
nale is that, if Y7y generates a good predictor for fr, then Y, will also give
good performance in predicting fg, the function we are interested in optimizing.
However, testing over the model Y|z, would require many high-fidelity function
evaluations, which is undesirable due to the high evaluation cost.

When we have a good predictor over a subregion, we can use the predictor to
decide if the subregion is likely or unlikely to contain the d-quantile target set.
If it is likely to contain the target set, we refine the partition of the subregion to
focus the use of the expensive high-fidelity function evaluations. If the subregion
is determined to be unlikely to contain the target set, we conclude that there
is enough statistical evidence (at 1-a) to refrain from making more high-fidelity
evaluations in that subregion. We use the framework of PBnB, integrated with
the statistical models, to make decisions whether to evaluate using a high or low
precision model and to guide the sampling locations.

Overview of Multi-fidelity Algorithm:

Step 0. Initialize: Set confidence level «,0 < a < 1, target quantile 4,0 <
6 < 1, tolerated volume €,e¢ > 0, and partitioning number B integer valued.
Initialize the set of current subregions X = {o1,...,0p}, with Uszlaj = S and
szlaj = (), the number of subregions J = B, and the iteration counter k = 1.

Step 1. Fvaluate functions and build statistical models:
Generate additional sample points in each subregion o; for all j =1,...,J, and
oj € X} so there is at least one point in each subregion for high-fidelity evalu-
ations, for low-fidelity evaluations, and for both high- and low-fidelity function
evaluations. Update the sets Xp,, X1, and Xp, for those points with high-,
low-, and both high- and low-fidelity function evaluations. While the number
of samples is important for cross validating the statistical models, the idea is
that the number of high-fidelity evaluations is much less than the number of
low-fidelity evaluations, |Xg| ~ |Xg| << |Xp|, where | - | represents the car-
dinality of a set. In the numerical results, we let |Xz| > 10Bd as is common
when constructing Gaussian processes. However, this may be too large for com-
putationally expensive high-fidelity function evaluations, so we just ensure that
Xgnoj|>1and |[XgnNoj|>1forj=1,...,J.
_ Update fu(z;) = fu(w;) for v; € Xg,, fr(x:) = fo(z;) for x; € Xp,, and
IB(xi) = fu(xs) — fo(x;) for ; € Xp, .

Given the function evaluations, build cross-validated models using the avail-
able observations for the two fidelities and the bias as well as the conditional
densities: YH, YL, YB, YL|H7 and YH|L~

Step 2. Test predictive capability of low-fidelity model:
As in PBnB, partition each subregion in the current set of subregions Y into B
new subregions, denoted o1, ...,0;, where J = |X%|B and ﬂleaj = (). Update
i, with the newly branched subregions.

Only using the low-fidelity samples, build J low-fidelity Gaussian process
models, denoted Y7, ;, for each newly created subregion o, j = 1,...,J. Note
that there may be no points in Xz, that are also in a new o;, in which case,
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more points may be generated and evaluated with fr. Also, if there are no points
in Xg, or Xp, that are also in o, use an extrapolation procedure to build the
subregion-specific models Yy ; and Yp ;.

For each subregion o;, without evaluating the high-fidelity function at any
new points, use Yz, j, Yy ; and Yp ; to build subregion-specific models Y7, g ;
and YH\L,j fOI'j = 1,...,J.

For each subregion o}, test the hypothesis that the Gaussian process Y7,y ;
generates an accurate prediction of the low-fidelity response Y7, ;. We propose
the following test to derive a low-fidelity certificate:

Jo(x) = g m,;(x)
SL\H,j(fL’)

Ho: Y7 () ~N (@L\H,j($)7s%|H,j(x)) and Q(x) =

forz €ojand j =1,...,J. We compute the test statistic () on a grid of points
in 0; to estimate the quantile and compare it to a standard normal value 2,2,
assuming the normality assumption in the null hypothesis Hy.

If the test fails in a subregion, then, with 1 — « confidence, we reject the
null hypothesis and conclude that the predictor is providing poor performance
in that subregion. In this case, we need to make more high-fidelity evaluations
in the subregions that fail, so the algorithm goes to Step 1.

If the test does not fail, then proceed to Step 3 with Yy ; for each subregion
O’j7j:].,‘..,J.

Step 3. Use Yy ; with additional samples to make pruning decision:

For each subregion o; in Xy, j = 1,...,J, uniformly and independently
sample N = Ln(?_ﬁ—‘ points T, », forn =1,..., Ni, and evaluate them with
v (S

Ym|L,j- Notice that this is relatively fast to compute and does not require any
high-fidelity function evaluations. Within each subregion o, order these sampled
points by their predicted values §p |z ; and denote them Z,. (1),...,%s; (Ny)>
where

UL, (To,,1) < JHIL, (To,,2) < - S UL, (To,,(N0))-

Also order all of the points Z,, , for j = 1,...,J and n = 1,..., N; by their
predicted values. Since the predicted value function is subregion specific, for
notational purposes, let g’;llL(gz) = Um|L,;(%) for T € 0;. Then, we can use this
function Q’;{‘L to order the points Z,, , and denote them Tx, (1),...,Tx5, (N,
where

JinL (@) <0 Esa@) < < 95 Eson)-

Perform the following comparison, the pruning test, for each subregion o,
. - - N k
riLg (Toy.) = 2op su12,5(Toy. 1) > Gnie (Fo,.0) + 22p smi(@s,0)  (12)

where s satisfies,

min s : Si: (J\ka> (k) (1= d)M > 1 — %. (13)



A Framework for Multi-fidelity Modeling in Global Optimization Approaches 343

The test in (12) compares the best value in a subregion with the s-best value overall,
accounting for an error term with confidence ap.

If (12) is satisfied, prune o;. If (12) is not satisfied, keep o;. Update Xx1 with the
subregions in Y that have not been pruned.

Update agt+1 = ay/B and

5kv(2k)
v(X%) — (X% \ Zit1)’

(14)

Okt1 =

Step 4. Continue? Check a stopping criterion and either stop and return the cur-
rent set of subregions in Y41 to provide an approximation to the target level set, or
increment the iteration counter k « k + 1 and go back to Step 1.

Tllustrative Fxample. We showcase the proposed algorithm with a simple example
where the true (unknown) function, with a discontinuity at z = 0, and the correspond-
ing low fidelity are:

ot = 2 - sin(z) 4+ 10
77115 sin(22) = 5

if -5<z<0

P if 0<z<5.

if —5<z<0 2.2-sin(z) + 7
if 0<z<5.

~ ) L5 sin(0.752) — 5

Figure 2(a) shows the quality of the predictor {1 (x), when 4 points are evaluated
in low-fidelity and only 2 in high-fidelity. In Fig.2(b), the interval is partitioned into
two subregions, and 4 more points are evaluated in low-fidelity, while only 2 more
in high-fidelity. The partition is very effective in this example, and Step 3 is able to
confidently prune the left half.

——Jn|L

F=-- —— L
§ - = =g £ 2sm)L

= = =Jm £ 2sp)

fn
O fu samples
% f, samples

"
O fu samples
% f, samples

-10
5 4 3 2 A 0 1 2 3 4 5 5 4 3 2 A 0 1 2 3 4 5

(a) First iteration with 4 low-
fidelity and 2 high-fidelity eval-

uations.

(b) Partition and add 4 low-
fidelity and 2 high-fidelity eval-
uations.

Fig. 2. Illustration of a one-dimensional function fm(x) with a predictor function
9u | (r) and predictive error sz‘ . (x), across two iterations of the algorithm with
increased simulation budget. Note that only high fidelity values are interpolated.
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3 Algorithm Analysis

The analysis of the multi-fidelity algorithm provides a probabilistic guarantee that the
approximation of the target set does not incorrectly prune a large volume. The main
result in Theorem 1 says that, on any kth iteration, the volume of accumulated region
that was pruned incorrectly is less than e with probability (1 — a)2.
Lemma 1. For any iteration k > 1, suppose all previous pruning is correct, that is,
the comparison in (12) is satisfied for all of the pruned subregions, x € S\ Xi. Then,
the 8k updated according to (14) can be used to determine the quantile over the entire
set S, i.e.,

yinn(6,8) =yt Ok, k) (15)

where the quantile notation, as in (2), is used with function Q’;{‘L.

Proof. Lemma 1 is a special case of Theorem 1 in Huang and Zabinsky [5] with no
maintained subregions.

Lemma 2. Suppose o, has been pruned on the kth iteration. Also, suppose
yZ‘L((Z S) < QZ‘L (z54.,(5))- Then, the volume of the incorrectly pruned region, i.e.,

v(L’}ﬂL((S, S)Noyp), is less than or equal to €, with probability at least 1 — au:

€

P (U(L’%\L(& S)Nop) < erlyinn(d,S) < kL (wzk,(s))) >(1—ar)’ e = B

Proof. Lemma 2 is a special case of Theorem 2 in Huang and Zabinsky [5] applied to
function QZlL.

Theorem 1. The pruned subregions on the kth iteration contain at most € volume of
the target & level set L’;HL(& S) with probability (1 — «)?,

P (u(Ls(6,9)\ i) <) > (1- )™, (16)
Proof. Suppose there are d,, < B™ subregions pruned at iteration m and e, = 5%,

then we have dmem < €. Considering a subregion o;" that was pruned at iteration m,
m =1,...,k, then the incorrect pruned volume results

P, = P (v(L51(0,8) \ Up2107") < dumemlyiie (6, 9) < s (25,,.) )

= TP (0(Z316.9) \ o) < enly(5.5) < 0512 (5,0 o) (17)
> (1—am)®™™ (18)

where (17) holds since each subregion is pruned independently, and (18) holds due to
Lemma 2. Assuming that the pruning decision in iteration k is made independently
from the decisions on prior iterations, the following holds,



A Framework for Multi-fidelity Modeling in Global Optimization Approaches 345

P(o(LY(5,S)\ Zx) < ¢) > P (U(L’;{‘L(a, )\ Uk _y Ulm, o) < dmem)

Il
=

P (U(LZ\L(& S)\Upoyp") < dmem|ymn(9,5) < JuiL (ilfzm,(s)))

m=1
P (ym2(6,5) < 9uiL (T5,,.))
k
2 H (1= am)*™ P (yri2 (0m, Em) < Guiz (T5,,.(5))) (19)
m=1

k
> JT (10— am)®™ (1 - am) (20)
> (1—am)2B = H(l—am)B(l—am)B (21)
> (1—a)(1-a) = (1-a)? (22)

where (19) holds based on Lemma 1 and (20) applies the interval quantile estimated
from [1] with s calculated as in (13). The inequality in (21) holds since dn, < B.
Finally, the inequality in (22) is obtained by repeatedly applying Bernoulli’s inequality
(1-%)% =201 -B%). O

4 Conclusions

Our multi-fidelity algorithm iteratively constructs a predictor function that is updated
and specialized over subregions of the entire feasible region. Since the predictor is
constructed to pass a test indicating that it is of good accuracy, we can use it to guide
the placement of high-fidelity function evaluations. Leveraging our statistical model,
Theorem 1 provides a finite time probabilistic guarantee for the quality of the resulting
approximate target level set.
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