
PDAWL: Profile-based Iterative Dynamic
Adaptive WorkLoad Balance on Heterogeneous

Architectures

Tongsheng Geng1, Marcos Amaris2, Stéphane Zuckerman3, Alfredo Goldman2,
Guang R. Gao4, and Jean-Luc Gaudiot1

1 University of California, Irvine, CA, USA
{tgeng, gaudiot} @uci.edu

2 University of São Paulo, São Paulo, Brazil
{amaris, gold} @ime.usp.br

3 Laboratoire ETIS, CY Paris Universités, ENSEA, CNRS, France
stephane.zuckerman@ensea.fr

4 University of Delaware, Delaware,USA
ggao.capsl@gmail.com

Abstract. While High Performance Computing systems are increas-
ingly based on heterogeneous cores, their effectiveness depends on how
well the scheduler can allocate workloads onto appropriate computing de-
vices and how communication and computation can be overlapped. With
different types of resources integrated into one system, the complexity of
the scheduler correspondingly increases. Moreover, for applications with
varying problem sizes on different heterogeneous resources, the optimal
scheduling approach may vary accordingly. We thus present PDAWL, an
event-driven profile-based Iterative Dynamic Adaptive Work-Load bal-
ance scheduling approach to dynamically and adaptively adjust workload
to efficiently utilize heterogeneous resources. It combines online schedul-
ing (DAWL), which can adaptively adjust workload based on available
real time heterogeneous resources, with an offline machine learning (profile-
based estimation model) which can build a device-specific communica-
tion computation estimation model. Our scheduling approach is tested on
control-regular applications, Stencil kernel (based on a Jacobi Algorithm)
and Sparse Matrix-Vector Multiplication (SpMV) in an event-driven run-
time system. Experimental results show that PDAWL is either on-par or
far outperforms whichever yields the best results (CPU or GPU).

Keywords: Heterogeneous many-core computing · workload balance ·
Adaptive modeling · ML assisted scheduling

1 Introduction and Motivation

As the current TOP500 rankings show, most High-Performance Computing
platforms feature heterogeneous hardware resources (CPUs, GPUs, FPGAs,
etc.) [11]. In the future, the nodes of such platforms are expected to be even
more heterogeneous and they will feature side-by-side, fast and slow computing

2 T. Geng et al.

units mixed with accelerators, I/O nodes, etc. Heterogeneous platforms offer the
promise of both better energy efficiency and performance. However, this comes
at a cost in terms of code development and resource management.

Meanwhile, whole sectors of scientific computing continue to rely on iterative
algorithms. In particular, Stencil-based computations are at the core of many
essential scientific applications: Stencils are used in image processing algorithms,
e.g., convolutions; partial differential equation solvers, Laplacian transforms, or
computational fluid dynamics, linear algebra, etc. More specifically, the Jacobi it-
eration method [19] has been proposed to solve sparse triangular systems arising
from incomplete Cholesky preconditioning. A diverse set of realistic symmetric
positive definite test problems have proved that Jacobi iterations are effective
for a large range of problems [4], while block techniques can further help im-
prove the performance. Other kernels are also used in iterative algorithms, such
as sparse matrix-vector multiplications (SpMV). As opposed to Stencil (regu-
lar computing per row/column), the individual work-items of SpMV exhibit a
different computational load profile since the numbers of non-zero elements per
row may vary significantly. However, both Stencil and SpMV are control-regular,
and the accelerator and host regularly synchronize until the computation is fin-
ished. Finding the right workload balance between accelerator and host for both
Stencil and SpMV is the challenge.

Our research is based on the following observations: with a few exceptions
(detailed in Section 5), most work dealing with accelerators—GPUs—has fol-
lowed one of two paths: (1) fully offload the most compute-intensive parts of
a given application to a GPU, or (2) statically partition the “hot” parts of an
application between “CPU-friendly” and “GPU-friendly,” i.e., running solely on
(respectively) the CPU or the GPU.

This paper presents a novel approach to dynamic scheduling of tasks on
heterogeneous systems. It is based on a profile-based machine-learning approach
and explores the concept of co-running, as defined by Zhang et al. [25]: a system
has enabled co-running if it runs applications decomposed into tasks capable
of running simultaneously on both CPUs and general-purpose accelerators. Our
approach, PDAWL, offers the following characteristics:

1. PDAWL is a Profile-based Iterative Dynamic Adaptive WorkLoad balanc-
ing algorithm for heterogeneous systems. It can dynamically and adaptively
adjust the workload based on the run time situation (dynamic) and hard-
ware platform (static) information. An offline machine learning approach is
employed to build the heterogeneous resources performance-workload (com-
munication vs. computation) estimation model based on the analysis of the
performance of pure CPUs and GPU. The online scheduler adaptively ad-
justs the workload allocation based on the run time situation. Combining
online and offline information improves flexibility and accuracy.

2. The event-driven characteristics of PDAWL increase flexibility: Multiple lev-
els of parallelism can be employed to improve the flexibility of scheduling.

PDAWL: Profiled-based Iterative Dynamic Adaptive WorkLoad Scheduling 3

3. The efficiency of PDAWL is evaluated with control-regular applications:
Stencil-based kernels (Jacobi algorithm), featuring regular data process and
SpMV-CSR kernels, featuring irregular data process.

The rest of the paper is organized as follows: Section 2 reviews the main
concepts of this work; Section 3 describes our methodology; Section 4 focuses
on our main experimental results; Section 5, reviews the state of the art Finally,
Section 6 concludes this work and presents the planned future work.

2 Background

PDAWL leverages data-driven execution models and their implementation in
large-scale heterogeneous machines at the runtime system level.

Runtime System: We extended DARTS [1,18], an implementation of the Codelet
Model [26], to include GPU-aware scheduling capabilities. DARTS relies on
dataflow-inspired event-driven parallelism. It can implement fine, coarse, or
hybrid-grain parallelism as demanded by the scheduling algorithm.

Heterogeneous Computing: This work considers CPU-GPU heterogeneous sys-
tems where GPUs are connected to a host machine via a PCI Express (PCIe)
bus. Both have different memory address spaces, and data must be explicitly
copied back and forth between the two memory pools.

Concurrent Streams on GPUs: CUDA has been augmented with stream-based
constructs starting with CUDA v7. This allows the accelerator to efficiently
overlap computation and communication with the host.

3 Methodology

In this section, we present the two ways with which we spread the workload
between the host and the accelerator. Dynamic adaptive work-load scheduling
is discussed in Section 3.1; Section 3.2 presents our complementary profile-based
approach. As will be discussed in Section 4.1, we will target two types of control-
regular kernels: Stencil, and a sparse matrix-vector product.

3.1 Dynamic Adaptive Work-Load Scheduler

We aim at finding the right load balance that will maximize throughput when
CPUs and GPUs execute. Different factors [9] should be taken into account: the
accelerator’s memory size, the throughput of PCIe, the structure of the memory
hierarchy, the utilization of the cache, the respective computing capabilities of
CPUs and GPUs etc.

4 T. Geng et al.

Data-regular computations The workload can be decomposed into multiple in-
stances of the same tasks and run on both CPUs and GPU.

GPUnaive = memcpyHost→Device + ComputeDevice

NumThreadsDevice
+ memcpyDevice→Host (1)

Eq. 1 models the total GPU execution time. However, it is overly simple.For
example, when the various DMA engines are available on modern GPUs, as
well as the Stream type in CUDA, it is possible to overlap communications and
computations. This means that Eq. 1 is a pessimistic/worst-case view of a single
GPU’s performance. Conversely, it guarantees performance will be maximal if
GPUnaive is “not too high.”

CPUnaive =
ComputeHost

NumThreadsHost
(2)

Eq. 2 models the CPUs execution time. This model is also rather näıve; While
data transfers with the DRAM are not negligible, they take orders of magnitude
less time than data transfers on a PCIe bus: they can be neglected. Further
more, the performance does not always scale well over multiple cores and nodes.
The memory/cache conflicts and synchronization issues incur quite a large over-
head. Moreover, HPC processors tend to have a very efficient and aggressive
way of prefetching data, which tends to fully hide the latency related to DRAM
transfers—especially in the case of consecutive reads or writes. The overlapping
data transfers (due to caches and prefetching operations) are included in the
execution time.

r =
CPUnaive

GPUnaive
(3)

In Eq. 3, r is the ratio between two quantities, GPUnaive and CPUnaive, com-
puted in Eq. 1 and 2. If r � 1, then the workload will execute much faster if it
is on an accelerator. Hence, most if not all of the computation will be carried
on the GPU. On the contrary, if r � 1, then the amount of data transfers is
saturating the PCIe bus when running it on a GPU, and in general, the overall
computation is much faster using general-purpose processing elements. When
r ≈ 1, task scheduling must enable co-running, so that both the host and the
accelerator are allocated their fair share of the work in order to complete the
computation as fast as possible.

Data-irregular computations Irregular computations can lower GPU performance
dramatically. To counter this effect, we can extract the irregular parts and as-
sign them to CPUs. The remaining regular workload can then follow the same
methodology as with data-regular computations.

The Dynamic Adaptive WorkLoad (DAWL) scheduler DAWL was created to
decide what tasks should be scheduled and where to schedule workload to min-
imize the load imbalance between heterogeneous processing elements. It adjusts
the workload distribution on different computing resources based on real-time
information and the knowledge we have derived from Eq. 1, 2, and 3. It consists
of seven main steps, outlined in Figure 1.

PDAWL: Profiled-based Iterative Dynamic Adaptive WorkLoad Scheduling 5

 CPU n

Data

…

Data

Data

Initial workload Static
Partitioning

1

Processing Elements Setup

CPU 1 CPU n…

GPU

…

2

c

Processing Elements Setup:
First Run

CPU 1 CPU n…

GPU

3

cc ccc

cccccc

Measure time

c

Subsequent work allocation
(based on run time situation)

CPU 1 CPU m…

GPU

4

cc ccc

ccccc

c c

Collect
Events

End of Time Step

CPU CPU…

GPU

6

c

c

c
sync

Compute

New Average

Adjust

ratio

5

More Time Steps to Compute

End

of

Computation

7

CPUCPUCPUCPU

GPU Free
Resources

Allocate
Resources &
Work

Machine learning black box

CPU
Model

GPU
Model

HW info

1

RT info

2

Oprofile Nvprof

…

CPU GPU PCIe

…

HW
features

Run time
features

Run time
data

3

linear
Regress
ion

Random
forest

Best fit

4

Heterogeneous Model

ML

X

ML

ML

ML

Fig. 1: PDAWL – The Dynamic Adaptive Work-Load scheduling algorithm coupled
with Machine Learning. Machine learning occurs in steps 1, 3, and 4 (see the bold
polygon ML).

1. Set up the initial workload on all the Processing Elements (PEs), namely
CPUs and GPU.

2. Configure PEs according to the given workload. This includes how many
CPUs will be put to work, whether the GPU will be also used, how much
shared memory (for the host) and global memory (for the accelerator) must
be allocated, the number of streams on the GPU, etc.

3. Simultaneously run tasks on both CPUs and GPUs, and time each execution
for their specific workloads.

4. Check the status of the PEs, estimate the completion time of other devices
based on the history timing measurements. Then allocate and run the next
workload on available PEs. Repeat until the remaining workload is within
10% of the total workload.

5. Calculate the value of ratio, where ratio = CPUcur/(CPUcur + GPUcur).
CPUcur and GPUcur are the amount of all work finished on CPUs and
GPU, respectively. The corresponding GPU ratio is obtained using the same
method. The CPUs or the GPU only take bratio × remaining workloadc
amount of work. The remaining workload is dynamically allocated to whichever
(set of) PE(s) is available after completing early.

6. Evaluate the load-balance metrics collected during the time step execution,
in particular the execution time. Adjust (coarsen) the task granularity based
on available PEs and the metrics.

7. Free all resources: PEs and memory.

6 T. Geng et al.

3.2 Profile-based Machine Learning Estimation Model

Eq. 1 and Eq. 2 are too näıve to model complex situations. The growing variety
of hardware devices as well as their combinations, increases the difficulty of
building accurate mathematical estimation models. Furthermore, any change in
the hardware configuration may cause great performance variations and result in
a need to rebuild the mathematical model. Moreover, the mathematical model
cannot capture the run time situation which is another important factor that
affects the accuracy of the performance estimation model.

Considering these factors, we designed a profile-based Machine Learning
(ML) approach to reduce the complexity of establishing an estimation model
while promoting its accuracy. We call the resulting algorithm PDAWL, short for
Profile-based DAWL. It follows four phases, as shown in Figure 1’s dotted box:

1. Collect hardware information. Table 1 lists some parameters. In addition to
these, the host’s cache related and more GPU parameters have also been
collected.

2. Collect the application’s profile information at run time as training data.
The pure CPU and pure GPU performance model are used to predict the
heterogeneous (co-running) performance model.

– CPU: We collect cache and branch related events using Oprofile [10]
– GPU: We used the gpu-trace and api-trace APIs to collect CUDA run

time information and events.

3. Normalize the collected data to a common scale
4. Cluster features: a hierarchical agglomerative clustering algorithm (HAC) is

utilized to group similarity features, collected from Oprofile and Nvprof,
and finally obtain 4 to 12 features.

5. Build a pure CPU and pure GPU profile-based estimation model.

– Run a set of ML algorithms such as linear regression, support vector ma-
chine (SVM) and random forest model. Specifically, the linear regression
model can be shown in the form: ln(F (X)) =

∑n
i=1 wiφi(xi). Where φi(x)

are functions from the set of x, x2, x3, x4, ex, lnx, x · lnx; xi are features
from last cluster step. The logarithmic scale is used to fit the final data
F (X). It provides reasonable approximations with the target variable and
reduce the non-linearity factors [2]. For SVM, we try the polynomial and
Gaussian kernels.

– Overfitting: we use 10-fold cross validation and L2 regularity to reduce the
overfitting problems.

– Evaluate models: To evaluate how well the model fits the data, a coef-
ficient of determination, Rsquared, is used. Rsquared = Explained variation

Total variation ,
with 0% ≤ Rsquared ≤ 100%. 0% indicates the model explains none of the
variability of the response data around its mean while 100% says that the
model explains all the variability of the response data around its mean.

– Build an estimation model with the best matched ML algorithm to predict
an application’s performance on this specific heterogeneous platform.

PDAWL: Profiled-based Iterative Dynamic Adaptive WorkLoad Scheduling 7

6. Build a heterogeneous prediction model based on the pure CPU and GPU
model. Based on sections 2 and 3.1, and Eq. 1 and 3, the concurrent streams
technique will be utilized when the workload is far larger than the GPU’s
global memory. Then, the huge workload will be split into relatively small
concurrent workload tasks. In this case, we can use the small workloads
performance information, obtained from the GPU model, to predict the large
workload allocation and execution on GPU.

PDAWL results from the combination of the heterogeneous prediction model
and DAWL. DAWL can dynamically adjust the workload allocation depending
on the run time execution situation. It monitors the actual execution time and
compares it with the ML-provided baseline. It then increases the confidence
interval for the next tasks and can further compensate for the insufficient off-
line ML method. The ML model remains suitable or provides some guidance
when the software or the hardware changes. This approach is suitable for all
iterative algorithms, as they often require some form of global synchronization.
The reason why we combine offline ML with online scheduling methods together
is to expect the test applications can satisfy the real-time requirements. If there is
no real-time requirement, we can use the online ML (such as stochastic gradient
algorithm) to replace offline ML to build prediction model.

4 Algorithm Implementation and Experiment Results

4.1 Experimental Testbed

Table 1: Hardware Platforms

Machines
Param. CPU Parameters GPU Parameters

PCIe
Cores Clock Socket L3 Size Mem SM Clock L2 Size Mem

Machine1 (K20) 32 2.6 GHz 2 20 MB 64 GB 13 0.71 GHz 1.25 MB 4.8 GB 6.1 GB/s

Machine2 (K20) 40 3 GHz 2 25 MB 256 GB 13 0.71 GHz 1.25 MB 4.8 GB 6.1 GB/s

Machine3 (k40) 8 3.4 GHz 1 8 MB 16 GB 15 0.75 GHz 1.5 MB 12 GB 10.3 GB/s

Machine4 (Titan) 12 3.4 GHz 1 12 MB 31 GB 14 0.88 GHz 1.5 MB 6 GB 11.5 GB/s

We ran the experiments on four heterogeneous systems, as shown in Table 1
and 2. Stencil-based computations and Compressed Row SpMV (SpMV-CSR)
were selected to evaluate our DAWL and PDAWL.

Target Applications: Stencil computation To emphasize a worst-case sce-
nario, we used the Stencil kernels described in [8], without ghost cells, which
enhances the need for synchronization. Specifically, we focused on kernel: a 5-
point 2D Stencil, double precision. We fixed the number of time steps to 30,
removing the convergence test at the end of each time step for simplification
and to make it more deterministic. Note that the CPU tasks and GPU tasks
within one time step were totally independent and that a global barrier was
inserted at the end of each iteration. Each experiment was repeated 20 times.

8 T. Geng et al.

Fig. 2: GPU/CPU hybrid: 2D Stencil slicing and tiling

There are no confidence intervals as the standard deviations were small, the
larger one being 5% and the average smaller than 1%.

The partitioning approach we employed for CPU/GPU tasks entails two steps
named “Slicing” and “Tiling,” respectively, as shown in Figure 2. A static Blocks-
Tile size was selected for DAWL. As mentioned in Section 3, different systems
architecture can yield different parameters for our ML model. Hence, it tries to
find the right match between a given Blocks-Tile size and the number of con-
current streams to issue. This results in near-optimal compute-communication
overlap.

Target Applications: SpMV computation We reuse the SHOC benchmark
suite’s implementation of SpMV-CSR [5], for both the CUDA and CPP sequen-
tial versions. We convert the sequential code to parallel code where every CPU
core can calculate one or multiple rows. Considering that the number of non-zero
elements per row in a sparse matrix may make a significant difference, we call
the denser rows (with many more non-zero elements) “irregular rows,” whereas
the others are deemed “regular rows.” Once the irregular rows can be processed
separately, the majority regular rows that are left over can be considered at reg-
ular computing and can run with our DAWL and PDAWL. To split regular and
irregular rows, we build up a co-running model on SHOC SPMV-CSR. More
specific steps will be shown in the following:

1. Analyze and evaluate statistic information (see Table 3) to estimate the spar-
sity degree of the matrix. NNZ is the number of total non-zero elements; µ
is the average number of non-zero elements per row; σ is the variance of the
number of non-zero elements per row; CV is the coefficient of variation per
row; MAX is the maximum number of non-zero elements per row.

PDAWL: Profiled-based Iterative Dynamic Adaptive WorkLoad Scheduling 9

2. Build priority groups based on the information. The highest priority level
contains the maximum non-zero number per row(s). The majority regular
rows construct of the lowest level. In the same level, group members have
similar non-zero numbers so they can run parallel. To simplify the model,
we statically set the ratio (30%) as the threshold. Top 30% maximum non-
zero number per row(s) will be extracted from the matrix and added to CPUs
priority groups. The ratio can be learned using ML model, but it will increase
training cases and time.

3. Run irregular and regular computations on CPUs and GPU, in parallel. CPUs
will proceed from the higher to the lower level and GPU will proceed from
the lowest level. Concurrent streams are leveraged here.

4. Synchronize all the computations at the end.

Parameter Space of Our Experiments We used numactl to allocate mem-
ory in a round-robin fashion and avoid NUMA-related issues. We configure the
GPU memory to 2 GB as an example to explain our methodology. We will not
show experiments with other GPU memory configuration since the overall trend
is the same for all of them.

Table 2: Software Environment

Machines GCC CUDA

Machine1 v6.2/v8.1 v8.0
Machine2 v4.85/v6.2 v8.0
Machine3 v5.4 v9.0
Machine4 v4.92 v9.1

Table 3: Matrices for SpMV

Name Dimension NNZ µ σ cv MAX

circuit5M 5.56 M 59.52 M 10.71 1356.62 126.68 1290501
eu-2005 0.86 M 19.24 M 22.30 29.33 1.32 6985
in-2004 1.38 M 16.92 M 12.23 37.23 3.04 7753
FullChip 2.99 M 26.62 M 8.91 1806.80 202.73 2312481
kmer U1a 67.7 M 138.8 M 2.05 0.37 0.18 35

Matrices Used for our Experiments. We use 50 sparse matrices from the Univer-
sity of Florida Sparse Matrix Collection (UFSMC) [6] to train and 5 matrices 3
to evaluate our DAWL/PDAWL.

4.2 DAWL: Performance Analysis

To comprehensively characterize DAWL, we performed a series of workload per-
formance analysis. We compared the DARTS-DAWL performance with GPU-Only,
CPU-Seq, DARTS-CPU, and DARTS-GPU (see Table 4 for details). DARTS-DAWL is
the implementation of DAWL on DARTS. Based on the parameters mentioned
in section 3.1, DARTS-DAWL may run on multiple CPUs or GPU, or be co-running
on both CPUs and GPU.

Figure 3 shows the speedup of different variants for the Stencil. DARTS-GPU
use concurrent streams all time. while, GPU-Only use a one-stream method when
the problem size is smaller than the GPU memory capacity. This is to avoid
superfluous synchronizations between the host and device. Concurrent streams
are utilized when the problem size is larger than the GPU’s memory capacity to
overlap communication and computation.

10 T. Geng et al.

Table 4: Stencil kernel implementation

Implementation Illustration

CPU-Seq Sequential c++ code
GPU-Only CUDA code
DARTS-CPU Multi-threads c++ code
DARTS-GPU CUDA code on DARTS (concurrent streams)
DARTS-DAWL DAWL hybrid code on DARTS

Figure 3 demonstrates the validity of our model. With 30 iterations con-
straints on Stencil kernels, when the workload is less than the available device
memory, r from Eq. 3 is far larger than 1, and the application allocates all the
workload to the device so as to yield maximum performance. When the work-
load is larger than the available device memory, it is allocated to both the host
and the device. Adding the communication & synchronization costs between two
resources types ultimately causes the total performance to drop. The speedup
ratios are quite different on different systems, which is due to the differences in
hardware. e.g., the GPU of machine 3 is a Tesla-K40, which has a higher clock
and memory frequency than Tesla-K20.

DARTS-DAWL on machine 3 should run in pure GPU mode based on the an-
alytic model. Here, DARTS-DAWL is hard coded to co-running to show our ML
approach will improve performance even in the worst case which chooses the
wrong target device as shown in Figure 5.

4.3 Profile-based Estimation Model and Result

Section 3.2 shows how we use the performance of pure CPU or GPU to pre-
dict that of concurrent CPU-GPU. Our training/validation/test set is split into
two, CPU and GPU. The “CPU set” is to build a CPU performance-resource
estimation model which can provide the “best” scheduler using minimum com-
puting resources to obtain the maximum performance (shortest execution time)
for a specific workload. combining spread and compact mapping policies, we
run experiments with different active CPU threads number (e.g. 2, 4, 8, 16. . .)
to obtain the necessary run time information by using Oprofile. PDAWL uti-
lizes this information to provide an accurate prediction model even when (for
example) some PEs are suddenly turned off because of power issues.

The “GPU set” is used to build a GPU communication-computation overlap
model, to estimate data transfer and execution time. In particular, the right
Block-Tile size can perfectly overlap communication and computation on a sys-
tem; and yet, the overlap ratio may be very low on other systems since the
available SM, PCIe throughput, etc. are different. Specifically, the estimation
model consists of: API launching, data transfer between host and device and
device computation parts. We run the two version of GPU code, with or without
concurrent streams, combining with different Block-Tile size.

The information collected by the runtime helps gather more than two hun-
dreds features for each type of device. HAC was employed to group features.
Figure 4 shows one dendrogram aiming at grouping the features in five clus-
ters. One feature with the maximum variance is selected from each cluster. We

PDAWL: Profiled-based Iterative Dynamic Adaptive WorkLoad Scheduling 11

●

●
●

●
●

● ● ●

●
●

●
● ●

● ●

●
● ● ● ● ●

● ● ● ●

●

● ●
●

●
● ● ●

●
●

●
●

●

● ●
●

● ● ●

●
●

● ● ●

●

●

● ● ●

●
●

●

●

● ● ● ● ●

●

●
● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ●

Machine 4 − GPU Titan

Machine 3 − GPU Tesla K40

Machine 2 − GPU Tesla K20

Machine 1 − GPU Tesla K20

0 5000 10000 15000 20000 25000 30000 35000

0 5000 10000 15000 20000 25000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

2.5

5.0

7.5

10.0

2.5

5.0

7.5

10.0

2.5

5.0

7.5

10.0

2.5

5.0

7.5

10.0

Size of the Problem

Sp
ee

du
p

(b
as

el
in

e
=

C
P

U
−S

eq
ue

nt
ia

l)

● DARTS−DAWL DARTS−CPU DARTS−GPU GPU−only

Fig. 3: Stencil: Speedup of the different versions

12 T. Geng et al.

then selected different group of features running the dendrogram algorithm with
different numbers of cluster groups (e.g., 4, 5, 6, · · · , 12).

Fig. 4: Stencil: Dendrogram with 5 clusters from features with correlation between the
execution times higher than |0.75|

Table 5: Stencil : Mean Absolute Percentage Error

Machines #1 #2 #3 #4

MAPE 6.43% 7.41% 3.45% 1.68%

After running various ML algorithms, as described in Section 3.2, it turns
out that the model that finds the majority of the best matches both for Stencil
and SpMV computation is linear regression: 0.93 ≤ Rsquared ≤ 0.94. The chosen
model may change with different types of applications and hardware configu-
rations. To measure the progress of the learning algorithm the Mean Absolute
Percentage Error (MAPE) was used. Table 5 shows the MAPE of the linear
model for each machine in the Stencil experiments. The important factors vary
with the hardware configuration and cluster group numbers.

Figures 5 show the results for PDAWL. Compared to DARTS-CPU, the number
of PEs changes with runtime. Our scheduler can reach up to 6× speedups com-
pared to sequential runs, 1.6× speedup compared to the multiple core version,
and 4.8× speedup compared to the pure GPU version in the Stencil. Figures 5
shows that one cannot always obtain significant speedups using profiling. This
is especially true around drop points (drop points are unstable points and are
affected by multiple co-running hardware/software conflicts parameters, which
our machine learning estimation model did not take into consideration).

Figure 6 compares the SpMV of the five Matrices listed in table 3 on Machine
1. DARTS-PDAWL executes 30.5× faster than the GPU version and 1.37× better
than the multi CPU version. Our ML algorithm can be further improved by
combining online learning Algorithms and neural-networks with our learning
estimation model.

PDAWL: Profiled-based Iterative Dynamic Adaptive WorkLoad Scheduling 13

●
●

●

● ●

● ● ●

●

●
●

● ● ●
●

20000 25000 30000 35000

20000 25000

1.1

1.3

1.5

1.0

1.5

2.0

2.5

Size of the Problem

Sp
ee

du
p(

ba
se

lin
e =

 C
PU

−S
eq

ue
nt

ia
l)

● −PDAWL −CPU −GPU GPU−only

Machine 4. GPU Titan

Machine 3. GPU Tesla K40

●
●

●
● ●

●
● ●

●
● ● ● ● ●

●
●

●

● ●

●

● ●

●
●

●
●

●

● ●

●

● ● ●

●

20000 25000 30000 35000 40000 45000 50000

20000 25000 30000 35000 40000 45000 500001

2

3

4

2

3

4

5

6

Machine 1. GPU Tesla K20

Machine 2. GPU Tesla K20

DARTS DARTS DARTS

Fig. 5: Stencil: Speedup when matrices are larger than 17K (PDAWL)

14 T. Geng et al.

4.8

4.2

0.2

6.3

5.9

1.2

5.2

4.2

1.1

5.1

3.7

0.4

7

5.9

3.9

0.2

0.4

1.1

1.2

3.7

3.9

4.2

4.8

5.1

5.2

5.9

6.3

7

Fullchip eu−2005 in−2004 circcuit5M kmer_U1a
Performance results of different matrices

S
pe

ed
up

 −
 (

ba
se

lin
e

is
 s

in
gl

e
C

P
U

)

Version

DARTS−CPU

DARTS-GPU

DARTS−PDAWL

Fig. 6: SpMV Performance(SpeedUP)

5 Related Work

The main challenge of the load-balancing mechanism is to precisely divide work-
load on processing units. A simple heuristics division approach may actually
result in worse performance than a simple uniform division. Machine-learning-
based prediction mechanism or/and online profiling-based scheduling algorithms
have been deployed to determine the workload partitioning decision on many-
core homogeneous/heterogeneous systems.

[12] proposes an empirical adaptive mapping, a fully automatic technique
to map computations to processing elements on heterogeneous multiprocessors.
[21] utilizes an ML approach to decide whether to parallelize a loop and how to
schedule candidates on multi-core platforms. [16,17] proposed two profile-based
scheduling algorithms for data-parallel applications in heterogeneous CPU-GPU
clusters. The ML approach is utilized to predict the best distribution of data
block size among different processing units. [25] performs a series of workload
characterization analysis to understand the co-running behaviors on integrated
CPU/GPU architecture. The main factors affecting the co-running performance:
the architectural differences between CPUs and GPUs and the limited shared
memory bandwidth. Based on this information, an ML model can be built to
predict coarse-grain workload partitioning on a co-running device before porting
the program. [24] proposes a fine-grain workload reshaping approach which
combines performance prediction, from an ML model, and partitioning threshold,
from an online-turning model, to partition the workload between CPU and GPU
on integrated architectures. When the workload is lower than the threshold, it
is executed on GPUs. Otherwise, CPUs are employed. [14] and [15] focus on
the accelerator sharing control for multiple kernels and propose to use ML to

PDAWL: Profiled-based Iterative Dynamic Adaptive WorkLoad Scheduling 15

determine whether to run OpenCL code on GPU or OpenMP code on multi-core
CPUs. [22] uses ML to decide whether to merge or separate multi-user OpenCL
tasks running on the most suitable devices in a CPU-GPU systems.

Except for architectural differences, communication between CPUs, GPUs,
and the memory has a pivotal role. [3, 7, 20, 23, 25] propose an analytical per-
formance model that includes PCIe transfers and overlapping computation and
communication. [13] proposes PARTANS, an autotuning framework for CPUs
and GPUs to execute Stencil computations over two nodes with multiple GPUs.
Data transfer on the PCIe bus play a crucial role to determine the number
of GPUs to be utilized. To handle the communication-synchronization problem
between CPUs and GPUs,

Most of these are aimed at coarse-grain workload partitioning and loosely
synchronized parallel workloads where specific tasks are often run only a spe-
cific type of processing element (e.g., CPU or GPU). [24] works for fine-grain
partitioning, but static workload partition is inherently rigid. Furthermore, the
precision of the ML model determines the efficiency of workload partitioning
approach. The hardware change during runtime may have a catastrophic effect
on the performance. At the same time, hardware changes during runtime may
happen frequently, and as much as half of the CPU cores may be turned off
because of power issues.

Our work focuses on synchronization between CPUs and GPUs. Further,
the communication between CPUs and GPUs plays a central role in our dy-
namic scheduling approach. Finally, our approach is neither purely static nor
dynamic. We combine the two models: an offline ML model provides us with
workload allocation, while DAWL dynamically balances the workload to com-
pensate offline-ML inaccuracies.

6 Conclusions and Future work

We have presented PDAWL, an iterative event-driven scheduling algorithm de-
signed to better load balance tasks in a heterogeneous system. It leverages a
profile-based approach based on offline machine learning and an online schedul-
ing approach. The Machine-Learning estimation model can help build an esti-
mation model in a heterogeneous resource context. It consists of a CPU model
and a GPU model. We used ML to find the best workload-resource match to
improve the CPUs’ utilization rate as well as the optimal estimation model to
improve GPU performance since building an accurate mathematical general-
purpose GPU performance model is nigh-impossible, as the search space is too
large. Online event-driven scheduling can make up for the inflexibility of offline
machine learning and increase accuracy of scheduling.

Two applications, Stencil and SpMV, have been chosen to evaluate our ap-
proach. Experiments with Stencil and SpMV show that PDAWL yields speedups
up to 1.6× and 1.37× for a multi-core baseline, 4.8× and 30.5× for pure GPU
execution.

Future work includes augmenting our model with power consumption param-
eters to enrich PDAWL and determining good trade-offs between performance

16 T. Geng et al.

and power on heterogeneous architectures. We plan on adding Deep Learning
algorithms to PDAWL. We will also employ meta learning to reduce training
time when run our PDAWL on other configuration Hardware environment.

References

1. Arteaga, J., Zuckerman, S., Gao, G.R.: Generating fine-grain multithreaded appli-
cations using a multigrain approach. ACM Trans. Archit. Code Optim. 14(4),
47:1–47:26 (Dec 2017). https://doi.org/10.1145/3155288, http://doi.acm.org/

10.1145/3155288

2. Barnes, B.J., Rountree, B., Lowenthal, D.K., Reeves, J., de Supinski, B., Schulz,
M.: A regression-based approach to scalability prediction. In: Proceedings of the
22Nd Annual International Conference on Supercomputing. pp. 368–377. ICS ’08,
ACM, New York, NY, USA (2008). https://doi.org/10.1145/1375527.1375580

3. Chen, Q., Guo, M.: Contention and locality-aware work-stealing for iterative appli-
cations in multi-socket computers. IEEE Transactions on Computers 67(6), 784–
798 (June 2018). https://doi.org/10.1109/TC.2017.2783932

4. Chow, E., Anzt, H., Scott, J., Dongarra, J.: Using jacobi iterations and blocking
for solving sparse triangular systems in incomplete factorization preconditioning.
Journal of Parallel and Distributed Computing 119, 219–230 (2018)

5. Danalis, A., Marin, G., McCurdy, C., Meredith, J.S., Roth, P.C., Spafford, K.,
Tipparaju, V., Vetter, J.S.: The scalable heterogeneous computing (shoc) bench-
mark suite. In: Proceedings of the 3rd Workshop on General-Purpose Computation
on Graphics Processing Units. pp. 63–74. GPGPU-3, ACM, New York, NY, USA
(2010). https://doi.org/10.1145/1735688.1735702, http://doi.acm.org/10.1145/
1735688.1735702

6. Davis, T.A., Hu, Y.: The university of florida sparse matrix col-
lection. ACM Trans. Math. Softw. 38(1), 1:1–1:25 (Dec 2011).
https://doi.org/10.1145/2049662.2049663, http://doi.acm.org/10.1145/

2049662.2049663

7. Garćıa, V., Gomez-Luna, J., Grass, T., Rico, A., Ayguade, E., Pena,
A.J.: Evaluating the effect of last-level cache sharing on integrated gpu-
cpu systems with heterogeneous applications. In: 2016 IEEE International
Symposium on Workload Characterization (IISWC). pp. 1–10 (Sep 2016).
https://doi.org/10.1109/IISWC.2016.7581277

8. Geng, T., Zuckerman, S., Monsalve, J., Goldman, A., Habib, S., Gaudiot, J.L., Gao,
G.R.: The importance of efficient fine-grain synchronization for many-core systems.
In: International Workshop on Languages and Compilers for Parallel Computing.
pp. 203–217. Springer (2016)

9. Lee, V.W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A.D., Satish,
N., Smelyanskiy, M., Chennupaty, S., Hammarlund, P., Singhal, R., Dubey, P.:
Debunking the 100x gpu vs. cpu myth: An evaluation of throughput computing
on cpu and gpu. In: Proceedings of the 37th Annual International Symposium
on Computer Architecture. pp. 451–460. ISCA ’10, ACM, New York, NY, USA
(2010). https://doi.org/10.1145/1815961.1816021, http://doi.acm.org/10.1145/
1815961.1816021

10. Levon, J., Elie, P.: Oprofile: A system profiler for linux (2004)

11. List, T.S.: http://www.top500.org (visited on Nov. 2017)

https://doi.org/10.1145/3155288
http://doi.acm.org/10.1145/3155288
http://doi.acm.org/10.1145/3155288
https://doi.org/10.1145/1375527.1375580
https://doi.org/10.1109/TC.2017.2783932
https://doi.org/10.1145/1735688.1735702
http://doi.acm.org/10.1145/1735688.1735702
http://doi.acm.org/10.1145/1735688.1735702
https://doi.org/10.1145/2049662.2049663
http://doi.acm.org/10.1145/2049662.2049663
http://doi.acm.org/10.1145/2049662.2049663
https://doi.org/10.1109/IISWC.2016.7581277
https://doi.org/10.1145/1815961.1816021
http://doi.acm.org/10.1145/1815961.1816021
http://doi.acm.org/10.1145/1815961.1816021
http://www.top500.org

PDAWL: Profiled-based Iterative Dynamic Adaptive WorkLoad Scheduling 17

12. Luk, C.K., Hong, S., Kim, H.: Qilin: Exploiting parallelism on heterogeneous
multiprocessors with adaptive mapping. In: Proceedings of the 42Nd Annual
IEEE/ACM International Symposium on Microarchitecture. pp. 45–55. MICRO
42, ACM, New York, NY, USA (2009). https://doi.org/10.1145/1669112.1669121,
http://doi.acm.org/10.1145/1669112.1669121

13. Lutz, T., Fensch, C., Cole, M.: Partans: An autotuning framework for stencil com-
putation on multi-gpu systems. ACM Transactions on Architecture and Code Op-
timization (TACO) 9(4), 59 (2013)

14. Margiolas, C., O’Boyle, M.F.P.: Portable and transparent software managed
scheduling on accelerators for fair resource sharing. In: 2016 IEEE/ACM Inter-
national Symposium on Code Generation and Optimization (CGO). pp. 82–93
(March 2016)

15. O’Boyle, M.F.P., Wang, Z., Grewe, D.: Portable mapping of data paral-
lel programs to opencl for heterogeneous systems. In: Proceedings of the
2013 IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO). pp. 1–10. CGO ’13, IEEE Computer Society, Washington, DC,
USA (2013). https://doi.org/10.1109/CGO.2013.6494993, http://dx.doi.org/

10.1109/CGO.2013.6494993

16. Sant’Ana, L., Cordeiro, D., Camargo, R.: PLB-HeC: A profile-based load-
balancing algorithm for heterogeneous CPU-GPU clusters. In: 2015 IEEE
International Conference on Cluster Computing. pp. 96–105 (Sept 2015).
https://doi.org/10.1109/CLUSTER.2015.24

17. Sant’Ana, L., Cordeiro, D., de Camargo, R.Y.: Plb-hac: Dynamic load-balancing
for heterogeneous accelerator clusters. In: European Conference on Parallel Pro-
cessing. pp. 197–209. Springer (2019)

18. Suettlerlein, J., Zuckerman, S., Gao, G.R.: An implementation of the codelet
model. In: Proceedings of the 19th International Conference on Paral-
lel Processing. pp. 633–644. Euro-Par’13, Springer-Verlag, Berlin, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40047-6 63, http://dx.doi.org/10.

1007/978-3-642-40047-6_63

19. Tribbey, W.: Modern database systems. In: Kim, W. (ed.) Modern Database Sys-
tems, chap. Numerical Recipes: The Art of Scientific Computing (3rd Edition) is
Written by William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian
P. Flannery, and Published by Cambridge University Press, ©2007, Hardback,
ISBN 978-0-521-88068-8, 1235 Pp., pp. 30–31. ACM Press/Addison-Wesley Pub-
lishing Co., New York, NY, USA (1995). https://doi.org/10.1145/1874391.187410,
http://dx.doi.org/10.1145/1874391.187410

20. Van Craeynest, K., Jaleel, A., Eeckhout, L., Narvaez, P., Emer, J.:
Scheduling heterogeneous multi-cores through performance impact estima-
tion (pie). SIGARCH Comput. Archit. News 40(3), 213–224 (Jun 2012).
https://doi.org/10.1145/2366231.2337184, http://doi.acm.org/10.1145/

2366231.2337184

21. Wang, Z., Tournavitis, G., Franke, B., O’boyle, M.F.P.: Integrating profile-driven
parallelism detection and machine-learning-based mapping. ACM Trans. Archit.
Code Optim. 11(1), 1–26 (Feb 2014). https://doi.org/10.1145/2579561, http://
doi.acm.org/10.1145/2579561

22. Wen, Y., O’Boyle, M.F.: Merge or separate?: Multi-job scheduling for
opencl kernels on cpu/gpu platforms. In: Proceedings of the General
Purpose GPUs. pp. 22–31. GPGPU-10, ACM, New York, NY, USA

https://doi.org/10.1145/1669112.1669121
http://doi.acm.org/10.1145/1669112.1669121
https://doi.org/10.1109/CGO.2013.6494993
http://dx.doi.org/10.1109/CGO.2013.6494993
http://dx.doi.org/10.1109/CGO.2013.6494993
https://doi.org/10.1109/CLUSTER.2015.24
https://doi.org/10.1007/978-3-642-40047-6_63
http://dx.doi.org/10.1007/978-3-642-40047-6_63
http://dx.doi.org/10.1007/978-3-642-40047-6_63
https://doi.org/10.1145/1874391.187410
http://dx.doi.org/10.1145/1874391.187410
https://doi.org/10.1145/2366231.2337184
http://doi.acm.org/10.1145/2366231.2337184
http://doi.acm.org/10.1145/2366231.2337184
https://doi.org/10.1145/2579561
http://doi.acm.org/10.1145/2579561
http://doi.acm.org/10.1145/2579561

18 T. Geng et al.

(2017). https://doi.org/10.1145/3038228.3038235, http://doi.acm.org/10.1145/
3038228.3038235

23. Yang, C., Wang, F., Du, Y., Chen, J., Liu, J., Yi, H., Lu, K.: Adap-
tive optimization for petascale heterogeneous cpu/gpu computing. In: IEEE
International Conference on Cluster Computing. pp. 19–28 (Sept 2010).
https://doi.org/10.1109/CLUSTER.2010.12

24. Zhang, F., Wu, B., Zhai, J., He, B., Chen, W.: Finepar: Irregularity-aware fine-
grained workload partitioning on integrated architectures. In: 2017 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO). pp. 27–
38 (Feb 2017). https://doi.org/10.1109/CGO.2017.7863726

25. Zhang, F., Zhai, J., He, B., Zhang, S., Chen, W.: Understanding co-running be-
haviors on integrated cpu/gpu architectures. IEEE TPDS 28(3), 905–918 (March
2017). https://doi.org/10.1109/TPDS.2016.2586074

26. Zuckerman, S., Suetterlein, J., Knauerhase, R., Gao, G.R.: Using a ”codelet” pro-
gram execution model for exascale machines: Position paper. In: Proceedings of
the 1st International Workshop on Adaptive Self-Tuning Computing Systems for
the Exaflop Era. EXADAPT ’11, ACM, New York, NY, USA (2011)

https://doi.org/10.1145/3038228.3038235
http://doi.acm.org/10.1145/3038228.3038235
http://doi.acm.org/10.1145/3038228.3038235
https://doi.org/10.1109/CLUSTER.2010.12
https://doi.org/10.1109/CGO.2017.7863726
https://doi.org/10.1109/TPDS.2016.2586074

	PDAWL: Profile-based Iterative Dynamic Adaptive WorkLoad Balance on Heterogeneous Architectures

