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Abstract

This paper looks into nonlinear non convex stochastic unconstrained optimization with finite simu-

lation budget. Our work builds upon the Two-Stage Sequential Optimization (TSSO) algorithm that

addresses the class of problems of interest by using the modified nugget effect kriging (MNEK) meta-

model and proposing a budget allocation followed by a two-stage sequential procedure. Despite its

efficiency and performance, we have observed that, given a finite budget, the choice of the number

of replications per iteration, currently left to the user, is particularly critical for the algorithm perfor-

mance. A fixed a-priori assignment can affect the ability to control the algorithm making it particularly

sensitive to the initial settings. In this paper, we propose the extended TSSO (eTSSO). Specifically,

a general simulation budget allocation scheme is proposed with the objective to balance the need of

accurate function estimations to improve the selection in the search stage, with the need to explore

the solution space. The new scheme adaptively, and recursively, increases the simulation budget based

upon information iteratively returned by the optimizer itself. We analyze the asymptotic properties of

eTSSO. Subsequently, we propose four alternative variants of the general allocation that we empirically

analyze by comparing the quality of the estimated optimum input combination and the corresponding

estimated optimum output against TSSO and other state of the art algorithms.

Keywords: Global Optimization; Simulation-Optimization; Two-Stage Sequential Opti-

mization; eTSSO; Convergence

1 Introduction and Motivation

In several real world applications, the behavior of large complex systems is highly nonlinear. As a result,

approaches grounded in the exploitation of structural properties of functions emulating this behavior have

been replaced by black box approaches (Fu, 2015). This large family of methods considers the function

as unknown and it only assumes that point estimates can be obtained by repeatedly calling a simulation

oracle (i.e., the black box) (Wright and Nocedal, 1999). A search algorithm is then responsible, using a

variable level of memory and complexity, to process the estimations and produce sampling decisions until

a stopping criterion is met (Tekin and Sabuncuoglu, 2004).
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In this work, we assume that the point evaluations returned by the oracle are affected by noise and

we design an algorithm that produces an estimate of the location x minimizing the possibly nonlinear

non-convex function of interest, i.e., x∗ ∈ arg minx∈XE (f (x)), where X represents the solution set,

assumed continuous in this research, and f (x) is the univariate function whose noisy measurements can

be obtained through the oracle (also referred to as simulator in the remainder of the manuscript).

Two families of approaches, in both deterministic and stochastic settings, can be identified in a way

that is relevant to this work: (1) direct methods, calling the simulator at each iteration to obtain an

estimate of the response, and typically calculating a direction for the next move, and (2) surrogate

methods, which use simulation to estimate a metamodel of the response surface and use this model to

guide the selection of the next sampled point (Tekin and Sabuncuoglu, 2004; Kleijnen, 2008; Zhu et al.,

2013; Figueira and Almada-Lobo, 2014; Fu, 2015; Xu et al., 2015; Jalali et al., 2017).

Popular direct algorithms include COMPASS (Xu et al., 2010), R-SPLINE (Wang et al., 2013), Rank-

ing and Selection method (Kim and Nelson, 2007), stochastic approximation methods (Yin and Kushner,

2003), the Nested Partitions Method (Shi and Ólafsson, 2000), and the recent ASTRO-DF (Shashaani

et al., 2018).

A major drawback of this family of approaches is their cost when simulation runs require high com-

putational effort. In such cases, meta-modeling based (surrogate) search offers the possibility to use the

information coming from the simulation runs to infer about regions where simulation has not been per-

formed. Specifically, surrogate methods use a few simulation runs to estimate a model of the response

(i.e., the meta-model), which can be used by the search procedure to quickly evaluate the performance at

any given location in the design space without the need to run the simulator (Wan et al., 2005). Response

Surface Methodology (RSM) (Myers et al., 2009) is among the most popular techniques in this class due

to its ease of implementation. RSM uses first-order linear regression models and switches to second order

models when approaching a local minimum. These models are fitted with respect to a sequence of local

regions, and they are used to guide the search towards the optimum. A more complex and commonly

adopted model form is Kriging, also known as Gaussian process (GP) modeling, which has been particu-

larly successful in deterministic computer experiments (Santner et al., 2003). Recently, a noticeable effort

has been dedicated to extend the kriging model structure to the case of stochastic simulations, includ-

ing homoscedastic (homogeneous random noise in the design space) and heteroscedastic (heterogeneous

random noise in the design space) cases. Specifically, for heteroscedastic simulations, Ankenman et al.

(2010); Yin et al. (2011) proposed the Stochastic Kriging (SK) model and the Modified Nugget Effect

Kriging (MNEK), respectively.

In both direct and surrogate search, when the total number of available simulations is finite, the

way the simulation runs are allocated to the sampled points is a critical decision. Optimal Computing

Budget Allocation (OCBA) has received particular attention in this regard, especially within the Ranking

and Selection literature and, more recently, in the area of kriging-based simulation-optimization. As an

example, Quan et al. (2013) proposed the Two-Stage Sequential Optimization (TSSO) algorithm to solve

unconstrained stochastic simulation-optimization problems for the heteroscedastic case, where, in the first

stage, called the “search”, TSSO uses the MNEK model to explore the region and to determine the next

point to sample and in the second stage, called the “evaluation”, it runs simulation experiments at each

sampled point according to OCBA (Chen et al., 2000). The kriging model is updated using the simulation
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results, and the algorithm proceeds. TSSO has been empirically shown to perform well, but it requires

several user defined parameters. In particular, the number of simulation replications B to be performed

at each iteration has to be provided as input and it has an important impact on the effectiveness of the

procedure.

We propose and analyze the extended TSSO (eTSSO), which generates an adaptive sequence of values

of B ({Bk}, where k is the iteration index) as the algorithm progresses. This mitigates the possible effect

of an inappropriately selected value of B in TSSO.

A first version of the algorithm eTSSO was used in the comparison paper (Jalali et al., 2017). In this

manuscript, with the objective to study the theoretical properties of eTSSO, we provide a new general

allocation scheme and four alternative variants that manage differently the balance between the need of

accurate function estimations to improve the selection in the search stage, with the need to explore the

solution space. All the variants we propose are novel. As the original first version of eTSSO, implemented

in (Jalali et al., 2017) does not satisfy our general allocation rule conditions, it is not considered in

this study. In Mehdad and Kleijnen (2018), the authors study an optimal computing budget allocation

variant for the derivation of the budget at each iteration. The paper is empirical in nature and did not

identify a winning algorithm for the case of random simulations, which is the focus of this paper. A

key advantage of TSSO and, consequently, eTSSO is that no structure of the noise function is required

for the algorithms to work. While surely the knowledge of the structure of the noise leads to better

results (when such knowledge is correct), as recognized in (Jalali et al., 2017), in real cases we will rarely

have such information. Nonetheless, if the noise structure is known, we would recommend to make use

of an algorithm that can exploit that knowledge. Concerning the theoretical contribution of the paper,

we highlight that a preliminary conference version is in (Pedrielli and Ng, 2015), where a first proof of

concept of the convergence analysis was presented. This paper develops and presents eTSSO, for the first

time, along with the new analysis of the convergence and the convergence rates and its relationship with

the stochastic budget allocation scheme.

The remainder of the paper is structured as follows: section 2 presents the background to the presented

work. In section 3, eTSSO is presented with the four budget allocation variants. Section 4 characterizes

the behavior of eTSSO under the theoretical budget scheme in terms of both convergence as well as

convergence rates. In section 5, eTSSO in its four variants is tested over multi-dimensional functions to

assess its performance against TSSO. Finally, section 6 draws the conclusions of the paper.

2 Background: Meta-modeling and optimization with stochastic krig-

ing

In this work, we will assume that the nonlinear optimization problem is defined over a compact solution

set X. While the original objective function Y : x ∈ X ⊂ Rd → Y (x) ∈ R is deterministic in nature, the

oracle is affected by noise. Therefore, when we run simulation at a specific location x ∈ X ⊆ Rd, only an

estimate of the function value is returned. The objective is to develop an efficient search algorithm that
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finds the global minimum of Y : X→ R, namely:

P : minY (x) = EY [f (x)] (1)

s.to x ∈ X

where EY refers to the, unknown, expectation of f (x) that can only be estimated pointwise, by running

expensive simulations. Section 2.1 provides some preliminaries on the deterministic version of problem

P , which will be particularly helpful in the convergence analysis in section 4, whereas section 2.2 pro-

vides more details on the adopted Kriging model in the stochastic setting and the related optimization

procedure.

2.1 Deterministic Simulation-Optimization with Kriging

In deterministic settings, the Efficient Global Optimization (EGO) method, derived from the Bayesian

framework, has been the basis for most of the Kriging based search algorithms (Jones et al., 1998). In

this framework, f(x) is interpreted as a realization from an infinite family of random functions, namely,

stationary Gaussian process Y (x). According to this interpretation, at points x that have not been

simulated, we assume that the function y (x) is jointly Gaussian and can be fully characterized by the

mean, and covariance functions. We will refer to the statistical model of the unknown function Y as π,

which we characterize in terms of optimal predictor and predictive error as (Santner et al., 2003; Bull,

2011)

Ŷπ (x) :=µ̂π + cTR−1 (y − µ̂π1) , (2)

s2πk (x) :=τ2

(
1− cTR−1c +

(
1− 1TR−1c

)2

1TR−11

)
. (3)

Where,

µ̂π :=
1TR−1y
1TR−11

. (4)

Here, 1 is a vector having all elements equal to 1, R = (Kφ (xi − xj))ki=1 is the spatial variance-covariance

matrix of kernel K parametrized by φ, where k is the number of sampled points. Assuming an exponential

form for the variance covariance matrix, we have

R (Y (xi) , Y (xj)) =

d∏

l=1

exp
(
−φz,l|xi,l − xj,l|t

)
. (5)

Where the scale correlation coefficient φz,l is the sensitivity parameter that controls how fast the correla-

tion decays with the distance between points (xi,xj) in the l-th dimension, and the parameter t controls

the smoothness of the response. When t = 1, equation (5) is known as the exponential correlation func-

tion, and when t = 2 it is known as the Gaussian correlation function (Santner et al., 2003; Picheny et al.,
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2013), used in this paper. Assuming this type of correlation, the vector c = (R (xk+1 − xi))ki=1 results in

c (x, ·;φz)T =
(
e−φzd

2
x,x1 · · · e−φzd2

x,xk

)
. (6)

Where, dx,xi represents the Euclidean distance between the prediction point x and the location xi, i =

1, . . . , k.

EGO is an iterative algorithm that, at each step, estimates the expected improvement and samples

its maximizer. As the algorithm progresses, a random sequence of sampled points {xk} is generated as

well as the sequence of the estimates of the optimum location, i.e., {x∗k} over the compact space X. The

available data at the k-th algorithm iteration, constitute the set Fπk , the filtration, made by the σ-algebra

containing the collection of (xi, y (xi) : i ≤ k). Given Fπk , the best guess of the optimum at iteration k,

referred to as x∗k, is the location in the sampled set Sk ⊂ X that achieved the best function value so far.

Formally, at iteration k, the algorithm samples the location that maximizes the Expected Improvement

function defined as (Jones et al., 1998)

Tπk (x,Fπk) := max
(
Eπ
[
y (x∗k)− Ŷ (x) |Fπk

]
, 0
)
. (7)

Where, Ŷ (x) is the prediction produced by the meta-model at location x.

2.2 Stochastic Simulation-Optimization with Kriging

For the case of function measurements affected by noise, Huang et al. (2006) proposed to use the nugget

effect kriging model (which assumes constant variance throughout the sample space) replacing the EI

criterion with the Augmented Expected Improvement (AEI) in order to deal with noisy function mea-

surements.

To consider the heterogeneous variance and the finite simulation budget, Quan et al. (2013) proposed

the Two-Stage Sequential Optimization (TSSO) algorithm which relies on the Modified Nugget Effect

Kriging (MNEK) model (Yin et al., 2011). According to Yin et al. (2011), y (xi) is the output from the

stochastic simulation at xi ∈ X, and it assumes that y (xi) are realizations of a random process that can

be described by the model π̃ defined as

π̃ := Y (xi) = Z (xi) + ξ (xi) i = 1, . . . , k. (8)

The general form of equation (8) is similar to that proposed in Ankenman et al. (2010). Also, similarly to

the deterministic case, Z (xi) is modeled as a Gaussian process with covariance function τ2Rz, where τ2

is the process variance and Rz the matrix of process correlation; formally, Z (xi) is a GP
(
µ (x) , τ2Rz

)
.

A commonly adopted correlation function Rz was presented in equation (5) for the deterministic opti-

mization case. The noise term ξ (x) in equation (8) represents the major difference from the deterministic

setting. The noise process is typically assumed centered around zero and having as variance covariance

function σ2ξRξ. Intuitively, Rξ models the correlation that arises from dependencies of the pseudorandom

numbers employed by the oracle (simulator). The random component is referred to “intrinsic variance”

to be distinguished from the “extrinsic variance”, which represents the model variance. Error variances

are generally not constant and they may depend on x. With independent sampling (i.e., no Common
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Random Numbers, CRN), Rξ is diagonal, and equation (8) reduces to the independent sampling noise

model (Yin et al., 2011; Ng and Yin, 2012).

Yin et al. (2011) shows how the MSE optimal predictor corresponding to (8) at location x0 when k

points have been previously sampled, is

Ŷ (x0) =
k∑

i=1


cT (Rz + Rξ)

−1 ei + 1T (Rz + Rξ)
−1

[
1− 1T (Rz + Rξ)

−1 c
]T

1T (Rz + Rξ)
−1 1

ei


 ȳ (xi) . (9)

Where ȳi,k is the function evaluations average for the sampled locations xi, with i = 1, . . . , k; c (x0, ·;φz)
is the correlation vector modeled as in equation (6). ei is a vector of size k (where k is the number of

sampled points) having all elements equal to 0 except the i-th element which is equal to 1. The optimal

MSE results (Yin et al., 2011)

MSEπ̃k(x0) = c0 (x0) + τ2


1−


c + 1

(
1− 1TR

′−1c
)

1TR′−11



T

R
′−1c +

(
1− 1TR

′−1c
)

1TR′−11


 . (10)

Where R
′

= Rz + Rξ, and c0 is the nugget effect value. Note that equations (9)-(10) are implemented in

several packages (Erickson et al., 2018).

While in equation (10) the parameters (τ, φ, c0) are assumed known, they require estimation (as in

the deterministic case). In the stochastic case, the “new” parameter c0 can be estimated from the sample

variance as ĉ0 (x0) = σ̂2ξ (x0) /n. As discussed in (Yin et al., 2011), a closed form estimator for the

predicted variance in points that have not been sampled yet is not available. Therefore, as suggested

by Yin et al., we obtain MSEπ̃k(x0), x0 /∈ S, where S is the set of sampled points, as the piecewise

linear interpolation of the available estimates for the sampled points x ∈ S. In particular, piecewise

linear interpolation is used to extrapolate the variance at any un-sampled location using the two closest

neighboring points within the sample set (Kleijnen and Van Beers, 2005).

Furthermore, in the rest of the paper, we will refer to the deterministic counterpart of the estimate in

equation (10) at the k-th iteration as the extrinsic variance s2π̃k , corresponding to the form

s2π̃k(x0) = τ2


1−

[
c + 1

(
1− 1TR−1c

)

1TR−11

]T
R−1c +

(
1− 1TR−1c

)

1TR−11


 . (11)

Differently from EGO and the Sequential Kriging Optimization (SKO) (Huang et al., 2006), TSSO is

a two-stage algorithm which uses the first stage to balance the effort between exploration and exploitation

when the total number of available replications is limited. Specifically, it allocates the budget between

exploration and exploitation according to the following rule:

rS,k = rS,k−1 −∆r and rA,k = rA,k−1 + ∆r. (12)

Here, rS,k is the number of replications to assign to the search stage at iteration k, rA,k is the number

of replications for the evaluation at iteration k = 1, 2, . . . ,K, where K is the maximum number of
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iterations. ∆r = b(B − rmin)/Kc represents the fixed rate of decay (increase) of rS,k (rA,k), being B the

budget assigned to each iteration i, and rmin the minimum number of replications required to sample a new

point. We will denote our total simulation budget as T . Finally, we will let N0 be the size of the initial

design (Latin Hypercube Sampling (LHS) in this manuscript (Kleijnen, 2008; Brochoff et al., 2015)) used

to estimate the initial MNEK model π̃0. Given N0 and T , the maximum number of iterations that can

be performed by TSSO is, then, K = b(T −N0B) /Bc. Once the budget allocation has been performed,

in analogy to the deterministic case, the algorithm uses the MNEK model (equation (9)) to estimate the

function values at potential infill points x ∈ X /∈ S. In this setting, the filtration Fπ̃k is the sigma algebra

σ
(
xi, ȳ (xi) , σ̂

2
ξ (xi) : i ≤ k

)
. In particular, ȳ ≡ [ȳ (x1) , . . . , ȳ (xk)]

′ represents the vector of the sample

averages at the selected points i = 1, . . . , k, and σ̂2
ξ (xi) is the related sample variance.

Similar to the deterministic case, the next location xk+1 to be evaluated, and added to the set Sk,
maximizes the so-called modified expected improvement function Tπ̃k (x) introduced in (Quan et al., 2013):

Tπ̃k (x) = max
(
Eπ̃k

[
ȳ (x∗k)− Ŷk (x) |Fπ̃k

]
, 0
)
. (13)

Where ȳ (x∗k) represents the lowest sample mean up to iteration k, and Ŷk (x) is random with mean

corresponding to the Gaussian process mean function at location x and variance given by the model

spatial prediction uncertainty s2π̃k (x). In order to obtain an evaluation from xk the algorithm allocates

rS,k replications to the location that is subsequently added to the set Sk. Besides the underlying model

π̃, the criterion in (13) differs from (7), since the sample average ȳ (x∗k) needs to replace the true function

value y (x∗k), which is clearly not available.

In the second stage, TSSO uses the OCBA technique to assign the available replications, rA,k =

B − rS,k, to each of the sampled points x ∈ S. Specifically, the authors use the results in (Chen et al.,

2000) to compute the relative budget allocation between non best locations (equation (14)), and the

relative budget allocation between the location associated with the best function value and the rest of the

sampled points (equation (15)).

ni/nj =

(
σ̂xi (xi) /δb,i
σ̂xj (xj) /δb,j

)2

, (14)

nb = σ̂xb (xb)

√√√√
∑

x∈X:x 6=xb

n2i
σ̂2xi

, (15)

Here xb, σ̂xb (xb) , nb are the sampled location with the lowest function value estimate, the associated

sample standard deviation, and the allocated number of simulations, respectively. Similarly, σ̂xi , ni are

the estimated standard deviation at location xi, and the number of associated replications, respectively.

Finally, δb,i is the difference between the function estimation at location xi and xb.

In the TSSO algorithm, the budget B available at each iteration is chosen at the algorithm start

and it stays constant as the search progresses. Then, the TSSO allocation rule is such that the constant

budget B is dynamically divided between the search (rS,k) and the evaluation (rA,k) (equation (12)).
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From equation (12), we observe that, since rA,k ≥ 0, B must satisfy the following condition:

B ≥ Bmin =
⌈rmin −N0 +

√
(N0 − rmin)2 + 4T

2

⌉
(16)

When the assigned budget B is below this limit, TSSO will only perform search, i.e., rA,k = 0 ∀k. Also,

the value in (16) bounds from above the number of iterations that TSSO will perform:

Kmax =
⌊T −BminN0

Bmin

⌋
(17)

3 eTSSO Algorithm

Although TSSO has been effectively applied to real world problems (Quan et al., 2013), its performance

is influenced by the number of simulation replications (i.e., the budget) allocated to each iteration given

the total available budget, i.e., the pair (T,B). In fact, B affects the accuracy of the measurements since

it determines the maximum number of simulation experiments we can allocate for evaluating the sampled

points, and it influences the search by determining the number of iterations (equation (17)). eTSSO

tackles the problem of computational effort management, by intelligently and adaptively determining

the budget sequence {Bk}. In order to do so, {Bk} is interpreted as a random sequence, instead of a

constant as in TSSO, of non-decreasing values, with a random growth rate that can be computed using

the information coming from simulation and model estimation. Specifically, at the generic iteration k, we

use the estimate of the intrinsic variance at each sampled point and the extrinsic variance (equation (11)),

to update the number of replications Bk using the following:

Bk = max

(⌊
Bk−1

(
1 +

σ̂2ξ,k
σ̂2ξ,k + s2π̃k

)⌋
, N0 + k

)
, k > 1. (18)

In applying (18), the problem of how to estimate the variance components σ̂2ξ,k and s2π̃k arises. In general,

the intent of equation (18) is twofold: on one hand, we should have enough budget to guarantee evaluation

accuracy to support the generation of the next promising point, on the other hand, we do not wish to

use up too much simulation budget since this would hinder exploration of the solution space. In this

manuscript, we propose four alternative solutions that heuristically attempt to respond to these needs,

and we present these variants in the following.

OCBA-driven Budget Resource Allocation (eTSSOO). This policy sets the budget sequence to

grow according to the following:

σ̂2ξ,k := σ̂2ξ,k (xOCBA
k ) ,

s2π̃k := s2π̃k (xOCBA
k ) ,

where xOCBA
k ∈ arg maxx∈Sk nx.

The basic idea is that if the intrinsic variance is predominant, then the budget per replication should

increase at a faster rate to reduce the effect of noise and obtain more reliable estimates of the objective

8

                  



function values. If the point with largest OCBA-allocated budget at the k-th iteration, xOCBA
k , has large

intrinsic variance, σ̂2ξ,k, we would increase the budget assigned to the iteration in order to drive down

the noise. On the other hand, when extrinsic variance, which measures the prediction uncertainty of

the MNEK metamodel, is large, it means the solution space has not been sufficiently explored and thus

the increase in the number of replications per iteration should slow down to allow more iterations. The

approach still focuses on the noisiest point (as selected by OCBA), but it balances it off with the extrinsic

variance at that point, moderating the exploitative aspect of the policy.

Average Budget Allocation Rule (eTSSOA). While the previous policy only looks into sampled

points and uses the extrinsic variance as a proxy for the out-of-sample uncertainty, several allocations can

be proposed that use the sampled points to estimate the intrinsic variance and only unsampled points to

produce an estimate of the “relevant” extrinsic variance. The policy eTSSOA derives such information

through averaging, formally:

σ̂2ξ,k :=
1

|Sk|
∑

x∈Sk
σ̂2ξ,k (x)

s2π̃k =
1

|X \ Sk|
∑

x∈X\Sk
s2π̃k (x)

We use the average of the intrinsic variance over the sampled points against the average of the extrinsic

variance over the un-sampled points. In order to compute the second element, we use a grid over the

solution space (a continuous version would anyway require numerical approximation). For the case of

problems in high (e.g., d ≥ 10) dimensions, we recommend to proceed with a Latin Hypercube Design

instead of a grid. This choice, given a number N of points, would guarantee some form of coverage while

controlling the number of sampled points.

Goal-driven Budget Resource Allocation (eTSSOG). While eTSSOA does not require to choose

any location within the un-sampled set, it could be argued that “interesting points” could be selected to

bias sampling allocation in favor of the ultimate goal of eTSSO: finding the global minimum. The policy

eTSSOG selects as reference points the locations with the best function value so far, x∗k ∈ arg minx∈Sk ȳ (x),

and the location with associated maximum expected improvement xEI
k ∈ arg maxx/∈Sk Tπ̃k (x). Formally:

σ̂2ξ,k = σ̂2ξ,k (x∗k) ,

s2π̃k = s2π̃k (xEI
k ) .

The idea here is to compare the noise currently associated to our best guess, against the strongest

candidate (un-sampled) point. This criterion is more goal driven in the sense that it balances the need

to produce an accurate estimation for the current best point, with the goal to explore potentially better

solutions. When large/promising regions are unexplored (which is the case at the start of the procedure)

we expect this criterion to boost search.
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Eager Budget Resource Allocation (eTSSOE). One potential issue of all previous allocation poli-

cies is that, even if they are likely to guarantee exploration, at least at the beginning, they may favor

exploitation quite early in the search. We propose, in this direction, to use as reference points the location

with the lowest intrinsic variance, and the point with maximum extrinsic variance. Formally:

σ̂2ξ,k = min
x∈Sk

σ̂2ξ,k,

s2π̃k = max
x/∈Sk

s2π̃k .

At the early stages of the search procedure, the extrinsic variance will likely be larger, hence, especially

in case of low intrinsic noise, the allocation rule will not provide large values of budget increase. This

avoids allocating a significant evaluation effort to the first algorithm iterations, thus favoring the search

by increasing the number of potential points to sample. When the extrinsic variance reduces, the budget

for the evaluation increases. This is desirable since, in such a situation, we are likely to have identified

the optimum region. Hence, we will be willing to spend more budget in order to correctly identify the

best point among the sampled ones.

It is important to highlight that, in case of small budget T , and even more, with particularly large

noise levels, increasing the budget might lead to poor performance due to the early termination of the

algorithm. In such circumstances, we may expect TSSO to perform better than the eTSSO algorithm.

However, given a small computer budget and high intrinsic or extrinsic noise, any algorithm performs

poorly. eTSSO is summarized in Algorithm 1. Concerning the cross-validation step in Algorithm 1, we

perform Leave One Out Cross Validation (LOOCV) (Vehtari et al., 2017; Efron and Tibshirani, 1997)

with a threshold α. Specifically, for each point xi, i = 1, . . . , N0, we estimate a Gaussian Process model

leaving out the i-th observation, i.e., xi. This produces two quantities for the cross-validation test: ŷ (xi),

and MSEπ̃0 (xi) (using equations (9) and (10), respectively). If |ŷ (xi) − y (xi) |/MSEπ̃0 (xi) > α, the

cross-validation fails, where α is an input parameter provided by the user. In fact, if the threshold is

violated for at least one location within the set of N0 initial sampling points, we re-sample the initial

set and increase the rmin of a δrmin amount until the cross-validation is passed. In practice, for the tests

in section 5.2, we ran the initial sample and minimum budget selection procedure offline, creating the

common design for all the experiments related to each function.
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Algorithm 1: eTSSO Algorithm
1 Initialization:

2 Define T,N0, α, rmin, δrmin
, δN0

,k ← 0;

3 Intial Model Fit (input: rmin, N0, α, δrmin
, δN0

):

4 Passed← False;

5 while Passed==False do

6 Generate the initial sample set {xi}
N0
i=1 with an LHS design of N0 points;

7 Simulate each location in {xi}
N0
i=1 with rmin replications;

8 Fit the MNEK model to the set of sample means;

9 Apply LOOCV cross-validation with threshold α to evaluate the quality of the model;

10 if LOOCV Fail then

11 Set rmin ← rmin + δrmin
, N0 ← N0 + δN0

;

12 Go to Step 6;

13 end

14 else

15 Passed← True;

16 S0 ← {xi}
N0
i = 1

17 end

18 end

19 Set the initial available budget B0 = rmin and collect the initial data;

20 T ← T − B0N0, A = T , k ← 1.

21 while A > 0 do

22 Search:

23 if A > rmin then

24 Find the point xk ∈ arg maxx∈X/∈Sk Tπ̃k (x), Sk ← Sk ∪ xk ;

25 Run rmin replications to evaluate the function in xk;

26 A← A− rmin;

27 end

28 if k > 1 then

29 Budget Computation:

30 Calculate Bk using equation (18) and the allocation rule of choice;

31 Evaluation Stage:

32 if A > Bk then

33 Assign one observation to each point in Sk;

34 Use equations (14)-(15) to allocate Bk − |Sk| simulations to the sampled points;

35 Update (yk (x) : x ∈ Sk), and fit the kriging model πk according to the updated information;

36 A← A− Bk;

37 end

38 else

39 Use equations (14)-(15) to allocate Ak simulation to the sampled points;

40 Update (yk (x) : x ∈ Sk) and fit the kriging model πk according to the updated information;

41 A← 0;

42 end

43 end

44 k ← k + 1;

45 end

46 Return the location with the maximum x∗K ∈ arg maxx∈SK ȳ (x), with K being the final iteration.

4 eTSSO Asymptotic behavior

In this section, we present the asymptotic analysis of Algorithm 1, both in terms of asymptotic con-

vergence as well as convergence rates. The asymptotic convergence and the convergence rate of eTSSO

are investigated by interpreting the kriging-based search as a stochastic recursion. We show the paral-

lelism between the two paradigms and exploit the deterministic counterpart of eTSSO, the widely known

Efficient Global Optimization (EGO) procedure (section 2.1) to perform our study. In fact, results on

convergence and convergence rates for EGO have been proposed in Locatelli (1997) and Bull (2011), re-

spectively. The basic idea is to analyze eTSSO as the stochastic counterpart of EGO. This idea allows to

use some of the results in Pasupathy et al. (2018), while dealing with the difficulty of having a simulation

budget that is a stochastic sequence. The proof scheme we propose is articulated into three parts:

• Part 1: the deterministic analogue of eTSSO (EGO) is analyzed in terms of convergence properties

to ensure the reference algorithm of eTSSO has a good behavior. Lemmas 1-2 serve this purpose by

guaranteeing Lipschitz continuity of the EGO recursion and its convergence to the global optimum,
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respectively;

• Part 2: the stochastic algorithm eTSSO is characterized in terms of (a) boundedness of the budget

for any finite number of iterations, and (b) convergence of the stochastic MNEK model to the

deterministic counterpart in the case of dense infinite sampling. Lemmas 3-4 report these results,

respectively.

• Part 3: the asymptotic convergence of the stochastic recursion to the deterministic recursion is char-

acterized in Theorem 1 and Theorem 2. Finally, the convergence rate is characterized in Theorem 3.

Section 4.1 provides the main definitions we will adopt for the proofs in section 4.2.

4.1 Notation and Terminology

Let {Xn} wp1−−→ x represent a stochastic sequence of random variables, {Xn}, that converges to x with

probability 1. Furthermore, we will refer to the expectation of a random variable V computed at iteration

k as EkV . Given {an} sequence of real numbers, then an = o (1) if limn→∞an = 0, and an = O (1) if

∃c ∈ (0,∞) with |an|< c for large enough n; also an = Θ (1) if 0 < lim inf an ≤ lim sup an < ∞. In the

analysis that follows, two convergence definitions will be adopted:

Definition 1 (Linear convergence). {xk} exhibits a linear(`) convergence to x∗ if

lim supk→∞
||xk+1−x∗||
||xk−x∗|| = ` ∈ (0, 1)

The following definition characterizes the control of the sample size sequence we created for the

stochastic algorithm eTSSO.

Definition 2 (Geometric growth of a sequence). A sequence {mk} exhibits geometric growth if mk+1 =

c ·mk, k = 1, 2, . . . for some c ∈ (1,∞).

4.2 Main Results

In this proof, we will adopt the recursive algorithm setting to discuss eTSSO behavior referring to the

theoretical budget allocation in equation (18). A first justification for the proposed approach can be

found in the literature in advanced random search (Mete et al., 2011) where the link between recursion

and sampling from target distributions is established. In fact, recursive iterations are studied in terms of

resulting probability of sampling in the feasible region. This creates a link between the meta-modeling

environment where we start assuming a distribution of the response, against recursive methods which

iteratively and implicitly construct this distribution by means, for example, of gradient information.

In traditional recursion algorithms, at the k-th iteration, the next point in the search procedure satis-

fies (Pasupathy et al., 2018):

xk+1 = xk + h (xk) (19)

In different recursions, h (xk) can be interpreted as the product of a step or the inverse Hessian and the

function gradient estimated at the current location. Under a geometric interpretation, the right hand

side of the update step represents the (vector) of the linear distance(s) between the current point and the
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next point which will be sampled. The basic idea of our approach is to interpret the algorithm Efficient

Global Optimization (EGO) (Jones et al., 1998) as a stochastic recursion. According to this view, at the

k-th iteration, we can modify the definition provided in equation (7) obtaining

xk+1 = x∗k + dist

(
x∗k, arg max

x∈X\Sk
Tπk (x)

)
. (20)

Where dist (·, ·) is the distance vector having as components
{
x∗h,k − xh,k+1

}d
h=1

, and d is the dimension-

ality of the solution space.We have:

• xk+1 represents the next point to sample;

• xk ← g
(
{xi}ki=1

)
, x∗k ∈ arg minx∈Sk y (x), i.e., the current solution is, at each step, the point

with the lowest sampled value. In fact, if the search stops at iteration k, a traditional recursion

would return x∗k as the best solution so far. To the same extent, EGO (and eTSSO) would return

arg minx∈Sk y (x). This means that, differently from the original recursion, xk does not only depend

on the previous sampling decision, but on the sequence of sampled solutions. This justifies the

notation {xi}ki=1. This difference between the original approach and the meta-model based search

will require us an additional consistency result with respect to the framework in (Pasupathy et al.,

2018), which we provide in Property 1.

• h(x) ← h({xi}ki=1) , dist
(
x∗k, arg maxx∈X\Sk Tπ (x)

)
. In this case, we observe the parallelism

between the two algorithms under the aforementioned geometrical interpretation: the right hand

side of the update step represents the (vector) of the linear distance(s) between the current point

and the next point which will be sampled.

In the stochastic counterpart, the traditional recursion can be modeled as (Pasupathy et al., 2018)

Xk+1 = Xk +H (Wk,Xk) .

Where Wk is the number of simulations that have been ran up to iteration k. Similarly to the approach

in (20), we can formulate the “meta-model” version of the iteration as

Xk+1 = X∗k + dist

(
X∗k, arg max

x∈X\Sk
Tπ̃k (x)

)
. (21)

Where, π̃k refers to the model in (8) replacing π in equation (2).

Xk ← X∗k , G
(
Wk, {Xi}ki=1

)
equivalently X∗k ∈ arg minx∈Sk Ȳ (x), whereas

H (Wk,Xk)← H
(
Wk, {Xi}ki=1

)
, dist

(
X∗k, arg max

x∈X\Sk
Tπ̃k (x)

)
.

Wk represents the total simulation budget used up to iteration k, i.e.,
∑

k Bk and according to (18), is

a random variable. Due to the budget stochasticity we need to guarantee further results with respect

to (Pasupathy et al., 2018) that deals with a deterministic number of simulation runs.

Reminding that S represents the set of sampled points, we can define Sk as the set of point sampled up
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to iteration k by the EGO algorithm and S̃k the corresponding set generated by the stochastic analogue

(eTSSO). As a result, we can formulate G (g) and H (h) as G
(
Wk, S̃k

)
(g (Sk)) and H

(
Wk, S̃k

)
(h (Sk)),

respectively.

This new interpretation of surrogate based optimization is relevant since it allows us to understand

the behavior of a complex stochastic algorithm based on its counterpart. We will use (Pasupathy et al.,

2018) that established foundational results in the analysis of recursions. Specifically, we will treat our

algorithm as the stochastic counterpart of the well known EGO (Jones et al., 1998). In the following, we

list the assumptions at the basis of the asymptotic analysis.

Assumption 1. Denote Nk(x) as the total number of replications at design point x by iteration k and

σ20 , maxx∈X σ2ξ (x). There exist a sequence {r1, ..., rk...} such that rk+1 ≥ rk, rk → ∞ as k → ∞ and

that
∑∞

k=1 k exp(−κrk) < ∞, ∀κ > 0. The allocation rule ensures that Nk(x) ≥ rk, for all design point

x.

Assumption 1, is required to guarantee that OCBA does not impact negatively the convergence of

the algorithm. In fact, the OCBA technique was originally developed for optimization problems with

finite number of alternatives. To satisfy this assumption, in this work, at each evaluation stage, we first

spare some budget to ensure that all design points receive at least rk replications, with {rk = k}. This

can be easily obtained from our budget Bk by assigning a single observation first to the sampled points,

subsequently using OCBA to allocate the remaining budget (refer to step 34 in Algorithm 1).

Assumption 2. The number of replications Bk assigned at each iteration satisfies Bk ≥ Bk−1, ∀k =

1, 2, . . . and Bk →∞ as k →∞. Moreover, for any ε > 0 there exists a δε ∈ (0, 1) and a k̄ε > 0 such that

ψ2kL (Bk−1, ε) ≤ (δε)
k , ∀k ≥ k̄ε, where L (·, ·) is strictly decreasing in Bk−1 and non–increasing in ε.

Assumptions 1-2 are concerned with bounding the behavior of the stochastic sequence of budgets.

While Assumption 1 looks at each single point budget allocation and serves the purpose to characterize

the convergence of the search, Assumption 2 looks at the overall budget per iteration and serves the

purpose to study the convergence of the surrogate model.

Assumption 3. X is a compact space.

Assumption 4. Each dimension in the space is defined between [0, 1].

This scaling operation is frequently operated in the surrogate model literature (Picheny et al., 2013;

Kleijnen, 2008). While it does not lead to any loss in generality, such an assumption allows to easily

derive our bounding argument for the EGO expected improvement function used in Lemma 2.

Assumption 5. The Gaussian correlation function is adopted to model the spatial variance-covariance

matrix.

Assumption 5 is a sufficient condition for the existence of the derivative processes and it ensures that

the various variance-covariance matrices are positive definite, i.e., non-singular (Ankenman et al., 2010).

These will be used in Lemma 1, which characterizes the expected improvement function in (7).

Assumption 6. The parameters τ, φ and σ2ξ of the MNEK model are assumed known.
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Assumption 7. The initial sample {xi}N0
i=1, and minimum number of replications rmin are such to produce

an initial fit of the MNEK model πk, k = 0, satisfying cross-validation criteria.

Assumption 7 is important in achieving uniform convergence. Our cross-validation procedure (algo-

rithm 1, Steps 6-19) allows to generate such initial conditions.

Assumption 8. The true function to be optimized over the compact space X is bounded and has a unique

global minimum x∗.

We start characterizing the “distance” function h (x) defined in equations (19)-(20).

Lemma 1. There exists κ ∈ R such that, for any (S,S′) : S ⊂ X, S′ ⊂ X, ||h(S) − h(S′)||≤ κD(S, S′),
where D (·) represents the distance between two sets of points.

Proof. Proof in the Appendix.

Lemma 1 characterizes the behavior of the component h(·) of the recursion in equation (20). In

particular, it guarantees that similar sets of sampled points return similar values for the recursion, where

similarity is characterized by the distance between two sets.

The following Lemma states that EGO produces iterates which are converging to the global optimum and

the result relies on the study in (Locatelli, 1997).

Lemma 2. Let us consider a Gaussian correlation function, then limk→∞ xk = x∗ will hold for the EGO

algorithm. Moreover, if Assumption 7 is satisfied, the result will hold for any initial sampling {xk0}N0
k0=1,

i.e., we have uniform convergence.

Proof. Proof in the Appendix.

Firstly, we need to characterize stochastic sequence Wk =
∑k

i=1Bi, where the simulation budget Bi

is generated by equation (18). We can observe what follows:

Lemma 3. The cumulated budget Wk satisfies Wk
k→∞−−−→ ∞ w.p.1, and the expected budget at iteration

k is finite for any finite value of k.

Proof. Proof in the Appendix.

Lemma 4. As the number of iterations k →∞, under assumptions 2-8, the MNEK model π̃k approaches

its deterministic counterpart πk.

Proof. Proof in the Appendix.

Lemma 5 characterizes the distribution of the predictor produced by the MNEK for k →∞.

Lemma 5. As the number of iterations k → ∞, the stochastic predictor Ŷ resulting from the MNEK

model π̃k becomes Ŷ (x|Fπ̃k) ∼ N
(
µπ̃k (x) , s2π̃k (x)

)
, where µπ̃k (x) , s2π̃k (x) correspond to the moments for

the deterministic-response Gaussian model πk.
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Proof. Asymptotically (k →∞) Lemma 4 holds. Then, according to the result in Stein (1999) (Appendix

A), we have that Ŷ (x|Fπ̃k) is normally distributed and parameterized by:

µπ̃k (Wk,x, φ)
k→∞−−−→

(
cTR−1 + 1TR−1

[
1− 1TR−1c

]T

1TR−11

)
ȳ (22)

s2π̃k (Wk,x, φ)
k→∞−−−→ τ2


1−

[
c + 1

(
1− 1TR−1c

)

1TR−11

]T
R−1c +

(
1− 1TR−1c

)

1TR−11


 . (23)

These correspond to the predictors obtained in Yin et al. (2011) for deterministic responses.

Now we analyze the effect of the results in the previous Lemmas onto G (·, ·) as well as H (·, ·).

Theorem 1 (Convergence of G
(
Wk, S̃k

)
). For any δ > 0, and with EkW →∞, when k →∞,

supSk,S̃k⊆X Pr
{
||G(EkW, S̃k)− g(Sk)||> δ

}
= O

(
[EkW (X∗k)]

−1/2
)

.

Proof. Proof in the Appendix.

The study of H(Wk, S̃k) is the key to analyze the efficiency and consistency of eTSSO. The first step

in this direction is to establish the relationship between H(·) and h(·).

Theorem 2 (Convergence of H
(
Wk, S̃k

)
). (i) Let k → ∞, and let Sk represent any possible subset of

feasible points of size k. Then the estimator H
(
Wk, S̃k

)
satisfies, for any ∆ > 0,

sup
Sk⊂X

Pr {||H (Wk, Sk)− h (Sk) ||> ∆} = O
(
(EkW )−2α

)
.

(ii) If the sequence of simulation budgets {Wi,k} satisfy Wi,k →∞ a.s., then ||H (Wk, Sk)−h (Sk) ||
wp1−−→ 0.

Proof. The result in (i) can be obtained from Lemma 4 by setting α = 1
2 and W = maxxj∈SWj,k. In

fact, Lemma 3 proved that the budget goes to infinity a.s., and it has finite expectation for finite k, and

Lemma 4 proves that the stochastic model converges to the deterministic model.

Concerning part (ii), Lemma 3 guarantees the budget to reach infinity when the iterations satisfy

k → ∞. Again, we consider Lemma 4 that proves the stochastic model converges to the deterministic

model. This means that the sequence of points generated by the expected improvement function will

converge. Considering Theorem 1 and Lemma 1, part (ii) is also guaranteed.

The results in Theorems 1-2 are at the basis for the efficiency analysis of the proposed algorithm. In

this phase, we make use of the results presented in (Pasupathy et al., 2018), as it will be specified in the

following.

Property 1 (Characterization of H (Wk, Sk)). Let k →∞, then the estimator H (Wk,Sk) satisfies

supSk⊂XE (H (Wk, Sk)− h (Sk)) = Θ
((
τ2 · Ek (minx∈SkWk(x))

)−1)
.

Proof. The main ingredient to prove the theorem and, main challenge, is the analysis of the behavior at

convergence of the sequence of expected improvements Tπ̃k generated by our algorithm. Under Assump-

tion 3 and Assumption 7, Tπ̃k is finite, and, from Lemma 1, we know that the function is differentiable and
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Lipschitz Continuous. Under these premises, the expected improvement function satisfies the assump-

tions of epi-convergence (Attouch, 1984), i.e., Tπ̃k
epi−−−→
k→∞

Tπk , w.p.1, if Wk(x) → ∞. While our budget

allocation is stochastic in nature, we showed in Theorem 1 that, under Assumptions 1 and Assumption

2, Wk(x) −−−→
k→∞

∞, w.p.1
Given the epi-convergence is valid, Theorem 3.4 in (Robinson, 1996) also applies, so that the sequence

Tπ̃k
epi−−→ Tπk and the sequence of selected points Xk ∈ arg maxTπ̃k

epi−−→ xk.

Theorem 3 (Convergence rate of Algorithm 1). Let us define Ck := 1+
σ̂2
ξ,k

σ̂2
ξ,k+s

2
π̃k

(xk+1)
and ` =

(
1− 1

k

)1/d
.

Given that EGO exhibits linear convergence (Bull, 2011), for any ε ≥ 0 satisfying `+ε < 1 and as k →∞,

the following holds for Ek = E
[
||X∗k+1 − x∗||

]
:

E[Ck] ≥ `−2, Ek = O

((
E[Ck]

−1/2 (`+ ε)−1
)−k

EkW
−1/2
k+1

)
(24)

Proof. Proof in the Appendix.

The proofs have been developed assuming known parameters. For the deterministic case, convergence

rates are discussed in (Bull, 2011), where boundedness of the Maximum Likelihood estimation is required.

For the stochastic case, the role played by the bias was empirically discussed in (Kleijnen et al., 2012)

where the authors recognize that the consistency of the bias plays a major role. In fact, as long as the

bias is consistent, the optimal location is identified according to the empirical evidence.

5 Empirical Results

While results for the empirical convergence rate were provided in the conference paper (Pedrielli and Ng,

2015), herein we focus on the impact of the budget and the finite time performance of the algorithm in

its four variants.

Section 5.1 shows the impact of the adaptive budget allocation over relatively simple test functions

with the aim to show the negative effect that a wrong choice of the budget can have over the TSSO

algorithm and how eTSSO tackles this challenge. In this part of the analysis, we show the results for the

variant eTSSOO (similar results were obtained running the other variants of the allocation). Subsequently,

section 5.2 focuses on the performance of the proposed algorithm over increasingly complex functions when

the choice of the budget for TSSO is performed according to the the recommendations from the analysis

in section 5.1. In this part of the analysis, all the variants of eTSSO are studied in order to try to provide

insights on the most promising family of allocation rules.

5.1 Impact of the Budget Allocation Rule for TSSO and eTSSO

To quantify the impact of the choice of B, we propose to study the following 1-d function represented in

Figure 1:

Y (x) = (2x+ 9.96) cos(13x− 0.26) (25)
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This function has a global minimum in x∗ = 0.746 with function value y∗ = y (x∗) = −11.45 and a local

minimum in x = 0.2628, with X = [0, 1]. As noise, we applied to the function an additive Gaussian

Process ξ (x) with mean 0 and diagonal variance covariance matrix with elements:

σ2ξ (x) = δ · x (26)

Where δ represents the magnitude of the noise.

Figure 1: 1–d Function representation

We set the total budget T = 300 (T = 3000 for the

high noise case), the minimum number of replications

to sample a new point to rmin = 10 and the number of

initial sampling points to N0 = 6.

As a result of the previous settings, the minimum budget

per iteration Bmin, obtained applying equation (16), is

Bmin = 19 (Bmin = 57 for the high noise case). Bmax, i.e.,

the budget such that all the available replications are

used for the evaluation of the initial design, is Bmax =

50 (Bmax = 500 for the high noise case). Finally the

minimum “feasible” budget is rmin = 10.

Figure 2(a) and Figure 2(b), show the performance of the original TSSO algorithm in terms of optimum

location and optimal function value estimation, for values of the budget rmin ≤ B ≤ Bmax under low

noise, δ = 0.1 and large noise, δ = 10.0, respectively. In the figures, each point represents the average

performance obtained from 100 macro-replications of the algorithm. The location performance is meant

to be the Euclidean distance between the point associated with the minimum predicted value x and the

true global optimum of the function x∗ and it is referred to as |x−x∗|, the estimation performance refers

to the absolute difference between the best performance according to the final prediction y and the true

optimal value y∗ and it is referred to as |y − y∗|.

(a) δ = 1.0 1-d case (b) δ = 10.0 1-d case

Figure 2: Effect of the budget per iteration, 1-d case for TSSO and the effect of the adaptive budget allocation

(O-BAR allocation policy was used).

The performance of TSSO in terms of location |x − x∗| as well as |y − y∗| are non-monotone in the

assigned B. Specifically, as B increases, the noise effect is mitigated as more replications are performed

at each sampled point. On the other hand, the number of iterations that can be performed decreases

since the total budget is fixed (equation (17)). The first effect leads to a potential decrease in |y − y∗|,
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especially when large noise is considered (Figure 2(b)). However, the second effect can be critical, resulting

in an increase of |x− x∗| and a consequent increase of |y − y∗| as observed in the right extremes of both

Figure 2(a) and 2(b). As a result, we observe that TSSO can be less effective in cases where either large

or low values of B are chosen by the user.

Figure 2(a) shows that the error in the location (see left-hand vertical axis) resulting from the new

algorithm, is far below the average error obtained when TSSO is applied over all B’s.

It is important to consider that TSSO might lead to better performance under specific values of B,

given the total budget T . However, in practice, since no structural properties are defined, running the

algorithm is the only way to determine a suitable value for B. Focusing on the |y − y∗| performance

(see right-hand vertical axis), we observe an expected good result from eTSSOO. In this specific case, the

extended algorithm is always better than the original TSSO. Since eTSSO explicitly considers the response

noise, by increasing the budget when this is particularly large, we can expect a better performance in

terms of function value estimation, especially with large noise levels. This aspect is important as it reflects

in the location performance |x − x∗|. Indeed, as the algorithm progresses, convergence to the optimal

location is guaranteed only if the function value is correctly estimated (Vogel and Lachout, 2003).

Figure 2(b) further investigates the effect of the noise. In particular, it shows the results from the

same experimental settings used in Figure 2(a), with noise level δ = 10.0 and total budget T = 3000

because of the increased noise. Despite a decrease in the algorithm performance overall (both TSSO and

eTSSO), due to the increased noise level, it is possible to observe a similar behavior as in the lower noise

case.

We also studied the 2-d tetra-modal function:

Y (x1, x2) = −5(1− (2x1 − 1)2)(1− (2x2 − 1)2)(4 + 2x1 − 1)
(

0.05(2x1−1)2 − 0.05(2x2−1)2
)2
. (27)

Where the dimensions of the test function, x1 and x2, are scaled to [0, 1]. The global minimum is located

at [0.85, 0.5] and has the response value −7.098. As noise, we applied to the function an additive Gaussian

Process ξ (x) with mean 0 and diagonal variance covariance matrix with diagonal elements σ2ξ (x1, x2) =

δ · (x1 + x2). We set N0 = 20. The first experiment set was performed with T = 2400, rmin = 15, δ = 1.0

resulting in Bmin = 45 (Bmax = 120), whereas the second with T = 9600, rmin = 60, δ = 10 resulting in

Bmin = 120 (Bmax = 480). For both conditions we performed 100 macro-replications. Figures 3(a)-3(b)

report the results for the lower and larger noise level, respectively.

(a) δ = 1.0 2–d case (b) δ = 10.0 2–d case

Figure 3: TSSO performance under different values of budget per iteration Bk for the 2-d case compared to eTSSO
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The same observations as in the 1–d case can be drawn for the 2–d case.

Based on the observed results, an appropriate sequence of Bk, where k = 1, . . . ,K are the performed

iterations, should satisfy two main desirable characteristics:

1. In the case of low noise, Bk should not be increased to a great extent especially at the first iterations,

to favor the search, since only few replications are needed to provide a good point estimate of the

function value.

2. In the case of high noise, larger Bk should be allocated to improve the accuracy in presence of noisy

function estimations.

If we look into the eTSSO results in Figures 3(a)-3(b), it is important to notice that, in case of high noise

for the 2-d function we observe that TSSO can be slightly better than eTSSO. In particular, we observe

that, with B = 240, the average location error |x− x∗|= 0.0723 while eTSSO reaches |x − x∗|= 0.0768.

This shows that, potentially, TSSO can be better than the new algorithm: the 100 macro-replications

enable a statistical test of the significance of the difference between the two observed sample averages

(namely, 0.0723 and 0.0768), and, for this value of the budget, TSSO was statistically better according

to a 95% confidence paired t-test. Nevertheless, finding the value B = 240 is far from an easy task.

Summary observations In the following, we summarize the main differences between TSSO and

eTSSO:

• eTSSO has good performance with respect to TSSO and it is always performing better than the

average performance of TSSO, where the average is taken over the different values of budget per

iteration B. A relevant advantage of the algorithm is that it does not require the user to define any

arbitrary value for B;

• The adaptiveness of the allocation scheme results in eTSSO performing better than TSSO in the

estimation of the function (|y (X∗)−y∗|) when the noise is larger since the budget increase enhances

the evaluation. This contributes to improve the identification of the optimal location which is always

satisfactory;

• The adaptiveness of the new allocation leads to a more effective use of the available budget: while

TSSO would require to size the appropriate B based on the specific total available budget, eTSSO

adapts to T and its performance is consistently improving as the total number of replications that

can be performed increases.

The consistency of the performance of eTSSO with the associated new budget management is verified in

higher dimensions in Section 5.2.

5.2 Performance Comparison

In this section, we compare the performance of eTSSO and TSSO using several test functions. In addition

to TSSO, we implemented the Minimum Quantile (MQ) algorithm (Picheny et al., 2013), and the SKO

algorithm (Huang et al., 2006), which we extended to the heterogeneous variance case following the same

approach proposed in Jalali et al. (2017).

20

                  



Minimum Quantile algorithm The MQ algorithm chooses the point with minimum Kriging quantile,

q (x) = ŷ (x) + Φ−1 (βMQ) s (x), with βMQ ∈ (0, 0.5], as infill point, i.e., x ∈ arg minx∈X q (x). MQ does

not necessitate information about the variance form and it allocates a fixed number BMQ of replications

per iteration which is decided prior to running the algorithm. MQ allows for revisits: at any iteration k,

it is possible to sample a point that has been already evaluated, and add BMQ additional replications to

it. As a result, the sampled points can receive a different total number of replications depending on how

often they are re-sampled.

Adapted Sequential Kriging Optimization (SKO) The SKO in Huang et al. (2006) chooses the

location that maximizes the AEI score defined as

AEI (x) = E [max (ŷ (x∗k)− ŷ (x) , 0)]

(
1− τ (x)√

s2 (x) + τ2 (x)

)
.

Where ŷ (x∗k) is the kriging prediction at the point with minimum q (x) among the simulated points with

βSKO ∈ (0.5, 1]. The algorithm was originally designed for homogeneous noise: τ2 (x) was introduced

in Jalali et al. (2017) to reflect the presence of heterogeneous noise. As proposed in Jalali et al. (2017),

the τ2 (x) prediction is obtained by estimating a deterministic Kriging model for the sample variance.

SKO, as MQ, uses a fixed number of replications per iteration BSKO and allows for revisits. Like MQ only

one point at the time is sampled and or re-evaluated.

Objective of the Empirical Study We analyze eTSSO under different levels of the total budget, T ,

and noise magnitudes, δ, to evaluate the robustness and performance of the algorithm in its variants. In

particular, we collect and discuss the following output metrics: (1) the location error |x− x∗| computed

as the Euclidean distance between the location identified by eTSSO and the, known, global optimum,

and (2) the error in the function estimation |y − y∗|, where y = y (x). We perform this study on

several functions with increasing dimensionality. We consider a two-dimensional (tetra-modal), a three-

dimensional (Hartmann 3), and a six-dimensional (Hartmann 6) test function. Preliminary tests were

conducted to set an appropriate value of the total budget T as well as the minimum number of replications.

For TSSO, we set the value B to be in the middle of the range rmin and Bmax, i.e., in the region where

we obtained the best results according to the numerical evidence for both the 1-d and 2-d case studied

in section 5.1. For eTSSO, no matter the variant, such a setting is not needed, and we only need to set

B0 = rmin.

Tables 1, 4 and 7, report the noise level δ, the size of the initial set of points N0, the total budget T ,

the algorithm to which each row of the table refers (Algorithm), the minimum number of replications rmin,

and B, which is only required for MQ, SKO, and TSSO. In all the Tables, the average for the location

error (|x − x∗|) or the function evaluation error (|y − y∗|) is reported in bold, normal, or italics when

the algorithm statistically outperforms, is identical, or under performs TSSO, respectively. The test is

conducted with 95% confidence level. In particular, we considered 6 simultaneous comparisons (each

algorithm against the original TSSO), therefore a confidence 1 − (0.05/6) was adopted to determine the

statistical significance of each single test (Miller, 1981; Montgomery, 2017).

For all the tests, following the parametrization recommended in Jalali et al. (2017), we set BMQ =

BSKO = 55, and βMQ = 0.1, βSKO = 0.84. Note that the budget BMQ, as well as BSKO, is substantially

different from the B used in TSSO. Indeed, while B is distributed among several sampled points, MQ
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and SKO only sample one location at a time, whether it is a new or revisited solution.

Two dimensional case The tetra-modal function below was analyzed

Y (x1, x2) = −5(1− (2x1 − 1)2)(1− (2x2 − 1)2)(4 + 2x1 − 1)
(

0.05(2x1−1)2 − 0.05(2x2−1)2
)2
.

As noise, we applied to the function an additive Gaussian Process ξ (x) with mean 0 and diagonal variance

covariance matrix with diagonal elements σ2ξ = δ · (x1 + x2).

Table 1 shows the results and the parameter settings adopted to compare the performance the different

algorithms. All this information characterize the experiment settings, whereas the location and estimation

errors are reported in terms of both mean and standard error over 100 macro-replications.

Table 1: Summary results for the tetra-modal function (low noise, δ = 1.0)

N0 T Algorithm rmin B |x− x∗| |y − y∗|
average std err average std err

10 2400 MQ - 55 0.0445 0.0546 0.3886 0.3078

10 2400 SKO - 55 0.0445 0.0546 0.3886 0.3078

10 2400 TSSO 10 130 0.0083 0.0007 0.0694 0.0053

10 2400 eTSSOO 10 – 0.0064 0.0005 0.0422 0.0039

10 2400 eTSSOA 10 – 0.0034 0.0006 0.0357 0.0025

10 2400 eTSSOG 10 – 0.0033 0.0007 0.0330 0.0027

10 2400 eTSSOE 10 – 0.0020 0.0005 0.0385 0.0029

20 2400 MQ - 55 0.0772 0.0142 0.3524 0.0192

20 2400 SKO - 55 0.0772 0.0142 0.3524 0.0192

20 2400 TSSO 10 70 0.0119 0.0009 0.0764 0.0056

20 2400 eTSSOO 10 – 0.0072 0.0005 0.0462 0.0041

20 2400 eTSSOA 10 – 0.0027 0.0006 0.0339 0.0028

20 2400 eTSSOG 10 – 0.0026 0.0007 0.0332 0.0034

20 2400 eTSSOE 10 – 0.0022 0.0006 0.0400 0.004

Consistent with the results already obtained, we observe that eTSSO is statistically better or equivalent

to TSSO in an least one variant (when considering an overall confidence of 95% and the normal approxi-

mation), while both TSSO and eTSSO appear to be superior to MQ and SKO for most of the instances.

The result is less “statistically” striking for the high noise case, mainly due to the fact that attaining

95% simultaneous confidence leads to large intervals. Nonetheless, results from experiment with noise are

consistent with those in low noise.

Focusing on the low noise case, we can see that, independently from the initial conditions, eTSSO

beats TSSO in all its variants. In particular, eTSSOO appears to be the worst performer and this may be

due to the fact that this allocation was observed as the most conservative in low noise settings leading to

larger budget increase early on in the search (this was also observed in (Jalali et al., 2017)). On the other

hand, as we predicted, the eager variant eTSSOE shows the best location performance in this family of

experiments. In fact, eTSSOE is more biased towards exploration leading to lower budget allocations per

iterate. While such exploration is beneficial in the low noise case in identifying a good solution, we observe

that the error in the function evaluation is higher. Finally, eTSSOA and eTSSOG appear to have similar
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behavior. This makes sense: while eTSSOA uses averaging as a means to mix sample and un-sampled

points information, eTSSOG does the same choosing two “representative points”.

Table 2: Summary results for the tetra-modal function (high noise, δ = 5.0)

N0 T Algorithm rmin B |x− x∗| |y − y∗|
average std err average std err

10 6000 MQ - 55 0.4803 0.0301 0.8886 0.0421

10 6000 SKO - 55 0.4804 0.0301 0.8787 0.0413

10 6000 TSSO 20 315 0.0125 0.0009 0.1135 0.0094

10 6000 eTSSOO 20 – 0.0085 0.0009 0.0852 0.0074

10 6000 eTSSOA 20 - 0.0105 0.0010 0.1299 0.0101

10 6000 eTSSOG 20 - 0.0125 0.0012 0.1460 0.0136

10 6000 eTSSOE 20 – 0.0335 0.0068 0.3020 0.0166

20 6000 MQ - 55 0.4803 0.0301 0.8886 0.0421

20 6000 SKO - 55 0.5128 0.0287 0.9372 0.0409

20 6000 TSSO 20 165 0.0145 0.001 0.1346 0.0124

20 6000 eTSSOO 20 – 0.0094 0.0007 0.0870 0.0079

20 6000 eTSSOA 20 – 0.0118 0.011 0.1180 0.0089

20 6000 eTSSOG 20 – 0.0113 0.0012 0.1173 0.0113

20 6000 eTSSOE 20 – 0.0321 0.0094 0.2553 0.0232

Concerning the higher noise case (Table 2), we notice that eTSSOO shows better performance relatively

to the low-noise case. In this case the approach empirically produces better selections. Still, eTSSOA and

eTSSOG are competitive with eTSSOO and behave similarly as in the lower noise case. Not surprisingly,

the eager algorithm eTSSOE does not perform well due to the low budget allocated to evaluation. Also,

we observed that, in case of larger noise levels, the number of points sampled by eTSSO decreases despite

the fact that a larger initial budget T is available. This is reasonable: as the noise increases, the budget

increases at faster rates (refer to equation (18)) as the algorithm progresses. As a result, the budget is

quickly exhausted. This is detrimental for the performance in terms of search as the algorithm samples

less points. However, the fewer sampled points are characterized by lower sample variance because of

the large allocated number of replications, thus improving the model estimation. This can be observed

from the improved performance of eTSSO in the response estimation. Intuitively, it seems clear that the

simulation of more points - but with large intrinsic noise - does not improve the insight into the behavior

of the I/O function, so further effort in simulating new points would not be effective.

The results also suggest that the number of initial points N0 is not always significant across the

different variants of eTSSO (confirming the outcomes in (Picheny et al., 2013)). However, we noticed a

strong interaction between N0 and rmin. In the case of low noise and finite budget, we should focus on the

search and maximize the number of sampled points, since only a small number of replications is required

to evaluate the function at each location. As a result, in case a large initial value of rmin is assigned, better

results can be achieved with lower N0 as the algorithm has more budget to perform the search. Hence,

the better results observed for the case N0 = 10 in Table 1. On the other hand, under large noise set ups,

algorithms that have larger initial samples appear to be more competitive.
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Three dimensional case In this part, we analyze the Hartmann–3 function:

Y (x1, x2, x3) = −
4∑

i=1

αiexp


−

3∑

j=1

Aij (xj − pij)2



Table 3: Parameters Aij and Pij of the Hartmann-3 function

Aij pij

3 10 30 0.3689 0.117 0.2673

0.1 10 35 0.4699 0.4387 0.747

3 10 30 0.1091 0.8732 0.5547

0.1 10 35 0.03815 0.5743 0.8828

With 0 ≤ xi ≤ 1 for i = 1, 2, 3; parameters α = (1.0, 1.2, 3.0, 3.2), and Aij and Pij given in Table 3.

The function has a global minimum at x∗ = (0.114614, 0.555649, 0.852547) with y(x∗) = −3.86278; the

function has three additional local minima. As noise, we applied to the function an additive Gaussian

Process ξ (x) with mean 0 and diagonal variance covariance matrix with diagonal elements σ2ξ = δ ·(
3∑
i=1
|xi|
)

. Table 4 shows the obtained results.

Table 4: Summary results for the Hartmann 3 function (low noise, δ = 1.0)

N0 T Algorithm rmin B |x− x∗| |y − y∗|
average std err average std err

20 3200 MQ - 55 0.3551 0.0261 0.3071 0.0235

20 3200 SKO - 55 0.4202 0.0298 0.3461 0.0260

20 3200 TSSO 15 87 0.1788 0.0156 0.1034 0.0075

20 3200 eTSSOO 15 – 0.1294 0.0126 0.0763 0.0074

20 3200 eTSSOA 15 – 0.1021 0.0223 0.0550 0.0054

20 3200 eTSSOG 15 – 0.1009 0.0208 0.0516 0.0047

20 3200 eTSSOE 15 – 0.0492 0.0151 0.0294 0.0039

30 3200 MQ - 55 0.3613 0.0255 0.2852 0.0209

30 3200 SKO - 55 0.5315 0.0322 0.3637 0.0263

30 3200 TSSO 15 60 0.1891 0.0166 0.1372 0.0085

30 3200 eTSSOO 15 – 0.1254 0.0115 0.0824 0.006

30 3200 eTSSOA 15 – 0.0835 0.0166 0.0602 0.0054

30 3200 eTSSOG 15 – 0.1165 0.0199 0.0749 0.0061

0 3200 eTSSOE 15 – 0.0789 0.0190 0.0422 0.0050

First, we notice that the increased level of complexity of the function causes a decrease in the performance

on both TSSO and eTSSO in all its variants. Nonetheless, eTSSO is statistically better or equivalent to

TSSO in almost all variants, and both TSSO and eTSSO appear to be superior to MQ and SKO.
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Table 5: Summary results for the Hartmann 3 function (high noise, δ = 5.0)

N0 T Algorithm rmin B |x− x∗| |y − y∗|
average std err average std err

20 8000 MQ - 55 0.5406 0.0302 1.1372 0.1001

20 8000 SKO - 55 0.5636 0.0297 1.1315 0.0989

20 8000 TSSO 25 212 0.2277 0.0205 0.2756 0.0178

20 8000 eTSSOO 25 – 0.2716 0.0224 0.2072 0.0156

20 8000 eTSSOA 25 – 0.2747 0.0299 0.2271 0.0110

20 8000 eTSSOG 25 – 0.2053 0.0286 0.2051 0.0089

20 8000 eTSSOE 25 – 0.3438 0.0299 0.2270 0.0120

30 8000 MQ - 55 0.5819 0.0313 1.1168 0.0894

30 8000 SKO - 55 0.6681 0.0350 1.3564 0.1052

30 8000 TSSO 25 145 0.3154 0.0235 0.3488 0.0239

30 8000 eTSSOO 25 – 0.2216 0.0231 0.2600 0.0207

30 8000 eTSSOA 25 – 0.2633 0.0298 0.2612 0.0141

30 8000 eTSSOG 25 – 0.2374 0.0286 0.2240 0.0117

30 8000 eTSSOE 25 – 0.3181 0.0282 0.2427 0.0125

Nevertheless, eTSSOE is again performing worse than all the alternative algorithms for the case with high

noise. We highlight the case with δ = 5.0 and N0 = 20, where a better average performance is observed

only for eTSSOG. As already stated in section 3, TSSO can show better performance with respect to

eTSSO, especially in case of large noise. Indeed, eTSSO might be affected by an early termination due

to the budget exhaustion.

Six dimensional case Finally, we examined a six–dimensional case. In particular, we study the

Hartmann-6 test function defined as

Y (x1, x2, x3, x4, x5, x6) = −
4∑

i=1

αiexp


−

6∑

j=1

αij (xj − pij)2

 .

The parameters of the function are in Table 6.

Table 6: Parameters αij and pij of the Hartmann–6 function

αij 10.0 3.0 17.0 3.5 1.7 8.0

0.05 10.0 17.0 0.1 8.0 14.0

3.0 3.5 1.7 10.0 17.0 8.0

17.0 8.0 0.05 10.0 0.1 14.0

pij 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

With 0 ≤ xi ≤ 1 for i = 1, . . . , 6; parameters α = (1.0, 1.2, 3.0, 3.2), and αij and pij given in Table

6. This function has a global minimum at x∗ = (0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573)
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with y (x∗) = −3.32237; the function also has five additional local minima. As noise, we applied to the

function an additive Gaussian Process ξ (x) with mean 0 and diagonal variance covariance matrix with

diagonal elements σ2ξ = δ ·
(

6∑
i=1
|xi|
)

. The obtained results are in Table 7.

Table 7: Summary results for the Hartmann 6 function (low noise, δ = 1.0)

N0 T Algorithm rmin B |x− x∗| |y − y∗|
average std err average std err

40 6400 MQ - 55 1.3919 0.0562 1.6070 0.0314

40 6400 SKO - 55 1.4539 0.0597 1.6027 0.0312

40 6400 TSSO 25 92 0.2746 0.0384 0.18629 0.0135

40 6400 eTSSOO 25 - 0.16211 0.0384 0.16211 0.0155

40 6400 eTSSOA 25 - 0.14807 0.0334 0.18928 0.0143

40 6400 eTSSOG 25 - 0.14794 0.0473 0.21957 0.0909

40 6400 eTSSOE 25 - 0.13832 0.0425 0.13676 0.0609

60 6400 MQ - 55 0.3042 0.0165 0.5052 0.0214

60 6400 SKO - 55 0.3025 0.0152 0.5060 0.0217

60 6400 TSSO 25 65 0.19409 0.0174 0.19942 0.0182

60 6400 eTSSOO 25 - 0.16705 0.0356 0.14417 0.0137

60 6400 eTSSOA 25 - 0.15483 0.0377 0.14612 0.0124

60 6400 eTSSOG 25 - 0.15639 0.0309 0.15457 0.0189

60 6400 eTSSOE 25 - 0.14378 0.0355 0.25935 0.0194

Despite the performance of the algorithms are generally worse than in the lower dimensional cases, we

observe that eTSSO is better or equivalent to TSSO in at least one implementation. Also in this case,

both TSSO and eTSSO appear to be superior to MQ and SKO.

Table 8: Summary results for the Hartmann 6 function (high noise, δ = 5.0)

N0 T Algorithm rmin B |x− x∗| |y − y∗|
average std err average std err

40 16000 MQ - 55 1.5729 0.0419 1.8362 0.0163

40 16000 SKO - 55 1.6764 0.0519 1.8304 0.0216

40 16000 TSSO 35 217 0.33579 0.0472 0.35308 0.0348

40 16000 eTSSOO 35 - 0.27443 0.0323 0.32487 0.0116

40 16000 eTSSOA 35 - 0.27339 0.0340 0.29926 0.0214

40 16000 eTSSOG 35 - 0.29575 0.0327 0.32266 0.0295

40 16000 eTSSOE 35 - 0.33904 0.0425 0.34437 0.0344

60 16000 MQ - 55 0.3619 0.0270 0.5976 0.0362

60 16000 SKO - 55 0.3575 0.0297 0.5880 0.0349

60 16000 TSSO 35 150 0.35282 0.0429 0.36517 0.0258

60 16000 eTSSOO 35 - 0.25337 0.0744 0.32929 0.0246

60 16000 eTSSOA 35 - 0.23088 0.0243 0.32565 0.0342

60 16000 eTSSOG 35 - 0.28314 0.0945 0.33891 0.0296

60 16000 eTSSOE 35 - 0.37284 0.0445 0.39936 0.0544
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Summary We observe good results from the several variants of eTSSO. In particular, across different

dimensions and noise levels, eTSSO has always variants that are superior, statistically, to TSSO. Overall,

eTSSOO and eTSSOG appear to be the most robust with respect to the different test cases. This is

expected: eTSSOE performs well for low noise, but it leads to under sampling in the case of high noise

with a detrimental effect on the performance; eTSSOA protects against low budgets, but it may be

ineffective due to the high heterogeneity of the noise across the design space. In our implementation and

tests, the MQ and SKO algorithms appear to never perform better than TSSO or eTSSO. While this

is expected for MQ, treated generally as a benchmark, the issues in SKO reveal the importance of the

underlying assumption of knowledge of the variance structure.

6 Conclusions

In this paper, we propose a two-stage sequential optimization procedure, eTSSO, which generalizes the

previously proposed TSSO algorithm by trying to reduce its sensitivity to the budget allocated at each

iteration k, namely, Bk. Indeed, we observed that increasing the budget at each iteration has the positive

effect to decrease the influence of the budget per iteration B, adopted in the original TSSO, and the

noise magnitude. Hence, we generalize TSSO by generating the sequence of the budget per iteration Bk,

stochastically and dynamically, according to the updated information coming from the simulation. In this

regard, we propose a general budget allocation rule that satisfies the conditions required for convergence.

We then generate four different variants of the rule that put different emphasis on search and evaluation.

We analyzed the asymptotic properties in terms of convergence and convergence rate of eTSSO. In

particular, in order to perform the analysis, we interpret eTSSO as a stochastic recursion procedure.

Consequently, we are able to exploit the results from (Bull, 2011) and (Pasupathy et al., 2018) to prove

the desired properties.

The numerical studies reveal a good finite time behavior of the algorithm in its four instantiations when

the parameters of the underlying stochastic model are sequentially estimated as the search progresses.

The performance of eTSSO have been tested against functions of increasing dimensions and results have

been compared with the original TSSO. eTSSO is shown to be better or statistically equivalent to TSSO

in most of the variants given the total available budget T , in the proposed examples. The performance

of eTSSO is sensitive to the function dimensions, nonetheless the algorithm behavior is consistent with

respect to the lower dimension cases, proving the generality of the proposed approach and of the empirical

results. Also, eTSSOO and eTSSOG appear to be the most robust variants.

Future research includes the extension of the approach to the case where multiple constraints need to

be considered that can only be evaluated with noise; another important extension of the framework is in

the area of multiple objectives.
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APPENDIX

Proofs

In this section, we report the proofs of theorems in section 4.2.

Lemma. 1 There exists κ ∈ R such that, for any (S, S′) : S ⊂ X,S′ ⊂ X, ||h(S) − h(S′)||≤ κD(S,S′),
where D (·) represents the distance between two sets of points.

Proof. We prove that, given two “close” (in Euclidean sense) sequences {xi}ki=1 , {x′i}
k
i=1, and the as-

sociated filtrations Fπk ,F ′πk , the corresponding “distances” h
(
{xi}i≤k

)
, h
(
{x′i}i≤k

)
must be close in

Euclidean sense. According to (21), the sequences of interest are a result of the expected improvement

Tπk , and they are fully defined by:

x∗lk − xl,k+1, l = 1, . . . , d (28)

where xk+1 := arg maxx∈X\S Tπk (x) and the subscript refers to the l-th dimension. If Assumption 7 holds,

the smoothness of the simulation response guarantees that {xi}ki=1 and {x′i}ki=1 will generate similar values

of response functions, therefore, the generated x∗k will be similar. However, to produce similar sequences,

we need to guarantee that the generated sampling points will be similar. Hence, we need to focus the

analysis on xk+1. Since the sampling points are generated by evaluating the expected improvement

function Tπk , we need to guarantee Lipschitz continuity for Tπk .

Following (Locatelli, 1997), the expected improvement can be written as:

Tπk (x;Fπk) = sπk(xi)φ

(
y (x∗k)− µ̂k
sπk(x)

)
− (y (x∗k)− µ̂k)

(
1− Φ

(
y (x∗k)− µ̂k
sπk(x)

))
, (29)

where φ,Φ are the normal distribution pdf and cdf, respectively. It is possible to show that Tπk (x;Fπk)

satisfies Lipschitz continuity when µ̂k = (4) and sπk(x) = (3). Specifically, we prove that
dTπk(x;Fπk)

dx <

∞, ∀x ∈ X. Under Gaussian Processes, φ

(
y(x∗k)−µ̂k
sπk (x)

)
and Φ

(
y(x∗k)k−µ̂k
sπk (x)

)
are the pdf and cdf of a

normal distribution, therefore 0 < µ̂k, s
2
πk

(x) <∞, but it is important to carefully consider the derivatives

of µ̂k and sπk(x). Let us rewrite equation (3) as:

sπk(x) = τ


1−




k∑

h=1

k∑

g=1

e
−

d∑
j=1

φj(xj−xhj)
2

e
−

d∑
j=1

φj(xgj−xj)2
r−1hg






1/2

(30)

If assumption 5 holds, equation (30) is infinitely differentiable with respect to xi, but the derivative will

be finite depending on r−1hg , ∀ (h, g), i.e., the components of the matrix R−1 (h-th row, g-th column).

Therefore, for the existence of the derivative, we need to require R to be non-singular, enforcing as-

sumption 5 to hold. The same reasoning applies to the mean. Hence, function Tπk (x;Fπk) is Lipschitz

continuous, proving the lemma.

Lemma. 2 Let us consider a Gaussian correlation function, then limk→∞ xk = x∗ will hold for the EGO

algorithm. Moreover, if Assumption 7 is satisfied, the result will hold for any initial sampling {xk0}N0
k0=1,
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i.e., we have uniform convergence.

Proof. We observe that sπk(x) = τ2(1− cTR
′−1c + ζ(x)T (1TR

′−11)−1ζ(x)), where ζ(x) = 1− cTR
′−11.

Denote x0 as the closest design point to x. It is easy to see that sπk(x) ≤ τ2(1−e−φzd2
x,x0 +ζ(x)T (1TR

′−11)−1ζ(x)).

Besides, in ζ(x), cTR
′−11 can be treated as the GP prediction (where the mean function is 0) at x, given

the observations at the design points are all 1. It is then easy to check that ζ(x) = O(|x− x0|) and that

(1TR
′−11)−1 < 1 . In this case, we can select a large value M2 such that sπk(x) ≤ τ2(1 − e−φzd2

x,x0 +

M2d
2
x,x0

) := s0πk(x).

According to Assumption 8, the function is bounded. Here, we select a large value M such that the

responses are bounded in (−M,M), and thus we have y (x∗k) − µ̂k < 2M . We can then consider the

following:

Tπk (xi;Fπk) ≤ s0πk(xi)φ

(
2M

s0πk(xi)

)
+ 2MΦ

(
2M

s0πk(x)

)
:= T 0

πk
(xi;Fπk) . (31)

Now, we find an upper bound for Tπk (xi;Fπk). Note that this upper bound T 0
πk

(xi;Fπk) is a decreasing

function of s0πk(xi) and s0πk(xi) is a decreasing function of d2xi,x0
. Therefore, T 0

πk
(xi;Fπk) decreases as

the unobserved point xi becomes closer to existing design points and Tπk (xi;Fπk) becomes even smaller.

A similar result, in a single dimension, was obtained in (Locatelli, 1997). Hence, based on assumptions

4-2, equation (31) extends this result to the d-dimensional case. An important consequence of (31), is

that it allows to apply the result in Lemma 1 in (Locatelli, 1997) (page 60), obtaining:

lim
k→∞

max
i,j∈S
||xi − xj ||= 0. (32)

Equivalently, if the algorithm is never stopped. the sample points will be dense in X, proving convergence

of the algorithm.

We are left with the uniform convergence claim. For this, we can refer to the previous result in (Bull,

2011), that shows how under assumption 7 uniform convergence will be achieved and there exists a number

of initial points N0 such that the convergence is guaranteed independently from the specific initial set.

Lemma. 3 The cumulated budget Wk satisfies Wk
k→∞−−−→ ∞ w.p.1, and the expected budget at iteration

k is finite for any finite value of k.

Proof. Let us rewrite the sequence of generated budgets as:

Bk+1 = B0 ·
k∏

j=1

(1 + ∆j) (33)

where the random variable ∆k is defined as
σ̂2
ξ,k

σ̂2
ξ,k+s

2
π̃k

and it is a random variable. Since 0 < ∆k < 1, we

can approximate the previous by:

B0 ≤ Bk+1 ≤ B0 · 2k (34)
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As a result, we can formulate Wk =
∑k

i=1Bi as:

kB0 ≤Wk+1 ≤ B0 ·
k∑

j=1

2j = B0 · (2k+1 − 2) (35)

This sequence goes to infinity as the iterations go to infinity. Nevertheless, at each iteration of the

algorithm, the expected budget is bounded below by B0(2
k+1 − 2), which is finite for iteration k.

Lemma. 4 As the number of iterations k →∞, under assumptions 2-8, the MNEK model π̃k approaches

its deterministic counterpart πk.

Proof. Under assumption 2, we consider L = Tr
(
σ2ξRξ

)
, where Tr(·) is the trace of a matrix. We

show that, as requested, Tr
(
σ2ξRξ

)
has all the properties of L. First, it is an error function, therefore

strictly decreasing in Wk. We also need to show that there exist a finite number of iterations k satisfying

L ≤
(
δε/ψ

2
)k

, i.e., the algorithm returns estimates of L decreasing with δε/ψ
2. To prove this aspect we

write the covariance matrix in a more convenient form:

R
′

= Rz +Rξ =




1 e(−φ·d
2
12) · · · e(−θ·d

2
1k)

e(−φ·d
2
21) 1 · · · e(−φ·d

2
2k)

...
...

...
...

e(−φ·d
2
k1) · · · · · · 1




+




σ2
ξ (x1)

W1,kτ2 0 · · · 0

...
...

...
...

0 · · · · · · σ2
ξ (xk)
Wk,kτ2


 (36)

Here, dij represents the Euclidean distance between two points (i, j), Wi,k represents the number of

replications performed at location i up to iteration k according to the eTSSO budget allocation scheme.

R
′

is a random matrix due to the fact that is contains the random budgets Wk. As a result, we analyze

E
[
R
′
]

and note that, as long as the Gaussian Process parameters are known, (assumption 6) the elements

on the diagonal of Rξ will be limited by decreasing values of δε/ψ
2, where δε = 1(

minxj∈S EkWj,k

) and

ψ2 = τ2. Hence, it holds that δε ∈ (0, 1); moreover,
((

minxj∈SWj,k

)
τ2
)−1 wp1−−−→ 0 as k → ∞, since

minxj∈SWj,k > rk →∞ ∀k (Assumption 2). Hence, Rξ
wp1−−−→ 0.

Theorem. 1[Convergence of G
(
Wk, S̃k

)
] For any δ > 0, and with EkW →∞, when k →∞,

supSk,S̃k⊆X Pr
{
||G(EkW, S̃k)− g(Sk)||> δ

}
= O

(
[EkW (X∗k)]

−1/2
)

.

Proof. Here, ||·|| represents the Euclidean distance. EkW (X∗k) is the total expected budget allocated to

point X∗k up to iteration k. Since X∗k is a random variable, so is the related cumulated budget W (X∗k).

We use the notation G(Wk,S) to highlight the supremum is computed over any possible subset of size k

of sampled points, where k represents the number of iterations of the algorithm and the total number of

sampled points since a single point is sampled at each algorithm iteration.

Due to Lemma 4, we know that the model converges to the related deterministic counterpart. From

Lemma 2, we know that, in such deterministic settings, density is achieved in the solution space, which

implies the sampling of all points for k → ∞. This implies that, if S̃k,Sk represent the set of sampled

points by eTSSO and EGO at step k, respectively, then we have S̃k −−−→
k→∞

Sk.

33

                  



Recall that x∗k = arg minx∈Sk y(x), X∗k = arg minx∈S̃k Ȳ (x). We next prove X∗k −−−→
k→∞

x∗k w.p.1. As

S̃k −−−→
k→∞

Sk, we only need to prove that X∗k −−−→
k→∞

X0
k w.p.1, where X0

k = arg minx∈S̃k y(x).

We first prove that
∑∞

k=1 Pr[|Ȳ (X∗k)− y(X0
k)|> δ] <∞,∀δ > 0:

Pr[|Ȳ (X∗k)− y(X0
k)|> δ]

=Pr[|Ȳ (X∗k)− y(X∗k) + y(X∗k)− y(X0
k)|> δ]

<Pr[|Ȳ (X∗k)− y(X∗k)|> δ

2
] + Pr[|y(X∗k)− y(X0

k)|> δ

2
],

Note that ∀x ∈ S̃k, |Ȳ (x) − y(x)| is a normal random variable N (0, σ2ξ (x)/Nk(x)). Recall that σ20 =

maxx∈X σ2ξ (x), we have that

Pr[|Ȳ (x)− y(x)|> δ

2
] ≤ 2 exp(−δ

2Nk(x)

8σ2ξ (x)
) ≤ 2 exp(−δ

2rk
8σ20

).

The second inequality is based on Assumption 2 that the total number of replications at each input x,

Nk(x) > rk. Therefore, by union bound,

Pr[max
x∈S̃k
|Ȳ (x)− y(x)|> δ

2
] ≤ 2(k +N0) exp(−δ

2rk
8σ20

).

It follows that,

Pr[|Ȳ (X∗k)− y(X∗k)|> δ

2
] ≤ Pr[max

x∈S̃k
|Ȳ (x)− y(x)|> δ

2
] ≤ 2(k +N0) exp(−δ

2rk
8σ20

).

P r[|Ȳ (X0
k)− y(X0

k)|> δ

2
] ≤ Pr[max

x∈S̃k
|Ȳ (x)− y(x)|> δ

2
] ≤ 2(k +N0) exp(−δ

2rk
8σ20

).

To quantify the second term, we define set A = {|Ȳ (X∗k)− y(X∗k)|≤ δ
5} and B = {|Ȳ (X0

k)− y(X0
k)|≤ δ

5}.
we notice that

Pr[|y(X∗k)− y(X0
k)|> δ

2
]

=Pr[{|y(X∗k)− y(X0
k)|> δ

2
} ∩ {A ∩B}] + Pr[{|y(X∗k)− y(X0

k)|> δ

2
} ∩ {A ∩B}{],

where {A ∩ B}{ is the complement of {A ∩ B}. The first probability is 0. This can be proved by

contradiction. When y(X∗k)− y(X0
k) ≥ δ

2 , as |Ȳ (X∗k)− y(X∗k)|≤ δ
5 (Set A) and |Ȳ (X0

k)− y(X0
k)|≤ δ

5 (Set

B), it is easy to see that Ȳ (X∗k) > Ȳ (X0
k). This contradict with the fact that X∗k is the best observed

point at iteration k, i.e., X∗k = arg minx∈S̃k Ȳ (x). It follows that the first term is 0. Besides,

Pr[{|y(X∗k)− y(X0
k)|> δ

2
} ∩ {A ∩B}{]

<Pr[{A ∩B}{] = 1− Pr[A ∩B] < 2− Pr[A]− Pr[B] < 4(k +N0) exp(− δ
2rk

50σ20
).
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The last inequality follows that 1 − Pr[A] = Pr[|Ȳ (X∗k) − y(X∗k)|> δ
5 ] < 2(k + N0) exp(− δ2rk

50σ2
0
) (similar

for 1− Pr[B]). Therefore, Pr[|y(X∗k)− y(X0
k)|> δ

2 ] < 4(k +N0) exp(− δ2rk
50σ2

0
), and thus

Pr[|Ȳ (X∗k)− y(X0
k)|> δ] < 2(k +N0) exp(−δ

2rk
8σ20

) + 4(k +N0) exp(− δ
2rk

50σ20
) < 6(k +N0) exp(− δ

2rk
50σ20

).

Then, by Assumption 2,

∞∑

k=1

Pr[|Ȳ (X∗k)− y(X0
k)|> δ] < 6

∞∑

k=1

(k +N0) exp(− δ
2rk

50σ20
) <∞.

It follows that Ȳ (X∗k) −−−→
k→∞

y(X0
k), w.p.1 and that y(X∗k) −−−→

k→∞
y(X0

k), w.p.1. Since the function has

only one global optimum, we have X∗k −−−→
k→∞

X0
k and therefore, X∗k −−−→

k→∞
x∗k. As a result, Theorem 1

holds.

Theorem. 3 [Convergence rate of Algorithm 1] Let us define Ck := 1+
σ̂2
ξ,k

σ̂2
ξ,k+s

2
π̃k

(xk+1)
and ` =

(
1− 1

k

)1/d
.

Given that EGO exhibits linear convergence, for any ε ≥ 0 satisfying ` + ε < 1 and as k → ∞, the

following holds for Ek = E
[
||X∗k+1 − x∗||

]
:

E[Ck] ≥ `−2, Ek = O

((
E[Ck]

−1/2 (`+ ε)−1
)−k

EkW
−1/2
k+1

)

Proof. Convergence rates are shown for the EGO algorithm in (Bull, 2011). In his contribution, the

author uses the Reproducing Kernel Hilbert Space H (X) of functions over the space X constructed

from the kernel K and establishes the convergence rates of the loss function Lk (Tπk ,Hθ (X) , ρ) :=

sup||y||Hθ(X)≤ρEπk
[
y (x∗k)− Ŷ

]
over the ball of radius ρ, βρ, in H (X) after k steps as (Theorem 2, page

2887, (Bull, 2011)):

Lk (Tπk ,Hθ (X) , ρ) := sup
||y||Hθ(X)≤ρ

Eπk

[
y (x∗k)− Ŷ (x) |Fπk

]
= O

(
k−1/d

)
. (37)

As a result of (37), EGO exhibits linear convergence rates: lim
k→∞

||xk+1−x∗||
||xk−x∗|| = O

((
1− 1

k

)1/d)
. From

Theorem 2, we have that supx∈XPr {||H (Wk,x)− h (x) ||> ∆} = O
(
EkW

−2α) with α = 1/2. From (18),

we observe that the coefficient Ck for the geometric increase of the budget at each algorithm iteration

satisfies Ck ≤ 2 a.s. Since the budget increase is stochastic, we need to consider the expected coefficient

E[Ck] to verify that E[Ck] ≥ `−2, differently from Pasupathy et al. (2018). In the following, in order to

simplify the notation, we will interpret Wk as EkWk.

We start analyzing the E[ck]. First, let us re-write Ck as it follows:

Ck = 2− s2π̃ (xk+1)
1

σ̂2ξ,k (x) + s2π̃k(xk+1)
(38)
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Now, we will refer to the random variable ∆k as:

∆k =
s2π̃ (xk+1)

σ̂2ξ,k (x) + s2π̃k(xk+1)
(39)

The sample estimator of the variance satisfies σ̂2ξ,k
Wk(x)−1

σ2
ε

∼ χ2 (Wk+1(x)− 1), we can re-write ∆k as:

∆k =

s2π̃(xk+1)·(Wk(x)−1)
σ2
ε

σ̂2ξ,k
Wk(x)−1

σ2
ε

+ s2π̃k(xk+1)
Wk(x)−1

σ2
ε

(40)

Let us assume that σ2ε , characterizing the simulator noise, is known (which holds under assumption 6).

Then the distribution associated to the random variable in (40) results:

1

2Wk(x)−1
2 Γ

(
Wk(x)−1

2

) · σ2ε ((x))

sπ̃ (xk+1)Wk(x)
·


 1

sπ̃
Wk(x)
σ2
ε (x)

· t




Wk(x)−1

2
+1

· exp


− 1

sπ̃
Wk(x)
σ2
ε (x)

· 2t


 (41)

Operating a change of variable b = t · (Wk(x)− 1), we obtain the following density:

1

2Wk(x)−1
2 Γ

(
Wk(x)−1

2

) · σ2ε (x)

sπ̃ (xk+1)Wk(x)
·


 Wk(x)− 1

sπ̃ (xk+1)
Wk(x)
σ2
ε (x)

· b




Wk(x)−1

2
+1

·

· exp


− Wk(x)− 1

sπ̃ (xk+1)
Wk(x)
σ2
ε (x)

· 2b


 · 1

Wk (x)− 1
(42)

Expression (42) is a scaled inverse χ2 density. In particular, let us define υ = Wk − 1 and τ =
1

sπ̃(xk+1)
Wk(x)
σ2
ε (x)

, then the expectation of ∆k, results:

(40) =
υυ/2+1τ2υ

(υ + 2) (τ2υ)υ/2
=

υυ/2+1τυ(
υυ/2+1 + 2υυ/2

) =
σ2ε (x)

sπ (xk+1)
· υυ/2+1

(
υυ/2+1 + 2υυ/2

)
(υ + 1)υ

(43)

It can be observed that (43)→ 0 a.s. as k → ∞, as a result E [Ck] → 2. Since ` converges to 1 the

asymptotic rate satisfies the condition E[Ck] ≥ `−2.
Using Theorems 1-2, we can use Theorem 6.6 page 58 in Pasupathy et al. (2018) to prove that the resulting

convergence rate is:

E[Ck] ≥ `−2, Ek = O

((
E[Ck]

−1/2 (`+ ε)−1
)−k

EkW
−1/2
k+1

)

Note that this result is better than the one obtained with basic geometric increase (i.e., ck = 1), which

would lead to a rate O
(
EkW

−1/2
k

)
.
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