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Abstract

This paper looks into nonlinear non convex stochastic unconstrained optimization with finite simu-
lation budget. Our work builds upon the Two-Stage Sequential Optimization (TSSO) algorithm that
addresses the class of problems of interest by using the modified nugget effect kriging (MNEK) meta-
model and proposing a budget allocation followed by a two-stage sequential procedure. Despite its
efficiency and performance, we have observed that, given a finite budget, the choice of the number
of replications per iteration, currently left to the user, is particularly critical for the algorithm perfor-
mance. A fixed a-priori assignment can affect the ability to control the algorithm making it particularly
sensitive to the initial settings. In this paper, we propose the extended TSSO (eT'SSO). Specifically,
a general simulation budget allocation scheme is proposed with the objective to balance the need of
accurate function estimations to improve the selection in the search stage, with the need to explore
the solution space. The new scheme adaptively, and recursively, increases the simulation budget based
upon information iteratively returned by the optimizer itself. We analyze the asymptotic properties of
eT'SSO. Subsequently, we propose four alternative variants of the general allocation that we empirically
analyze by comparing the quality of the estimated optimum input combination and the corresponding
estimated optimum output against TSSO and other state of the art algorithms.

Keywords: Global Optimization; Simulation-Optimization; Two-Stage Sequential Opti-

mization; eTSSO; Convergence

1 Introduction and Motivation

In several real world applications, the behavior of large complex systems is highly nonlinear. As a result,
approaches grounded in the exploitation of structural properties of functions emulating this behavior have
been replaced by black box approaches (Fu, 2015). This large family of methods considers the function
as unknown and it only assumes that point estimates can be obtained by repeatedly calling a simulation
oracle (i.e., the black box) (Wright and Nocedal, 1999). A search algorithm is then responsible, using a
variable level of memory and complexity, to process the estimations and produce sampling decisions until

a stopping criterion is met (Tekin and Sabuncuoglu, 2004).
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In this work, we assume that the point evaluations returned by the oracle are affected by noise and
we design an algorithm that produces an estimate of the location & minimizing the possibly nonlinear
non-convex function of interest, i.e., * € arg mingex E (f (x)), where X represents the solution set,
assumed continuous in this research, and f (x) is the univariate function whose noisy measurements can
be obtained through the oracle (also referred to as simulator in the remainder of the manuscript).

Two families of approaches, in both deterministic and stochastic settings, can be identified in a way
that is relevant to this work: (1) direct methods, calling the simulator at each iteration to obtain an
estimate of the response, and typically calculating a direction for the next move, and (2) surrogate
methods, which use simulation to estimate a metamodel of the response surface and use this model to
guide the selection of the next sampled point (Tekin and Sabuncuoglu, 2004; Kleijnen, 2008; Zhu et al.,
2013; Figueira and Almada-Lobo, 2014; Fu, 2015; Xu et al., 2015; Jalali et al., 2017).

Popular direct algorithms include COMPASS (Xu et al., 2010), R-SPLINE (Wang et al., 2013), Rank-
ing and Selection method (Kim and Nelson, 2007), stochastic approximation methods (Yin and Kushner,
2003), the Nested Partitions Method (Shi and Olafsson, 2000), and the recent ASTRO-DF (Shashaani
et al., 2018).

A major drawback of this family of approaches is their cost when simulation runs require high com-
putational effort. In such cases, meta-modeling based (surrogate) search offers the possibility to use the
information coming from the simulation runs to infer about regions where simulation has not been per-
formed. Specifically, surrogate methods use a few simulation runs to estimate a model of the response
(i.e., the meta-model), which can be used by the search procedure to quickly evaluate the performance at
any given location in the design space without the need to run the simulator (Wan et al., 2005). Response
Surface Methodology (RSM) (Myers et al.; 2009) is among the most popular techniques in this class due
to its ease of implementation. RSM uses first-order linear regression models and switches to second order
models when approaching a local minimum. These models are fitted with respect to a sequence of local
regions, and they are used to guide the search towards the optimum. A more complex and commonly
adopted model form is Kriging, also known as Gaussian process (GP) modeling, which has been particu-
larly successful in deterministic computer experiments (Santner et al., 2003). Recently, a noticeable effort
has been dedicated to extend the kriging model structure to the case of stochastic simulations, includ-
ing homoscedastic (homogeneous random noise in the design space) and heteroscedastic (heterogeneous
random noise in the design space) cases. Specifically, for heteroscedastic simulations, Ankenman et al.
(2010); Yin et al: (2011) proposed the Stochastic Kriging (SK) model and the Modified Nugget Effect
Kriging (MNEK), respectively.

In both direct and surrogate search, when the total number of available simulations is finite, the
way the simulation runs are allocated to the sampled points is a critical decision. Optimal Computing
Budget Allocation (OCBA) has received particular attention in this regard, especially within the Ranking
and Selection literature and, more recently, in the area of kriging-based simulation-optimization. As an
example, Quan et al. (2013) proposed the Two-Stage Sequential Optimization (TSSO) algorithm to solve
unconstrained stochastic simulation-optimization problems for the heteroscedastic case, where, in the first
stage, called the “search”, TSSO uses the MNEK model to explore the region and to determine the next
point to sample and in the second stage, called the “evaluation”, it runs simulation experiments at each

sampled point according to OCBA (Chen et al., 2000). The kriging model is updated using the simulation
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results, and the algorithm proceeds. TSSO has been empirically shown to perform well, but it requires
several user defined parameters. In particular, the number of simulation replications B to be performed
at each iteration has to be provided as input and it has an important impact on the effectiveness of the
procedure.

We propose and analyze the extended TSSO (eTSSO), which generates an adaptive sequence of values
of B ({By}, where k is the iteration index) as the algorithm progresses. This mitigates the possible effect
of an inappropriately selected value of B in TSSO.

A first version of the algorithm eTSSO was used in the comparison paper (Jalali et al., 2017). In this
manuscript, with the objective to study the theoretical properties of eTSSO, we provide a new general
allocation scheme and four alternative variants that manage differently the balance between the need of
accurate function estimations to improve the selection in the search stage, with the need to explore the
solution space. All the variants we propose are novel. As the original first version of eT'SSO, implemented
in (Jalali et al., 2017) does not satisfy our general allocation rule conditions, it is not considered in
this study. In Mehdad and Kleijnen (2018), the authors study an optimal computing budget allocation
variant for the derivation of the budget at each iteration. The paper is empirical in nature and did not
identify a winning algorithm for the case of random simulations, which is the focus of this paper. A
key advantage of TSSO and, consequently, eT'SSO is that no structure of the noise function is required
for the algorithms to work. While surely the knowledge of the structure of the noise leads to better
results (when such knowledge is correct), as recognized in (Jalali et al., 2017), in real cases we will rarely
have such information. Nonetheless, if the noise structure is known, we would recommend to make use
of an algorithm that can exploit that knowledge. Concerning the theoretical contribution of the paper,
we highlight that a preliminary conference version is in (Pedrielli and Ng, 2015), where a first proof of
concept of the convergence analysis was presented. This paper develops and presents eT'SSO, for the first
time, along with the new analysis of the convergence and the convergence rates and its relationship with
the stochastic budget allocation scheme.

The remainder of the paper is structured as follows: section 2 presents the background to the presented
work. In section 3, eT'SSO is presented with the four budget allocation variants. Section 4 characterizes
the behavior of eT'SSO under the theoretical budget scheme in terms of both convergence as well as
convergence rates. In section 5, eI'SSO in its four variants is tested over multi-dimensional functions to

assess its performance against TSSO. Finally, section 6 draws the conclusions of the paper.

2 Background: Meta-modeling and optimization with stochastic krig-
ing

In this work, we will assume that the nonlinear optimization problem is defined over a compact solution
set X. While the original objective function Y : z € X ¢ R? — Y (x) € R is deterministic in nature, the
oracle is affected by noise. Therefore, when we run simulation at a specific location € X C R, only an

estimate of the function value is returned. The objective is to develop an efficient search algorithm that
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finds the global minimum of Y : X — R, namely:

P:minY (x) = Ey [f (z)] (1)
s.to xeX

where Ey refers to the, unknown, expectation of f (x) that can only be estimated pointwise, by running
expensive simulations. Section 2.1 provides some preliminaries on the deterministic version of problem
P, which will be particularly helpful in the convergence analysis in section 4, whereas section 2.2 pro-
vides more details on the adopted Kriging model in the stochastic setting and the related optimization

procedure.

2.1 Deterministic Simulation-Optimization with Kriging

In deterministic settings, the Efficient Global Optimization (EGO) method, derived from the Bayesian
framework, has been the basis for most of the Kriging based search algorithms (Jones et al., 1998). In
this framework, f(x) is interpreted as a realization from an infinite family of random functions, namely,
stationary Gaussian process Y (x). According to this interpretation, at points & that have not been
simulated, we assume that the function y (x) is jointly Gaussian and can be fully characterized by the
mean, and covariance functions. We will refer to the statistical model of the unknown function Y as 7,
which we characterize in terms of optimal predictor and predictive error as (Santner et al., 2003; Bull,
2011)

Yo (@) i=jir + 'R (y — fir1), (2)
- 1-1TR1c)?
372.% (m) ::T2 (1 — CTR 1C + %) . (3)
Where,
. 1"TR 'y
i = TRTT )

Here, 1 is a vector having all elements equal to 1, R = (K, (z; — x;))%_, is the spatial variance-covariance
matrix of kernel K parametrized by ¢, where k is the number of sampled points. Assuming an exponential

form for the variance covariance matrix, we have

d
R(Y (2:),Y (x;) = [ [ exp (—@zilwis — 2l - (5)
=1

Where the scale correlation coefficient ¢, ; is the sensitivity parameter that controls how fast the correla-
tion decays with the distance between points (x;, ;) in the /-th dimension, and the parameter ¢ controls
the smoothness of the response. When ¢ = 1, equation (5) is known as the exponential correlation func-

tion, and when ¢ = 2 it is known as the Gaussian correlation function (Santner et al., 2003; Picheny et al.,
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2013), used in this paper. Assuming this type of correlation, the vector ¢ = (R (zg41 — #;))%, results in
(@ 0.)T = (et . 0o ). ©

Where, dg 5, represents the Euclidean distance between the prediction point @ and the location x;, ¢ =
1,...,k.

EGO is an iterative algorithm that, at each step, estimates the expected improvement and samples
its maximizer. As the algorithm progresses, a random sequence of sampled points {x} is generated as
well as the sequence of the estimates of the optimum location, i.e., {&}} over the compact space X. The
available data at the k-th algorithm iteration, constitute the set F, , the filtration, made by the o-algebra
containing the collection of (x;,y (x;) : ¢ < k). Given Fr,, the best guess of the optimum at iteration k,
referred to as xj, is the location in the sampled set S; C X that achieved the best function value so far.
Formally, at iteration k, the algorithm samples the location that maximizes the Ezxpected Improvement
function defined as (Jones et al., 1998)

Tr, (@, Fry) i= max (By [y (@f) = ¥ (2) 17, | 0). (7)
Where, Y () is the prediction produced by the meta-model at location .

2.2 Stochastic Simulation-Optimization with Kriging

For the case of function measurements affected by noise, Huang et al. (2006) proposed to use the nugget
effect kriging model (which assumes constant variance throughout the sample space) replacing the EI
criterion with the Augmented Expected Improvement (AEI) in order to deal with noisy function mea-
surements.

To consider the heterogeneous variaice and the finite simulation budget, Quan et al. (2013) proposed
the Two-Stage Sequential Optimization (TSSO) algorithm which relies on the Modified Nugget Effect
Kriging (MNEK) model (Yin et al., 2011). According to Yin et al. (2011), y («;) is the output from the
stochastic simulation at x; € X, and it assumes that y (x;) are realizations of a random process that can
be described by the model 7 defined as

%:Y(wl)zZ(wl)—i—f(wl) i=1,...,k. (8)

The general form of equation (8) is similar to that proposed in Ankenman et al. (2010). Also, similarly to
the deterministic case, Z (x;) is modeled as a Gaussian process with covariance function 72R.,, where 72
is the process variance and R, the matrix of process correlation; formally, Z (x;) is a GP (u(x), 7?R.).
A commonly adopted correlation function R, was presented in equation (5) for the deterministic opti-
mization case. The noise term & () in equation (8) represents the major difference from the deterministic
setting. The noise process is typically assumed centered around zero and having as variance covariance
function agRg. Intuitively, R¢ models the correlation that arises from dependencies of the pseudorandom
numbers employed by the oracle (simulator). The random component is referred to “intrinsic variance”
to be distinguished from the “extrinsic variance”, which represents the model variance. Error variances

are generally not constant and they may depend on . With independent sampling (i.e., no Common
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Random Numbers, CRN), R¢ is diagonal, and equation (8) reduces to the independent sampling noise
model (Yin et al., 2011; Ng and Yin, 2012).
Yin et al. (2011) shows how the MSE optimal predictor corresponding to (8) at location @y when k

points have been previously sampled, is

T
) . 1 . 1 [1—1T(RZ+R5)_1C
Y (xg) = c (R,+R¢) e +1° (R, +Re)™ e | y(x;). 9
(x0) ; (R: +Re) e +17 (R, + Re) TR TRy TTC 7 (@) (9)
Where g; ; is the function evaluations average for the sampled locations x;, with i = 1,...,k; ¢ (o, ; ¢)

is the correlation vector modeled as in equation (6). e; is a vector of size k (where k is the number of
sampled points) having all elements equal to 0 except the i-th element which is equal to 1. The optimal
MSE results (Yin et al., 2011)

(1-1"R"e)] o (1-1TR )
h-
1TR-11 Ct TR 11

MSE:, (xo) = co(xo) + 7 | 1 — [c+1 (10)

Where R’ = R, + R, and ¢ is the nugget effect value. Note that equations (9)-(10) are implemented in
several packages (Erickson et al., 2018).

While in equation (10) the parameters (7, ¢, ¢p) are assumed known, they require estimation (as in
the deterministic case). In the stochastic case, the “new” parameter ¢y can be estimated from the sample
variance as ¢ (xg) = c}g (xo) /n. As discussed in (Yin et al., 2011), a closed form estimator for the
predicted variance in points that have not been sampled yet is not available. Therefore, as suggested
by Yin et al., we obtain MSEx (xg), ®o ¢ S, where S is the set of sampled points, as the piecewise
linear interpolation of the available estimates for the sampled points * € S. In particular, piecewise
linear interpolation is used to extrapolate the variance at any un-sampled location using the two closest
neighboring points within the sample set (Kleijnen and Van Beers, 2005).

Furthermore, in the rest of the paper, we will refer to the deterministic counterpart of the estimate in

2

equation (10) at the A-th iteration as the extrinsic variance sz, , corresponding to the form

(1-1"R"c)]"

L, (- 1TR
1TR-11 ct

1
¢+ 1TR-11

(11)

sioleo) =77 | 1 -

Differently from EGO and the Sequential Kriging Optimization (SKO) (Huang et al., 2006), TSSO is
a two-stage algorithm which uses the first stage to balance the effort between exploration and exploitation
when the total number of available replications is limited. Specifically, it allocates the budget between

exploration and exploitation according to the following rule:
rsk =7Tsk—1—Arand rar =rar_1 + A, (12)

Here, 7g, is the number of replications to assign to the search stage at iteration k, r4j is the number

of replications for the evaluation at iteration k& = 1,2,..., K, where K is the maximum number of
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iterations. A, = [(B — 7m)/K | represents the fixed rate of decay (increase) of rgy (rax), being B the
budget assigned to each iteration i, and r,,;, the minimum number of replications required to sample a new
point. We will denote our total simulation budget as T. Finally, we will let Ny be the size of the initial
design (Latin Hypercube Sampling (LHS) in this manuscript (Kleijnen, 2008; Brochoff et al., 2015)) used
to estimate the initial MNEK model 7y. Given Ny and 7', the maximum number of iterations that can
be performed by TSSO is, then, K = | (T — NoB) /B]. Once the budget allocation has been performed,
in analogy to the deterministic case, the algorithm uses the MNEK model (equation (9)) to estimate the
function values at potential infill points @ € X ¢ S. In this setting, the filtration F5, is the sigma algebra
o <:cz-, ¥ (x:) ,&g (x3) 13 < k) In particular, ¥ = [7(x1),...,7 (xx)]" represents the vector of the sample
averages at the selected points ¢ = 1,...,k, and 6'2 (x;) is the related sample variance.

Similar to the deterministic case, the next location ;1 to be evaluated, and added to the set Sy,

maximizes the so-called modified expected improvement function Tk, (x) introduced in (Quan et al., 2013):
Ty, (@) = max (Ex, 5 (@5) - Vi (@) [P, |0 (13)

Where g () represents the lowest sample mean up to iteration k, and }Afk (x) is random with mean
corresponding to the Gaussian process mean function at location & and variance given by the model
spatial prediction uncertainty s%k (z). In order to obtain an evaluation from x; the algorithm allocates
rs,, replications to the location that is subsequently added to the set Si. Besides the underlying model
7, the criterion in (13) differs from (7), since the sample average g () needs to replace the true function
value y (x}), which is clearly not available.

In the second stage, TSSO uses the OCBA technique to assign the available replications, r4 ), =
B — rgy, to each of the sampled points € S. Specifically, the authors use the results in (Chen et al.,
2000) to compute the relative budget allocation between non best locations (equation (14)), and the
relative budget allocation between the location associated with the best function value and the rest of the

sampled points (equation (15)).

ni/nj = <—% @)/ 5*”">2, (14)

625 (T5) /0bj

(15)

ny = O, (Tp)

Here @y, 64, (xp) ,np are the sampled location with the lowest function value estimate, the associated
sample standard deviation, and the allocated number of simulations, respectively. Similarly, 64,;,n; are
the estimated standard deviation at location x;, and the number of associated replications, respectively.
Finally, d5; is the difference between the function estimation at location x; and xy,.

In the TSSO algorithm, the budget B available at each iteration is chosen at the algorithm start
and it stays constant as the search progresses. Then, the TSSO allocation rule is such that the constant

budget B is dynamically divided between the search (rgj) and the evaluation (r4) (equation (12)).
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From equation (12), we observe that, since r4; > 0, B must satisfy the following condition:

Timin — N0 + \/(NO B Tmi“)Q T 4T—‘ (16)

BZBmin:’V
2

When the assigned budget B is below this limit, TSSO will only perform search, i.e., r4, = 0 Vk. Also,

the value in (16) bounds from above the number of iterations that TSSO will perform:

T — BminNgJ

Kmax = L
Bmin

(17)

3 eTSSO Algorithm

Although TSSO has been effectively applied to real world problems (Quan et al., 2013), its performance
is influenced by the number of simulation replications (i.e., the budget) allocated to each iteration given
the total available budget, i.e., the pair (7, B). In fact, B affects the accuracy of the measurements since
it determines the maximum number of simulation experiments we can allocate for evaluating the sampled
points, and it influences the search by determining the number of iterations (equation (17)). eTSSO
tackles the problem of computational effort management, by intelligently and adaptively determining
the budget sequence {By}. In order to do so, {By} is interpreted as a random sequence, instead of a
constant as in TSSO, of non-decreasing values, with a random growth rate that can be computed using
the information coming from simulation and model estimation. Specifically, at the generic iteration k, we
use the estimate of the intrinsic variance at each sampled point and the extrinsic variance (equation (11)),

to update the number of replications Bj using the following:

Bj, = max {Bk_l 14%72#2 J,N0+k k> 1. (18)
k

&k + S7~r

In applying (18), the problem of how to estimate the variance components 5’?, i and s%rk arises. In general,
the intent of equation (18) is twofold: on one hand, we should have enough budget to guarantee evaluation
accuracy to support the generation of the next promising point, on the other hand, we do not wish to
use up too much simulation budget since this would hinder exploration of the solution space. In this
manuscript, we propose four alternative solutions that heuristically attempt to respond to these needs,

and we present these variants in the following.

OCBA-driven Budget Resource Allocation (eTSSOy). This policy sets the budget sequence to

grow according to the following:

~9 o

Of ) = Ug,k ("),
2

8%, 1= S%rk ("),

where x4 € arg maxges, Ne.

The basic idea is that if the intrinsic variance is predominant, then the budget per replication should

increase at a faster rate to reduce the effect of noise and obtain more reliable estimates of the objective
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function values. If the point with largest OCBA-allocated budget at the k-th iteration, xy°?*, has large
intrinsic variance, 652’,“ we would increase the budget assigned to the iteration in order to drive down
the noise. On the other hand, when extrinsic variance, which measures the prediction uncertainty of
the MNEK metamodel, is large, it means the solution space has not been sufficiently explored and thus
the increase in the number of replications per iteration should slow down to allow more iterations. The
approach still focuses on the noisiest point (as selected by OCBA), but it balances it off with the extrinsic

variance at that point, moderating the exploitative aspect of the policy.

Average Budget Allocation Rule (eTSSO,). While the previous policy only looks into sampled
points and uses the extrinsic variance as a proxy for the out-of-sample uncertainty, several allocations can
be proposed that use the sampled points to estimate the intrinsic variance and only unsampled points to

3

produce an estimate of the “relevant” extrinsic variance. The policy eTSSO, derives such information

through averaging, formally:

. 1 .
crg,k = M Z Uék (x)

€Sy,

S%k = m Z S%k (z)
zeX\Sk
We use the average of the intrinsic variance over the sampled points against the average of the extrinsic
variance over the un-sampled points. In order to compute the second element, we use a grid over the
solution space (a continuous version would anyway require numerical approximation). For the case of
problems in high (e.g., d > 10) dimensions, we recommend to proceed with a Latin Hypercube Design
instead of a grid. This choice, given a number N of points, would guarantee some form of coverage while

controlling the number of sampled points.

Goal-driven Budget Resource Allocation (eTSSO¢). While eTSSO, does not require to choose
any location within the un-sampled set, it could be argued that “interesting points” could be selected to
bias sampling allocation in favor of the ultimate goal of eT'SSO: finding the global minimum. The policy
eT'SSOy selects as reference points the locations with the best function value so far, x; € argminges, ¥ (),

and the location with associated maximum expected improvement x}' € arg max,¢s, T, (z). Formally:

&g,k = A2,k (mZ) )
S%k = 8727']c (mgl) :

The idea here is to compare the noise currently associated to our best guess, against the strongest
candidate (un-sampled) point. This criterion is more goal driven in the sense that it balances the need
to produce an accurate estimation for the current best point, with the goal to explore potentially better
solutions. When large/promising regions are unexplored (which is the case at the start of the procedure)

we expect this criterion to boost search.
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Eager Budget Resource Allocation (eTSSOg). One potential issue of all previous allocation poli-
cies is that, even if they are likely to guarantee exploration, at least at the beginning, they may favor
exploitation quite early in the search. We propose, in this direction, to use as reference points the location

with the lowest intrinsic variance, and the point with maximum extrinsic variance. Formally:

~92 )
Uf,k = min o-fyk’

TES,
2 2
S~ = Imaxs- .
Tk xSy, Tk

At the early stages of the search procedure, the extrinsic variance will likely be larger, hence, especially
in case of low intrinsic noise, the allocation rule will not provide large values of budget increase. This
avoids allocating a significant evaluation effort to the first algorithm iterations, thus favoring the search
by increasing the number of potential points to sample. When the extrinsic variance reduces, the budget
for the evaluation increases. This is desirable since, in such a situation, we are likely to have identified
the optimum region. Hence, we will be willing to spend more budget in order to correctly identify the

best point among the sampled ones.

It is important to highlight that, in case of small budget T, and even more, with particularly large
noise levels, increasing the budget might lead to poor performance due to the early termination of the
algorithm. In such circumstances, we may expect TSSO to perform better than the eT'SSO algorithm.
However, given a small computer budget and high intrinsic or extrinsic noise, any algorithm performs
poorly. eT'SSO is summarized in Algorithm 1. Concerning the cross-validation step in Algorithm 1, we
perform Leave One Out Cross Validation (LOOCV) (Vehtari et al., 2017; Efron and Tibshirani, 1997)
with a threshold «. Specifically, for each point x;,7 = 1,..., Ny, we estimate a Gaussian Process model
leaving out the i-th observation, i.e.; x;. This produces two quantities for the cross-validation test: 7 (x;),
and MSEz, (x;) (using equations (9) and (10), respectively). If |7 (x;) — y (xi)|/MSEz, (xi) > «, the
cross-validation fails, where «v is an input parameter provided by the user. In fact, if the threshold is
violated for at least one location within the set of NNy initial sampling points, we re-sample the initial
set and increase the r,;, of a d, , amount until the cross-validation is passed. In practice, for the tests
in section 5.2, we ran the initial sample and minimum budget selection procedure offline, creating the

common design for all the experiments related to each function.

10
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Algorithm 1: €TSSO Algorithm

1 Initialization:
2 Define T, No,a,rmin,érmin,éNO,k <+ 0;
3 Intial Model Fit (input: 7,;,,, No, a, éTmin’ 6N0):
4 Passed + False;
5 while Passed==False do
6 Generate the initial sample set {wi}ﬁ\gl with an LHS design of Ng points;
7 Simulate each location in {zl}i\r:Ol with 7i, replications;
8 Fit the MNEK model to the set of sample means;
9 Apply LOOCYV cross-validation with threshold a to evaluate the quality of the model;
10 if LOOCYV Fail then
11 Set Tmin < Tmin T 67‘min’ Ng < No + 5NO;
12 Go to Step 6;
13 end
14 else
15 Passed < True;
16 S()(—{mi}INU:I
17 end
18 end
19 Set the initial available budget Bg = r,j, and collect the initial data;

N
o

T+« T —BogNg, A=T, k + 1.

21 while A > 0 do

22 Search:

23 if A > rp,;, then

24 Find the point ®) € arg maxgexgs, T, (x), S + S Uy, ;

25 Run 7.,;, replications to evaluate the function in xj;

26 A<+ A—rnin;

27 end

28 if K > 1 then

29 Budget Computation:

30 Calculate By using equation (18) and the allocation rule of choice;

31 Evaluation Stage:

32 if A > Bj then

33 Assign one observation to each point in Sy;

34 Use equations (14)-(15) to allocate By, — [Si| simulations to the sampled points;
35 Update (yj (®) : @ € S ), and fit the kriging model 7 according to the updated information;
36 A+ A — By;

37 end

38 else

39 Use equations (14)-(15) to allocate Aj simulation to the sampled points;

40 Update (yj (z) : @ € S ) and fit the kriging model 7, according to the updated information;
41 A+ 0;

42 end

43 end

44 k< k+1;

45 end

46 Return the location with the maximum xj; € arg maxges, Y (), with K being the final iteration.

4 eTSSO Asymptotic behavior

In this section, we present the asymptotic analysis of Algorithm 1, both in terms of asymptotic con-
vergence as well as convergence rates. The asymptotic convergence and the convergence rate of eTSSO
are investigated by interpreting the kriging-based search as a stochastic recursion. We show the paral-
lelism between the two paradigms and exploit the deterministic counterpart of eTSSO, the widely known
Efficient Global Optimization (EGO) procedure (section 2.1) to perform our study. In fact, results on
convergence and convergence rates for EGO have been proposed in Locatelli (1997) and Bull (2011), re-
spectively. The basic idea is to analyze eTSSO as the stochastic counterpart of EGO. This idea allows to
use some of the results in Pasupathy et al. (2018), while dealing with the difficulty of having a simulation

budget that is a stochastic sequence. The proof scheme we propose is articulated into three parts:

e Part 1: the deterministic analogue of eTSSO (EGO) is analyzed in terms of convergence properties
to ensure the reference algorithm of eTSSO has a good behavior. Lemmas 1-2 serve this purpose by

guaranteeing Lipschitz continuity of the EGO recursion and its convergence to the global optimum,

11
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respectively;

e Part 2: the stochastic algorithm eT'SSO is characterized in terms of (a) boundedness of the budget
for any finite number of iterations, and (b) convergence of the stochastic MNEK model to the
deterministic counterpart in the case of dense infinite sampling. Lemmas 3-4 report these results,

respectively.

e Part 3: the asymptotic convergence of the stochastic recursion to the deterministic recursion is char-

acterized in Theorem 1 and Theorem 2. Finally, the convergence rate is characterized in Theorem 3.

Section 4.1 provides the main definitions we will adopt for the proofs in section 4.2.

4.1 Notation and Terminology

Let {X,} N represent a stochastic sequence of random variables. {X,,}, that converges to @ with
probability 1. Furthermore, we will refer to the expectation of a random variable V' computed at iteration
k as E,V. Given {a,} sequence of real numbers, then a, = o(1) if lim,_ca, = 0, and a, = O (1) if
Je € (0,00) with |a,|< ¢ for large enough n; also a, = © (1) if 0 < liminf a,, < limsupa, < oo. In the

analysis that follows, two convergence definitions will be adopted:

Definition 1 (Linear convergence). {xy} exhibits a linear({) convergence to x* if

. Tpoq—T*
lim supy,_, o w =0€(0,1)

The following definition characterizes the control of the sample size sequence we created for the
stochastic algorithm eTSSO.

Definition 2 (Geometric growth of a sequence). A sequence {my} exhibits geometric growth if my1 =

c-my, k=1,2,... for some c € (1,00).

4.2 Main Results

In this proof, we will adopt the recursive algorithm setting to discuss eT'SSO behavior referring to the
theoretical budget allocation in equation (18). A first justification for the proposed approach can be
found in the literature in advanced random search (Mete et al., 2011) where the link between recursion
and sampling from target distributions is established. In fact, recursive iterations are studied in terms of
resulting probability of sampling in the feasible region. This creates a link between the meta-modeling
environment where we start assuming a distribution of the response, against recursive methods which
iteratively and implicitly construct this distribution by means, for example, of gradient information.

In traditional recursion algorithms, at the k-th iteration, the next point in the search procedure satis-
fies (Pasupathy et al., 2018):

Tp1 = Tk + h(Tk) (19)

In different recursions, h (xx) can be interpreted as the product of a step or the inverse Hessian and the
function gradient estimated at the current location. Under a geometric interpretation, the right hand

side of the update step represents the (vector) of the linear distance(s) between the current point and the

12



Journal Pre-proof

next point which will be sampled. The basic idea of our approach is to interpret the algorithm Efficient
Global Optimization (EGO) (Jones et al., 1998) as a stochastic recursion. According to this view, at the

k-th iteration, we can modify the definition provided in equation (7) obtaining

1 = xy, + dist <:c;;, arg mglsg\)é Tr, (:1:)) . (20)
k

d
Where dist (-, -) is the distance vector having as components {:c’;b i~ Thk+1 }h , and d is the dimension-
; -1

ality of the solution space.We have:

e x;1 represents the next point to sample;

e X, — g <{azl}f:1> £ g} € argminges, y (), i.e., the current solution is, at each step, the point

with the lowest sampled value. In fact, if the search stops at iteration k, a traditional recursion
would return zj as the best solution so far. To the same extent, EGO (and eT'SSO) would return
arg minges, v (). This means that, differently from the original recursion, @) does not only depend
on the previous sampling decision, but on the sequence of sampled solutions. This justifies the
notation {Zﬂz}le This difference between the original approach and the meta-model based search
will require us an additional consistency result with respect to the framework in (Pasupathy et al.,

2018), which we provide in Property 1.

o h(x) + h({mi}f:l) £ dist (mz,argmaxmex\gk Tr (z)). In this case, we observe the parallelism
between the two algorithms under the aforementioned geometrical interpretation: the right hand
side of the update step represents the (vector) of the linear distance(s) between the current point

and the next point which will be sampled.

In the stochastic counterpart, the traditional recursion can be modeled as (Pasupathy et al., 2018)
Xpp1 = Xp+ H (Wi, Xp) .

Where W is the number of simulations that have been ran up to iteration k. Similarly to the approach

in (20), we can formulate the “meta-model” version of the iteration as

X1 = Xj + dist (X}’;, arg max T, (a:)) . (21)
zeX\Sg

Where, 7, refers to the model in (8) replacing 7 in equation (2).

X+ X7 =Ye (Wk, {Xi}le) equivalently X} € argmingecs, Y (), whereas

H (Wi, Xy) « H (Wk, {Xi}f:1> 2 dist <X;,arg max T, (x)) .

zeX\Sk
W}, represents the total simulation budget used up to iteration k, i.e., >, By and according to (18), is
a random variable. Due to the budget stochasticity we need to guarantee further results with respect
to (Pasupathy et al., 2018) that deals with a deterministic number of simulation runs.

Reminding that S represents the set of sampled points, we can define Si as the set of point sampled up

13
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to iteration k by the EGO algorithm and S, the corresponding set generated by the stochastic analogue
(€TSSO). As a result, we can formulate G (g) and H (h) as G (Wk,§k> (9 (Sg)) and H (Wk, Sk) (h (Sk)),
respectively.

This new interpretation of surrogate based optimization is relevant since it allows us to understand
the behavior of a complex stochastic algorithm based on its counterpart. We will use (Pasupathy et al.,
2018) that established foundational results in the analysis of recursions. Specifically, we will treat our
algorithm as the stochastic counterpart of the well known EGO (Jones et al., 1998). In the following, we

list the assumptions at the basis of the asymptotic analysis.

Assumption 1. Denote Ni(x) as the total number of replications at design point x by iteration k and
02 £ maxgex U?(m). There exist a sequence {ri,...,rk...} such that rpy1 > rg, rp — 00 as k — 0o and
that >~ | kexp(—kry) < oo, Y&k > 0. The allocation rule ensures that Ny(x) > 1, for all design point

xT.

Assumption 1, is required to guarantee that OCBA does not impact negatively the convergence of
the algorithm. In fact, the OCBA technique was originally developed for optimization problems with
finite number of alternatives. To satisfy this assumption, in this work, at each evaluation stage, we first
spare some budget to ensure that all design points receive at least ry replications, with {rp = k}. This
can be easily obtained from our budget B by assigning a single observation first to the sampled points,

subsequently using OCBA to allocate the remaining budget (refer to step 34 in Algorithm 1).

Assumption 2. The number of replications By assigned at each iteration satisfies By > By_1, Vk =
1,2,... and By — oo as k — oo. Moreover, for any € > 0 there exists a 0. € (0,1) and a k. > 0 such that
V2L (Bj_1,€) < (6%, Vk > ke, where L (-,:) is strictly decreasing in Bj_, and non-increasing in e.

Assumptions 1-2 are concerned with bounding the behavior of the stochastic sequence of budgets.
While Assumption 1 looks at each single point budget allocation and serves the purpose to characterize
the convergence of the search, Assumption 2 looks at the overall budget per iteration and serves the

purpose to study the convergence of the surrogate model.
Assumption 3. X is a compact space.
Assumption 4. Each dimension in the space is defined between [0, 1].

This scaling operation is frequently operated in the surrogate model literature (Picheny et al., 2013,;
Kleijnen, 2008). While it does not lead to any loss in generality, such an assumption allows to easily

derive our bounding argument for the EGO expected improvement function used in Lemma 2.

Assumption 5. The Gaussian correlation function is adopted to model the spatial variance-covariance

matriz.

Assumption 5 is a sufficient condition for the existence of the derivative processes and it ensures that
the various variance-covariance matrices are positive definite, i.e., non-singular (Ankenman et al., 2010).

These will be used in Lemma 1, which characterizes the expected improvement function in (7).

Assumption 6. The parameters T,¢ and 0’? of the MNEK model are assumed known.
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Assumption 7. The initial sample {:L'i}ZJ-V:Ol, and mintmum number of replications r.,;, are such to produce

an initial fit of the MNEK model 7y, k = 0, satisfying cross-validation criteria.

Assumption 7 is important in achieving uniform convergence. Our cross-validation procedure (algo-

rithm 1, Steps 6-19) allows to generate such initial conditions.

Assumption 8. The true function to be optimized over the compact space X is bounded and has a unique

global minimum x*.
We start characterizing the “distance” function h (x) defined in equations (19)-(20).

Lemma 1. There exists k € R such that, for any (S,S') : S € X, C X, |[|h(S) — h(Y)||< &D(S,S),

where D (-) represents the distance between two sets of points.
Proof. Proof in the Appendix. O

Lemma 1 characterizes the behavior of the component h(-) of the recursion in equation (20). In
particular, it guarantees that similar sets of sampled points return similar values for the recursion, where
similarity is characterized by the distance between two sets.

The following Lemma states that EGO produces iterates which are converging to the global optimum and
the result relies on the study in (Locatelli, 1997).

Lemma 2. Let us consider a Gaussian correlation function, then limg_, o @ = x* will hold for the EGO
algorithm. Moreover, if Assumption 7 is satisfied, the result will hold for any initial sampling {xko}]k\g(’:l,

i.e., we have uniform convergence.
Proof. Proof in the Appendix. O

Firstly, we need to characterize stochastic sequence W, = Zle B;, where the simulation budget B;

is generated by equation (18). We can observe what follows:

Lemma 3. The cumulated budget Wy, satisfies Wiy koo, oo w.p.1, and the expected budget at iteration
k is finite for any finite value of k.

Proof. Proof in the Appendix. O

Lemma 4. As the number of iterations k — oo, under assumptions 2-8, the MNEK model Ty, approaches

its deterministic counterpart .
Proof. Proof in the Appendix. O
Lemma 5 characterizes the distribution of the predictor produced by the MNEK for k& — oc.

Lemma 5. As the number of iterations k — oo, the stochastic predictor Y resulting from the MNEK

model 7y becomes Y (x| Fz,) ~ N (1, (2) ,S%k (z)), where pz, () ,s%k () correspond to the moments for

the deterministic-response Gaussian model Ty,.

15



Journal Pre-proof

Proof. Asymptotically (kK — oco) Lemma 4 holds. Then, according to the result in Stein (1999) (Appendix
A), we have that Y (z|Fz,) is normally distributed and parameterized by:

T
k _ L [1-1TR"tc _
piz, (Wi, , ¢) — (CTR '+1'R 1% y (22)
Tr-1.17 TR-1
) koo o (1-1"R"'¢) . (1-1"R¢)
Sﬁk (Wk,$,¢)—>7' 1-— C+1W R C—f—w (23)
These correspond to the predictors obtained in Yin et al. (2011) for deterministic responses. O

Now we analyze the effect of the results in the previous Lemmas onto G (-,-) as well as H (-, ).

Theorem 1 (Convergence of G (Wk, Sk)) For any 6 > 0, and with E,W — oo, when k — 00,
supg, 5, cx Pr{IG(ELW,Sy) — g(Sy)l1> 8} = 0 (1BW (Xp))71/2).
Proof. Proof in the Appendix. OJ

The study of H(Wy, Sk) is the key to analyze the efficiency and consistency of eT'SSO. The first step
in this direction is to establish the relationship between H(-) and h(-).

Theorem 2 (Convergence of H (Wk,gk>) (1) Let k= oo, and let S represent any possible subset of
feasible points of size k. Then the estimator H (Wk,gk) satisfies, for any A > 0,

gSHCI;gPT {[[H (Wi, %) = h (Sk)[|> A} = O ((ExW)7*?).

(i) If the sequence of simulation budgets {W; 1} satisfy Wi — oo a.s., then ||H (W}, Si)—h (Sg) ||w—p1> 0.
Proof. The result in (i) can be obtained from Lemma 4 by setting a = % and W = maxx,es Wjg. In
fact, Lemma 3 proved that the budget goes to infinity a.s., and it has finite expectation for finite k, and
Lemma 4 proves that the stochastic model converges to the deterministic model.

Concerning part (ii), Lemma 3 guarantees the budget to reach infinity when the iterations satisfy
k — oo. Again, we consider Lemma 4 that proves the stochastic model converges to the deterministic
model. This means that the sequence of points generated by the expected improvement function will

converge. Considering Theorem 1 and Lemma 1, part (ii) is also guaranteed. O

The results in Theorems 1-2 are at the basis for the efficiency analysis of the proposed algorithm. In
this phase, we make use of the results presented in (Pasupathy et al., 2018), as it will be specified in the

following.

Property 1 (Characterization of H (Wy,Sy)). Let k — oo, then the estimator H (Wy,Sk) satisfies
sups, cx E (H (W, Sk) — h (Sg)) = © ((72 - B, (minges, Wk(x)))il)

Proof. The main ingredient to prove the theorem and, main challenge, is the analysis of the behavior at
convergence of the sequence of expected improvements 7%, generated by our algorithm. Under Assump-

tion 3 and Assumption 7, T%, is finite, and, from Lemma 1, we know that the function is differentiable and
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Lipschitz Continuous. Under these premises, the expected improvement function satisfies the assump-
tions of epi-convergence (Attouch, 1984), i.e., Tx, % Trp,w.p.1, if Wi(x) — oo. While our budget
allocation is stochastic in nature, we showed in Theorem 1 that, under Assumptions 1 and Assumption
2, Wi(x) —— oo, w.p.1

k—o0

Given the epi-convergence is valid, Theorem 3.4 in (Robinson, 1996) also applies, so that the sequence

Tk, % T, and the sequence of selected points X, € argmax Tk, % k. ]
-2
Theorem 3 (Convergence rate of Algorithm 1). Let us define Cy, := 1—|—7—05”“ﬁ and { = (1 — %)l/d.

6’57k+sﬁk (Trt1)
Given that EGO exhibits linear convergence (Bull, 2011), for any e > 0 satisfying {+e < 1 and as k — oo,

the following holds for By, = E [||XZJrl — :v*||]
—k
E[Cy] > (7%, =0 <<E[C’k]‘1/2 (+2)7") Ekw,;j{2> (24)

Proof. Proof in the Appendix. O

The proofs have been developed assuming known parameters. For the deterministic case, convergence
rates are discussed in (Bull, 2011), where boundedness of the Maximum Likelihood estimation is required.
For the stochastic case, the role played by the bias was empirically discussed in (Kleijnen et al., 2012)
where the authors recognize that the consistency of the bias plays a major role. In fact, as long as the

bias is consistent, the optimal location is identified according to the empirical evidence.

5 Empirical Results

While results for the empirical convergence rate were provided in the conference paper (Pedrielli and Ng,
2015), herein we focus on the impact of the budget and the finite time performance of the algorithm in
its four variants.

Section 5.1 shows the impact of the adaptive budget allocation over relatively simple test functions
with the aim to show the negative effect that a wrong choice of the budget can have over the TSSO
algorithm and how ¢TSSO tackles this challenge. In this part of the analysis, we show the results for the
variant eTSSO, (similar results were obtained running the other variants of the allocation). Subsequently,
section 5.2 focuses on the performance of the proposed algorithm over increasingly complex functions when
the choice of the budget for TSSO is performed according to the the recommendations from the analysis
in section 5.1. In this part of the analysis, all the variants of eT'SSO are studied in order to try to provide

insights on the most promising family of allocation rules.

5.1 Impact of the Budget Allocation Rule for TSSO and TSSO

To quantify the impact of the choice of B, we propose to study the following 1-d function represented in

Figure 1:

Y (2) = (22 + 9.96) cos(13z — 0.26) (25)
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This function has a global minimum in &* = 0.746 with function value y* = y (x*) = —11.45 and a local
minimum in z = 0.2628, with X = [0,1]. As noise, we applied to the function an additive Gaussian

Process £ (z) with mean 0 and diagonal variance covariance matrix with elements:
Ug(:v) =0 (26)

Where 6 represents the magnitude of the noise.
We set the total budget 7" = 300 (7" = 3000 for the

high noise case), the minimum number of replications

to sample a new point to 7,;,, = 10 and the number of
initial sampling points to Ny = 6. T '

As aresult of the previous settings, the minimum budget

per iteration B,;,, obtained applying equation (16), is B
Biin = 19 (B, = 57 for the high noise case). By, i.€., U S U N S [ .
the budget such that all the available replications are

used for the evaluation of the initial design, is B., = Figure 1: 1-d Function representation
50 (Buax = 500 for the high noise case). Finally the
minimum “feasible” budget is 7.5, = 10.

Figure 2(a) and Figure 2(b), show the performance of the original TSSO algorithm in terms of optimum
location and optimal function value estimation, for values of the budget 7., < B < B,.. under low
noise, 6 = 0.1 and large noise, 6 = 10.0, respectively. In the figures, each point represents the average
performance obtained from 100 macro-replications of the algorithm. The location performance is meant
to be the Euclidean distance between the point associated with the minimum predicted value z and the
true global optimum of the function z* and it is referred to as |z — z*|, the estimation performance refers
to the absolute difference between the best performance according to the final prediction y and the true

optimal value y* and it is referred to as |y — y*|.
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----- X ¥ (e 1SS! —e—v-y*|(e1SSO)
gl bl -y ¥(TSSO) = [ymy*|(eTSSO)
0045 ~ 18 0.12 0.7
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0,035 / 14 01 oos
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00 LT T o006 &\ B
T 002 08 = = 03 =
£ gois 06 02
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0005 02 '
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10 15 20 25 30 35 40 50 RN N VAL RS
B B
(a) 6 =1.0 1-d case (b) § =10.0 1-d case

Figure 2: Effect of the budget per iteration, 1-d case for TSSO and the effect of the adaptive budget allocation
(O-BAR allocation policy was used).

The performance of TSSO in terms of location |z — z*| as well as |y — y*| are non-monotone in the
assigned B. Specifically, as B increases, the noise effect is mitigated as more replications are performed
at each sampled point. On the other hand, the number of iterations that can be performed decreases

since the total budget is fixed (equation (17)). The first effect leads to a potential decrease in |y — y*|,
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especially when large noise is considered (Figure 2(b)). However, the second effect can be critical, resulting
in an increase of |z — 2*| and a consequent increase of |y — y*| as observed in the right extremes of both
Figure 2(a) and 2(b). As a result, we observe that TSSO can be less effective in cases where either large
or low values of B are chosen by the user.

Figure 2(a) shows that the error in the location (see left-hand vertical axis) resulting from the new
algorithm, is far below the average error obtained when TSSO is applied over all B’s.

It is important to consider that TSSO might lead to better performance under specific values of B,
given the total budget 7. However, in practice, since no structural properties are defined, running the
algorithm is the only way to determine a suitable value for B. Focusing on the |y — y*| performance
(see right-hand vertical axis), we observe an expected good result from eTSSOg. In this specific case, the
extended algorithm is always better than the original TSSO. Since eTSSO explicitly considers the response
noise, by increasing the budget when this is particularly large, we can expect a better performance in
terms of function value estimation, especially with large noise levels. This aspect is important as it reflects
in the location performance | — x*|. Indeed, as the algorithm progresses, convergence to the optimal
location is guaranteed only if the function value is correctly estimated (Vogel and Lachout, 2003).

Figure 2(b) further investigates the effect of the noise. In particular, it shows the results from the
same experimental settings used in Figure 2(a), with noise level 6 = 10.0 and total budget 7' = 3000
because of the increased noise. Despite a decrease in the algorithm performance overall (both TSSO and
eTSSO), due to the increased noise level, it is possible to observe a similar behavior as in the lower noise

case.

We also studied the 2-d tetra-modal function:
2
Y (@1, 22) = =5(1 = (221 — 1)*)(1 — (225 — 1)*)(4 + 221 — 1) (0.05@901*1)2 - 0.05@“2*”2) . (27

Where the dimensions of the test function, x; and z2, are scaled to [0, 1]. The global minimum is located
at [0.85,0.5] and has the response value —7.098. As noise, we applied to the function an additive Gaussian
Process € (z) with mean 0 and diagonal variance covariance matrix with diagonal elements O'g (x1,22) =
d - (x1 + x2). We set Ny = 20. The first experiment set was performed with 7' = 2400, r;, = 15,6 = 1.0
resulting in By, = 45 (Bn.. = 120), whereas the second with 7' = 9600, ., = 60,5 = 10 resulting in
Biin = 120 (Byax = 480). For both conditions we performed 100 macro-replications. Figures 3(a)-3(b)

report the results for the lower and larger noise level, respectively.
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Figure 3: TSSO performance under different values of budget per iteration By for the 2-d case compared to eTSSO
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The same observations as in the 1-d case can be drawn for the 2—-d case.
Based on the observed results, an appropriate sequence of By, where k = 1,..., K are the performed

iterations, should satisfy two main desirable characteristics:

1. In the case of low noise, By, should not be increased to a great extent especially at the first iterations,
to favor the search, since only few replications are needed to provide a good point estimate of the

function value.

2. In the case of high noise, larger By, should be allocated to improve the accuracy in presence of noisy

function estimations.

If we look into the eTSSO results in Figures 3(a)-3(b), it is important to notice that, in case of high noise
for the 2-d function we observe that TSSO can be slightly better than eTSSO. In particular, we observe
that, with B = 240, the average location error | — x*|= 0.0723 while eTSSO reaches | — x*|= 0.0768.
This shows that, potentially, TSSO can be better than the new algorithm: the 100 macro-replications
enable a statistical test of the significance of the difference between the two observed sample averages
(namely, 0.0723 and 0.0768), and, for this value of the budget, TSSO was statistically better according
to a 95% confidence paired t-test. Nevertheless, finding the value B = 240 is far from an easy task.

Summary observations In the following, we summarize the main differences between TSSO and

eT'SSO:

e ¢T'SSO has good performance with respect to TSSO and it is always performing better than the
average performance of TSSO, where the average is taken over the different values of budget per
iteration B. A relevant advantage of the algorithm is that it does not require the user to define any

arbitrary value for B;

e The adaptiveness of the allocation scheme results in eT'SSO performing better than TSSO in the
estimation of the function (Jy (X*)—y*|) when the noise is larger since the budget increase enhances
the evaluation. This contributes to improve the identification of the optimal location which is always

satisfactory;

e The adaptiveness of the new allocation leads to a more effective use of the available budget: while
TSSO would require to size the appropriate B based on the specific total available budget, e TSSO
adapts to T and its performance is consistently improving as the total number of replications that

can be performed increases.

The consistency of the performance of eT'SSO with the associated new budget management is verified in

higher dimensions in Section 5.2.

5.2 Performance Comparison

In this section, we compare the performance of eT'SSO and TSSO using several test functions. In addition
to TSSO, we implemented the Minimum Quantile (MQ) algorithm (Picheny et al., 2013), and the SKO
algorithm (Huang et al., 2006), which we extended to the heterogeneous variance case following the same

approach proposed in Jalali et al. (2017).
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Minimum Quantile algorithm The MQ algorithm chooses the point with minimum Kriging quantile,
q(x) = 9 (x) + 271 (Buq) s (x), with Byq € (0,0.5], as infill point, i.e., X € argmingex q (x). MQ does
not necessitate information about the variance form and it allocates a fixed number Byq of replications
per iteration which is decided prior to running the algorithm. MQ allows for revisits: at any iteration k,
it is possible to sample a point that has been already evaluated, and add B);q additional replications to
it. As a result, the sampled points can receive a different total number of replications depending on how

often they are re-sampled.

Adapted Sequential Kriging Optimization (SKO) The SKO in Huang et al. (2006) chooses the

location that maximizes the AEI score defined as

VI + ()

Where g (x},) is the kriging prediction at the point with minimum ¢ (x) among the simulated points with

ABT (x) = E [mas (§ (x}) — § (x),0)] (1 e, )

Bsko € (0.5,1]. The algorithm was originally designed for homogeneous noise: 72 (x) was introduced
in Jalali et al. (2017) to reflect the presence of heterogeneous noise. As proposed in Jalali et al. (2017),
the 72 (x) prediction is obtained by estimating a deterministic Kriging model for the sample variance.
SKO, as MQ), uses a fixed number of replications per iteration Bsko and allows for revisits. Like MQ only

one point at the time is sampled and or re-evaluated.

Objective of the Empirical Study We analyze ¢TSSO under different levels of the total budget, T,
and noise magnitudes, &, to evaluate the robustness and performance of the algorithm in its variants. In
particular, we collect and discuss the following output metrics: (1) the location error |x — x*| computed
as the Euclidean distance between the location identified by eTSSO and the, known, global optimum,
and (2) the error in the function estimation |y — y*|, where y = y(x). We perform this study on
several functions with increasing dimensionality. We consider a two-dimensional (tetra-modal), a three-
dimensional (Hartmann 3), and a six-dimensional (Hartmann 6) test function. Preliminary tests were
conducted to set an appropriate value of the total budget T" as well as the minimum number of replications.
For TSSO, we set the value B to be in the middle of the range r.;, and B,.y, i.e., in the region where
we obtained the best results according to the numerical evidence for both the 1-d and 2-d case studied
in section 5.1. For eT'SSO, no matter the variant, such a setting is not needed, and we only need to set
By = T'min-

Tables 1, 4 and 7, report the noise level §, the size of the initial set of points Ny, the total budget T,
the algorithm to which each row of the table refers (Algorithm), the minimum number of replications 7,
and B, which is only required for MQ, SKO, and TSSO. In all the Tables, the average for the location
error (|& — a*|) or the function evaluation error (Jy — y*|) is reported in bold, normal, or italics when
the algorithm statistically outperforms, is identical, or under performs TSSO, respectively. The test is
conducted with 95% confidence level. In particular, we considered 6 simultaneous comparisons (each
algorithm against the original TSSO), therefore a confidence 1 — (0.05/6) was adopted to determine the
statistical significance of each single test (Miller, 1981; Montgomery, 2017).

For all the tests, following the parametrization recommended in Jalali et al. (2017), we set Byq =
Bsko = 55, and Byuq = 0.1, Bsko = 0.84. Note that the budget Byq, as well as Bgko, is substantially
different from the B used in TSSO. Indeed, while B is distributed among several sampled points, MQ
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and SKO only sample one location at a time, whether it is a new or revisited solution.

Two dimensional case The tetra-modal function below was analyzed
2
Y (1, 02) = =5(1 — (221 — 1)*)(1 = (229 — 1)*)(4 + 221 — 1) (0.05@“—1)2 - 0.05<2~"32—1>2) .
As noise, we applied to the function an additive Gaussian Process £ (x) with mean 0 and diagonal variance
covariance matrix with diagonal elements 052 =0-(x1+ z2).
Table 1 shows the results and the parameter settings adopted to compare the performance the different
algorithms. All this information characterize the experiment settings, whereas the location and estimation

errors are reported in terms of both mean and standard error over 100 macro-replications.

Table 1: Summary results for the tetra-modal function (low noise, § = 1.0)

No T Algorithm  r,;,, B |z — x*| ly — y*|
average std err | average std err
10 2400 MQ - 55 | 0.0445  0.0546 | 0.3886  0.3078
10 2400 SKO - 55 | 0.0445  0.0546 | 0.3886  0.3078
10 2400 TSSO 10 130 | 0.0083 .= 0.0007 | 0.0694  0.0053
10 2400 €TSSOq 10 - 0.0064 - 0.0005 | 0.0422 0.0039
10 2400 €TSSO, 10 - 0.0034 = 0.0006 | 0.0357 0.0025
10 2400 eTSSO¢ 10 - 0.0033 .~ 0.0007 | 0.0330 0.0027
10 2400 €eTSSOg 10 — 0.0020 0.0005 | 0.0385 0.0029
20 2400 MQ - 55 | 0.0772  0.0142 | 0.3524  0.0192
20 2400 SKO - 55| 0.0772  0.0142 | 0.3524  0.0192
20 2400 TSSO 10 70 | 0.0119  0.0009 | 0.0764  0.0056
20 2400 €TSSOq 10 - 0.0072 0.0005 | 0.0462 0.0041
20 2400 eTSSO4 10 - 0.0027 0.0006 | 0.0339 0.0028
20 2400 eTSSOg¢ 10 - 0.0026 0.0007 | 0.0332 0.0034
20 2400 eTSSOg 10 - 0.0022 0.0006 | 0.0400 0.004

Consistent with the results already obtained, we observe that eTSSO is statistically better or equivalent
to TSSO in an least one variant (when considering an overall confidence of 95% and the normal approxi-
mation), while both TSSO and eTSSO appear to be superior to MQ and SKO for most of the instances.
The result is less “statistically” striking for the high noise case, mainly due to the fact that attaining
95% simultaneous confidence leads to large intervals. Nonetheless, results from experiment with noise are
consistent with those in low noise.

Focusing on the low noise case, we can see that, independently from the initial conditions, eTSSO
beats TSSO in all its variants. In particular, eT'SSO, appears to be the worst performer and this may be
due to the fact that this allocation was observed as the most conservative in low noise settings leading to
larger budget increase early on in the search (this was also observed in (Jalali et al., 2017)). On the other
hand, as we predicted, the eager variant eTSSOy shows the best location performance in this family of
experiments. In fact, eT'SSOg is more biased towards exploration leading to lower budget allocations per
iterate. While such exploration is beneficial in the low noise case in identifying a good solution, we observe

that the error in the function evaluation is higher. Finally, eTSSO, and eTSSO¢ appear to have similar
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behavior. This makes sense: while eTSSO, uses averaging as a means to mix sample and un-sampled

points information, eT'SSO¢ does the same choosing two “representative points”.

Table 2: Summary results for the tetra-modal function (high noise, § = 5.0)

No T Algorithm  r;, B |z — x*| ly — y*|
average std err | average std err
10 6000 MQ - 55 | 0.4803 0.0301 | 0.8886  0.0421
10 6000 SKO - 55 | 0.4804 0.0301 | 0.8787 0.0413
10 6000 TSSO 20 315 | 0.0125  0.0009 | 0.1135  0.0094
10 6000 eTSSOq 20 - 0.0085  0.0009 | 0.0852  0.0074
10 6000 eTSSOA 20 - 0.0105  0.0010 | 0.1299  0.0101
10 6000 eTSSO¢ 20 - 0.0125  0.0012 | 0.1460  0.0136
10 6000 eTSSOg 20 - 0.0335  0.0068 | 0.3020 0.0166
20 6000 MQ - 55 | 0.4803 0.0301 | 0.8886  0.0421
20 6000 SKO - 55 | 0.5128  0.0287 .| 0.9372  0.0409
20 6000 TSSO 20 165 | 0.0145  0.001 0.1346  0.0124
20 6000 €eTSSOg 20 - 0.0094 0.0007 | 0.0870  0.0079
20 6000 TSSO, 20 - 0.0118 .= 0.011 0.1180  0.0089
20 6000 eTSSOgq 20 - 0.0113 0.0012 | 0.1173  0.0113
20 6000 eTSSOg 20 - 0.0321 = 0.0094 | 0.2553  0.0232

Concerning the higher noise case (Table 2), we notice that eTSSO¢ shows better performance relatively
to the low-noise case. In this case the approach empirically produces better selections. Still, eT'SSO, and
eTSSO¢ are competitive with eT'SSO, and behave similarly as in the lower noise case. Not surprisingly,
the eager algorithm eTSSOyg does not perform well due to the low budget allocated to evaluation. Also,
we observed that, in case of larger noise levels, the number of points sampled by eTSSO decreases despite
the fact that a larger initial budget 7" is available. This is reasonable: as the noise increases, the budget
increases at faster rates (refer to equation (18)) as the algorithm progresses. As a result, the budget is
quickly exhausted. This is detrimental for the performance in terms of search as the algorithm samples
less points. However, the fewer sampled points are characterized by lower sample variance because of
the large allocated number of replications, thus improving the model estimation. This can be observed
from the improved performance of eT'SSO in the response estimation. Intuitively, it seems clear that the
simulation of more points - but with large intrinsic noise - does not improve the insight into the behavior
of the I/O function, so further effort in simulating new points would not be effective.

The results also suggest that the number of initial points Ny is not always significant across the
different variants of eT'SSO (confirming the outcomes in (Picheny et al., 2013)). However, we noticed a
strong interaction between Ny and r,;,. In the case of low noise and finite budget, we should focus on the
search and maximize the number of sampled points, since only a small number of replications is required
to evaluate the function at each location. As a result, in case a large initial value of r;, is assigned, better
results can be achieved with lower Ny as the algorithm has more budget to perform the search. Hence,
the better results observed for the case Ny = 10 in Table 1. On the other hand, under large noise set ups,

algorithms that have larger initial samples appear to be more competitive.
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Three dimensional case In this part, we analyze the Hartmann—3 function:

4 3
Y (w1, m9,03) = — Y aiexp | — Y Aij (¢ — pij)?
i=1 j=1

Table 3: Parameters A;; and P;; of the Hartmann-3 function
Aij Pij
3 10 30 0.3689 0.117 0.2673
0.1 10 35 0.4699 0.4387  0.747
3 10 30 0.1091 0.8732 0.5547
0.1 10 35 0.03815 0.5743 0.8828

With 0 < z; <1 for i = 1,2,3; parameters o = (1.0,1.2,3.0,3.2), and A;; and Pij given in Table 3.
The function has a global minimum at «* = (0.114614, 0.555649, 0.852547) with y(x*) = —3.86278; the
function has three additional local minima. As noise, we applied to the function an additive Gaussian

Process ¢ (x) with mean 0 and diagonal variance covariance matrix with diagonal elements ag =90-

3
<Z |xl|> Table 4 shows the obtained results.
i=1

Table 4: Summary results for the Hartmann 3 function (low noise, § = 1.0)

No T Algorithm * r,;, B |l — x*| ly — y*|
average std err | average std err
20 3200 MQ - 55 | 0.8551  0.0261 | 0.3071  0.0235
20 3200 SKO - 55 | 0.4202  0.0298 | 0.3461  0.0260
20 3200 TSSO 15 87 | 0.1788  0.0156 | 0.1034  0.0075
20 3200 = eTSSOg 15 - 101294  0.0126 | 0.0763  0.0074
20 3200 eTSSO4 15 - 101021  0.0223 | 0.0550 0.0054
20 3200  €eTSSOq 15 - 1 0.1009  0.0208 | 0.0516 0.0047
20 3200 eTSSOg 15 - 0.0492 0.0151 | 0.0294 0.0039
30 3200 MQ - 55 | 0.3613 0.0255 | 0.2852  0.0209
30 3200 SKO - 55 | 0.5315 0.0322 | 0.3637 0.0263
30 3200 TSSO 15 60 | 0.1891  0.0166 | 0.1372  0.0085
30 3200 €TSSOg 15 - 101254  0.0115 | 0.0824 0.006
30 3200 TSSO, 15 — 1 0.0835 0.0166 | 0.0602 0.0054
30 3200 €TSSOqg 15 - | 0.1165  0.0199 | 0.0749 0.0061
0 3200 eTSSOg 15 - 0.0789 0.0190 | 0.0422 0.0050

First, we notice that the increased level of complexity of the function causes a decrease in the performance
on both TSSO and eTSSO in all its variants. Nonetheless, eT'SSO is statistically better or equivalent to
TSSO in almost all variants, and both TSSO and eTSSO appear to be superior to MQ and SKO.
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Table 5: Summary results for the Hartmann 3 function (high noise, § = 5.0)

Ngy T Algorithm 7., B |x — x| ly — y*|
average std err | average std err
20 8000 MQ - 55 0.5406  0.0302 | 1.1372  0.1001
20 8000 SKO - 55 0.5636  0.0297 | 1.1315  0.0989
20 8000 TSSO 25 212 | 0.2277  0.0205 | 0.2756  0.0178
20 8000 €TSSOo 25 - 0.2716  0.0224 | 0.2072  0.0156
20 8000 eTSSO4 25 - 0.2747  0.0299 | 0.2271  0.0110
20 8000 eTSSOg 25 - 0.2053  0.0286 | 0.2051 0.0089
20 8000 eTSSOg 25 - 0.3438  0.0299 | 0.2270  0.0120
30 8000 MQ - 95 0.5819  0.0313 | 1.1168  0.0894
30 8000 SKO - 55 0.6681  0.0350 | 1.3564  0.1052
30 8000 TSSO 25 145 | 0.3154  0.0235 | 0.3488  0.0239
30 8000 €TSSOo 25 - 0.2216  0.0231 | 0.2600  0.0207
30 8000 TSSO, 25 - 0.2633  0.0298 | 0.2612  0.0141
30 8000 €TSSOq 25 - 0.2374  0.0286 | 0.2240 0.0117
30 8000 eTSSOg 25 - 0.3181  0.0282 | 0.2427 0.0125

Nevertheless, eT'SSOy is again performing worse than all the alternative algorithms for the case with high
noise. We highlight the case with 6 = 5.0 and Ny = 20, where a better average performance is observed
only for eTSSOq. As already stated in section 3, TSSO can show better performance with respect to
eTSSO, especially in case of large noise. Indeed, eT'SSO might be affected by an early termination due
to the budget exhaustion.

Six dimensional case Finally, we examined a six—dimensional case. In particular, we study the

Hartmann-6 test function defined as

4 6

2

Y (z1, 0,23, 4, x5, T6) = — E Qiexp | — E aij (x5 — pij)
i1 =1

The parameters of the function are in Table 6.

Table 6: Parameters «;; and p;; of the Hartmann—6 function
Qi 10.0 3.0 17.0 3.5 1.7 8.0
0.05 10.0 17.0 0.1 8.0 14.0

3.0 3.5 1.7 10.0 17.0 8.0

17.0 8.0 0.05 10.0 0.1 14.0

pij  0.1312  0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

With 0 < z; <1 fori=1,...,6; parameters a = (1.0,1.2,3.0,3.2), and «;; and p;; given in Table
6. This function has a global minimum at x* = (0.20169,0.150011,0.476874,0.275332,0.311652, 0.6573)
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with y (x*) = —3.32237; the function also has five additional local minima. As noise, we applied to the

function an additive Gaussian Process £ (x) with mean 0 and diagonal variance covariance matrix with

6
diagonal elements O’? =9 <Z |mz|> The obtained results are in Table 7.
i=1

Table 7: Summary results for the Hartmann 6 function (low noise, 6 = 1.0)

No T Algorithm  r;,, B |z — x*| ly — v*]
average std err | average  std err
40 6400 MQ - 55 | 1.8919  0.0562 | 1.6070 0.0314
40 6400 SKO - 55 | 1.4539  0.0597 | 1.6027 0.0312
40 6400 TSSO 25 92 | 0.2746  0.0384 | 0.18629  0.0135
40 6400 €TSSOq 25 - 0.16211 0.0384 | 0.16211  0.0155
40 6400 €eTSSO4 25 - 0.14807 0.0334 | 0.18928  0.0143
40 6400 eTSSO¢ 25 - 0.14794  0.0473 | 0.21957  0.0909
40 6400 eTSSOg 25 - 0.13832 0.0425 | 0.13676  0.0609
60 6400 MQ - 55 | 0.3042  0.0165 | 0.5052 0.0214
60 6400 SKO - 55| 0.3025  0.0152 | 0.5060 0.0217
60 6400 TSSO 25 65 | 0.19409 - 0.0174 | 0.19942  0.0182
60 6400 €eTSSOg 25 - 0.16705  0.0356 | 0.14417 0.0137
60 6400 eTSSO4 25 - 0.15483 0.0377 | 0.14612 0.0124
60 6400 €eTSSO¢ 25 - 0.15639 .0.0309 | 0.15457  0.0189
60 6400 eTSSOg 25 - 0.14378 0.0355 | 0.25935 0.0194

Despite the performance of the algorithms are generally worse than in the lower dimensional cases, we
observe that eT'SSO is better or equivalent to TSSO in at least one implementation. Also in this case,
both TSSO and eT'SSO appear to be superior to MQ and SKO.

Table 8: Summary results for the Hartmann 6 function (high noise, § = 5.0)

Ny T Algorithm 7., B |z — x*| ly — y*|
average std err | average std err
40 16000 MQ - 55 1.5729  0.0419 | 1.8362 0.0163
40 16000 SKO - 55 1.6764  0.0519 | 1.8304  0.0216
40 16000 TSSO 35 217 | 0.33579 0.0472 | 0.35308 0.0348
40° 16000 eTSSOq 35 - 0.27443 0.0323 | 0.32487 0.0116
40 16000 eTSSO4 35 - 0.27339 0.0340 | 0.29926 0.0214
40 16000 eTSSO¢ 35 - 0.29575 0.0327 | 0.32266 0.0295
40 16000 eTSSOg 35 - 0.33904  0.0425 | 0.34437 0.0344
60 16000 MQ - 55 | 0.3619  0.0270 | 0.5976  0.0362
60 16000 SKO - 55 | 0.3575  0.0297 | 0.5880  0.0349
60 16000 TSSO 35 150 | 0.35282 0.0429 | 0.36517 0.0258
60 16000 eTSSOq 35 - 0.25337 0.0744 | 0.32929 0.0246
60 16000 eTSSOx 35 - 0.23088 0.0243 | 0.32565 0.0342
60 16000 eTSSOg 35 - 0.28314 0.0945 | 0.33891 0.0296
60 16000 eTSSOg 35 - 0.37284 0.0445 | 0.39936 0.0544
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Summary We observe good results from the several variants of eT'SSO. In particular, across different
dimensions and noise levels, eT'SSO has always variants that are superior, statistically, to TSSO. Overall,
eTSSO, and eTSSOg appear to be the most robust with respect to the different test cases. This is
expected: eTSSOg performs well for low noise, but it leads to under sampling in the case of high noise
with a detrimental effect on the performance; eTSSO, protects against low budgets, but it may be
ineffective due to the high heterogeneity of the noise across the design space. In our implementation and
tests, the MQ and SKO algorithms appear to never perform better than TSSO or eT'SSO. While this
is expected for MQ), treated generally as a benchmark, the issues in SKO reveal the importance of the

underlying assumption of knowledge of the variance structure.

6 Conclusions

In this paper, we propose a two-stage sequential optimization procedure, eT'SSO, which generalizes the
previously proposed TSSO algorithm by trying to reduce its sensitivity to the budget allocated at each
iteration k, namely, Bj. Indeed, we observed that increasing the budget at each iteration has the positive
effect to decrease the influence of the budget per iteration B, adopted in the original TSSO, and the
noise magnitude. Hence, we generalize TSSO by generating the sequence of the budget per iteration By,
stochastically and dynamically, according to the updated information coming from the simulation. In this
regard, we propose a general budget allocation rule that satisfies the conditions required for convergence.
We then generate four different variants of the rule that put different emphasis on search and evaluation.

We analyzed the asymptotic properties in terms of convergence and convergence rate of eT'SSO. In
particular, in order to perform the analysis, we interpret eTSSO as a stochastic recursion procedure.
Consequently, we are able to exploit the results from (Bull, 2011) and (Pasupathy et al., 2018) to prove
the desired properties.

The numerical studies reveal a good finite time behavior of the algorithm in its four instantiations when
the parameters of the underlying stochastic model are sequentially estimated as the search progresses.
The performance of eTSSO have been tested against functions of increasing dimensions and results have
been compared with the original TSSO. eTSSO is shown to be better or statistically equivalent to TSSO
in most of the variants given the total available budget T', in the proposed examples. The performance
of TSSO is sensitive to the function dimensions, nonetheless the algorithm behavior is consistent with
respect to the lower dimension cases, proving the generality of the proposed approach and of the empirical
results. Also, eTSSO¢ and TSSO appear to be the most robust variants.

Future research includes the extension of the approach to the case where multiple constraints need to
be considered that can only be evaluated with noise; another important extension of the framework is in

the area of multiple objectives.
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APPENDIX

Proofs

In this section, we report the proofs of theorems in section 4.2.

Lemma. 1 There exists k € R such that, for any (S,S') : S € X,§' C X, |[|h(S) — h(Y)||< &D(S,S),

where D (-) represents the distance between two sets of points.

Proof. We prove that, given two “close” (in Euclidean sense) sequences {xi}f:l , {azg}le, and the as-
sociated filtrations Fr, , F,

7o the corresponding “distances” h ({zi},<; ), ({z}};<; ) must be close in

Euclidean sense. According to (21), the sequences of interest are a result of the expected improvement

T%,, and they are fully defined by:
J}Z‘k—kaJrl, lIl,...,d (28)

where xy 1 1= arg maxzex\s T, (z) and the subscript refers to the I-th dimension. If Assumption 7 holds,
the smoothness of the simulation response guarantees that {:L',} iy and {x] } _, will generate similar values
of response functions, therefore, the generated x;j, will be similar. However, to produce similar sequences,
we need to guarantee that the generated sampling points will be similar. Hence, we need to focus the
analysis on xp;1. Since the sampling points are generated by evaluating the expected improvement
function 7%, , we need to guarantee Lipschitz continuity for T, .

Following (Locatelli, 1997), the expected improvement can be written as:

T (1) = seylo (PR ) (g o) — ) (10 (LIRS ). (29)

where ¢, ® are the normal distribution pdf and cdf, respectively. It is possible to show that T7, (x; Fxr,)

satisfies Lipschitz continuity when fi;, = (4) and sx, (x) = (3). Specifically, we prove that W <

00, V& € X. Under Gaussian Processes, ¢ (%) and ¢ <y(2132)—(’“a:_)m€> are the pdf and cdf of a
™ 7rk

normal distribution; therefore 0 < fi, sz, 2 (x) < oo, but it is important to carefully consider the derivatives

of fir, and sx, (x). Let us rewrite equation (3) as:

1/2
- Z &; (ﬂﬁj—ﬂ@hj)2 - Zd: bj(zgj—x;)

S () =7 |1— ZZB i= e 7=t r,:gl (30)

h=1g=1

If assumption 5 holds, equation (30) is infinitely differentiable with respect to x;, but the derivative will
be finite depending on r;gl, V¥ (h,g), i.e., the components of the matrix R~ (h-th row, g-th column).
Therefore, for the existence of the derivative, we need to require R to be non-singular, enforcing as-
sumption 5 to hold. The same reasoning applies to the mean. Hence, function T, (x; Fr,) is Lipschitz

continuous, proving the lemma. 1

Lemma. 2 Let us consider a Gaussian correlation function, then limyg_ o ¢ = ™ will hold for the EGO

algorithm. Moreover, if Assumption 7 is satisfied, the result will hold for any initial sampling {Xko}lzx)(’:l,
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i.e., we have uniform convergence.

Proof. We observe that s, () = 72(1 — "R ~lc + ¢(x)T(1TR'~11)71¢(x)), where {(x) = 1 — c"R'~'1.
Denote xg as the closest design point to . It is easy to see that s, (z) < 72(1—6_¢zd?”"”0 +(x)TATR 1) "¢ (x)).
Besides, in ¢(z), c’R'~!1 can be treated as the GP prediction (where the mean function is 0) at x, given
the observations at the design points are all 1. It is then easy to check that ((x) = O(|]x — xo|) and that
(1TR'~'1)~! < 1. In this case, we can select a large value My such that s, (z) < 72(1 — e Iz |
MydZ ) := 59 ().

According to Assumption 8, the function is bounded. Here, we select a large value M such that the

responses are bounded in (—M, M), and thus we have y (x}) — fu, < 2M. We can then consider the

following;:
oM oM
Ty, (43 Fr,) < 82 (x45)0 (—) +2M® <—> =T (x5 Fr,) - (31)
g g . 59 () 59 () F g

Now, we find an upper bound for Ty, (z;; Fr,). Note that this upper bound T,?k (xi; Fr,) is a decreasing

2
Zi,x0 "

function of s) (z;) and 2 (;) is a decreasing function of d Therefore, TY, (xi; Fr,) decreases as
the unobserved point ; becomes closer to existing design points and T, (x;; Fr, ) becomes even smaller.
A similar result, in a single dimension, was obtained in (Locatelli, 1997). Hence, based on assumptions
4-2, equation (31) extends this result to the d-dimensional case. An important consequence of (31), is
that it allows to apply the result in Lemma 1 in (Locatelli, 1997) (page 60), obtaining:

lin max][z; — a]|= 0. (32)

k—oo i,j€

Equivalently, if the algorithm is never stopped. the sample points will be dense in X, proving convergence
of the algorithm.

We are left with the uniforni convergence claim. For this, we can refer to the previous result in (Bull,
2011), that shows how under assumption 7 uniform convergence will be achieved and there exists a number

of initial points Ny such that the convergence is guaranteed independently from the specific initial set. [J

Lemma. 8 The cumulated budget Wy, satisfies Wy, E2eo w.p.1, and the expected budget at iteration
k is finite for any finite value of k.

Proof. Let us rewrite the sequence of generated budgets as:

k
Bewi=Bo- [[(1+4)) (33)
j=1

~2

where the random variable Ay is defined as Ugﬁr and it is a random variable. Since 0 < A < 1, we
£k 5%,

can approximate the previous by:

By < Biy1 < By - 2F (34)
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As a result, we can formulate W, = Zle B; as:

k
kBy < Wiy1 < By » 2/ = By- (2" - 2) (35)
j=1

This sequence goes to infinity as the iterations go to infinity. Nevertheless, at each iteration of the
algorithm, the expected budget is bounded below by Bg(2¥+! — 2), which is finite for iteration k. O

Lemma. 4 As the number of iterations k — oo, under assumptions 2-8, the MNEK model 7, approaches

its deterministic counterpart my.

Proof. Under assumption 2, we consider £ = Tr (crgRg), where Tr(-) is the trace of a matrix. We

show that, as requested, T'r (agRg) has all the properties of £. First, it is an error function, therefore
strictly decreasing in Wj. We also need to show that there exist a finite number of iterations k satisfying
L < (5e/¢2)k, i.e., the algorithm returns estimates of £ decreasing with &./12. To prove this aspect we

write the covariance matrix in a more convenient form:

1 e(_¢‘d%2) c. e(_e'dfk) crg(ﬂh) 0 0
| (o) 1 dcem|n [T
R =R, +Re= , . : ) + Do : (36)
: . : . Uz(mk)
IS
(o) N N . 0 SEIRE -

Here, d;; represents the Euclidean distance between two points (i,7), Wy represents the number of
replications performed at location ¢ up to iteration k according to the eTSSO budget allocation scheme.
R’ is a random matrix due to the fact that is contains the random budgets Wj,. As a result, we analyze
E [R/} and note that, as long as the Gaussian Process parameters are known, (assumption 6) the elements

on the diagonal of R¢ will be limited by decreasing values of &/1?, where J. = ( and

ming; es Bk Wik )

— 1
¥? = 72. Hence, it holds that &, € (0,1); moreover, ((minmjeg Wj,k) 72) L WPL 0 as bk — 00, since

ming . es Wi > r — 00 Vk (Assumption 2). Hence, R P2 0. O

Theorem. 1/Contyggence of G (Wk7 Sk)/ For any 6 > 0, and with ExW — oo, when k — oo,
sups, 5, cx Pr{[IGUEW.S,) — a(S0)|1> 3} = 0 (1B (Xp]™72).

Proof. Here, ||-|| represents the Euclidean distance. E,W (X}) is the total expected budget allocated to
point X up to iteration k. Since X; is a random variable, so is the related cumulated budget W (X;).
We use the notation G(Wy,S) to highlight the supremum is computed over any possible subset of size k
of sampled points, where k represents the number of iterations of the algorithm and the total number of
sampled points since a single point is sampled at each algorithm iteration.

Due to Lemma 4, we know that the model converges to the related deterministic counterpart. From
Lemma 2, we know that, in such deterministic settings, density is achieved in the solution space, which
implies the sampling of all points for £ — oo. This implies that, if Sk, Sk represent the set of sampled
points by eTSSO and EGO at step k, respectively, then we have Sy, m Sk
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Recall that x} = argminges, y(x), X; = arg min,, Y (z). We next prove Xj k—) z; w.p.l. As
—00
Sy, —— S, we only need to prove that X} —— X,g w.p.1, where XV = arg min, < y(x).
k—o0 k—oo k

We first prove that Y oo, Pr{|Y (X}) — y(X})|> 6] < 00,Vd > 0:

Pr{[Y (X3) — y(XQ)|> 4]
=Pr(|Y (X;) - y(X§) + y(X5) — y(XD)|> 9]
0

<Pr¥(X0) —y(X)1> o] + Prlly(X) — y(XDI> 3],

Note that Vo € Sy, |Y(x) — y()| is a normal random variable N(O,ag(:c)/Nk(x)). Recall that 03 =
MaXgex ag(x), we have that
Pr¥ (@) - y(@)]> 3] < 2exp(~ S0t ®)) < gy 08
r — — Xp(———5——= xp(——5).
Y 2 = TR (@) | = T R
The second inequality is based on Assumption 2 that the total number of replications at each input x,

Ni(x) > ri. Therefore, by union bound,

_ 1) 52
Primax|¥ (z) — y(x)|> o] < 2(k + No) exp(— s ).
z€eS), 2 80§
It follows that,

_ * * J \/ 0 52Tk
PH{T(X}) ~ y(X7)1> 2] < Prfinax|¥ (@) — y(@)l> 3] < 20k + No)exp(~ 2 1%),

meSk UO

— 0 0 6 — 6 52Tk
PrilY (Xg) — y(Xg)[> 5] = Primax|Y(z) — y(@)|> 5] < 2(k + No) exp(———).

€Sk 80p

To quantify the second term, we define set A = {|Y'(X}) — y(X;)|< £} and B = {|Y(X}) — y(XD)|< £}

we notice that

Prily(X0) - y(XDI> 2]

=PrllX;) — y(XD1> 53N {AN BY + Prifly(X}) — y(XD)1> 510 {AN BT,

where {4 N B} is the complement of {A N B}. The first probability is 0. This can be proved by
contradiction. When y(X;) — y(XJ) > 3, as [Y(X}) — y(X})|< £ (Set A) and [Y(X}) — y(XP)|< & (Set
B), it is easy to see that Y(X}) > Y (X}). This contradict with the fact that X} is the best observed

point at iteration k, i.e., X; = argmin Y (z). It follows that the first term is 0. Besides,

:ceSL

Pr{ly(X) — o(XDI> )0 {AN B}

52Tk
2

<Prl{AnB}¥] =1— Prl[AnB] < 2 — Pr[A] — Pr[B] < 4(k + No) exp(—s
90

).
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The last inequality follows that 1 — Pr[A] = Pr(|Y(X}) — y(X})|> g] < 2(k + No) exp(— 50 2) (similar
for 1 — Pr[B]). Therefore, Pr(|ly(X;) — y(X2)|> 3] < 4(k + No) exp(— 50 2) and thus

52
Pr|Y (X}) — y(XR)[> 8] < 2(k + No) exp(— ) +4(k + No) exp(— ¢~ 2) < 6(k + No) exp(— )
Then, by Assumption 2,
S Oy 0 = 521y
S PrY(X;) — y(XP)[> 6] < 6> (k+ No) exp(—5—5) < 00,
k=1 k=1 0

It follows that Y (X}) = y(X7), w.p.1 and that y(X}) P y(X?), w.p.1. Since the function has
—00 —0o0

only one global optimum, we have X} k—) X,g and therefore, X k—) x;. As a result, Theorem 1
—00 —+00

holds. ]
)
Theorem. 3 [Convergence rate of Algorithm 1] Let us define C, := 1—|—«T:5(T+) and ¢ = ( — %)l/d.

Given that EGO exhibits linear convergence, for any € > 0 satisfying £ +¢ < 1 and as k — oo, the
Jfollowing holds for By, = E [|| X5, —x*|[]:

—k
B[Cy] > 72, Ek=0<(E[Ok]—1/2<€+e>‘1) EkW;;l{?)

Proof. Convergence rates are shown for the EGO algorithm in (Bull, 2011). In his contribution, the
author uses the Reproducing Kernel Hilbert Space H (X) of functions over the space X constructed
from the kernel K and establishes the convergence rates of the loss function Ly (Tr,,He (X),p) =
SUD|ly |y, ) <p E., [y (x) — }7} over the ball of radius p, §,, in H (X) after k steps as (Theorem 2, page
2887, (Bull, 2011)):

Ly (Tn Ho (X),p)i=  sup  En |y(xt) — ¥ (2) \fﬂk] -0 (k_l/d). (37)
yllagx)<p
. . . . Hwk+1—w H . 1 l/d
As a result of (37), EGO exhibits linear convergence rates: kll)r{.lo Tz = 0 (( ) ) From

Theorem 2, we have that supzex Pr {||H (Wi, ) — h (z)||> A} = O (EW %) with a = 1/2. From (18),
we observe that the coefficient Cj for the geometric increase of the budget at each algorithm iteration
satisfies C < 2 a.s. Since the budget increase is stochastic, we need to consider the expected coefficient
E[Cy] to verify that E[Cy] > ¢72, differently from Pasupathy et al. (2018). In the following, in order to
simplify the notation, we will interpret Wy, as EWj.

We start analyzing the Elci]. First, let us re-write Cy, as it follows:

1
C =2- 871’ (wk-l-l) A2

5T, (@) ¥ 5L (@) (38)
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Now, we will refer to the random variable Ay as:

Ak — 872? (mk-‘r-l)
62, (@) + 5%, (Tu11)

(39)

The sample estimator of the variance satisfies &g k% ~ X2 (Wiy1(x) — 1), we can re-write Ay, as:

S%(mkﬂ)‘(;"/k(x)—l)

Ay = — e — (40)
A+ R )

Let us assume that o2, characterizing the simulator noise, is known (which holds under assumption 6).

Then the distribution associated to the random variable in (40) results:

! o2 ((2)) 1 S
) € ) “exp | — -2t (41)
2Wk(;)_1r (Wk(gﬁ)—l) sz (xgg1) Wi(x) Sﬁ%/f(%) -t 57 KE’?%)

Operating a change of variable b =t - (W (x) — 1), we obtain the following density:

Wk(igU)*l_H
1 ‘ o? (x) . Wi(x) — 1
o We(@)-1p (Wkgv)—l) st (@) Wal@) 1\ sz (@11) B -
Wi(x) — 1 1
- exp : (42)
Sz (a:kH) % - 2b Wy (SC) -1

Expression (42) is a scaled inverse x> density. In particular, let us define v = W), — 1 and 7 =
— 1 then the expectation of Ay, results:
57 (Lht1) Wzk(w) P g

72(T)

v/241, 2v v/241 v 2 v/2+1
(40) v T _ v T __oe (x) v ; (43)
(+2) (r20)%72 (P 20v2) s (@) (0V/2H 4 20972) (v +1)

It can be observed that (43)— 0 a.s. as k — oo, as a result E[Cy] — 2. Since ¢ converges to 1 the
asymptotic rate satisfies the condition E[Cy] > ¢72.
Using Theorems 1-2, we can use Theorem 6.6 page 58 in Pasupathy et al. (2018) to prove that the resulting

convergence rate is:
-k
E[Cy] > (72, B =0 ((E[Ck]-l/2 (t+o)7") EkW;ff)

Note that this result is better than the one obtained with basic geometric increase (i.e., ¢ = 1), which
would lead to a rate O (Eka_l/2>. O
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