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Abstract

In this paper, we consider the boundary value problem of a simplified Ericksen—Leslie system
in dimension two with non-slip boundary condition for the velocity field u and time-dependent
boundary condition for the director field d of unit length. For such a system, we first establish
the existence of a global weak solution that is smooth away from finitely many singular times,
then establish the existence of a unique global strong solution that is smooth for # > 0 under
the assumption that the image of boundary data is contained in the hemisphere Si. Finally, we
apply these theorems to the problem of optimal boundary control of the simplified Ericksen—
Leslie system and show both the existence and a necessary condition of an optimal.beundaty
control.
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1 Introduction

In this paper, we will consider thesboundary value problem of a simplified Ericksen—Leslie
systém, first proposed by Lin [29], that models the hydrodynamic motion of nematic liquid
crystals under the non-slip boundary condition on the velocity field and time-dependent
boundary condition on the liquid crystal director field in dimension two. More precisely, for
a bounded smooth domain © C RZ with ' = dQ and 0 < T < 00, set Or =Q2x(0,7T)
andT7 =T x (0, 7). We seek a (u, d) : Or — R2 x S? that solves

U, —vAu+ (u- V)u+ VP = —1div(Vd © Vd),
V.u=0, in Or (1.1)
d, + (u- V)d = uw(Ad + |Vd|2d),

subject to the boundary and initial conditions:

ux, ) =0, d(x,1) =h(x,1), (x,1) € I'r, (12)
ufr=0 = up(x), di=0 = do(x), x € 2, (1.3)

where ug : Q@ — R%2anddy : Q — R3 are given maps such that V - ug(x) = 0 and
|dg(x)| = 1 for x € Q. Here u : Q7 — R? represents the fluid velocity field, P : Q7 — R
represents the pressure function, d : Q x (0,7) — SP={yeR: |y =1 represents
the averaged orientation field of the nematic liquid crystal molecules, and v, u and X are
three positive constants that represent viscosity, the competition between kinetic energy and
potential energy, and microscopic elastic relaxation time for the molecular orientation field.
The notation Vd © Vd stands for the 2 x 2 matrix whose (i, j)-th entry is given by V;d - V;d
forl <i,j<2.
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The system (1.1) is a simplified version of the general Ericksen—Leslie system, which
was introduced by Ericksen [10] and Leslie [28] between 1958 and 1968, that represents a
macroscopic continuum description of the time evolution of the material under the influence
of both the fluid velocity field u and the macroscopic description of the microscopic orien-
tation configuration field d of rod-like liquid crystal molecules. Mathematically, (1.1) is a
system that strongly couples between the non-homogeneous Navier—Stokes equation and the
transported heat flow of harmonic maps to S? (see [6] for the Dirichlet problem of harmonic
heat flows).

There have been many interesting results on the system (1.1), (1.2), and (1.3), when the
boundary data h(x, r) = h(x) : I'r — S? is z-independent. In a series of papers, Lin [29]
and Lin and Liu [32,33] initiated the mathematical analysis of (1.1)-(1.3) in 1990’s. More
precisely, they considered in [32,33] the case of the so-called Ericksen’s variable degree
of orientation, that replaces the Dirichlet energy % fQ |Vd|>dx ford : Q +— S? by the
Ginzburg-Landau energy fQ(%IVdI2 + ﬁ(l —|d»?) dx ford : Q — R3. It has been
established by [32,33] the global existence of strong and weak solutions in dimensions 2
and 3 respectively, along with some partial regularity results analogous to [3] on the Navier—
Stokes equation. However, since the arguments and crucial estimates in [32,33] depend on
the parameter e, it is challenging to utilize such obtained solutions as approximate solutions
to(1.1),(1.2), and (1.3) because it remains a very difficult question to study their convergence
as e tends to zero. In dimension two, it has been recently shown by Lin et al. [31] and Lin and
Wang [35] that (1.1), (1.2), and (1.3) admits a unique global “almost regular” weak solution
that is smooth away from finitely many singular times when h(= dg|yq).€«C LR, S5,
see Hong [23], Xu and Zhang [44], Hong and Xin [24], Huang et al. [21], and-Lei et al. [30]
fortelated works. In a very recentiarticle, Lin and Wang-[37] have proved thesexistence of a
global weak solution to (1.1), (1.2), and (1.3) in dimension-3 when do(2) C Si, see Huang
etal. [22] for related works.The interested reader can also consult the survey article [36] and
the papers by Lin and Liu [34], Wang et al. [42], Cavaterra et al. [4], and Wu et al. [43] for
related works on the general Ericksen—Leslie system.

Turning to the technically more challenging case of 7-dependent boundary datah : Q7 +—
S? for d, to the best of our knowledge there has been no previous work addressing (1.1),
(1.2), and (1.3) available in the literature yet. For the Ericksen—Leslie system in the case
of Ericksen’s variable degree of orientation or the so-called Ginzburg—Landau approximate
version of (1.1), (1.2), and (1.3), there has been several interesting works by [2,7,8,17,18]
extending the main theorems by Lin and Liu [32,33] to t-dependent boundary data for d.
In particular, Cavaterra et al. [5] have recently studied the optimal boundary control issue
for such a system in dimension 2 (see the books [1,25,41] for more discussions on optimal
control of PDEs). The motivation for the study we undertake in this paper is two fold:

(i) We are interested in extending the previous theorems by Lin et al. [31] and establish
the theory of global weak and strong solutions of (1.1), (1.2), and (1.3) for 7-dependent
boundary data of d in dimension 2. Here the new difficulties arising from the #-dependent
boundary data include: (a) the global energy does not necessarily decrease; and (b) the
boundary €p-regularity estimate is much more delicate.

(i) We plan to employ the existence of a unique, global strong solutions to establish the
existence of an optimal boundary control of (1.1), (1.2), and (1.3) and characterize a
necessary condition of such an optimal boundary control in a spirit similar to [5]. Here
we need to overcome additional difficulties to handle the nonlinearity arising from the
constraint |d| = 1.
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Now let us briefly set up the boundary control problem. Denote e3 = (0, 0, 1), and set

H = Closure of {u € C°(Q,R?) : V.u =0} in L*(Q, R?),
V = Closure of {u € C°(R2, R?) : V-u = 0} in Hj (2, R?),
H*Q,8%) = {d e H*(Q.R*) : [d(x)| = lae.x € @}, k > 0.
For any given B; € Ry, 1 <i < 5, not all zeroes, and four target maps
ug, € L*([0, T],H),dg, € L*(Qr1,S%),ug € H,dg € L*(Q,S?),
our goal is to study the minimization problem of the cost functional
20((u, @), 1) = fillu =g lI72 g, + A2lld = dor 7o,
+ B3llu(T) — ugl}s g, + Balld(T) — dall}s g
+Bslh —esll7a - (1.4)

for any boundary datah : 't — S? that lies in a bounded, closed, and geometric convex
set Uy of a function space U, to be specified in the Sect. 4, and (u, d) is the unique global
strong solution to the state problem (1.1), with the boundary condition (u, d) = (0, h) and
the initial condition (ug, do) for some fixed maps up € Hand dyp € H L@, s?), subject to
the compatibility condition:

h(x,0) =dp(x), x €T. ()]

In order tosstudy both the existence and.a necessary’condition for an optimal boundazy
control h of the cost functienal €((u, d); h) ovex i ‘v, We first need to establish the existence
of a unique global strong solution to (1.1); (1.2)sand (1.3)."This turns out to be a challenging
task, sinee the existence théorems by Lin et al. [31] and Huang et al. [22] indicate that the
short time smooth solution may develop finite time singularity even for a ¢-independent
boundary value dg. There are several new difficulties that we need to overcome, when we try
to establish Theorem 2.1 extending the main theorem of Lin et al. [31] to (1.1), (1.2), and
(1.3) for a r-dependent boundary value h:

(1) the energy £(u, d)(t) = % fQ(|u|2 + |Vd|2)(t) may grow along the flow, which makes
it difficult to estimate the total number of singular times;

(2) theboundary local energy inequality involves contributions by h that need to be carefully
studied; and

(3) the boundary ep-regularity property is more delicate to establish than the case of ¢-
independent boundary condition.

Under the additional assumption that the initial and boundary values do(2) C Si and
h(I'y) c S%, where Si ={y = 6, y% ¥} € $? | ¥3 > 0}, we are able to show
in Theorem 2.3 that the weak solutions (u, d) obtained in Theorem 2.1 satisty both d €
L?([0, T, H?*(R, S%)) and the smoothness property that (u, d) € C*®(Q7)NC*(Q2x (0, T1)
for any @ € (0, 1). In particular, if, in addition, (ug,dg) € V x H*(R, S%r) and h €
H%’ 3 ('r, Sﬁ_), then (u, d) is the unique, strong solution to (1.1), (1.2), and (1.3) that enjoys
a priori estimate:

Il mior) + 1Al n2c0r) + Mll2 200, + 1dll2 130y = C(T).

This estimate is established in the Sect. 3, which turns out to be the crucial estimate in
order to establish the Fréchet differentiability of the control to state map S(h) = (u, d) over
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appropriate function spaces, that is to be discussed in the Sect. 4, by which we can obtain a
necessary condition of an optimal boundary control h : I'r — Sﬁ_.

There have been many research articles on the optimal boundary control for parabolic
equations, the Navier—Stokes equation, and the Cahn-Hilliard—Navier-Stokes system. See
Homberg et al. [20], Kunisch and Vexler [27], Fattorini and Sritharan [13,14], Fursikov et
al. [11,12], Hinze and Kunisch [19], Frigeri et al. [15], Hintermiiller and Wedner [26], Colli
and Sprekels [9], and Troltzsch [41], Alekseev et al. [1], and Hinze et al. [25].

Since the exact values of v, u and A don’t play a role, we henceforth assume v = p =
A= 1

2 Existence of weak solutions

In this section, we will establish the existence of a global weak solution to (1.1), (1.2), and
(1.3). First, let us recall a few notations. For any nonnegative number k > 0, recall the
Sobolev spaces

HYT, 8% = {f e HYT,R?) : f(x) eSTae.x eT},
H*5(Tp, §2) = {fe H*5 (T, R3) : f(x, 1) €S2, ae. (x,1) € rr},

and the dual space of H¥(I", R%), H=*(I', R?) = (H*(I", R}))'. Our first theorem, whigh is
an extension of [31] Theorem 1.3 to time dependentboundary data, states as follows:

Theorem2:1 Forany 0 < T < oo and any bouwrided, smoothdomain Q 'C R? with boundary
I, assume that

3
h e2([0, 71, H2 (I, %), &h e L2HZ (7).

and (ug, do) € H x HY(Q, S?) satisfies the compatibility condition (1.5). Then there exists
a weak solution (u,d) : Q7 — R? x §? of the system (1.1), with initial and boundary
condition (1.2) and (1.3), such that

ue L®(0,T],H)N L*(0,T], V), andd € LXH} (Qr,S?. 2.1)

Furthermore, there exist L € N, depending only on (ng,dp), and0 < Ty < --- <Tp <T
such that (u, d) is regular away from UiL:] {T:} in the sense that for any 0 < o < 1,

@, d) € C(Q x (0, T1\ UL {T;}) N C* 7 (R x ((0. T1\ UL {Ti})).

Moreover, there is a universal constant €1 > 0 such that for each singular time T;, 1 <i < L,
it holds that

lim supma}/ (u)? + |Vd») (-, 1) > &3, Vr>0. (2.2)
T, xeQ JQNBy(x)

A few remarks are in the order:

Remark 2.2 (1) Theorem 2.1 was first established by [31] for any time independent boundary
data h(x,r) = do(x), (x,1) € I'r, with do e C2A(I, S?) for some B € (0,1). (2) By

the Sobolev embedding theorem, h € L2H (I'7) and o/h € L2H (C'r) imply that h €
Lip(I'7). We will present a new proof of the boundary €p- regularlty theorem on (1.1) and
(1.2) for any Lipschitz continuous boundary value h : 'y — S2, which plays a crucial role

@ Springer


http://cbs.wondershare.com/go.php?pid=5261&m=db

38 Page6of64 Q. Liu e
Remove Watermark Now

in the proof of Theorem 2.1. (3) In contrast with the autonomous boundary condition studied

by [31], the system (1.1), (1.2), and (1.3) no longer enjoys the energy dissipation inequality

for a time dependent boundary value h. However, under the assumption that both h and 9;h
3

belong to Ltsz (I'7), we are able to estimate the growth rate of the energy £ (u(z), d(¢)) by
t
E(u(r),d(r)) < exp(C / lohll 3 )[Emo,do) + Clh, dW)* 5 ] (23)
0 2 L2H2 ()

This turns to be sufficient for establishing the finiteness of singular times (4) Concerning the
uniqueness issue of the global weak solutions constructed by Theorem 2.1, we establish in
a forthcoming paper [16] that there is at most one weak solution in the same class of weak
solutions as in Theorem 2.1, if in addition

h e L2([0, T], H3 (T, §%))
holds for some § > 0.

Applying the maximum principle, we can show that if dy : Q2 — Si andh: 'y — SZ,
then any weak solution (u, d) to problem (1.1), (1.2), and (1.3) obtained by Theorem 2.1
satisfies (see Lemma 2.11 below)

d(x,0): Qr — S}

This, together with Lemma 2.12, ensures that (2.2) néver occurs in thedntepval®(0, 7 ]. Hence,
we obtain thefollowing theorem.

Theorem 2.3 For any T > 0 and a bounded smooth domain 2 C R2, assume that

3 3
he L?H? (Tr,S2) and 8h € L2H? (T'7)

and (ag, do) € H x HY(Q, Si) satisfies the compatibility condition (1.5). Then there is a
weak solution (u,d) : Or — R? x Sﬁ_ of the system (1.1) with the initial and boundary
conditions (1.2) and (1.3) such that

ue L®([0,T],H) N L*([0, T1, V),
de LPHNQr,S3)NL2H2(Qr,S%),

and (u,d) € C*(Q7)N ces (2 x (0, T)) for any a € (0, 1). In particular, for &1 given by
Theorem 2.1 there exists ro > 0 such that

sup f (uf?> +|VdP?)(y, 1) dy < &} 2.4)
(x,1)€Qx[0,T] Y 2N By (x)

The smoothness of a weak solution (u, d) to (1.1) and (1.2) relies on both the interior

and boundary ¢ -regularity properties for (u, d), provided d € L,2H xz(QT) and the condition
(2.4) holds. This will be discussed in the following subsection.

2.1 Regularity of weak solutions

In this subsection, we will show both the interior and boundary regularity for weak solutions
(u,d) to (1.1) and (1.2) that satisfies d € L>H2(Qr) and (2.4).
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Theor?em 24 Fora T > 0 angd a bounded smooth domain Q@ C R2 assume h €
L2HZX(T7,S% and h € L2HZ(T7,S?). If (u,d) € L>([0, T], H) N L2([0, T1, V) x
LPH(Qr,SH) NL?H2(Q71, S?) is a weak solution of the system (1.1) with the boundary
condition (1.2), then (u,d) € C®°(Q x [6, T]) N C""%(ﬁ x [8, T]) for any a € (0, 1) and
0<d<T.

In order to prove Theorem 2.4 and the existence of short time smooth solutions to (1.1),
(1.2), and (1.3), we recall the definition of Holder spaces in Q. First, define the parabolic
distance in Q71 by

8(zi,z2) = lxi — x|+ VIt — |, zi= (i) € Or, i =1,2.
Fora € (0, 1]and U C Q7, a continuous function f : U — R belongs to the Holder space
CEEWUL I Nf gt gy, = I lcow) + [ty < 00, where

[f] N _ sup |f(zl) - f(ZZ)|
c*2T W) :

meU.i#z  6(21,22)%

.. . . . kta
For any positive integer kK > 1, a continuous function f : U — R belongs to C koo, 5 ),
if

[ kvt oy = 20 10 leowy + [f] vantge ) < 00
0<r+42s<k
where
Sar H
Z [9; axf]c‘*%(u)’ k isveven,
r+2s=k
n S Aar S ar
[erratse 57 22 W0 flagyy+ D 16 LSRRI,
r+2s=k r+2s=k—1 !
k is odd,
and
[f(x, 1) — f(x, )]
[f] H—Ta = sup l+a .
C, ) (x,11),(x,n)eU 1 # |l‘1 — t2|T

For zo = (x9, fp) € 2 x (0, T]and 0 < r < min{\/7, dist(xo, ')}, set
Br(x0) = {x € R? | |x —xo| < r}, Or(20) = By(x0) x [to — r*, 0],
and the parabolic boundary of Q,(zp) by
3y Qr(z0) = (B (x0) x {10 — r*}) U (3B, (x0) x lt0 — r?, 19]).

Denote B,(0), 0,(0,0) and 9,0, (0,0) by B,, O, and 9, Q, respectively, if zo = (0, 0).
For f € L'(Q,(20)), denote by
1

10 (z0)| J o, z0)

1
Fror) = —— fx, 0, t€lto—r2 1l
1B, (x0)| /B, (xo)

fZU,r: f(-xs[)s

as the average of f over Q,(zo) and B, (xo) respectively.
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For p, g € (1,00) and U C Qr, define W) 9(U) = LIW,"? (U), with the norm
| £l

p

QT ”f“Lf’Lf(U) + ||Vf||L7L;’<U)’
and
W2l W) = [f e WIAW) | V2F. 8, f € LILLU)),
with the norm
||f||w§;;(U) = £l whow) + [f]wﬁ;;(U)
where
2
[f]WSj(l](U) = IV fillgrrrwy F 18 fllpae -

For p = g, denote L”(U) = LY LY (U) and W,* (U) = W}, (U).
We begin with an interior q-regularity result, whose proof follows exactly from Lin-Lin-
Wang [31] Lemma 2.1.

Lemma 2.5 For any a € (0, 1), there exists ¢g > 0 such that for zo = (xo,t9) € Q1 and
0 < r < min{/7, dist(xo, 1)}, if (0, d) € W, *(Qr, R? x §%), P € W'(Qr) is a weak
3

solution to (1.1) satisfying
/ (Jul* + |vdl*") < &5, @.3)
0r(20)
then (u, d)&C*% (Q; (20), R? x S?), dnd-there-holds(that
[d]C“’%(QL(ZO)) = C(”u]|L4(Qr(Zo)) + ”Vd”L“(Qr(zo)))’
2

o - vd VP .
[“]Ca«Q(Q%(ZO))—C(||“||L4<Qr<zo))+|| 240, 2o + I ||L§(Qr(z0)))

Forr > 0 and zo = (xg, tp) with xg € I" and 7y > 0, set

B (x0) = By (x0) N R, Q) (z0) = B (x0) x [to — 1%, 101,

and
T, (x0) = 3B, (xo) NT, SH(xp) = B (x0) N Q
so that
B (x0) = T'+(x0) U S (x0),
and

3p0; (z0) = (3B (x0) x [to—r?, 10]) U (B} (x0) x {to—r?}).
If (x0, t0) = (0, 0), simply denote
B} = B} (0), 0 = 0(0,0), I, =T (0). S} =$5(0).
and
dB} =3B, (0), 3,0 =3,0,(0,0).

Next we will establish a corresponding boundary &g regularity for (1.1) and (1.2), which
is a highly nontrivial extension of [31] Lemma 2.2, where a time independent boundary data
for d is assumed.
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3 3
Lemma2.6 Forany a € (0,1), h € L?H? (I'r,S?) with 8:h € L?H? (I'r), assume that
u,d) € W07, R2 x §2), P € Wi%Qr), is a weak solution of (1.1) and (1.2). Then
3

there existrg € (0, \/fo) depending onT and &) > 0 depending on o and || (h, d;h) || 53

LIH? (Tr)

such that for any zo = (xo, to) € I'r, if
/ (lu* +|va/* <&t (2.6)

07 (z0)

then (u,d) € C* % (O} (20), R? x S?), and there holds that
2
[4]eet (gt con = CMIL 0 con + IVt 07 o
2

+ I, g afh)n 2.7)

3
H (D (x0) x[to—1. o)

[“]C“'%@g o) = C[”u”L“(Q:B(Zo)) IVl 2407 (21
2

+IVP| 4
L3 (0 o)

+ [I(h, roath)ll 3 ]- (2.8)

L}HZ (Try (x0) x[t0—r ,10])

Proof The proof of Lemma 2.6 is more delicate than[31] Lemma 2.2, because thesboundary
value h is time dependent. Here we will give a detailed argument:

Choosing a sufficiently small rg.> 0 and applying the standard boundaryflatténtechnique,
we may, for simplicity, assume/that xg =0, fo.= 1,79 <.1.s0 that

QN B, (0) =R3M B, (0) = B, , and 0} (0,1) = B} x [1 —rg, 1.
First, observe that (2.6) and (1.1) imply
%d— Ad=|Vd*d—u-Vd e L*(Q}}).
Hence, by the sz’l-theory on parabolic equations, we have that d;d € L2(QJ§&), d e
3

Lsz(erO) and
[a:d, V2a)| LZ(Q%)

= [l Vd>}|L4(Q+ tldgoml, 2T 29
0

2
Forz1 = (x1, 1) € F%o x [1 — %0, 1,0<r<2 ,letd! : 0F (z1) = R3 solve

dd' —Ad' =0 in QF(z1),
d'=h on Ty (x1) x [ = r2, 1], (2.10)
d'=d on 3,0, (z1) \ (Tr(x1) x [t1 — 2, 1]).

Thend?> =d —d': O/ (z1) — R3 solves

3d?> — Ad*> = —u-Vd+|Vd’d in Q;(z1),

=0 on 3,0/ (z1). @10
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From (2.6) and an argument similar to (2.9), we have that 3,d?, V>d? € L?(Q; (z1)). Hence,
by multiplying (2.11); by —Ad? and integrating over B;" (x1), we obtain that
1d
2.dt

|Vd2|2+/ |Ad2|2=/ (u-vd - |Vd]?d) - Ad>.
B (xp) B (x1) B (x1)

Integrating over ¢ € [t; — r2, 1] and applying Holder’s inequality, this yields

2
HIAA T, o),
+ v

2
IV} 205 oy
= Cliiiva?

< Cllul;

LY (21 ))]
|vd|?

L2(Qf (z1))

+Ivaj?

LAY (z1)) LYQf (z )>]| LYQF (z1))”

This, together with the Ladyzhenskaya inequality (see Lemma 2.17 below), yields that

Iva?|4 +[Iva?|? + lad?|

LPL2(O} (1) L2(QF (z1))

+ Ivd|l

LY (z1))

< Cllull Ivaj;

LY (z1)) L‘%Q*(u))] L0 (z1))

< ceffvay? (2.12)

LYQF (1)

3 3
Now we estimate d'. First observe that h, 3;h € L?H/ (I'y) implies thath € L®H? ('r)
and!

1
(LS <(zIhl 3 _409hlg 3 lIh| 3 = (2.13)
L®HZ (Tr) T Lwg () L?HZ2(Er) L7 HE (F7)

3
This, combined with d;h € L,2H 2 (P'z) and the Sobolev.embedding theorem, implies that
h € C%5(T7) for any a0, 1)Jand

||h|| C(a)(*llhll 3 +lahl 3 b3 (2.14)

ety = L2HZ2 (T7) L2HZ(Tp) L2H2(Tp)

It follows from (2.10), (2.14) and the boundary regularity theory for parabolic equations that
d' € C*21(Q%, (z1)) and
by

Lp 7(Q+ ey = Cl s gy T 1VAL207 1)
<Cla.T.er, (3] 5 ). 2.15
<C(a, T,e1, ||(h, 3 )”L%H}(FT)) (2.15)

Fort € (0, T],lethg(-, 1) : © — R3 be the harmonic extension of h(-, ) : I’ — S2. Then
we have that

Ihell2p200 <ClRI 3
Ly H (Q7) Ltszz ')

10 hEgll 252 <Clo/h| 3 .
LrHien L2H2(T7)

1 (2.13) can be obtained by

sup [lh(®II* 5 f—f k1?5 ds<l8hl 3 &l 3
0<t<T HZ (D) H2(T) L?HZ (Tp)  L?HZ (Tp)
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Furthermore, (2.13) and (2.14) imply thathg € L?OH)%(QT)OC“*%(QT)for anya € (0, 1),
and

max { | [ |

e | oo 2o % op)

1
< C@) (% +o/h] 3 L+h| 3
( T gl (rr))( L?H? (rn)

§C((x,T,||(h,8,h)||L2 ). (2.16)

2HZ (T'r)
Observe that d! — hy solves
d(d' —hg) — A@' —hg) = —dhg in O (z1). 2.17)

Letn e C(‘)’O(B%r (x1)) be a cut-off function of B% (x1),1.,0<n<1,p=1in B% (x1), and

V| < 8r~!. Multiplying (2.17) by (d' — hg)n?, integrating over B (x1), and applying
(2.15) and (2.16), we obtain

d
dt JBt(x)

=—2f <vx,.(d1—hE),d1—hg)vx,.nz—zf (0:hg,d' —hg)n?
B/ (x1) B

)

ld' —hg*n? + 2/ |V (Ao i )%
Bt (x1)

5/ |V(d1—hE)|2n2+f @ld" —hg*|Vn® +2/3hg|ld" — hg))
Bt (x1) B (x1)

< / V@' —hg)|*n® + Cr’® + Cr® / |0, hg].
B (x1) B

- (x1)

Integrating this inequality over ¢ € [t] — %, t1] yields

/ [vd' —hp)|? < cr2t? 4 Cr”‘/ |0:h|
Qg(m 07 (z1)

< Crt L CrtP I ghell o 2
L2L™ (Qr)

< C(L+110hEll 2 g2 0p) )77
< C(1+ |3 L3 )rite < ot (2.18)
L

t x T

A

Letn; € Cgo(B% (x1)) be a cut-off function of B% (x1),i.e.ny = 1in B% (x1),and |Vn| <

16r~!. Multiplying (2.17) by A(d! —hg)n? and integrating over B;" (x1), and using 3,d! =
A(d' — hp), we get
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d
dt Jpt)

—2 / (hg. A@' — hp)n?
B (x1)

V@' —hp)PPnt + 2/B+( ) |Ad" —hg)Pni
r (X1

—(3@" —hp), V(@' —hp)Vyn})

1
5—/ |A(d1—hE)|2n%+8[ 19 hg 03
2 JBr () B (x1)

1
+ —/ ard' 202 + 8/ v - )2V
2 B g

B;"(x1)
sf NG —hE>|2n%+C/ o:hg)?
B (x1) B (x1)
+Cr—2/ [Vvd' —hg)|%. (2.19)
B} (x1)

.. . 2 2
By Fubini’s theorem, there exists . € [t] — %, 11 — {¢] such that

32
f V@' —hp)* < —2 V@' —hg)* < Cr*e.
By (xp)x{t} z1)

2 t
This, co with (2.18) and inte! f mee ‘ ‘
A [Ad' —hp))? < Cr¥®. (2.20)
x % 1 Q+ (1)

This, combined with the Ladyzhenskaya inequality (see Lemma 2.17 below), implies
that

f V@' —hp)l*
Q%’ (z1)

1 1
<C|Vvd hE)||L°°L2(Q+ (z1 ))[”V(d hE)”LOOLZ(Q (z1))
Y

+/ |A@' —hp)?] < crie. 2.21)
0%, (21)

Since hg € L;’Osz(QT), we have that for all 4 < p < oo,

j IVhel* <r?  sup f |Vhg[*
0 (1) reln—r2n]Y B (x1)

8 4
<cr* v sup (/ |Vhg|P)?
B (x1)

telty—r2n]

tHx (FT)

8 8
=C(Tmaml , 5 )t =crtr (2.22)
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2

Without loss of generality, we may only consider o € (%, 1). By choosing p = 1=, > 4,
(2.21) and (2.22) imply that
/ [val|* < cre. (2.23)
0t (21)
1
Putting (2.12) and (2.23) together, we obtain that
/ |Vd|* <Cr* + Cef / (vd|*. (2.24)
Q7 (z1) 0f (z1)
1
It is well known that by iterations of (2.24), we can conclude that
4 4o I \4a 4
/ IVd|* < Cr** + C(—) f [vd|
Qf (zn) o [ORNED)
< Cla, &1, 7)™ (2.25)

2
holds forall z; € 'y x [1— . 1]and 0 <7 < .
2
Next we want to estimate ||3td||L2(QJ£(Z1)) forz; € F%o X [1— %", 1]and0 < r < %’. To

2
do this, we first observe that (2.20), (2.16), (2.12), together with (2.25), imply that
/ AdP? < / [Ra2 4 | A @b=pig P A2
0% (z1) Q7 (z1)
2 2
S C(@, 81, )% (2.26)
Hence it follows from the equation of d that
/ 9,d|* < c/ (lu-vd]* + |Ad]* + [Vd[*)
qun qun

1 1

2 2
<c / u* f va
0tz 0t (z1)
2 2
+C / (1Ad* + |Vd[*) < C(a, &1, ro)r™®. (2.27)
Q%Qn

Putting (2.25) together with (2.27) and applying Holder’s inequality, we conclude that

1
= / (IVd)> + r*|3,d|*) < Cr*® (2.28)
= Jof e

2
holds for any z; € T} (0) x [1 — D 1land0 <r < 2.

2
It is clear that (2.28), combined with the interior regularity Lemma 2.5 and the parabolic
Morrey’s decay Lemma (see, e.g., [6]), yields thatd € C% 2 (Q?L (20), S?) and the estimate

2
(2.7) holds. On the other hand, the boundary Holder regularity of u and the estimate (2.8)
can be established exactly as in [31] Lemma 2.2. Thus the proof of Lemma 2.6 is complete.
O
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Proof of Theorem 2.4 Since u € L ([0, T'1, H) N L2([0, T, V), it follows from Ladyzhen-
skaya’s inequality that u € L*(Q7, R?). For d, it follows from d € L2([0, T], H3(2)) and
|[d| =1 that

[Vd]?> = —d - Ad € L*(Q7)

sothat |[Vd| € L*(Q7) andu-Vu+ V- (VdO Vd) € L%(QT). From this and Lemma 2.16

below, we conclude that VP € L% (Qr1)- By the absolute continuity of L*-norm of (u, Vd),
we can apply both Lemma 2.5 and Lemma 2.6 to show that for any @ € (0, 1),

(u,d) € C*3(Q x [5, T], R? x §?)

holds for any 0 < § < T. By employing the standard higher order regularity theory, we can
get the interior smoothness of (u, d) in Q7. This completes the proof. O

2.2 Existence of short time smooth solutions

In this subsection, we will establish the existence of a unique short time smooth solution to
(1.1)—(1.3) for any smooth initial and boundary data. More precisely, we have

Theorem 2.7 For any bounded, smooth domain Q@ C R2,0<T <ooanda € (0, 1), let
h e C2HeH5(p S2), up € C2*(Q,R2) with V -ug = 0, dg € C2%(Q, S?) satisfying
the compatibility condition (1.5). Then there exist 0. < T, < T depending on ||u0||cz,u(g2),
ldollc2.e(q) and ||h||C andsa unique solution (u, d)tothe’system (1.1)—(1.3) such

that

2+a,l+%(rT)

(ud) cCHelt Qs R7KS?).
Fiirthermore, (u, d) € €°(Q0r,, R? x $?).

Proof ‘While the idea is based on the same contraction mapping principle as in [31], there
are several different treatments to handle the contributions of #-dependent boundary data h.
For the convenience of readers, we provide the details as follows. Lethp : Q7 +— R3 solve

athP—Ahp :0, in QT7
hp = h, on FT, (2.29)
hp =dy, in Q x {0},

Also let iy : Q7 — RZ? solve

3y — Allg+ VP =0, in Or,

V.lp=0, i ,
M i QOr (2.30)
iy =0, on I'r,
Uy = ug, in  Q x {0}.
For0 < T, < T and K > 0 to be chosen later, define
2T, K) = [(v. 1) € CHH T8 @ R X BY) 1 (v, Dlizo = (o, do),
Vov=0, V.0, =0h),
v =Bo.f = hp) | vares ) = K}, 2.31)
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which is equipped with the norm

” (Va f) ”x(T*,K) = H (Vv f) ”C2+a.l+%(QT )7 V(V7 f) € :*:(T*, K)

Note that (%(T*, K), | - ||%(T*,K)) is a Banach space.
We now define the operator L by letting
(,d) = L(v,f) : X(Ty,, K) > C*T*'*5 (07 R? x RY)
be a unique solution to the following non-homogeneous linear system:

ou—Au+VP =—-v-Vv—-V.(Vd O Vd) in Qr,,

V-ou=0 in QOr,,

9,d— Ad = |VE)2f —v - Vf in QOr,, (2.32)
(u,d) = (0,h) on Iz,

(u, d) = (up, do) in Q x {0}.

It follows from Lemmas 2.8 and 2.9 below that if we choose a sufficiently small 7, € (0, T]
and a sufficiently large K > 0, then L : X(Ty, K) — X(Ty, K) is a contractive map so
that there is a unique fixed point (u, d) € X(7y, K) of L, i.e. (u,d) = L(u, d). Moreover, it
follows from Lemma 2.10 that |[d| = 1 in Qr,. Thus the conclusions of Theorem 2.7 hold,
if we can prove Lemmas 2.8, 2.9, and 2.10 below. O

Lemma 2.8 There exist 0 < Ty < T and & > 0 such that L : X(TenK )= X(T, K)lis a
bounded operator.

Proof For any (v, f) '€ ‘X(Ty/K), set (w,d) .= E(v,f)det Cop > 0 denote a constant
depending on llaoll c2+& (. ||d0||cl+a(Q) and ”h”C”‘X’H%(FT) .
By the Schauder theory to the Eq. (2.29), hp satisfies

Il aarss g, < ClIdollc2reg + Il i )- (2.33)

Setd =d — hp and i = u — . Then (2.32) can be rewritten as

U — AU+ VP =—-v-Vv-V.-(VdO Vd) in QOr,,

V-i=0 in QOr,.

8d— Ad = |VE)2f —v - VF in Qr,, (2.34)
(u,d) = (0,0) on Tz,

(u,d) = (ug, 0) in Q x {0}

Assume K > Cy. By the Schauder theory of parabolic systems, we have

||Ei}|cz+a,1+%(QT*) < C(Iv- Yl wg o, + NVEPElag o, )- (2.35)
To estimate the first term in the right-hand side, letf=f—h p. Then we have
[V-¥t] s o, ) = CLIG—00) VRl g o U0 VEl g
IO —0)-Vhpl g o 0o Vhpl g, ] (236)
It follows from (2.33) that
lup-Vhp | Co.

a, % =<
Cc™2(Qr) —
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Since (v — uo,f) = (0,0) in 2 x {0}, we have

Z IV = uo)llcogoy.) < KT,
k=0

and

2 2
Z ”ka”CO(QT*) = Z IV (f — hp)licogr,) =< KT/,
k=0 k=0

Employing the interpolation inequalities, we have that for any 0 < § < 1,

1
<C(<IIv—=uollcogg,,) + 81V — oll caver+g ))

IV —=uollceg o, ) =C(3

2
<C(3+ )k,

1 ~
[E YD) et o, <CGIE D)lcogr,) + 81l ararig )

o
2

<C(8+ T%)K

Putting these estimates together, we obtain that

y >| <>a ﬁ ment
—ug) - Vhp||

7 (0r,) c*5(0r,)

< Co( T2+8+—

Putting all these estimates together, we obtain that

T gl g2
provided K = 64C0, < 16(C +CK)f and 7, = min{5, §}.
We can estimate the second term in the right-hand side of (2.35) by

VEPE|| o
VIR s

< IIVEPE] + 2| VE|[Vhp | [f]]

% (0r,)
+ 1lIVhp £

3 (0r,)

+ IIVEP ] % om)

+ 1Vhp *hp]|

c*5(0r,)
+ 2”|Vf||VhP||hP|”Ca,%(QT ) % 0n)’ (2.37)

It is easy to see that

I1Vhp [ hp|| < Co,

301, =
2

NVEPE] . <CTY(5+ T) K3,

c*3Qr) =
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and

IR

IVE| [ Vhp | [F]] < CoTy (5 + —)K3.

3o, = 5
Similarly, we have that
~ iw
NVEPIRP L s g, )+ 1IVRPPE g
+2|||Vf||VhP||hP|||Ca,%(QT*)
¢ % (N
= CoTi (T +8+ 5 K~

Substituting these estimates into (2.37), we get that

a o

¢ a T.2 T.2
2 o 2 2 * 2 o * 3
VL] fllca,f(QT*) <CoTy* (Ty +8+—5 YK~ + CTy (3+—8 YK + Co

VK
<_s
- ‘ ‘t
ﬂf*ei @ ence e

v K

d « <X
et g, ) < 5

By the Schauder theory for non-homogeneous, non-stationary Stokes equations (2.34);, we
have that

llu — ol . < C[lv- Vvl

HaltS (0p) = c*5(0r,)

+ V- (Vd O Vad)|| (2.39)

% on)

For the first term of the right-hand side of (2.39), we have

V- Vvileas o,
=ClIv—uo) - V(V—u0)ll ag TNV —u0)- Vol wg
+ g - V(v —up) |l +lluo - Vuoll ag (. )

o T2 [ T% K
S CTZ(G+ =K+ Co(T +8+ —)K +Co < \/T_’

3 (0r,)

3

provided K = 64C3, 8 < m and 7,2 = min{%, 52).
0
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For the second term in the right hand side of (2.39), we have
V- (Vdo Vd)|

3 (0r,)

<C[IV-(vdo Vd)| + V- (Vhp © V)|

3 (0r,)
+ IV - (Vhp © Vhp)|

5 (0r,)

+ V- (Vd© Vhp)|

c*5(0r,) C”'%<QT*>]

< Cold]l,. + T2 KId] . +Co

2+4a, 1+ 24,1+ %
2(0r) 2(Qr)

[4 K
< CoVK +CT2K?+Cy < >

provided K = 64Cg and T, < min(I, %}. Here we have used (2.38).
8(1+CK 2)K
These two inequalities, together with (2.38) and (2.39), imply that

lu— uO”C””’H%(QT*) +d - hP|IC2+°"1+gZ(QT*) <K,

and hence L : X(Ty, K) — X(T, K) is bounded. The proof of Lemma 2.8 is completed.
[m}

Lemma 2.9 There exist a sufficiently large K > 0 and a sufficiently small T, > 0 such that
L: X(Ty, K) — X(Tx, K) is a contractive map.
Proof Fori = 1,2, and any given (v;, f;) € X(Ty, K), let (u;, d;) € X(T,, K) be.defined
by
(w1 d;) =L (viy £;).
Set
(u,d, P,v,f) = (uy —uy,d; —da, Py — P2, vy — v, ] — ).
Then (u, d) solves
du—Au+VP =G, in Qr,

V-u=0, in Qr,,
od— Ad=H, in Qr,,
(u,d) = (0,0, on Tz UQ x {0},
where
G=-vVv-Vvi—V,-Vv=V.(Vd o Vd; + Vd, © Vd),
and

H = |Vf ’f + (V(f; +1£5), VE)f, — v - V| + v, - VE.

From Lemma 2.8, we have that
2
- (v — Ul c2vatrg p,  F l1di — hP||C2+oul+%(QT*)) =K

l

As in Lemma 2.8, we can apply the Schauder theory to get

Il vt g, ) < CIMIgas g
< CIIVEPE + (V(E +£), V) — v VE + v, - VI o g
Q1)
2
< O+ K)UVl s g, + It g, ) + IVl o, ) (2:40)
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and

= CIGll

Halt 5 (or,) = % (0r,)

<Clv-Vvi+Vv2-Vv+V.(VdO Vd; +Vdy © Vd)||

lull

c*5(0r,)

= CK(|vl + Vv + lldll . )- (2.41)

3 (0r,) c*3(0r,) Halt$ (0r,)

Hence, it follows from (2.40) and (2.41) that
IL(vi,£1) — L(va, D)2, k) = ||u||Cz+u,1+%(QT*) + ||d||Cz+a,|+%(QT*)

< CKO[8IVI ovareg g, ) T IEll 2vareg g, )

1
+ 5 (Vlcogor,) + IFllcory, )]

o

Tf

3 *k
<CK’(6+ T)(”V”CH“"*%(QT*) + ”f”c”w‘*%(gn))
=

IVl cararss o)+ Ifll ararrs o )

< v, ) — (vo, )l x (1. k) »

N = ] —

provided é and T are sufficiently small. Thus we obtain that L : X(Ty, K) +— X(Z,, K)=is
a contractive map. This completes the preof of Lemma 2.9. O

Lemma 2.10 Fora boundedsmobihdoniain 2 (CIR>and0 <1\ < 00, lefu € W22’1(QT, R?)
WithV -u =0, h € C%z (I'p)$2), and dy e 6%9(0; S, Ifd € CPH* 175 (07, R¥) isa
solutionsof (1.1)3—(1.2)—(13), then it holds that

d|=1 inQr.
Proof Multiplying (1.1)3 by d, we get that
3(d? — D) +u-v(dP* — 1) = A(d]* = 1) +2|Vd[*(|d]* - D).
Setg = |d|®> = 1 and g" = max{g, 0}. We have that

dgt — Agt =—u-Vgt +2|Vdi®¢t, in Qr,
g =max{h>-1,0} =0 on I, (2.42)
gt =max{|do|> — 1,0} =0 on Q x {0}.

Multiplying (2.42) with g, integrating the resulting equation over €2, and using the fact that
V -u = 0, we obtain that

1d 1
Ed—/<g+>2+/ Vet =—f/ u~V<g+>2+z/ VaP(s™)
tJo Q 2 Ja Q
—2 / VaP(gh).
Q

Integrating over [0, t] for 0 < ¢ < T, and employing the fact ||Vd| ~p,) < oo and the
Gronwall inequality, we obtain that

gt =0 in Q7.
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This implies |d| < 1 in Q7. Similarly, we can show that [d| > 1 in Q7. Hence |d = 1 in
Q. This completes the proof. O

In order to construct the existence of global strong solutions to (1.1)—(1.3), we also need
the following Lemma.

Lemma2.11 For T > 0 and a bounded smooth domain Q@ C R?, for a given u €
Wy (Qr,R?) with V-u = 0, h € C¥5(T'r,$?) and dg € C**(Q,S?), let d €
CHeI+5(Q % [0, T1,S?) solve (1.1)3~(1.2)=(1.3). If d) > 0 in Q@ and h3 > 0 on T'r,
then

&, 1) >0 inQr.
Here d® denotes the third component of d.

Proof The proof is similar to that of Lemma 2.10. For the convenience of readers, we sketch
it here. Set d®> = min{d?, 0}. Then

9,d> —Ad® = —u-vd® +|Vd*d®, in Or,
d =o, on 3,07.

Multiplying this equation by d> , integrating over €2, and applying V - u = 0, we obtain

d
G e [ ea e [ vaPi P s
dt Jo Q Q Q

Hence by the Gronwalliinéquality we have
[ ety @i =o. v t0.71
Q Q

This implies that d*> > 0in Q7. O

In the process to obtain global strong solutions, we also need the following elementary
Lemma.

Lemma2.12 Ifw € C®(S?, Sﬁ_) is a harmonic map, then @ must be a constant map.

Proof Recall that w solves the harmonic map equation:
Ao + |V ol*w = 0 on $2. (2.43)

Here Vg2 and Ag» denote the gradient and Laplace operator on S? respectively. Integrating
the equation over S? yields

0= / (Ag@® + |[Vao|*w®)do = / [Veol?w® do.
s? s?
Since ® > 0 on S?, this implies that

|Vew|*w® =0 on S%.

There are two cases that we need to consider:
(a) If there exists py € S? such that w3 ( po) > 0, then there exists §o > 0 such that

Vg = 0in Bs,(po) NS,
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and hence @ = p; € S2 in B, (po) N S?. This, combined with the unique continuation
property, yields that @ = p; on S%.

) If ®® = 00nS?, then we must have a)(Sz) C BS?F = S' ¢ R2. In this case, we can write
w = ¢'? for a smooth function ¢ € C*°(S?). Direct calculations imply that  is a harmonic
map to S! if and only if ¢ is a harmonic function on S?. Hence by the maximum principle
we conclude that ¢ is a constant. Hence w = ¢'? is also a constant on S?. O

2.3 A priori estimates on energy and pressure

In this subsection, we will provide some basic estimates on both the energy and the pressure.
First, we have the following generalized global energy inequality.

3 3
Lemma2.13 For T > 0, h € L?H?(I'7,S?)), &;h € L?H?(I'r), and (ug,dg) € H x
HY(Q,S?), suppose u € L>([0, T],H) N L>([0,T], V), d € LXH!(Q1,S?) and P <

4 4
L} W):’ 3(Qr) is aweak solution to the system (1.1)—(1.3). Then there exists C > 0 depending
only on Q such that for any t € (0, T],

/(|u|2+|Vd|2)<-,r>+/ (VuP + |Ad+ |VAPdP)
Q o)
t
< w<r>[/<|uo|2 + IVd0|2)+C/ Ih, o) (DI* ;  dt]. 2:44)

Q 0 HI(T)

where
t

V(1) = exp (c/0 ||3th(t)||H%(r) dr).

Proof Lethg € L,ZHXZ(QT, R3) be the harmonic extension of h, i.e., for all 7 € (0, T,

Ahg(,1) =0 in Q,
hg(-,t) =h(,t) on T.

Then we have that hg, o/hg € LZZHXZ(QT), and
Clh|

i)’ (2.45)
”afhE ||L2H2(QT) = C”athE ”

”hE ||L2H2(QT)

LZHv T

Multiplying (1.1); by u, integrating over €2, and using (1.2), we obtain that

Zdt/ lu|? +/ |Vul|? /( -Vd, Ad), (2.46)

Multiplying (1.1); by Ad + |Vd|*d and integrating over 2 yields that
1d
2dt

ad
= [ (u-Vd, Ad) + | (—, o:h), (2.47)
Q r v

|Vd| +f |Ad + |Vd|*d|?
Q

where v is the outward unit normal vector of T".
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Adding (2.46) with (2.47), we have that

d (1 ad
7/ 7(|u|2+|Vd|2)+f(|Vu|2+|Ad+|Vd|2d|2)=/(—,8th).
dt Jo 2 Q r ov

Now we estimate the right hand side as follows

ad d(d —hg) ohg
—, 0/h) = ——, 0/hg )+ —,0hg)=1+11. (2.48)
r\ov r av r\ ov

It is easy to see that
11 —
1= CIEN 1Ry
<C(Imi*; +lah)>; ).
HZ() HI()
While, by the second Green identity, we have
= / <d—hE,3(a,hE))
r v
+ [ a@=ho).ahe) - [ @b a@he)
Q Q
— [ ad.ahe) = [ (ad+ vaPd ahg) — [ (VaPA. ahe)
Q Q Q

1
= / |Ad +|vd*d/ 35 C(/ |%h [ AOET o) / vdf).
Q Q Q
Forany 7 € (0, 7), it follows from Sobolev’s embedding-th€éorem that

o G, M) = ClaheC, Dl < CIAE DI 3
while
/ lohg G, D < 19hEC, D, < ClIMC, r)||2

Substituting these two estimates into I and then adding the resulting 1nequality with II, we
obtain that

<a , 9;h) <f |Ad+|le ar +C(||h|| + 9% 5 )
r i) HI()
+ Cllo:h(., t)II /IVdI
Putting this estimate into (2.48), we achieve
d [ 1 1
—/ 7(|u|2+|Vd|2)+7/(|Vu|2+|Ad+|Vd|2d|2)
dt Jo 2 2 Jo
< c(|h)? + llo;h|? + Cllah(., ¢ /de.
=c(l IIH%(F) [ IIH%(F)) l|8:h( )IIH%(F) QI I

Integrating this inequlaity over [0, t] and applying the Gronwall’s inequality yields (2.44).
This completes the proof. O

Next we will establish both interior and boundary generalized local energy inequalities
for the system (1.1)—(1.3). More precisely,
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Lemma 2.14 ForT > 0, assumeu € L*°([0, T], H)NL?([0, T], V), d € L®H}!(Q1,S*)N

4 4
L?H>(Qr,S?), and P € L} W):’ 3(Qr) is a weak solution to the system (1.1)—(1.3). Then,
for any nonnegative ¢ € Ci°(Q) and0 < s <t < T, it holds that

t
/¢<|u|2+|Vd|2><-,z>+2f /¢(IVHI2+|Ad+ vardp)
Q s JQ
S/Q¢(|u|2+|Vd|2)(~,s)

t
+/ /|V¢|(|u|3+2|VUIIU|+2|P—PszlIlll+|Vd|2|ll|+2|3zd||le), (2.49)
s JQ

1
where Pg = @ / P is the average of P over Q.
Q

Proof This proof is exactly same as that of [31] Lemma 4.2. For reader’s convenience, we
sketch it here. Multiplying (1.1); by u¢ and integrating over 2 yields

vz
S i) JuPe+ [ 1vuls

/(flul (Vu,u) +(P— Pglu —i—fIVdI u)-Vo— (u ..Vd, Adyg. (2.50)

On the other hand, multiplying (1.1)3 by —(Ad 4 wd|*d)¢ and integrating over €2 implies
1d
2 dt

= / (u-Vd, Ad)¢ + (0,d, Vd) - V. (2.51)
Q

|Vd| ¢+/ |Ad + |Vd|*d|*¢

Adding (2.50) with (2.51), we obtain that
d
& [ auP s 19a 42 [ (9ul +18d-+ vaPaPys
dt Q Q
< / IVo|(Jul® + 2|Vulju| + 2| P — Pg|lu| + |Vd[*|u| + 2|3,d]|Vd]).
Q
(2.49) follows by integrating this inequality over [s, ¢]. O

Next we will state the local generalized boundary energy inequality, whose proof is more
delicate than [31] Lemma 4.3.

3 3
Lemma215 For T > 0, h € L?H?(I'r,$?%), &h € L?H?(Tr) and (up,dy) €
H x HY(Q,S?), assume u € L*®([0,T],H) N L*([0,T], V), d € L¥H!(Qr,$*) N

4 1.4
L2H2(Q7,S?), and P € L} W, (Qr) is a weak solution to the system (1.1)—(1.3). There
exists ro = ro(I') > O such that for any x9 € I', 0 < r <rp, 0 < s <t < T, if

@ Springer


http://cbs.wondershare.com/go.php?pid=5261&m=db

38 Page24of 64 Q.Liu e
Remove Watermark Now

0 < ¢ € C5° (B, (x0)) then

t
/ ¢ (uP+ VAR . 1) +/ f S(VuP + 1Ad + VA1)
B (x0) s J B (xo)

t
5/ ¢(|u|2+|w|2><.,s)+/f (IVAPR(ahz] + [3hg P
B s J B (x0)

) (x0)

t
[ [ Ivpltulur +9ul + 1P Pal + 1VaP) + pAIVAL 252
s JB,"(x0)

where hg (-, t) is the harmonic extension of h(-,t) forO <t < T, andd =d — hg.

Proof Multiplying (1.1); by u¢, integrating over B, (xo), and using u¢ = 0 on 9B, (xo),
we obtain that

Ld lul®¢p + f |Vul*¢
—_— u u
2.dt JBF(xg) B (x0)

1 1
:/ (=|u/*u — (Vu,u) + (P — Po)u+~|Vd|*u)-Vé
B (xo) 2 2
— (u-Vd, Ad)é. (2.53)
Letd = d — hg. Then
3,dp =10 on 9B (x)s

and

- / (0,d, AdF[Vd’d)p = — / (8,d, Ad)op
B (x0) B (x0)
. / (0,d+ ohi, Ad)g
B, (x0)
. / (0,d, Ad) — (0hg, Ad)é
B, (x0) B (x0)

1d ~ o~
_ld VaPe + f 0,d.va) -Vo—[  (ahg. Ad)g.
2dt Jptx) B (xo) B} (xo)

Hence, after multiplying (1.1)3 by —(Ad + |Vd|2d)¢ and integrating over B,+ (x0), we have
that

1d

- \Vd|%p + / |Ad + |Vd|*d|?¢
2dt Jt () :

B (x0)
= /+ [(u-Vd, Ad)p — (3,d, Vd) - Vo + (3;hg, Ad)]
B (xo)
= /+ [(u-Vd, Ad)p — (3,d, Vd) - Vo + (3;hg, Ad + |Vd|>d)¢]
B (xo)

- / (8;hg, |Vd|*d)é. (2.54)
B (x0)

It is readily seen that (2.52) follows by adding (2.53) with (2.54) and applying Holder’s
inequality. The proof of Lemma 2.15 is now complete. O
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We also need the following Lemma on the estimate of pressure function P that is assumed
in both Lemmas 2.5 and 2.6.

Lemma2.16 For T > 0, assume ue L>°([0, T1, H) N L*([0, T1, V), de L¥H} (Q7,S*) N

4 4
L?H>(Qr,S?),and P € L} W;’ *(Q7) is a weak solution to the system (1.1)—(1.3). Then it
holds that forany 0 <t < T,

max{||VP]| 4 ,NP—Pgl 4
(9Pl 5 g 1P =Pl g, )

< C(llull 2o, IVl 20, + VAl 20, IVl 2(0,)-

2.4 Proof of Theorem 2.1

In this subsection, we will establish the existence of a global weak solution to (1.1)—(1.3). Let
us first recall the following version of Ladyzhenskaya’s inequality (see Struwe [40] Lemma
3.1).

Lemma 2.17 There exist My > 0 and ro > 0 depending only on Q2 such that for any T > 0,
if f e L%([0,T], L*()) N L2([0, T1, H'(Q)) then for r € (0, ro) it holds that for any

O0<t<T
1
/ 1< My sup f |f|2(f |Vf|2+—2f |,
O (x,1)€ QI QNB; (x) O r (o))

Next we will show alowenbotnd estimate of the'lift span of the short time smooth solutions
in terms of the local energy profile of the initial'and boundary data. More precisely, we have

Lemma 2.187Let Q C R2 be a bounded smooth domain, 0 < T < 400, ug € C** (Q, Rz),
dy € C2%(Q,S?), and h € C*F 2 (I, S?) satisfy (1.5). Let g9 > 0 be the smaller
constant given by Lemmas 2.5 and 2.6. Then there exist 0 < &1 < &g and

0 < 60 = 6o(e1, l(o, Vdo) |l 2(q) I (h, 3;h) | ,.3 )
Lr Hy (T'r)

such that if 0 < rg < 8‘11 satisfies

sup/ (Juol* + |Vdo|?) < &7,
QN B2y (x)

xeQ
then there exist Ty > 901”5 and a unique solution
(u,d) € C®(Qp,.R? x §?) N C?H*1+5(Q x [0, Ty], R? x §?)

to the system (1.1)—(1.3). Furthermore, it holds that

sup / (lu]? + VAP (-, 1) < 267 (2.55)
(x,1)€Qx[0,Tp] ¥ 2NBry (x)

Proof Since h € C2te1+5 (T, $?) and (ug, dg) € C2*(2, R? x S?), Theorem 2.7 implies
that there exist 0 < Ty < T and a unique smooth solution

(u,d) € C®(Qg,.R? x §%) N C?H*1+5 (@ x [0, Tyl R? x §?)
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to the system (1.1)—(1.3). Let 0 < 7o < Tp be the maximal time such that

sup sup/ (Jul® + [Vd]*) (-, 1) <262 (2.56)
QN By (x)

0<r<t0 xeQ

Then we must have that

sup f (P + [VAP)C. 1) = 263,
xeQ JQNBy, (x)

In what follows, we will estimate the lower bound of #y. Without loss of generality, we may
assume fy < rg. Denote by

) = / (luf> + |VA») (1) for0 <t < T, and & = / (Jug|? + [Vdo|?).
Q Q
From Lemma 2.13, we have that for 0 < ¢ < 1y

EO+ | (Vul? +|Ad + VAP d*) < ¢ (T)(& + Clith, ) 1* 5
o] L?H? (1)

= C(T), (2.57)
where C(T) > 0 depends on T, &, || (h, 9;h)|| , 3 , and
L

2HZ (r)

T
¥ (T) = exp(C fo loch()Il 5 md’)'

Hence by Lemma 2.17 and (2:57) we have that for 0 < =y < rg,

1
[ vart =iy s [ wara( [ aals s [ var)
' (x,7)€Q; Y QNB, (x) O Ty t

C(T)t
< 2Moa%(/ |Ad+|Vd|2d|2+/ |Vd|4+(—2))
[ ' o

< CMos%(C(THf v,
t
which implies that

C(T)e?
/ war < —S DI _ iy, (2.58)
, 1 — C(T)e;
provided 0 < 8% < ﬁ
It follows from (2.58) and (2.57) that

/ [V2d|> < C(T), Yt € (0, T). (2.59)

t

On the other hand, we can estimate

1
/IUI4SM0 sup f |u|2<r)(/ |Vu|2+—2f ul?)
t (x,7)€Q; JQNB; (x) t ro t

C(T)t
<omed([ v+ €2

0O }"0

) < C(T)es. (2.60)
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It follows from (2.57), (2.58), (2.59), (2.60), and Lemma 2.16 that

|P— Pq "L%L“(Q) < C(T)sf, Vie(,T]. (2.61)
t =x &t

From 8;d = —u - Vd + (Ad + |Vd|*d) and (2.57), (2.58), (2.60), we have that

||8td||L2(Qt) < C(llull s IVl 120,y + 1 Ad + |Vd|2d||L2(Q,))
<C(T),Vtre(,T]. (2.62)

Now we are ready to refine the estimate of the quantity

xeQ

maxf (a2 + VdP)®), 0 < < 1o.
QNByy ()

To do it, for any x € Q. letgp e C§° (B2 (x)) be a cut-off function of By, (x) such that ‘

g patet

e see that for any By, (x) C 2, it holds that

sup / (lu* +|vd*) — / (Juol* + [Vdo|%)
Bro(x) 2r (X

0=t=1y

< supf ¢(|u|2+|Vd|2)—/ ¢ (luol® + |Vdo[?)
Bary () Bagy ()

0<t<ty
o 3
< Cf f IVol(lul” + [Vullu| + [P — Pollu]
0 BZro(x)
+|VdP|ul + |3,d]|Vd])
fo 1f 3
< C(%y[uuumto)+||Vu||Lz(Q,O)||u||L4<g,0>
VA g Il + 1312, 1 VdlLe(g,,

+ [P - Pq ||L%L )|Iu||L$°L§(32,0(x)x[O,to])]
t

10
1 1
< C(Dyiel, (2.63)
o

where we have used (2.56), (2.57), (2.58), (2.60), (2.61), and (2.62) in the last step.
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For By (x0) N T" # ¢, we can apply (2.52) of Lemma 2.15 to get that

sup f (lu? 4 |vd]?) — / (lup|? + |Vdo %)
QN By (x0)

0<r<ty QN By (x0)

< sup / ¢<|u|2+|vii|2>—/ $(luol + [Vdol?)
0=t =<ty J QN By (x0) QN Bay, (x0)

o - -
5/ / ¢ (IVA[*13hg| + |3 hgl?) + |Vel|a.d||Vd|
QN Bay, (x0)

0]
+f / IVéllul(jul* + [Vu| + |P— Pq| +|Vd[*)
QnBZro(XO)
=I+11+111. (2.64)

As in (2.63), we can estimate /71 by

1
I
t 1
i <c| 2| 2.
r2 !
0

From o/hg € L,szz(QT) and the Sobolev embedding theorem, we have that d;hg €
L?L%°(Q7), and

om0,y = QIBEY o Sl )

3 3
Since h e L2H? (') and ajh € B2 (Dp), h€°C([0, T1, H?(I")) and

h C(T, |h 3 , [|19:h .
I ”mﬁ(rf (T, “L,zHE(rT) 2 ”L;H}(m)

This, combined with the fact that hg (-, ¢) is a harmonic extension of A(-, t) for t € [0, T'],
implies thathg € LY H xz(QT) and hence by Sobolev embedding theorem we obtain that

”VhEHLOOL”'(QT) C”hE”LOOm(QT) CHhH

L°°H (T'r)
<C(T,|hl 3 ,loh] 3 . (2.65)
( L}H2 (') ' L?H? (rr))

We also have that
VRl 12(0) < IVADIL2q), 0 <t <T.

Hence
2 1
] < C”athE”LtZLOO(Q, )( sup / |vVd| )1‘02
* 0T 0=ty J N Bay (x0)

+ ClAMEN g7

- C(HathHL%Hx%(rﬂgltO +1anl; 2n) <rr)r0)

< C(elro +13).
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While /1 can be estimated as follows.

1o
1] < c/ f V61(13,d|Vd] + 3,]|Vhe|
QﬂBer(xO)
4 ohg][Vd] + [3hg [ Vhe)

o1
< C(%) ol 2,y IVAllL4 0, )

1

/2
0
+ C_r() l9:dll 20, IVREl L& 120,

1
+C02 10hEl 2100, IVl Lz 20,

Yooyt g 1 stoyi 3
< Cleg (ﬁ) + o +102] < Cleg (r_z) +15]
0 0

Putting these estimates of /, /1, and /11 into (2.64) yields that

sup (lu? +|vd|? )— (lupl* + IVdOI )
0<t<t0 QﬂB,O(xo) 2r0(XO)

§ Iffpdf elen

(lu)? + |Vd]?)
mB,O(xw

4
> —/ (a2 +|VdP) - c/ Vhe P
5 JanB,, (xo) QN By (x0)

4/ 2 2 2
> = (lul” + 1Vd|") = Clhgll; ro
5 JanB,, (o) L HE(Or)

4
> —/ (ul? + |VdP) — Cro, Vi € [0, T,
5 Jans, o)

and

/ (w0l + Vo)
QN Bay, (x0)

5
< Zf (w0l + VdoP) + C/ Vhe P
QN Bay, (x0) QN Bay, (x0)

5

< —/ (luol? + [Vdo[) + Cro.
4 JanBy, (xo)
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2 2
sup / (Jul? + [vd]?)
0=<r=<to JQNBy (x0)

5 1
< (f)zf (lugl* + [Vdo| )+C[V0+t0 + &} (—‘;) ]
47 Jansy, o) "o

< 5 22 % % 1 7 2
< (Z) e{ +Clro+15 + ¢ (%) ]- (2.67)

Combining (2.63) with (2.67), we obtain that

2¢f = sup max / (lu]? +|vd[?)
QﬂB,O(XO)

0<t<ty x0€

5 L
)l + Clro +sf<%>%]

<
~ 4
(25 +Ce})ef + Ce ( )5. (2.68)
16 et ’"0
3
Therefore if we choose gy < 16C, then 1y > Goro with 6y = (388 L ) This gives the desired
estimates of T and (2.55). The proof is now complete. O

Proof of Theorem 2.1 From ug € H, there exists.fuf } €%¢ (2, R?) with"v" uf = 0 inQ
such that

lim JJul = u, =0.
5 ffag =woll L2

3 3
Sinee dimension of 9,07 = QU7 is 2, h € L?H? (T'7,S?), 3;h € L?HZ(I'7), dg €
HY(Q,S?),and dy|p = hlrx{o},there exist maps (h*, %) such thath* e crelt+s(ry, s?)
and df € C>%(Q, S?) with dj|r = h¥|r o), and

: k k _
]31& |(h* —h, 3 (h —h))||L12H§(r = ]ngm |a§ — o] ;1) =0 (2.69)

From the absolute continuity of / (|u0|2 + |Vd0|2), there exists ro € (0, 8%) such that

2
&

sup/ (Juol* + [Vdo*) < 2L,

QN Bary (1) 2

xeQ

where €1 > 0 is the constant given by Lemma 2.18. By the strong convergence of (u’(j, Vdé‘))
to (ug, Vdp) in L2(Q), we may assume that

sup/ (Juf > +|Va*) < el fork > 1. (2.70)
xeq JNBa ()

We may also assume that

| anY] 4 <C fork =1 Q2.71)
Lx Ht (FT)
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By Lemma 2.18, there is 8yp > 0 depending on T, &1, &, ||(h, d;h)|| .3 and smooth
t Hx T

solutions (uf, d¥) € C®(Q x [0, T*], R? x S?), with 7% > Oorg, to the system (1.1) under
the initial and boundary condition

Wk, d*) = uf, df) inQ x {0},
@k, d*) = (0,h") onTp.

Moreover, it holds that

sup f (k)2 + | vdh?) < e, 2.72)
(x,1)€Q2x[0,Tk] Y 2N By (x)

and forany 0 <t < Tk,

sup /(Iuk|2+|de|2)(r)+/ (Vuk? + |AdE + [va*2db P
Q QO

O<t<t

< wm[f<|u’5|2+|Vd’5|2)+c||(hk, ) Y
Q Ly Hy (')
C(T, &y, ||(h, o/h , 2.73
< C(T. €. lIh, 5 )”L;fém)) 2.73)

where
t
k
Ui (1) = exp (C/0 [|9zh (t)IIH%(F)dr) < G="00, V0 <\t <. T4

Combining (2.72), (2.73)tegether with' Lemma 2.17, we conclude that

/ (Ju'[* +1Vd“) < Cef, Vi = 1, (2.74)
[
and
k2 k2 24k 2
||8td ”LZ(QTk) + ||Vll ||L2(Q7~k)+||v d ||L2(QTk) = Ca Vk = L. (275)

It follows from Lemma 2.16, (2.72)—(2.75) that

1
”VPk||L§(Q : <Ce}, Vk=>1. (2.76)
Tk

Furthermore, (1.1)1, (2.74)—(2.76) imply that

la,ut| s <C.Vk>1. (2.77)
3 -1
L3 (0

By Theorem 2.7, we conclude that for any « € (0, 1) such that for any § > 0,

|, dY]

Ca'%(ﬁx[&Tk]) =< C(C{, 8: 505 €1, ”(ha ath)”LZ % )s

t Hx (er)
for any compact subdomain w CC €2,

|, ] i gs. 7)) = C(dist(, 89), 8, €, &) forall € > 1.
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There exist Ty > ford, u € LPL2 N L2H! (Q7,, R?),d € L?H2(Q7,. S?) such that after
passing to a possible subsequence, T* — Tp,

o = u weakly in Wzl’O(QTO, Rz) and strongly in L2(QTO),

d—d weakly in sz‘l (s R3) and strongly in Ltszl(QTO),

. k k —
fim (Ju” ~ ull2 g + VA" = Vlla(gy)) = 0.

and forany £ > 2, § > 0, and compact w CC €2,
. k gk
lngr; [(u®, d%) — (u, d)||c€(wx[5,T0]) =0,

li ko gky _ o —
dim NIC”, @) — @ Dl g g5, 7 = ©

Thus (u, d) € C®(Q2 x (0, Tp], R2 x SH N C“’%(ﬁ x (0, To], R? x S?) solves the system
(1.1)—(1.3) in 2 x (0, Tp]. From (2.73), we can show that

(u, Vd)(-, 1) — (ug, Vdo) in L>(Q) as ¢ | 0.

Hence (u, d) satisfies the initial and boundary condition (1.2) and (1.3). Let 77 € (0, T') be
the first singular time of (u, d), that is

(W, d) € C(Q x (0, 77), R? x §7) (| C*2(Q x (0, 7). R? x S?),
but

gd) ¢ C®(Q x (0, T; |, RZ x.8%) ﬂc“’%(ﬁ x(0, T, 1, RIXSY)!
Thus we must have

lim supma}/ (lu]? + [Vd[})(-, 1) = &7 forallr > 0. (2.78)
T x€Q JQNB, (x)

In what follows, we will look for an eternal extension of this weak solution beyond 7. To
do it, we need to define (u, d) at time 77, which follows from the claim that

(u,d) € C([0, T1], L*(Q, R? x §?)). (2.79)

In fact, for any ¢ € H02(S2, R?), we can derive from (1.1)3 that

[(9,d, ¢)| = | /Q((Vd’ Vo) + (u- Vd, ¢) — [Vd[*(d, o)
= ClIVd|l 2 IVl 12(0) + (Il z2(g) + VAl 2@ IVl 2() @] L= (@)
= C[HVd”LZ(Q) + (a2 + ||Vd||L2(Q))||Vd||L2(Q)]||¢||H2(Q),

so that §d € L>([0, Ti], H >(Q,R%)). This and d € L?H!(Qr) imply that d €
C([0, Ty], L*(2, §?)).
Forany ¢ € HS(Q, Rz), with V- ¢ = 0, (1.1); implies that

[{0ru, @)| = ‘/(Vu~V¢+u~Vu~¢—Vd©Vd:V¢)
Q

< ClIIVull 2 IVO Il L2 ()
+ C(ull 2@ IVull L2y + ||Vd||2LZ(Q))”V¢”L°C(Q)
< C(IVull2¢q) + lall 2y I VallL2q) + ||Vd”i2(9))||¢“H3(Q)7
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so that du e L*([0,Ti], H3(Q,R?)). This and u e L?H!(Qr) imply u e
C ([0, T11, L%(2)). Thus (2.79) follows.
It follows from (2.79) that

(u,d)(-,T1) = tl%l}_ll(ll, d)(-, 1) in L*(9).

This and (2.73) imply that
vd(-, 1) — Vd(-, T) weakly in L>(Q) as t 1 T}.

Thus u(-, 71) € Hand d(-, Ty) € H (2, S?). Since H'(€2) ¢ L*(I') is compact, we also
have that

d(-,t)(=h(, 1) - d(-, T in L>(T) ast 1 Ty.

This and h € C([0, T], H% (")) imply that d(-, 77) = h(-, T;) on T".

Now, we can use (u, d)(-, 77) and (0, h) as the initial and boundary value to extend the
weak solution of (1.1)—(1.3) to the time interval [0, 7>] for some 7, > Ti. Repeating this
procedure, we eventually obtain the existence of global weak solution in the time interval
[0, T'). Next we want to show
Claim 1. There are at most finitely singular times To show it, first observe that at any singular
time Ty € (0, T), there is at least a loss of energy of 2 Tt follows from (2.78) that for any
r > 0, there exist #; 1 T; and x; €  such that x; — xo € Q, and

1
/ ol s 7oyt Epe
QB (%)

and hence

/ (ulZH [VAP*)(Ty) = lim / (lu®> + [Vd*)(Ty)
Q 0 J\ By, (xo)

< limliminff (Ju)® + |Vd») (1)
0 41Ty Jo\By, (xo)

<lim| 11m1nf/(|u| + VA (1)
rl0 1

—lim sup/ (Ju]® + |Vd|2)(fi)]
41Ty QN By (x0)

1
< liminf/ (Ju)® + [VdH) (1) — =€3, (2.80)
ity Jo 2

We will prove Claim 1 by contradiction. Suppose that there were infinitely many singular

times{Tj}j?i1 C(O,T],with0 <Th <Th <--<Tj<---,and lim T; =T, <T.
- Jjt+oo

Hence for any § > 0, there exists a sufficiently large jo = jo(6) > 1 such that for j > jo,
we have

Tj1
exp (C o-h(t dr) <1456,
P(C [ a3 ) =
and

|, a,h) | . <.
3 Ox1T;. 1010
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Then by (2.44) we have that for any ¢ € [T}, Tj+1)

£) = /Q (ul? + VAR (0)

Tt 2 2
<ewp(C [ Hanc,y do)l [ (uP +vaRy)
7, H2(T) o
2
+C||h, oy |
L?HZ (TX[T},Tjs1])

< +<3)[/Q(|u|2 + VAP (T)) + 8]
< /Q(lu|2+|Vd|2)(Tj)+C8. (2.81)
Putting (2.80) and (2.81) together, we obtain
/Q (uf? + VA2 (Tj41) < /Q (P + [VAP)T)) +C — 163

< / (ul? + VAP (T)) — %e%, (282)
Q

2
. &7
provided § < ic

Iterating the above inequality m timesgwe obtainthat

m82

0 EWjy+h) <ETjp) A

Thisyyields that

4K,
m < 2
where Ko = £(Tj,). This proves Claim 1.

If T, < T is the last singular time, then we can use (w(77), d(77)) and (0, h)|rx (7, .7]
as the initial and boundary data to construct a weak solution (u, d) to system (1.1)—(1.3) on
[Ty, T] as before so that we obtain a global weak solution (u, d) to (1.1)—(1.3) in the time
interval [0, T'). This completes the proof of Theorem 2.1. O

]+1

2.5 Proof of Theorem 2.3

The proof of Theorem 2.3 is similar to [31] Theorem 1.3. For the convenience of reader, we
sketch it here. Let (ug, dog) and h satisfy the assumptions of Theorem 2.3. By Lemma 2.11,
the weak solution (u, d) to (1.1)—(1.3), obtained by Theorem 2.1, satisfies

d(x,7) € S%, forae. (x,1) € Or.

Assume that (u, d) has a singular time 77 € (0, 7). Then, it follows from (2.2) that for
M > 1, to be determined later, there exist #,, 1 7T, and ry, | 0% such that

= sup / (lu]> + [Vd]?). (2.83)
QNB,,, (x

x€Q,0<t<ty,

2
&
M
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It follows from the proof of Lemma 2.18, there exist 6, depending only on &, &, and
[h, o]l 5, andx, € Q, such that

Lt Hy (I'r)

f (luf* + VA *) (t — b0r2)
QmBZrm (xXm)

1 82
> - SUP/ (uf? + VA1) (tw — borp) = —— (2.84)
xeQ Y QNBayy, (x) aAM’

By (2.44) in Lemma 2.13, (2.83) and the Ladyzhenskaya inequality, we have

/ (VP + |V2dP) < Cler. &o. [ o) 3 ).

Om L?H? (T7)
A A Ce% (2.85)
ul” 4+ |vd|") < —

/ Quit 4 vart) =

m

Set Q,, = 7, (Q\{xn}) and define (y,, dyy) : Qi ¥ [—’ﬂ 0] — R? x S% by

(W, dp) (x, 1) = @y + 1 X, by + rr%lt)! d(xy +rmx, ty + rr%lt))-

Then (u,,, d,;) solves (1.1)—(1.3) in ,,, x [—tﬂ 0], along with
t,
(uyy, dm) (x, _}’7”21> = (lel(.xm + rmX, O)a d(xm T+ rm X, 0))
n

and

t
(W, dip) (x, 0) = (0, h(xp, + rimx, —I—I”r%l[)) on 382, X |:_L217 O] .
T

m

Moreover,

e
/ (> + VA *)(—00) = —
QuNB2(0)

—AM’
2 2 812 Im
/ (Jam|” 4+ 1V [ (1) = — VX € Qp, ——= <1 =0,
QuNB (x) M T
Cs?
4 4 1
u, + |Vd < —,
fw[_tm (Va1 = =
f (IVu,* + V2, ») < Cler, &0, I, 3| 3 ). (2.86)
QX[ 12,0] L?HZ (1)

rm

Assume x,;, — xo € Q and M > 0 is chosen sufficiently large. We divide the discussion
into two cases:
Case 1: xg € Q. Thenr,, < dist(xg, I') and Q,, — R2, — t’" — —o00. By Theorem 2.4, there

exists a smooth solution (s, doo) : R2 X (—00, 0] > ]R2 X Sf_ to the system (1.1)—(1.3)
such that

(U, dy) > (oo, dog)  in Cjpy (R x (=00, 0], R? x S2).
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For any set Pr = Bg X [—R2,0] c R? x (—o0, 0], it is easy to see that

/ luso|* = lim / [upm|* = lim [u* = 0.
Pg mtoo Jpy M1 J B gy, i) X[t — R2r2 1]

Thus uy = 0.
It is also easy to see that for any compact w C R2,

/ /IAdoo+IVdoo| doo|®

<hm1nf/ / |Ad,, + |Vdy|*dy |

m1oo

< limf /|Ad+|Vd|2d|2—
m1oo tm—12 JQ

which, together with (1.1)3, implies that
3dso + U - Vdoo = 0in R? x [—1, 0].

Hence 8;doo = 0 and do : R? > Si is a nontrivial smooth harmonic map with finite energy
according to (2.86), which contradicts to Lemma 2.12.
Case 2. xo € I". Then we have either

(a) 1iTm M = o0. Then, as in Case 1, Q,, — R2 and (uy,, dy) converges to
m?too 'm
(0, dog)ein C2 (R? x [—1, 0]); whére do iR #-/S>Nis|d nontrivial sffidoth harmonie
map with finite energys which'contradicts.to-loemmnia 2.12.
or | |

(b)dim % L &[0, o). Then we would have
m{ oo 'm

(@, 0Qm) > (R2, = {x = (x1,x2) € R*: x2 > —a}, IRZ,).

Observe that h,, (x, t) = h(x,, +rpx, t, + r%t) is uniformly bounded in C* 5 (082, X
[—1,0]) forany a € (0, 1). Hence we may assume thath,, — p,inC_(R%, x[—1, 0]),
for some point p € S2. Thus, similar to [31] Theorem 1.3, we would obtain a nontrivial
harmonic map d, ]Rz — 82 with doo = p on dRZ | that has finite energy. This is
again impossible.

From Case 1 and Case 2, we conclude that (2.83) never occurs in [0, 7']. This completes
the proof of Theorem 2.3.

—a’

m}

3 Global strong solution

In this section, we will show the existence of unique, global strong solutions to the system
(1.1)—(1.3). For this purpose, we will assume that the initial data

(ug, dg) € V x H*(2,S2),

and the boundary data

3
he H33(Dr,S2) and dh € L2H? (Tp). 3.1
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More precisely, we will prove

Theorem 3.1 Let (ug,do) € V x H*(Q,S2), and h : Ty + S2 satisfy (3.1) and the
compatibility condition (1.5). Let (u,d) : Q x [0,T] R? x Sﬁ_ be a weak solution to
the system (1.1)—(1.3), with initial value (ng, dg) and boundary value (0, h), obtained by
Theorem 2.3. Then (u, d) is a unique global strong solution to the system (1.1)—(1.3), that
satisfies

ue L2(0, 71, V) N LY HZ (07, R?),
de LXHXQr,SL) NLIH (O, S%).
Moreover, the following estimate holds

O 17 11 07y + 19O 2120,

T
[ O+ 14 ) < Cr. (32)

where Ct > 0 depends on ||(ug, Vdo)|l 1 (g, ||h||H 3
t X T

55 , 19:h]] 3 ,e1, T, and Q2.
237 2

Remark 3.2 Employing (1.1); and (1.1)3 and the estimate (3.2), we can verify that the global
strong solution (u, d) obtained by Theorem 3.1 satisfies

du e L*([0,T],H) and 8,d € L>H!(Q7),
which, combined with the Aubin-Lions Lemma, implies that
u € C([04F) V) and d € C([0,T7; HZ(Q)).

Proof of Theorem 3.1 Since the unigueness part 6fStrong solutions follows immediately from
theseontinuous dependence Theorem 3.3 below, we will focus on the proof of the existence
of a global strong solution (u, d) that satisfies the estimate (3.2).

For (g, dy) € V x H3(2, Si) and h satisfies (3.1), recall that Theorem 2.3 implies that
there exists a global weak solution (u, d) to the system (1.1)—(1.3), with initial condition
(ug, do) and boundary condition (0, h), which satisfies

ue L0, T1,H)NL*([0,T1, V), deL®HNQr)NL*H?(Qr).

In order to prove that this global weak solution (u, d) is the desired strong solution
satisfying (3.2), we need to show that the sequence of smooth solutions (ut, d*) : Q7
R? x Sﬁ_ of the system (1.1), under the initial and boundary conditions (u](;, d](;) and (0, h¥),
from Theorem 2.3 satisfy (3.2) with a constant Cr that is independent of k.

In fact, it follows from the proof of Theorem 2.3 that

@)
(Vuk, v2d¥) — (Vu, V2d) weakly in L2(Q7), (3.3)
(¥, d*) = (u,d) in C([0, T, L2(Q) x H'(Q)). '
(i1) there exists &1 and r¢ > 0 such that
sup / (W P2+ vd D0 < ef Vh > 1, (3.4)
(x.0)eQyp v 2NByy (x)
I, V)l o205y + 1(VUE, V2l 120,y < K76, YR = 1, (3.5)

where K7 ¢, > 0 depends on || (ug, d0)||HXﬂ1(Q), ||(h, 9/h)|| .3 ,€1, T, and Q.

Lt He (Tr)
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Now we claim that

lim (Vu*)? + |AdF + (vdr2dh)?)

k—00 or

= | (Vu +|Ad + [Vd[*d]). 3.6)
or

To show (3.6), first observe from the proof of Lemma 2.13 that (u¥, d%) satisfies the following
energy equality:

/ (0P + [Va* ) (T) + z/ (VAP + 1adt + [Va* 2d D)
Q or

ohk
:/(|u’5|2+|Vd’5|2)+2/ (Adk,a,h’g>+2/ —E 3 k), (3.7)
Q or I'r dv

where h’fE(-, 1) is the harmonic extension of h* (-, r) .
Sinced € L?HXQ(QT), an argument similar to Lemma 2.13 also yields that (u, d) satisfies
the same energy equality as (3.7):
[ uk vty +2 [ qvul + a0+ vapap)
Q or
ohg

=f(|uo|2+|Vdo|2>+2[ (Ad, a,hE>+2/ (CRE o N G8)
Q or Tr v

3
Since (h¥, 9,h*) — (h, 3;h) in L%sz (I'p), it follows thefstandard estimate on harmonic
functions that

ahk. — 9hgin L2H2(07),

9hk 9h 1
TE L T i L2HZ ().
v v

Therefore, after sending k — oo in (3.7) and comparing the resulting equality with (3.8), we
see that (3.6) holds true.
On the other hand, (3.3) and the Ladyzhenskaya’s inequality imply that

f, vd") — (u, Vd) in L*(O7). (3.9)

Now it is easy to see from (3.6) and (3.9) that

lim (|Vuk|2+|Adk|2)=/ (Vu> + |Ad}?). (3.10)
k=co Jor or

In particular, we conclude that
Wt d*) - (u,d)in L2H!(Q7) x L?H?(Q7). (3.11)

It is clear that (3.11) yields the following uniform absolute continuity: for any € > 0, there
exists § = §(¢) > 0 such that
k2 k2 2
122 gy, ) + 1122 1. 20y = €7 (3.12)

provided 0 < 51 < sp < T satisfies |sy — 51| < 4.
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Now we can show that (u*, d¥) satisfies the estimate (3.2) with a constant Cr, that is
independent of &, as follows. For simplicity, we drop the upper index k and write (u, d, P)
for (uX, d*, Pk).

By employing the sz’l-regularity theory on the non-stationary Stokes system, we have
that 9,u, V?u, VP € L*(Qr), and forall0 <t < T

19rullz2(0,) + IVull2(0,)
< C[IVuoll 2@y + u - Vull 2, + IV(Vd © V)l 2(g,)]

< C[IVuoll 20 + lall 2o, IVl 4, + VA 20, 1V 40 ]-

On the other hand, it follows from the trace theorem sz’l Q1) — HY (2 x {th,vt € [0, T],
that

IVallpeor2g,) = C”““WZZ'I(Q,) = C[”atUHLZ(Q,) + [[(Vu, VZU)HLZ(Q,)]-
Putting these two estimates together, we obtain that

IVullzeer2 g,y + 101l z2¢0,) + ||V2u||L2(Q,)
< C[IVuoll 2y + Il 3o IVUll a0,y + VAl 20 V2l 140, ]- (3.13)

To estimate d, let hp be the paraboli€ lifting function of-hsi.ely

B,hp y Ahp =0_in QT,
hp=h on I'r,
hp =dyp in Q2 x {0}.

It follows from (3.1) and the regularity theory of parabolic equations (cf. [38]) that

Ihplizen20p) + P
< h
=l I,

# 3 (0r)
L Idoll 20 ] (3.14)

35
24Ty HZ (T7

Setd =d — hp. Then we have

dd—Ad=-u-vd+|vd?d in Or,

~ (3.15)
d=0 on 9,0r.

It follows from the regularity theory of parabolic equations, the trace theorem, and the estimate
of hp that for0 <t < T, it holds

ldll e 200,y + ||d”H3%(Q,)
< Cl|lldo|l g2(qy + l|9:h 3 SLL W
[Idoll 12 () + 113 ”L,zH;Z(rT) I ”;ﬂvi(rr)
vd vdi2d ) 3.16
+ [lu ”HL%(Q,) +Ivd] ”Hl'%(Qr):| ( :
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1
From the interpolation inequality Wg’O(Q,) N Wg’l(Q,) — WS’ 2(Q;) (cf. [39] Lemma 7),

3 5
we can estimate the last two terms in the right hand side of (3.16) by

Ju-vay
H"2(Q)

< C[llIValll 2, + |||VU||Vd|||L2(Q,) + IulV2dlll 20,

1
u-vd|? u-vd :
+ | ||L || I 01(Q)]

< C[(||U||L4(Q,) + ||VU||L4(Q,))||Vd||L4(Q,) + Jull o 1V2dll 240,

+ ||ll|| IIVdII

L4(Q) LS(Q)

(Ilazllll IIVdII + |I3szII ||ll||

L2(Q) L8(0)) L2(Q1) L8(Q, ))]

and

lvdFd|
H' 7(Q)

< C[||Vd||L4(Qt) +1IVAP 200,y + 11VAIIV2Il 120,
1 1
SoIAZ: (i U ECAZ: (i T
L3(0Qy) L5(Qr)

< c[nvaniw )t ||Vd||26(Q,) UVl s gVl 40,

+ ||VdnL4(Q Iva?

L3(0))
1 1
7 2 2
- (10 Ay, V@ 1o g, + 10, VeI 2, o, IVA s )]

Substituting these two estimates into (3.13) and (3.16), we obtain that

t
(170 10,y + 1417 412 ,) + /0 (ullp g + 14173 q)) d

< C[|Ivug)? dol2 h|? d:h
= [” O||L2(Q)+|| O||H2(Q)+|| ”H%;((FT +|| t ||L2H3(FT)]

+C[IVAl7a g, + VA6 o, + 13l 20 10l 40, IVAIT5
+ (lulgs g, + 1VdIa ) - (IVUlFs o) + 1V2dI74 )
FllullZap, IVaAlFa o, + 183Vl L2, IVl 5,
“(hallpacoplhallscg,y + 1Vl 2oy IVl L8(0,))

+118dll 29, 1Vl 30 IVl 30, VAT 16, ] (3.17)

forany 0 <t < T, where Q; = Q x [0, ¢].
To simplify the presentation, we set two auxiliary functions

t
1) = 0l Feo 10, + 1417 1200, + /O (ull3p g + 14175 q)) dt,

and
t
(1) = /0 (ullr g + 14172 q)) dt
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fort € [0, T].
From (3.5) and Sobolev’s inequality, it is readily seen that

Idi?
Idi?

IIVd||L4(Q) <C|vd|;
IV2dlsp,, < ClidI
IVdilZe ) < C”w”LmLQ(Q iz 3o lldlle 2o 141 2 120,
=< Crﬁ(t)<1>(t)
< Cnf(r)dﬂ(r)
”Vd”Lm(Q) <C|vdl; 12120, )IIdIILaHs(Q,)IIdIILsz(Q il z2 20,
< Cp2(®0().

LZHZ(Q ) — C’?([)

L2H3(Q) S Cq) ([)

LPLA(Qn)

LPH(O1)

(3.18)

where C is the positive constant depending only on €2 and K7 ¢,. Similarly, we also have
that

[ = Cn (1),

LYQn —
2
1V0l}4 g, = CHUIE s o) 122 2 < COPO), o)

”u”LS(Q y = C||u”L°°L2(Q )||u||L2H2(Q,)”u”LOOHl(Q )”“”L,zH}(Q,)
< an(;)qﬂ(;).

lulida g, = ClulR a0,

< Cluf|

L2HNQ) —

It follows from (3.13)g(3a18); afid (3.19) that

1.1
1978 20, < C[IIVuoll 2 + 17 D2 (1)], (3.20)

and it follows from (3.15) and (3.14) that

19idllr2¢0,) = C{IM] 3 4 lldoll 2
iz, = C[I5 L2 H(9)

X

+ llull 4o, I Vdll 4o, + 1V 74 g, ]
1
<ClIahl 5 +lldollg2g) + 07 (@] (3.21)
L?H. )

t Hx (FT
From (3.18), (3.19), and the equation
3, Vd = VAd — V(u- Vd) + V(|Vd|*d),
we have that
||atVd||L2(QT)
< (IVAd[l 20, + IV V) 120, + IV(VAPD) 120,
1
< C[@2(0) + [IVull 2o, IVl 140, + ||“||L4(Q,)||V2d||L4(Q,)
+ IIVdIIL()(Q )+ IVal a0 1Vl 40, ]
< C[o2 () + 17 (D (0)]. (3.22)
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Putting all these estimates into (3.17), we obtain that

+19h0* 5]

2 2 2
1) = CIVuolag, + Mol + L ¢ ¢ b

3 4 s 7
+ C[n(@) + 3 @) + 03 @) + 13 (1) + 08 ()P @)]. (3.23)
From the uniform absolute continuity property (3.12), there exists 0 < fo < T such that
3 4 5 7 1
C[n3 (t0) + ¥ (t0) + 1% (o) + 13 (t0)] < 5
and hence we arrive at

2 2 2 2
(1) = C[1L+ V00l 2 g + ol + M7 s o bl o ]

(Tt L2HZ (T'7)
1
—®(1).
+2 (to)
This further yields
D (19) < C[1+ Vg%, + o120, + [Ih]|? + 19;h]?
(t0) = C[1+ IVWol g + 1ol q) + IRI7 < 5 12 ”L;Hﬁm)

Hence (3.2) holds with T replaced by #p. Next we can repeat the same argument as above to
show that (3.2) also holds with T replaced by 2#. After iterating finitely many times, we can
see that (3.2) holds with 7. This completes,the proof of Theorem 3. L. m}

Next we will establish.the continuous dependence! of“the global strongssolution to the
system (1.1)—(1.3) for initial data in V X H%Q Si) and boundary data in H%'%(FT) ,
which is.crucial to the Fréchet differentiability of the control to state operator S.

Theorem 3.3 Under the same assumptions of Theorem 3.1, 'let (q(i), dD), i = 1,2, be the
global strong solution corresponding to the initial data (u(()’), dg) ) and the boundary data
0, h®). Define = u® —u®,d =dD —d?, @) = u}’ —u}?, dy = a}" — "’ and

h =h® —h®, Then it holds that

t
IO 131 g + 14D 172q) + /0 (@32 gy + 1d@173 ) d7

= Cr (ol q) + Idol320) + IBI% 5 5 ) V€0 T], (3.24)

35
24Ty

where Ct > 0, depending on ||u(()l)||H1(Q), “d(()l)”l-ﬂ(g), ||h(i)||H
fori=1,2,¢e1,Q andT.

cand || 9@
T)

55 3
24 L?H? (1)

T
Proof For0 <t < T, define

2
— @) 2 @)2
1) = (7w 10,y + 18170 20,

i=1

and

t 2 . ;
W) = /0 > (MO@1 g + 14D @3 ) dT.

i=1
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By Theorem 3.1, there exists Cr > 0, depending on |Ju’ 11 () [ Il 2¢gy- M|

and ||9h®| 3 fori=1,2, ¢, Qand T, such that
L}HZ (Tr)

35 P
H24(I'r)

O(T) 4+ W(T) < C3. (3.25)
Moreover, for any 0 < § < 1, there exists t5 € (0, 86] such that
W(t) <8 forall0 <t <. (3.26)
Observe that (u, d) satisfies the system
yu—Au+u . vi+a-vu?® + VP
=-V.(Vvd o vdP + vd?® o va) in Or,
V-u=0 in Qr,

3d—Ad+u . vd+u-vd? (3.27)
[vdV2d + (v@dD +d?), vd)d® in Qr,

@) = (0.h) on Ty,

(w, a)},o (1o, do) in Q.

Let hp be the parabolic lifting function of h:

dhpg ABp =0, fin _Qg,
hpp=h! on —=PF7, (3.28)
hp |20 =\do. in Q"
By the regularity theory of parabolic equations, we have that
IhpllLom2or) + ||hP||H3%(Q )
= C[iomy , 3 b +lidoll 2] (3.29)

2HZ2 (T7) 33 ()

Setd=d — hp. Then d solves

o~

—Ad=—u.vd—u-vd? 4 |vd?D|’d
+2(v(d®P 4+ d?), vayd? in QOr,
=0 on 09,0r.

2
)

)

It follows from the regularity theory of parabolic equations and (3.29) that for0 <z < T,
il m2(0,) + ||d||H3'%(Q,) (3.30)

+ 9] 3 + [Idoll g2 + [lu® - vad
lenI e 2o+ I 0

+[la-vd®@|| i +vdV Py
2(01) H"2(0:)

+1(v@® +a®), vd)a®
1{V( ). vayd =, 2(Q)]

< C[lih|

55
H24(I'r)

Since the last four terms of the right hand side of (3.30) can be estimated in a way similar to that

of the proof of Theorem 3.1, we will only sketch below the estimate of ||| Vd‘" |2d|| ! o
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As in Theorem 3.1 , we first have

Iva®pdy o = Cliva® Pdl 2, + IVAVAD )l 20,
t

)2
+ 113, (1Vd™ | d)||L%(Q[)]- (3.31)

Here we have used Sobolev’s embedding: Wé’l (01) — H%’ 3 (07).

Applying Holder’s inequality and the Sob2olev inequality, we obtain that for 0 < ¢ < t;,
the following estimates hold:

Nva® Pl 20,y <NIVAD Pl 20, il (o))
<1V 120 18V 12 120,y 11l e 120,
<Craldl 2 p20,):
and
IVAVADPDIl 20, = CIVADIZS 5 o IVl Lo180))
+ IVl 10 1IV2A D s Il (o)) ]

< CIADITs 2 0 181 200,
< @A, o 20, M1 A 2477 B 11 Al oot

< CT5||a||L,°°H3(Q,)-

Applying the equation of d"V', Holder’s inequality, and the interpolation inequality, we can
estimate

18, VAV 120,
< IVAAD |20, + IV@D - VAD) 1200,y + IVAVAD PAD) [ 120,
<14Vl 2 30, + (10230, + 1VAP N0 ) IV D N 13,
+ IV a0 1VAD 130,y + 1A P [56 ) < Cr
Applying (3.27)3 and Holder’s inequality, we have that
l8:dll 120,
< [ad]l 20, + Il - Vdll 2g,) + - VAP 12g,)
+ 1IVA? Pd 120,y + 21(VAD +dP), V@)AP | 120,
< ct? ”a”Lf’OHXZ(Q,) + [lu® ||L4(Q,)||Va||L4(Q,)
+ 11Tl 4o 1VE? 2,y + IVAPI2, @220,
+231Vd D 150, + VAP 130,V 130,
< 12l 20, + CVZ O (Il L 10,y + 1911 1200,))
< C5(I0l e pp 0, + Ml e m20,)-
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Hence

11, (|Vd(1)|2d)IIU(Q )
< VA2 1, 10l 20, + 10, VAP 1200, 1VAD 60,y 1 0 12,
< Cta AN 2 2 190200,

+ Cr# 118, VAV 200, 14D 1 200, 18 22 20
< (L+ s (10l 20,y + 1Al 2c0,)
<+ C%)l% (”ﬁ”Lﬁ’cH_J(Qr) + ||a||L,°°HX2(Qx))’
where we have used the Sobolev inequalities
19V 00, = Cro 1A ez, 190 12 0, < CHEIAV 20,

Putting all these estimates into (3.31), we obtain that for 0 < ¢ < t;,

lIva® iy 0 = CroUiulzmo) + Il Lo 112(0,))-

Similarly, we can estimate

[u®-vd],,

v,

a0 CT5(||“||L°°H1(Q,) + ||d||L°°H2(Q,) + ||d||L2H%(Q ))

yh 2(Q ) = CT5(||u“L°°H1(Q,) T ”dHLOOHZ(Q )it ||u”L2H2(Qt))

and

[(v@R +a®), va?| .,
t

= Cr8(IWl e ) + Ml e m2e0,) + 141l 213 g,)-

Therefore we obtain that for 0 < < t;,

”a“LOCHz(Q,) + HHHL?HE(QM

< C||h o:h 3 + |Id 2
LIRS PR LI B LIPS
+ 8(||ﬁ||Lt°°Hx1(Q,) + ||a||L;’°HXZ(QL) + ”ﬁ”Ltsz(Qt) + ”a”L?H)?(Qt))]' (3~32)

We can apply the W22 1 -regularity theory of (3.27); to estimate u as follows. For 0 < ¢ < ts,
it holds that

||ﬁ||Lt°°HX1(Q,) + ”ﬁ”LtzHE(Q,)
< ClIWoll 1) + D - V|| 2, + [0 Va2,
+ V- (vdo vd? +vd® o Vad) | 20,]
< C[”ﬁO”HI(Q) + Cré(lall oy, + ||a||L,°°H3(Q,))]~ (3.33)

ForO <t <T,set

) = (8 g1 g,y + 1012 20, + T 20+ 14122 15,
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Then (3.32) and (3.33) imply that for 0 <7 < g,

D) < Créd(t)

=2 J.112 hi2 12
+ ClITlG gy + 1oz + IR 5 ¢+ 102, o ]

‘ L2HZ2 (T7)

If we choose § > 0 such that C76 < %, then we conclude that (3.24) holds for all ¢ € [0, #5].

By repeating the same argument for ¢ € [its, (i + Dts] fori =1,..., [%] + 1, we see that
(3.24) holds for all ¢ € [0, T']. This completes the proof of Theorem 3.3. O

4 Optimal boundary control

The second main purpose of this paper is to consider the optimal boundary control problem
(1.4) for the nematic liquid crystal flow (1.1)—(1.3). This part is an extension of Sects. 4 and
5 of [4]. However, due to the nonlinear constraint |[d| = 1, we need to overcome several new
difficulties.

For a given 0 < T < 0o, we make the following assumptions:

(A1) Bi =0 =1,2,3,4,5) are constants that do not all vanish.
(A2) The vector-valued functions

ug, € L*([0, T1. H), dg, € L*(Q7.5%), ug € H, dg € L*(Q,S?)
are given target maps.

The optimal boundary.control problem (1.4) seeksa boundary data h in a suitable function
space that minimizes the cost functional:

20((u, d), 1) = Billu —ug, 720, + A2ld —dolI72 o,
+ B3lu(T) — g7z g + Asld(T) —dall72 g
+Bslh —esl 7o, s @1

where (u, d) is the unique strong solution of (1.1)—(1.3) under the boundary condition (0, h)
and the initial condition (ug, dg).

4.1 Fréchet differentiability of the control to state map

In this subsection, we will study the control to state map S and establish its Fréchet differ-
entiability over suitable function spaces.

4.1.1 Function space of admissible boundary control data

The natural function space for the boundary control data h, that guarantees the existence of
unique strong solutions to the system (1.1)—(1.3), is

3
u={nineniiarr, st andah e L2HZ ), 4.2)
which is equipped with the norm

[nly = 1Inl, 55, +loml 5 hew

(T'r)) L2H2? T
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Given an iilitial data (ug, dg) € V x HX(, Si), the function space for boundary control
Sunctions U, associated with (ug, do), is defined by

o= [h|h € U, with h(x, 0) = do(x) on r}. 4.3)

Remark 4.1 By the Aubin-Lions Lemma and the Sobolev embedding Theorem, we have that
U C([0,T], H3 (T, §%)) = C(I'r, S2),

and hence any h € i is continuous on ' and the compatibility condition h(x, 0) = do(x)
holds for x € I in the classical sense.

The minimization problem is taken place in a bounded, intrinsically convex closed set in
U that will be specified below.

Let IT : S? \ {—e3} — R? be the stereographic projection from the south pole —e3,
and IT~! be its inverse map. Then IT : Sa_ — 312 = {y eR?: |y < 1} is a smooth
differeomorphism. It is clear that any map h : 't Sﬁ_ belongs to U if and only if
Inh) : I'r — 312 satisfies

3
M(h) € B33 Tz, BY) and 8,(T(h)) € L2HZ (I'7),
and TI(h)(x, 0) = M (dg)(x) for x € T.
We also equip IT(h) with the norm

Imanl, = |l 75, 4 @ |

3 .
Iz L2HZ (U7)

Definition 4.1 For M > 04 we define the intrinsic ball in U with center 0 and radius M ,
denoted as U4y, by

fy =[ned | IMmly < M. (4.4)

It is not hard to see that for sufficiently large M > 0, Uy # (. In fact, there exists C > 1
such that if M > C||do|l 3() then we can construct h € U such that [|[[T(h)[zy < M and

h(-,0) = do(-) on I'. For example, leth : 't S? be the solution to the heat flow of
harmonic map from I' to S?:

%h— Arh=|Vrh*>h in Ty,
h(-,0) =dy(-) on T.

Here Vi and Ar denote the gradient and Laplace operator on I'. Since I' is a 1-dimensional
5
smooth closed curve and dg € H2 (T, Si), it follows from the standard theory of heat flow
. . . . . . 55
of harmonic maps in dimensions one that there exists a unique solutionh € H2'#(I'r, S?),

with 3;h € L%Hx% (I'7), such that
[TI()]l < Clidoll g3y < M.
Moreover, it follows from d(3) > 0 on I that h3 > 0. Therefore, ﬁM is non-empty.
Remark 4.2 1t is clear that HM is convex in the following sense: if hy,hy € HM, then

' (sTI(h)) + (1 — s)[1(hy)) € Uy forall s € [0, 1].
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In fact, it follows from the definition of ZjiM that I1(h;) : 'y — 312 fori = 1,2, this
implies that sTT(h;) + (1 — s)[T(hy) : 't — 312 for s € [0, 1]. Also note that

[sTI(hy) + (1 = )TT(h) |, < s|[TT(hy) |, + (1 — )| T (h) ||,
<sM+({1—-s)yM=M.
Thus h(s) = T~ (sTI(h;) + (1 — s)TTI(hy)) € C([0, 1], Uy) is a path joining h(0) = h,
and h(1) = hy.

4.1.2 The control-to-state operator S

To define S, we first need to introduce the function space for global strong solutions to the
system (1.1)—(1.3):

H=C(0,T1,V) N LIHX(Q1) x C([0, T, H*(2,S%)) N LI H; (Q7), (4.5)
which is equipped with the norm

| df, = ”u”L?OH}(QT) + ”“”L}Hg(gr) + Hd|’L;>°H3(QT) + HdHL,ZHQ(QT)‘
We also introduce the function space for the Fréchet derivative of S:

W =C([0,T1,H) N L?H}(@%) % C([0, 71, H L@ R) 0 L7HZ607), 4.6
which is equipped with the norm

@ )y
= ||wHL;’CL§(QT) + ||“’HL3HX1(QT) + ||¢||L,°°H}(QT) + ||¢||L,2H3(QT)'

Note that H is a subset of YW. Now we define the control-to-state map S as follows.

Deﬁnltlon 4.2 Given an initial data (ug, dg) € Vx H2(Q, S? ), the control-to-state mapping
S : U — 'H, associated with (ug, do), is defined by letting

hell— Sh)=(u,d) eH a.7)

to be the unique global strong solution to the system (1.1)—(1.3) on [0, T'], with the initial
condition (ug, dp) and the boundary condition (0, h).

It follows directly from Theorems 3.1, Remark 3.2, and Theorem 3.3 that the map S is
Lipschitz continuous. More precisely, we have

Proposition4.3 Forn = 2, T € (0,400), and M > 0, under the same assumptions of
Theorem 3.1, if Uy # 0, then the control-to-state map S is Lipschitz continuous from U to
H, ie.,

|Sth) = SMa)|,, < Car|lhi —hal,,. Vhy, b € U,

e

and ”dO ”H‘(Q)'
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4.1.3 Differentiability of the control-to-state operator S

We will establish the differentiability of the control-to-state operator S : U H.

First, we will define the Fréchet differentialiblity of S. To do it, we need to introduce
tangential spaces of U and H. Given an element h € I{, the pullback bundle of the tangent
bundle T by h, h*T14, is defined by

W TH = {g € HY3(Tp,RY) | 0,€ € L,ZHX%(I‘T), £(x,0)=0forx e T,
(€, h)(x, 1) = O for (x, 1) € rT},

which is equipped with the same norm || - ||z, as that on U.
For a fixed (ug, dg) € V x H3(S2, Si) and an element (u, d) € H, with (u, d) = (uyp, do)
at t = 0, the pullback bundle of the tangent bundle 7H by (u, d), (u, d)*TH, is defined by

mﬂfTH=k&¢ﬂwethﬂJDﬂﬁHﬂQﬂ,
¢ € C(0.T], H'(Q,R)) N LI HZ(Q7),
(#.d) =0ae.in O, (@ 9)]_, = 0.0},
which is equipped with the norm || - [|yy.

Definition 4.3 Given a (ug, do) € Vox H2(S2, Si). For.any h"é i, Tet (u,.d) € H beithe
uniquestrong solution of (1.1)—(1=3) uider the initial condition (up, dp) and/the boundary
condition (0, h), we say that the control to state map S : U5 " is Fréchet differentiable at
h, if there exists a linear map S"(A)pi h* T S (h)*TH, called the Fréchet derivative of S
ath; such that for any € > 0 there exists a § > 0 so that

|S(expy &) — Sh) — S' ) (&) ||, < €ll€ . (4.8)

whenever £ is any section of h* TU satisfying both |&]lyy < & and exp,(§) € U. Here
expy (§)(x, t) is the exponential map on S? from h(x, ) and in the direction &(x, t) for any

(x,1) € Or.
Let us make two comments on Definition 4.3.

Remark 4.4 1f we denote the strict upper half space by
S7°=82\0S2 = {yes?: y3 >0}
Then for any function h € u satisfying
h(x, 1) € $3°, ¥(x,1) e I'r,
there exists § = §(h) > 0 such that if & is a section h* T such that

&l <8,

then the exponential map (expy §)(x, 1) = expp () §(x, 1) : Or = S? has the same

regularity as h and has its third component (expy, & )3 > 0onT7.Hence (exp &)(x,1) € Si_’o,
for (x, 1) € I'r, so that expy, § € U.
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Remark 4.5 Fordy € H3(S2, Si’") and h € i withh(T'y) C Si’o, there exist 81 > 0, 87, and
83 > 0 depending on ||dol| ;72 () and |Ihllzs such that

dj(x) =38 YxeQ hi(y.n=8 V(y.0elr.
Hence (u, d) = S(h) € H enjoys the property thatd < CO(QT) and
d*(x.1) = 8, ¥(x.1) € Q.

Therefore:vfor any section & of h* TU, if I&llzs < &3 then expy, € maps I'7 to Si. In particular,
expy & € U and S(expy, &) € H is well-defined in (4.8).

Now we want to study the linearized equation of the system of (1.1)—(1.3).

4.1.4 The linearized system

For a fixed (ug, do) € V x H%(2, Si), leth € i be given and (u, d) = S(h) be the unique
global strong solution to the system (1.1)—(1.3), with the initial condition (ug, dp) and the
boundary condition (0, h), given by Theorem 3.1.

The linearized system of (1.1)—(1.3) near ((u, d), h), along a section & of h* TU, seeks a
section (@, @) of (u, d)*TH that solves

04w — Ao+ VP + (- V)o+ (- V)u

=—-V-(VpOVd) = V- (VAO Ve),

V.w=0, in O (49)
WPEA P+ (0 Vg + (@™ V)d

= |Vd[’¢ +2(Vd, Vi¢)d,

under the boundary and initial condition

:«u, =08, on Ir, wio)
(w, ¢) =(0,0), in € x {0}.

We have the following theorem.

Theorem 4.6 For any section & of h* TU, the system (4.9) and (4.10) admits a unique strong
solution (w, ), which is a section of (u, d)*T'H, that satisfies the following estimate:

T
1@, V7 120y + /0 (Vo) 72, + IV $(@I71q)) d7

<cr(la&* +||§||2 ))scTnsn%,, @.11)

5
L}H? (') (T

Tr

[N

where Ct > 0 depends only on |ug || g1(q), lIdoll g2(q), I1hlle, 2 and T.

Proof Since the existence of a strong solution (@, ¢) can be shown by the standard Galerkin
method (see [5] Proposition 4.1) and the uniqueness of (w, ¢) follows from the estimate
(4.11). We will only prove (4.11). First let & p be the parabolic lift function of &, i.e.,

%Ep—AEp=0 in OQr,
§p=§ on Iz,
&p=0 in € x {0}.
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Then we have

IVEpllLeor2op + IV2€ pll 20y + ||5P||H3,%(QT) < Cl&llu- (4.12)

Multiplying (4.9); by @ and (4.9)3 by A¢, where ¢ = ¢ — & p, and adding the two resulting
equations, and using Holder’s inequality, the Sobolev embedding Theorem and Poincaré
inequality, we obtain

d 2 ~in2 2 ~in2
=/[—(w.V)u~w+(V%@Vd+Vd@v5) : Vol
Q
+ / (u-Ve +w-Vd — |Vd|*¢ — 2(Vd, Vé)d) - A¢
Q
+/(VEPQVd+Vd@vsP) (Ve
Q
+/(u~V‘;‘P—|Vd|2§P—2(Vd, VEp)d) A
Q
= c[IVull 2@ @l 2@ 1 Vol 2@
~ 1
+ ”Vw“LZ(Q)||Vd||L4(Q)”V¢”L2(Q)”A¢”ZZ(Q)
+||A¢||L2(Q) ||u||L4<Q> ||V$||,€2(m

+ ”A¢”L2(Q) ||Vd||Ls(Q)||V¢||L2(Q)

~ 1
+ ||VC0||L2(Q)||V§P||L4<Q)||Vd||L4(Q)
+ ||A¢||L2(Q)(||u||L4(Q)||V§P||L4(Q)
+ VAR g 165 50 + 194l 3y 1V pll )|
< S (IV0l2gy +1ABIZ 2 g))
) L2() L2()
+ C@12 2 HIVBIZ2 o) - (1ulda g + VU, o + VA
L2(Q) L2(Q) L4() L2(Q) L3(R)
+ C[IVE P 4 0y (1VAI s g+ 1814 )+ IVA s g 18124 ]
This implies that
d 2 72 2 ~i2
< C(lhullfs gy + 1Vl]2 g +1VAlT s o) @172 0, + VN2 )

o+ Cl18 122 (1122 )+ 10131 ) 16 212 0 1 |-
Since (u, d) is a strong solution obtained by Theorem 3.1, it follows from (3.2) that

lallzeo g0 + 1l m2(07) = Crs
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,and |3h] 3 .
) L?HZ (T'r)

where Cr > 0 depends on 7', €2, [[uo| y1(q), ol 2. IIhIIH;g(FT

Hence by Sobolev’s embedding theorem we have that

lallzersop) + 1VAllersop) < Cr-

Thus we obtain that

T
[ (1l + 1900 gy 190 ) dr = €.

Since (@, @)|;=0 = (0, 0), by applying Gronwall’s inequality we obtain that

T
S i, V) D72y + /0 (V@72 + V272, dT
<t<T

T
< Cexp {c /0 (IullFa gy + 1VUlT2 g + ||Vd||18(9))<r>dr}

T
: /O (181212 0y (112 g 18121 ) 1€ 121y 132 0 | d7
< Crlilg 4.13)

Thus (4.11) was proven.
To show that (@, ¢) is a section of (u, d)*7H, we need to verify that

(¢, d)(x, 1) = 04 fors(x, )€ O
To see this, observe that (¢, d) satisfies

(¢, d) +ul- Vg, d) — Afg,d)
= (09 +u-Vo— Ap,d) + (3,d+u-Vd — Ad, ) — 2(V¢, Vd)
=2|Vd|* (¢, d), (4.14)

and
(¢,d) =0 on 3,07.
Hence, by the parabolic maximum principle, we conclude that
(¢.d)=0 in QOr.
This completes the proof of Theorem 4.6. O

ToN facilitate tlLe discussion, we also introduce a linear map associated with an element
hedd, Ly : W*TU — (S(h))*TH that is defined by

L) = (@, ¢), (4.15)

where (@, ¢) is the unique global strong solution to the linearized system (4.9) and (4.10)
on Qr, with (u, d) = S(h), obtained by Theorem 4.6.
It follows directly from the estimate (4.11) that

Corollary 4.7 Foranyh € U, the linear map Ly, : h* TU (S(h))*T'H is Lipschitz contin-
uous.
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4.1.5 Differentiability of S

In this subsection, we will prove the Fréchet differentiability of S. More precisely we have

Theorem 4.8 Given (ug,dg) € V x HX(Q, S? “), ifh e U then the control to state map S
is Fréchet differentiable at h in the sense of (4 8). Moreover; the Fréchet derivative S’ (h) is
given by

S'(h) (&) = Ly (§), for any section & of h* TU with exp, § € u. 4.16)

Proof Let (u, d) be the unique global strong solution to the system (1.1)—(1.3), obtained by
Theorem 3.1, with the initial data (ug, dg) and the boundary data (0, h), namely,

(u,d) = S(h).

If & is a section of h*T' u such that exph§ € U, then we can define a new boundary data
h= expy, &, which satisfies h(FT) C S and belongs to U. Let (u, d) € 'H be the unique
global strong solution to the problem (1. 1) (1.3) under the initial condition (ug, dg) and the
boundary condition (0, h), i.e. @, d) = S(h).
Let (0, ¢) = Lp(§) € S(h)*TH, which is the unique solution to problem (4.9) and (4.10)
obtained by Theorem 4.6, under the initial condition (0, 0) and the boundary condition (0, &).
By Theorem 3.1 and Theorem 4.6, we have the following estimates:

| )], = C(T. lIag, Vdo) g1 - 1)
@ @], < (T |, Vda)l i1 @5 MhlL). (412
| (@, £CT. T@o. Vol 414 bl €],

Moreover, we can infer from Theorem 3.3 that
[t ﬁ”i?onl(QT) +]d- a“ifoHXz(QT)
+[u _ﬁ“i%HﬂQn +la- a”i?hﬁ?(gn
= (T, llwo, Vo)l 1@y Ilee) [b — B[,
< C(T. (w0, Vd) I 11 (g Illed) £ (4.18)
Now we set
w=t-u-wande=d—d— ¢.
By direct calculations, (w, e) solves, in O,

HW—AW+VP+@—u)- VA —u)+ - V)W+ (w-V)u
=-V.[Vd-d)oVd-d) +VdO Ve + Ve © Vd],

V.-w=0, (4.19)

de—Ae+@—u)-Vd—d) +u-Ve+w-Vd

= |Vd|%e + |[V(d — d)|?d + 2(Vd, Ve)d + 2(Vd, Vé)(d — d),

with the boundary and initial condition

{(w, e)=(0,expy§ —h—§) on Ir (4.20)

(w,e) =(0,0) in Q x {0}.
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Define the parabolic lifting function x : Q7 — R3 by

Ix—Ax =0 in QOr,
x=cexppé—h—-§&§ on I,
x=0 in Q x {0}.

By direct calculations, we find that

| expn g —n—&], <&,

and hence

2 2
IVXIlrerzcor + 1V X207 + IIXIIHgg(QT) =< ClI&llz;-

Next we define € = e — x. Then (w, €) satisfies in Q7:
W —AW+ VP +u-Vi+ u-V)W+ (w-V)u
=—-V.[VdO Vd+ VdO Ve + Ve © Vd],
V-w=0,
3€—A€+u-Vd+u-Ve+w-Vd
= |Vd|%e + |Vd|2d +2(Vd, Ve&)d + 2(Vd, V¢)d,

with'the boundary and initial condition

(W, €)= (0,0) on Iy
(w,®) = (0,0) in € x{0}.

Hereu=u-uandd =d — d.

(4.21)

(4.22)

(4.23)

Multiplying (4.22); by w, and (4.22)3 by — A, integrating over 2, and adding the two

resulting equations, we deduce

1d

2 dt

:[/(ﬁ-Vw-ﬁ+w-Vw-u)
Q

(W17 gy + IVEIT20) + (IVWIT2 o) + 1AEI T2 o)

+/Q[VE®VH+Vd®V€+%®Vd]:Vw
+/Q[Vd®Vx 4+ Vx ©Vd]: Vw
+/Q(ﬁ-va+u-VE+w~Vd)~AE
—/Q(|Vd|2€+|v&|zﬁ+2<v(1, V&)d+2(Vd, Ve)d)- AT
—/Q(Wdlzx +2(vad, vx>d—u-vx)Az]

=I1+I1I+1IT+1V+V+VI
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I, ..., VI can be estimated as follows.

1 _
1= S IVWIZ2 gy + Cllullga g 1wl ) + ClEIL ),

1 ~
1] = 55 (VWL q) + 1A8IZ2 )

+C(VAl| 74 IVEI7 2 g, + ClIVAIG

Q) | LY LY@

1
1] < SIVWIG2 g, + ClIVAILs ) VXG4 ),
1 ~
VI < S UVWIG2 g + 18815 )
+C(Ul 4 ) + 1VAl 74 )
+CUIVAN 4 W72 gy + 01740 IVEN72 )
1
Vi< —

12
+C|Vdll7s ) + ClIVAIZs o) VN4 11175

1A€]175 g + CIIVAI5 0 IVEI7 2 g

and

Lo
VI < S 1AL g, 4 ClIVAly s ) X174

+ C(]|Vd||i4(m + llulli4(m)|lvx ||i4(9)'

Substituting these estimates into (4.24), we obtain

d 2 ~n2 2 ~112
< C(lulla gy + 1Vl s ) UIWI2 (g, + IVEI72 )
—4 4 2 2 J112
4 2 2 2 2

From (4.17), (4.18) and (4.21), it is not hard to show that
r 4 ’ 4
/0 IVdlds g dr + /0 i} s dt < Cr,
r 4 T4 4
/0 (1TlEs ) + 1VdlILs ) dr < CrIEN,
r 2 2 312 4
/0 ”Vd”LS(Q) ”V¢”L4(Q) ”d”LS(Q) dt S CT ||£ ”L{»
and

T
/0 [IVal7s g X174 ) + (V4 + Tul7s oIV X2 2

< Crl&l}.
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These estimates, combined with the fact that (w, €) = 0 at r = 0 and Gronwall’s inequality,
imply that

T
sup (IWl72.q, + I V€72 q) + /0 (IVWIIZ2q) + 188172, di
T

0<t<
< Crl&ly,-
This, with the help of (4.21), yields that
lw, e)llw < CIIENZ,.

Hencs S is differentiable at 11, and its Fréchet derivative S’'(h)(§) = Lp(§) whenever & €
h*TU is such that expy, & € U. This completes the proof. O

4.2 Existence and necessary condition of boundary optimal control

Here we will consider both the existence and a necessary condition of an optimal boundary
control for the problem (4.1).

4.2.1 The existence of an optimal boundary control

We will establish the existence of an optimal boundary control for the problem (4.1).

Theorem 49aUnder the conditions (Al ) and (A2)let (1o, dy) € V. x H(S2, S7) be givem:
For M > 0, if Uy # dpthed (1) admits -a=solution ((u,d), h), whefeh € Uy and
(u,d) = S(h) is the unique strong solution to (k=1)—(1.3) with the initial condition (ug, do)
and thesboundary condition (0, h).

Fﬂ'oof Let {((u!, d'), h )}72, be a minimizing sequence of the cost functional C in (4.1) over
Uy, 1.e., o '
lim C((u',d"),h’) = _ inf C((u,d), h), (4.25)
1—>00 heldy,(u,d)=S (h)

where h! € Z/~1M and (u', d’) = S(h') € Histhe unique strong solution to the initial boundary
value problem of (1.1)—(1.3) with the initial condition (ug, do) and the boundary condition
(0, h'). Then we have

I, < M. and |@'.d)||,, =CM, Vi=1.

From the weak compactness of Uy — U, we may assume, after passing to subsequences,
that there exist h* € Uy, and (u*, d*) € H such that

h'—h* in H>3(7), &hi—dh* in L?Hx%(I‘T),
and
u Sufoin L®([0, T, V), w'—u* in L2H2(Q7).
d 2d* in L¥HX(Qr), d—d* in H>3(Qrp).
Observe also that by the Aubin-Lions Lemma,

v > u* in C([0,T],L*(Q), d — d* in C(0,T], H(Q)).
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It is not hard to see that (u*, d*) € H is a strong solution of the system (1.1)—(1.3), with the
initial condition (ug, do) and the boundary condition (0, h*). By the uniqueness theorem of
strong solutions, we conclude that (u*, d*) = S(h*).

Since the cost functional C is weakly lower semi-continuous in ((u, d), h) € H x U, we
have

liminf C((u', d’), h') > C((u*, d*), h*). (4.26)
11— 00

On the other hand, since h* € Z:iM and (u*, d*) = S(h*), we also have

_inf C((u,d),h) < C((u*,d*),h*). 4.27)
helly, (u,d)=S(h)

It follows directly from (4.25)—(4.27) that ((u*, d*), h*) achieves

_inf C((u,d), h).
heliy, (u,d)=S(h)

This completes the proof. O
4.2.2 The first-order necessary optimality condition

In this subsection, we will derive the first-order necessary condition for the optimal con-
trol problem (4.1) based on the Fréchet differentiability of the control-to-state operator S
established in the previous section.

Now we are ready to prove the folloWwing theorem that giveSya’necessary condition of
boundary'optimal control.

Theorem 4.10 Assume both (All) and (A2). For.M#>0,"et (ug, dy) € V x H*(Q2, S? <) be
given. IfZ/{M k. ¢ and W Extdyy is a minimizer of the optimal control for problem (4.1) over the
ddmissible set U M, with the associated state map (u, d) = S(h) € H. Then for any boundary
data by € Uy, let & = &n.n, be the section of h* TU given by

§= i|q=on_1(sﬂ(h) + (1 =) (h")), (4.28)
ds "

and (w, ¢) = S'(h)(§), i.e., the unique global strong solution to the linearized problem (4.9)
and (4.10) associated with &, the following variational inequality holds:

/Q (Bilu—ug,, @)+ pa(d—do,. ¢))
+ fg (Bs(u(T) — ug. (T)) + B5(d(T) — dg, $(T)))
Bs(h— es. &) > 0. (4.29)

Proof Note that ((u, d),Nh) = (S(h), h) is a minimizer of C over ﬁM. For any h, € ﬁM, let
& be the section of h*TU given by (4.28). Then

h(s) = 17" (sTI(h) + (1 — )[T(*)) € C' ([0, 1], 1)
is a C!-family of maps from 'z to Uwm joining h to h*. If we let (u(s), d(s)) = S(h(s)) for
s € [0, 1]. Then it is not hard to verify that (u(s), d(s)) € C'([0, 1], H) and

d
Tl @(9). () = S M) = @.9) in Or.
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Since

C((u(s), d(s)), h(s)) = C((u(0),d(0)), h(0)) = C((u,d), h), Vs € [0, 1],

we conclude that

% |,_oC((u(s), d(s)), h(s)) = 0.

It follows directly from the chain rule that
d
—lizo / (Bilu(s) —ug, > + fold(s) — dg, %)
- or

=2 0 (Br{u—ug,,w) + fa({d —dg,, ¢)),

d 2 2
I|s:0f B31u(T) —ug|” + Ba|d(T) — dgl”)
s Q
= 2/9(/33(11(T) —ugq, o(T)) + B4(d(T) — dg, ¢(T))),
and
d 2
I|s=0/ BsIh(s) — s =2/ Bs(h(0) — e3., &).
s I'r Iy

Putting these together yields (4.29). This completes the proof. O

4.3 First-order necessary condition via adjoint'states

In_thisssubsection, we will'eliminate the pair (w, ¢) from the variational inequality (4.29)
and derive a first-order necessary condition in terms of the optimal solution together with its
adjoint states. For this purpose, we will first derive the corresponding adjoint system of the
control problem (4.1). Since this section is similar to section 6 of [5], we will only sketch it
here.

4.3.1 Formal derivation of the adjoint system

The Lagrange functional G for the control problem (4.1), with Lagrange multipliers p;, p2,
7, q; and q», is given by

G((u,d),h,p1,p2, 7, q1,q2) =

C((u, d), h) —/ (du+u-Vu— Au+ VP +V.(Vdo Vd), p1)

or
—| (V-wr —/ (3d+u-vd — Ad — |Vd|*d, p2)
or or
—/ (u, qr) —/ (d—h, q2), (4.30)
I'r 'r

for any h € Z]M and (u, d) € H. Here, we will eliminate the five constraints due to the state
problem (1.1)—(1.3) by five corresponding Lagrange multipliers p1, p2, 7, q1, q2.

For M > 0, let ((u, d), h) be a minimizer of the optimal control problem (4.1) such
that h € iy and (u, d) = S(h) € H. Then we expect that (u, d) and h together with
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the corresponding Lagrange multipliers py, p2, &, q1, g2 satisfy the optimality conditions
associated with the minimization problem for the Lagrange functional G, i.e.,

min G((u, d), h, (p1, p2, 7, q1, q2)), with (u, d) unconstrained and h € Uy;.  (4.31)
Then we have that
Gua (@, d) h, (p1,p2, 7, q1, @) (@, §) = 0, (4.32)
for all smooth functions (w, ¢) satisfying
wli=0 =0, ¢l;=0=0, inQ. (4.33)

Here (4.33) follows from the fact the initial data (ug, do) of (4.1) is fixed.
Similar to the derivation of (4.29), it follows from (4.32) that

0=ﬂ1/ (u—uQT,w>+ﬂz/ (d—do;.9)
or or
+ 53/Q(U(T) —uq,w(T)) + /34/9(11(T) —dg, ¢(T))
—/ (8,w+u~Vw—Aco+V}~’+w-Vu
or

—V-(V¢ ©Vd+Vd O V), p1)

— (V~w)n—/ (0 =AP +u -V + @ - Vd
On Or

—Vd|"¢ = 2(Vd, Vi)d, po)

- f (@, Q1) — f 6. @). (4.34)
rr r'r

Performing integration by parts, using the condition (4.33), and regrouping the relevant terms
in the same way as [5] page 1065, we can obtain the adjoint system for py, p2, ¥, q;, and
in Qr:

9p1+ Ap1 + VB +u-Vp; — (Vu)p; — (Vd)p2

=—p1(u—ug,),

V.p1 =0, (4.35)

P2+ Ap2 4 u - Vp; — 0;(3;d9;p}) — 9;(0;dd;p})

= —|Vd|’p2 + 2V - (Vd(d - p)) — f2(d — dy,),

with the following boundary and terminal conditions

{Pl , P2 on T, (4.36)

pili=r = B3(u(T) —uq), p2li=r = f4(d(T) —dg) in Q.

Furthermore, the Lagrange multipliers (q;, q2) can be uniquely determined by (p1, B, p2)
through

a By =0 r
{(Il+ vP1 + by on T (4.37)

5 + (wp2)* = 9;d*0,;p\ v’ +8,d*9;piv/, (k=1,2,3) on TI7.
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4.3.2 Solvability of the adjoint system

In this part, we will show the existence of a unique solution of (4.35) and (4.36). To do it, set
P =pi1(T—1), po=p2(T —1), and E(t) =B(T —1). (4.38)
Then (4.35) and (4.36) becomes

9P1 — AP — VB —w(T — 1) - V)
= —Vu(T — )p1 — VAT — P2 + p1(u —ug, (T — 1),
V.-p1 =0,

- - - (4.39)
P2 — Ap2 —w(T —1) - Vpy
-|—8,'(3jd(T - t)ajﬁl) + 3j(3,‘d(T — t)ajﬁl)
= |VA*(T — P2 — 2V - (VAA)(T — 1) - P2)) + fa(d — do, ) (T — 1),
in Q7, under the boundary and initial condition:
S =y .
(El, Ez) 0,0 on Iy, (4.40)
(P1.92) = (B3((T) —ug), B4(d(T) —dg)) in € x {0}
We have the following existence result to (4.39) and (4.40).
Theorem 4.1y Assume (A1) and (A2) hold, let (wsd) e/H and (ug, dg) satisfy,
j 0
llQGV,l S Q‘ﬁ3> , @41
do € HYR2,S7) with (d(T) —de)Ir =0, if s > 0.

Then the system (4.39) and (4.40) admits a unique weak solution (py, B, P2) such that
P1 € C(0, T1, V) N LTH (Q7),
BeL2H!(Qr) with Lﬁ(x, )dx =0,
P2 € C([0, T, L*(@,R%) N L7 Hy (Q1).
Moreover, it holds that
P12 m10r) + P2 2o12(07)

T
+ /O (B (I3 + 15201 510)) = Cr (4.42)

where Cr > 0 is a constant depending on ||[(u, )|, Billu — ug,lz20, B2lld —
do;llz2¢0,) B3llugllgi (@) Balldell (g, 2 and T. For any s € (0, 2), it also holds that

0ip2, VP2 € L**(Qr). (4.43)
Proof The existence of weak solutions follows from the Faedo—Galerkin method, similar

to [5] Proposition 4.1, which is left for the readers. Here we sketch the proof of a priori
estimates.
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Multiplying (4.39) by APy, (4.40) by P2, and adding the resulting equations, we obtain

Ld . o ~ 2 ~ 2 ~ 2
LTI g + 1202 ) + (1A, + VB2 )
. /Q W(T — 1) VB1. A1) + /Q (VT — )1, A1)
+ /Q (VAT — 1)a. A1) — /Q Brl(u — ug,)(T — 1), A1)
—/Q<ai<a,-d<T — 03B} + 8, A (T — 1);L). Ba)

+ [ 4vaPr = o, Fa) 2 [ (V- (VaAT - o)) )
8
n ﬁzfg«d—dQT)(T —0.B) =Y I (4.44)

i=1

We can estimate /; (1 <i < 8) as follows.

I < %nAﬁl 172 + ClIT = D51 o) VB2 g
Bl < 1 AB1 Pag, wGINT —)Pss [ VB P
16 LY@ H2(Q) LX)
15) st DPNe C 1E= BDI  V52
16 L-(2) H- (@) L>(2)
4] S BAD 2 g, + AT — ug )T =~ DI g

5] < = (18B1 220 + 1VB2122 g

51 = 16 P1 L2(Q) P2 L2(Q)
+C+ (T = DI )T = DI g
~(IVB1IZ gy + IB21172 )

| O 4 ~ 2

1 - ~
|| < RHszniz(m + ClIA(T = D320y 2172
+ ClA(T = D)1} P2172 g
5] < 1B211 72, + CA3 1A = do) (T = DI7a -

Putting these estimates into (4.44), we obtain
d ~ 2 ~ 2 ~ 2 ~ 2
E(”Vpl ”Lz(Q) + ||p2||L2(Q)) + (”Apl ||L2(Q) + ”va”Lz(Q))
< CA+ AT = D5 IAT = D30y IVBL72g) + [B2172(q)

+ CUNa(T = DI} ) + (T = D20 VBT g + 1B2172g)
+C (Bl —ug, ) (T = D2, + B3 11A = do ) (T = DI q)-
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Since (u, d) € H, we have that

T
/0 (Ia(T = D51 gy + 14T = D32 q)) di < Cliw, D)I3,,

T
/0 (Ia(T = D32y + 14T = D3 q)) di < Cliw, D)3,

Hence we can apply Gronwall’s inequality to show (4.42). Note that (4.42), together \yvith
(4.39) and (4.40), implies that 8,p1 € L>([0, T1, H), P> € L?H;'(Qr,R%), and VB €

L*(Q7).
Observe that

%P2 — Ap2 =F,
where
[F| < C[(Ju| + [VAN(T — 1)|VP2| + [VZd|(T — )| VP
+ VAT — O] VP1 + V(T — 0)[B2] + @ — d,)I(T = 1)].
It follows easily from (4.11) and the fact that (u, d) € H that
|F| € L>~°(Q7),V0 < s < 2.

Hence we can apply the standard L>S-theory of parabolic equations to deduce
3P, VP2 € L¥5(Q7). This completes _the proof. ]

From the relations (4.38) and(4:37)we have

Corollary 4.12° Under the same assumptions of Théorem 4.11, the adjoint system (4.35) and
(4.36)-admits a unique weak solution (p1, B, p2), satisfying the same properties as for the
weak solution (pi, E, P2) fo the system (4.39) and (4.40) stated in Theorem 4.11. Moreover,
the Lagrange multipliers (q1, q2) are uniquely determined by (4.37) such that

1 1
q € L?H2 (U7, R?), qo e L'H (T, R?). (4.45)

Proof The proof is similar to [4] Corollary 6.1. We omit the detail. O

4.3.3 The first-order necessary condition via adjoint systems

With the help of previous subsections, we are able to formulate another necessary condition for
optimal boundary control in terms of adjoint systems. More precisely, we have the following
theorem.

Theorem 4.13 Assume (A1) and (A2). For M > 0, let (ug, do) € V x H*(Q, S%) and
ug eV, if g3>0,
do e H(Q,S? 1) with (d(T) —do)|r =0, if B4 > 0.

Let h be an optimal boundary control for (4.1) in L{M, with the associate state (u d =

S(h) € H and the ad]omt state (p1, p2) given by (4.35) and (4.36). For any he Unm, if€is
the section of h* TU given by

d

$|s=0H_l(sH(h) + (1 = )T (h)),

&=
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then the following variational inequality holds:
ﬂ5/ (h—e3, &) +/ (3;d;p}v;+3;d3;p\v; — dyp2, &) > 0. (4.46)
rr rr

Proof Set
h(s) = IT™ ' (sTI(h) + (1 — $)TT1(M) € C'([0, 1], Uy).
and
(u(s). d(s)) = S(h(s)) for s € [0, 1].

Then h(0) = h, (u,d) = (u(0),d(0)), and h(1) = h. Then (4.46) follows from the mini-
mality of G at h and

d
ah:og((u, d), h(s), p1, p2. 7, q1, q2) > 0.
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