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Abstract This is in the sequel of authors’ paper [Lin, F. H., Pan, X. B. and Wang, C. Y.,
Phase transition for potentials of high dimensional wells, Comm. Pure Appl. Math., 65(6),
2012, 833-888] in which the authors had set up a program to verify rigorously some formal
statements associated with the multiple component phase transitions with higher dimen-
sional wells. The main goal here is to establish a regularity theory for minimizing maps
with a rather non-standard boundary condition at the sharp interface of the transition.
The authors also present a proof, under simplified geometric assumptions, of existence of
local smooth gradient flows under such constraints on interfaces which are in_the métion
by the mean-curvature. In a forthcoming paper, a general theery for Suchigradient flows
and its relation to Keller-Rubinstein-Sternberg’swwork’ (in 1989) lon the fastyreaction, slow
diffusion and motion bygtdieimean curvature would be addressed!
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1 Introduction

This is a continuation of our previous work Lin-Pan-Wang [12] in which we had set up a
program to verify various phenomena associated with multiple components phase transitions
with higher dimensional wells. One of the goals here is to show rigorously the formal asymptotic
arguments for the description of fast reaction, slow diffusion and sharp interface dynamics using
the Gingburg-Landau approximation as in the celebrated papers [17-18] by Keller-Rubinstein-
Sternberg. For the leading term of the energy functional in the static energy minimization,
we showed in [12] that the sharp interfaces for these general phase transition problem must
be area minimizing hypersurfaces with weights. For the energy minimization, each of weights
must be a constant giving by the length of a so-called minimal connection between a pair of
potential wells. Therefore for the gradient flow, the dynamic of these sharp interfaces would
simply be the motion by mean curvature provided that this weight function remains to be a
constant that equals the length of a minimal connection. The latter leads to a challenging issue
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of studying energy minimizing maps (phases) and its gradient flows that lie in multiple potential
wells (submanifolds) of high dimensions and, that each patch of such maps (phases) possesses
a specific and non-standard boundary condition at corresponding sharp interfaces. The phases
and their dynamics within each of the potential wells would be derived from the “slow diffusion”
part as in [17-18], and it is hence in the next term of formal asymptotic for the energy of the
system. This gives a nonlinear coupling between terms of different orders (in formal expansions)
of the energy through boundary conditions, and it leads us to the study of harmonic maps with
these unusual boundary conditions. In this paper, we show a boundary regularity theory of
minimizing harmonic maps in the above described problems. We also establish a theorem on
the short time existence of classical solutions to the corresponding heat flows. In a forthcoming
work, we will address these dynamical issues in a more general context.

Let us first recall the Cahn-Hilliard energy functional that models the phase transition
described by a scalar function v:

E.(v) = /Q <6|Vv|2 + %W(v)) dz,

where 0 C R™ is assumed to be a bounded, smooth domain in R™ throughout this paper,
v : Q +— R is the density function, and W : R +— R, is a double-well potential function that

has two minima (zeros) at +1. The term ¢|Vv|? is the interfacial energy t lizes the
formation of interface. The asymptotiasbe imi er constraint
Jove = , was first_studi odi , and Luckhaus-
Modica ve sh S between the two stable phases has
O(e) nd the phal } converges to a minimal hypersurface within the frame
work of i convergence theory. There are many important contributions to this

examples [5, 10, 13-15, 21-22]).
Rubinstein-Sternberg-Keller [17-18] introduced the vector-valued system of fast reaction

problem

and slow diffusion:

Ove

aE:AE_ _1Wv € i Qv
v = €AV, — € (ve) in 5

=0 on 09,

where the order paramter v, : Q — R* represents the multiple component phases, and W :
R* ++ R, vanishes on two disjoint submanifolds in R*. In this case, a front develops in Q.
By the formal WKB analysis on the asymptotic expansion for potential functions vanishing
on two submanifolds, it was found in [17-18] the front moves by its mean curvature, and v.
approximates the heat flow of harmonic maps away from the front. Although there have been
many studies for the rigorous analysis of such an asymptotics for the scalar case k = 1, the
corresponding analysis has remained an open problem for k > 2.
Next we recall the main results of [12]. For k > 1, let

N=NTUN~ CRF

be the union of two disjoint, compact, connected, smooth Riemannian manifolds N* C RF
without boundaries. For § > 0, let

Ns ={peRF: d(p,N) = inf |p—y| < J}
yeN
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denote the 6-neighborhood of N. It is well known that there exists d > 0 such that d?(p, N) €
C°°(Ns, ). Consider the class of double-well potential functions depending only on the distance
function from N, namely,

F(p) = f(d*(p,N)),
where f € C*° (R, R, ) satisfies the property that there exist ¢1,ca,c3 > 0 such that

cit < f(t) <eot, i 0<t<6%,
f(t) = cs, if ¢ > 403,

Consider the family of Cahn-Hiliard functional
E.(u) = /9(62|VU|2 + F(u))dz, ue HY(Q,RY), e>0,
that are singular perturbations of the functional of phase transitions of high dimensional wells:
u) = /QF(U) dz, wue L'(Q,RM).

For the boundary conditions, we let £+ C 9 be two disjoint, connected, open subsets of 9
such that
(1) ¥ = 93~ = X is a connected (n — 2)-dimensional smooth manifold; !
>, and

(2) Q=T ux- U
For any s >0, let 7 = {x m“ ,
denote n. As >0, ge : 0Q — RF

satisfy:

(1) g-c N, g.(0 f
/6 (9l ¢ F(g) do < I (1.2)

(2) for any p* € N+, 3 extension maps

GE: x5 x[0,6”] = N*

such that
+ _ + _ E
Ge }zjﬁx{o} =9, Ge |E::ﬁ><{eﬁ} =P
+2 8 2 ypn-1, 1 +12 ypn—1 (1.3)
VeEPdr<cfe | (VegPam v o | g - pERFanm,
=%, x[0,¢] =4 & ey
where V., denotes the tangential derivative on hypersurfaces in R™.
Set
1
. 2 . _
E(e) = mm{/Q (|Vu| + 6—2F(u)> dz @ ul,, = ge}. (1.4)

In [12], we proved the following theorem.

Theorem A Assume that F € C®(RF) satisfies (1.1), T C Q is an area-minimizing
hypersurface with OT = % and g, : 0Q — R* satisfies conditions (1.2) and (1.3). Then

lim €E(e) = ¢§ H"1(I), (1.5)

e—0
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where c&' is the energy of the minimal connecting orbits between N* and N~ defined by
o =inf{c"(p*,p7): p* € N*} (1.6)
and
o) =it { [(€OF + PO ¢ € HRRY, ¢lto) =pt}. (11

Let
dy = inf{[p* —p~|: p* € N¥}

be the euclidean distance between Nt and N~, and

(1.8)

Mt ={pteNt: I3p- e N™ st. [pm —p7| =dn};
M- ={q e N~ : 3qt e Ntst. |¢" —q¢ | =dn}

be the pair of minimal sets in N*.
Assume that g. is almost optimal near ¥ in the sense that its limit g = lim ge gives the

minimal connecting orbits between Nt and N~ (see [12, pp.804-841] for more detalls Then
we also proved in [12] the following result.

Theorem B Assume F(p) = f( satzs es @m tmzmzzzng
hypers =3, whzch, 18
p )| =dn ae. x €T} #0.

E(e) = ?H”‘l(l“) +D +o(1), (1.9)

where

D = inf {/ |Vol? dz —I—/ |Vol?dz: v e A}. (1.10)
ot Q-

Furthermore, if {u.} is a sequence of minimizers of E(e), then there exists u € A attaining the
value D such that after taking a possible subsequence, u. converges to u in L' (2, R¥).

The first aim of this paper is to study the boundary regularity of a minimizing harmonic
map v € A that attains D near the sharp interface I'. In order to achieve it, we make some
further assumptions on the minimal sets M*. More precisely, let MT C Nt and M~ C N~
be such that

e MT and M~ are connected, C'-manifolds without boundaries, equipped with induced
metric from NT and N~ respectively;

e there exists a C! diffeomorphism ®* : M+ ++ M ~, whose inverse mapis ®~ : M~ + M.
Let I C € be a smooth hypersurface with boundary X, i.e., ' = 3. Denote the two connected
components of 2 separated by I' by Q% ie., Q\ ' = QT UQ~, so that

o0t =2+ uUT.
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Let g : 092 — N be a given map such that g € Hl(Ei,Ni), and the two one-side trace
values of g on X satisfy:

g () (= g(z?)) € H%(E,Mi) and @1 (g7 (z)) =g (z) a.e. z € 2. (1.11)
The minimization problem seeks

inf{E(u) | u € HY(QF, N%), uloq =g, u(l'F) c M*,
T (ut(z)) =u (z) a.e. x €T}, (1.12)

where
1

1
E(u) = —/ |Vu|* dz + —/ |Vu|? dz.
2 Q+ 2 Q_
It is readily seen that if the configuration space
A={ue HY(QF N5 : ulpg =g, u(lF) c ME, ot (ut(z)) =u (z) ae zel} (1.13)
is non-empty, then there exists at least one energy minimizing map u € A, i.e.,
E(u) < E(v), YveA.

Note that for n > 3 if, up to a diffeomorphism, Q@ = By C R™, the unit ball, ¥ = @By N{z,, =

0}, ¥* =90B1 NRY, I' = By N {x, = 0}, andg€H1 Ei,Ni
fact, it is not hard to verify that the ho r € By,
belong eral,

Le . ssume {0} g : 00 — N satisfies g|s+ €

Hl(EjE nd the cond (1.11) holds. Then A s non-empty.

Proo note the two one side trace of g on ¥ by g% () for z € ¥. Then by (1.11)
gF € H2(X, M*). First, we want to extend ¢* : ¥ — M* to maps G* : ' — M=*. By (1.11),
it suffices to construct an extension map G* of g7, since G~ (z) = @7 (Gt (z)) for x € T will
provide an extension of g~. Since M is connected, i.e., IIo(M ™) = {0}, Theorem 6.2 of Hardt-
Lin [7-8] implies that for any 1 < p < 2, there exists an extension map G+ € W1P(I', M)
such that GT|,, = g* in the trace sense. Now we let ut € H'(QF,R*) solve

Aut =0 in QF,
ut =g onXt, (1.14)

ut =Gt onl.

Since IT; (N 1) = 0, by applying the extension Lemma 6.1 of [8] as in the proof of Theorem 6.2
of [8] we conclude that there exists a map ut € H'(QF, N*) such that at —ut € H3(QF,R¥)
and

~+12 < +12 < +
[ wate <o [ 9t < Cllalyy gy +16 gy )
< Olllol 3 gy + 19113 ) < Cllglls o)

Similarly, we can find an extension map u~ € H'(Q~,N~) such that «~ = g on ¥~ and
4~ = G~ on T. Now if we set @ : Q +— N by letting %(x) = u*(z) for z € QF, then u € A.
This completes the proof.
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For a minimizing harmonic map u € A, denote the set of discontinuous points of u in Q* UT
by S*(u) € QF UT and define
S(u) =8T(u) US™ (u)

as the set of discontinuous points of u in Q.

It follows from the interior regularity theory of minimizing harmonic maps by Schoen-
Uhlenbeck [19] that S(u) N (2 \ {T'}) has Hausdorff dimension at most n — 3.

Our first main result concerns the boundary partial regularity at I' for a minimizing harmonic
map u in A, which is stated as follows.

Theorem 1.1 Assume that the boundary value g € H' (X%, N*) satisfies the condition
(1.11). If u € A is an energy minimizing harmonic map, then

(i) S(u) NT is discrete for n = 3;

(ii) S(u) NT is of Hausdorff dimension at most (n — 3) for n > 4.

The paper is organized as follows. In §2, we will give a proof of Theorem 1.1. In §3, we will
discuss the corresponding problem on the heat flow and establish the existence of short time
regular solutions. In §4, we will provide boundary monotonicity inequalities for both stationary
harmonic maps and their corresponding heat flows under the same boundary condition in
Theorem 1.1, which may have its own interest and are useful to future studies. t

2 Proo

2.1 Eu

In th
in A.

Assume that u € A is an energy minimizing map. For a sufficiently small § > 0, let
u(t, ) € A, t € (=9,9), be a family of comparison maps for u, i.e., u(0,-) = u(-). For t € (—0,9),
let u* (¢, z) denote the two one-sided trace value of u(t,z) for x € I'. Then for ¢t € (—6,7), we
have

range eq

ction, we will derive the Euler-Lagrange equation for energy minimizing maps

u(t,z) = g(x) forxeX; wu(t,z)e N* forxzeQF; wuwh(t,z)e M* forzeTl,

and
ST (ut(t,z)) =u(t,x) for H" ' ae. zcT.

Set ¢(z) = |,_,u(t,z) for z € Q. Then we have

_4 (1 241 2
O_dt|t:0(2/9+ V| +2/Q_ [Vuel?)

- Vu~V¢+/ Vu-Vo.
ot Q-

For the test function ¢, if we denote by ¢* () the two one-sided trace value of ¢ on I' from QF,
then

o(x) € Tu(w)NjE for a.e. z € OF; ¢ () € Tu:t(z)M:t for H* ' ae. 2z €T,
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and
DOt (uT () (¢ (x)) = ¢~ (x) for H" ' ae. z €T.

Let AT denote the second fundamental form of N* in R* and denote u* = u}Qi. Then by
integration by parts u satisfies

—AuT = AT (ut)(Vut, Vu™) in QF,

—Au” =A"(u)(Vu",Vu") in Q7

u=gq on 89,

ut(x) € M+, &% (ut(z)) = u () onT, (2.1)
(%‘—:)T(g@) — (D& (ut (2)))! [(%)T(g@)} onT.

Here ()T(:L') : Tu+(m)N+ — Tu+(m)M+ (and ()T(:L') Ty N~ = Tu—(z)M_) denotes the
orthogonal projection map for x € I'; and

pt. Tuf(m)M_ — Tu+(z)M+ (OI‘ Tu+(m)M+ — Tuf(z)M_)

aJerent
It is no that t e writte

(6;—1/_ - s 81/ )} on I

ary monotonicity inequality

denotes the adjoint of the linear map

P: Tu+(m)M+ — T, -

2.2 Bo

In order to establish the partial boundary regularity for energy minimizing maps in A, we
need a version of boundary monotonicity inequality.

For R > 0, denote by Br C R™ the ball of radius R and center 0, Bf‘é = Br N RY.
Since T' is smooth, there exists 7o = ro(I') > 0 such that for any 2o € T, 0 < r < ry :=
£ min{ro, dist(zo, 99)}, there exist C' > 0 and C*-diffeomorphism ¥ : B,(x9) = B,(z) N Q2 —
B, so that

U(QF N B,(x)) = BE, |DU(z) —1,| < Clz — x| for z € By(x). (2.2)

Here I, is the identity matrix of order n. By Fubini’s theorem, u € H*(9B,(x) N Q*, N*) for
almost all » € (0,71) so that if we define

u(z), x € Q\ By(z0),

u(qj—l{r;gid), x € QN Br(xp),

then u € A is a comparison map for u. Thus by the energy minimality, we have

/ |Vu|2+/ Vul? g/ |va|2+/ V2.
Q+ﬂBr(l‘0) QfﬂBr(fl‘o) Q+ﬂBr(l‘0) QfﬂBr(fl‘o)

u(x) =
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Utilizing (2.2) and direct calculations, we have that

(n—2—Cr)(/ |Vu|2+/ |Vu|2>
Q+ﬁBr(:lTo) Q- ﬁBT(Io)
< r(/ Vuf? +/ VP
QTNOB,(z0) Q- NIB,(xo)
[N
- r( +
Q+NOB, (o) d|x — o Q= NOB,(z0)
Therefore, for any xo € ' and r € (0,71), we have that
d Cr 2—n 2 2
< eCry ( Vul? + Vul )}
dr QB (o) Q- N B, (z0)

2 2
> 20 / v P / Ou ‘ ] (2.3)
Q+NOB,(z0) Olz — o Q= NOB,(z0)

Olx — xo]
holds, provided u € A is an energy minimizing map. In particular, by integrating (2.3) with

ﬁf)

respect to r, we obtain that for any zg € I' and 0 < Ry < Ry < rq,

Vul? + / Vuf?)

Q+OBRl(m0) Q~NBR, (o) t
f )

OR ul* + |Vu|2) (2.4)

QFNBr,(z0) Q= NBRy (20)
holds for ergy minimizing map u € A.

2.3 Boundary extension lemma

CR1R2 n

A crucial ingredient to prove Theorem 1.1 is the following boundary extension lemma, similar
to [9, Lemma 3.1].

Lemma 2.1 There exist positive constants §, q, and C such that, if 0 < e <1, zo € I', and
0 < ro < dist(zg,d0Q), if n= € HY(OBy,(v0) N QE, NT) satisfies

/ |Vtanni|2dHn—l|:/ |nj: _pi|2dHn—l
8BTO (.’L‘())ﬂﬂi 8BTO (wo)ﬂﬂi

—I—/ Int — pt|? dH"_z} < 6%l (2.5)
8BTO (.’L‘())ﬂr

for some p* € R*, and if n : 0B, (z0) NT = M* satisfies
n~ () =®T(nT(x)) for H"? ae. x € OBy, (xo) NT,

then there exist maps w* € H' (B, (zo) N Q% N*) such that w® = n* on 0B, (x¢) N, and
wE By (20) NT = M* satisfies

w(z) =dT(wh(x)) for H" ' ae. x € By, (xo) NT.
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Furthermore, it holds that

/ Vw2 da

BTO (Io)ﬂﬂi

<e / |Viann ™| dH™ 1
OB, (w0)NQE

+ CE_q[/ |n:i: _p:t|2 dgn—1 +/ |n:i: _p:t|2 dHn_2:|. (26)
GBTO (:Eo)ﬁﬂi 8BTO (zo)NI?

Here Vian denotes the tangential gradient on 0By, (x¢).

Proof The proof can be done by suitable modifications of the arguments from [8-9] and
[19]. Tt is based on an induction of the dimension n. There are two crucial ingredients of the
construction:

(i) Construction in dimension n = 2;

(ii) Homogeneous of degree zero extension for n > 3.

For simplicity, we will only indicate how to implement these two ingredients in our situation.
The interested readers can consult with [8-9, 19] for more details.

Case 1 n = 2 (linear interpolation). Since the problem is invariant under bi- 1psch1tz
transformatlons we may assume that zp = B1 =0}).
Denote b ? the half unit cir

p inf{|n 0 e St
Then it 1 to see that

05~ < e [l =t

1
/|¢—¢%W5#Wﬁ—ﬁﬁ
s s

By Sobolev’s embedding inequality H'(ST) C Cz (ST), we have that

mwnmfﬁMWS%LWmﬁﬂaéyﬁﬂ%Wf

0eSF

Set

1+t
( ;r>n+(1,0), —-1<t<1.

Then we have

11n<%)éldist(w+(t, 0), MT) < ¢|nt(1,0) —nt(=1,0)] < ce?.
Recall that there exists 6o = do(M*) > 0 such that for any 0 < § < Jy, the nearest point
projection maps I+ : (M*)s — M* and Hy= : (N*)s — N* are smooth, where (M*);
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(or (N*)s respectively) denotes the d-neighborhood of M* (or N* respectively) in R¥. Let
vt : B — RF solve

Avt =0 in B,
vt =nt on S,
v =T+ (wT) on I'y.

Since max{oscsfrn“‘, oser, M+ (wh)} < Cde?, it follows from the maximum principle that

max dist(vF (), NT) < cde?.
wEBfr

Thus we can define L
wh(z) =y+ (vt (z)), =€ Bf.

To construct w™, first let
w™ (¢,0) = @ (I (wh(2,0)), —-1<t<1,

so that w=(I'y) € M~. Let v~ : B] ~ R* solve

in By,
¢ men
Then w
‘! max dist(v ) < cde?,
r€B
so that n define

w (z) =Ty- (v (z)), x€B.

It follows directly from the above construction that w™(z) = @ (w*(z)) for 2 € 'y, and (2.6)
follows from the standard estimate on harmonic functions.

Case 2 n > 3 (homogeneous of degree zero extension). For 0 < 0 < 1, let Bgt’"_1 be (n—1)-
dimensional half balls of radius § > 0, and Cgt’” = Bgt’”_l X [—0, 8] be the n-dimensional half
cylinders of size §. Let Sf’”_Q be the (n — 2)-dimensional half spheres of radius § so that
9By =8P uBy

Lemma 2.2 Foru® € Hl((Bgc’"_lx{ié}) (si 25 [=6,0]), N, if uf (z) = ut(z, —0)
and ui (z) = u*(x,9), = € B[Si’"_l, satisfies ui,uy € Hl(Bi" LN, if ut (2, 1) = uF (@)
for (z,t) € Sgt’"_Q x [—6,8], with uf € Hl(SgE "2 NE), and if

ut(x,t) € M* satisfies u™ (2,t) = @ (u™ (2,1))
for H" % a.e. 2 € By ™% and t = —6, 0. (2.7)

Then there exist extension maps u* € H* (C(si’", N#%) such that

N

uF =uF on (BT x {£8}) U (S5 x [-6,4]),

— _ 2.8
uE(z,t) € ME, u=(z,t) = ®T(uF(x,t)) for H" ' ae. (2,t) € By 2 x [, 4] @8)
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and
E(u®;C5") < ¢dBs(uf) + Es(ud) + 6E(ui)], (2.9)
W (u®; ™) < cd[Ws(ui) + Wi(ui) + oW (u)). (2.10)
Here
Es(uf) = / \Vul[PdH" Y, i=1,2; E@ul)= / \Vianui|> dH" 2
BEmn-t gEmn-2
and

Wt = [ epPann s imve wed) = [ - e
5

)

for some fived p* € RL.

Proof By scaling, we may assume § = 1. There exists a bi-Lipschitz homeomorphism
fE  0BE™ — 8CT™ such that fF(z) = |$|fi(‘i‘) . Bf™ — CF™ is also a bi-Lipschitz
homeomorphlsm Let II(z) = % : B} \ {0} — OB} be the radial projection map. Define the
projection map IT* : Ci "\ {0} — 80i " by II* = ffollo (f)~'. Then deﬁnet

ée ondltlon (2.8) on I'y. Tt is also

E(u® o f£,0B1") < C(K)E(u*;0C1™),

Irl

It is ea
easy to

E(u

where K is a constant depending on the Lipschitz constants of f* and (f_i)_l. This implies
(2.9). Similar argument for W also yields (2.10).

Corollary 2.1 There is a constant ¢ > 0 such that under the same assumptions of Lemma
2.1, if u € H'(QF, N*) N A is energy minimizing among all maps in A, and for any xo € T
and 0 < ro < dist(xg, 09),

rg—”(/ |Vt +/ |Vu—|2) < Iad,
Q+0BTO(ZL‘0) QfﬂBrO(fl‘o)

2—n
()" / Vat]? + / Vu~P?)
2 Q+QB%Q (z0) Q_QB%Q (xo)
< Ar?f"(/ |Vu+|2+/ vuF)
Q+NBr (w0) Q= NByry(z0)
—i—c)\_qro_n[/ ju™ —7F|2+/ ™ _1;:|2}
Q+ﬂBrO (wo) Q_ﬂBrO (Zl‘o)

+cx—qr§—”[/ lut — w2 dH"2 +/ u™ —u [2dH"2|, (2.11)
GBTO (zo)NI" 8BTO (xo)NT

then
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+

where ut = u|g+ denotes the restriction of u on QF, and

— 1
= — wtdH" !
|Bro(z0) M| /B, (zo)nr

is the average of the one-side trace of u™ in By, (xo) NT.

Proof For simplicity, we assume 79 = 1. Since u* : QF — N* and N* is compact, it

) / ut dH”—lj <c.
B (20)NT

From the Poincaré inequality, we have that

/ lu® — Qﬁ|2 < c/ |Vut)?.
QiﬁBl(wo) QiﬁBl(.’l‘o)

From the trace estimate and the Poincaré inequality, we also have that

follows

/ |u™® —ui|2dH” L<efu® —uﬂEH2 < c/ |Vu® %
Bl(wo)ﬂr HQ(B (:l?o)ﬁr) QiﬂB1(wo)

Applying Fubini’s theorem, we can choose r E such that

uEPaE / |ui—zﬁ|2dH"—2}
QiﬂaB OB, (20)NT

§c[/ |ui—ui|2—|—/ |ui—1ﬁ|2}
QiﬁBl(:lfo) I'NBi1(xo)

< c/ |Vut |2
QiﬂBl(iro)

By choosing a sufficiently small ¢ > 0, we can apply Lemma 2.1 with n* = u® | 0B,(x¢) N Q*

and p* = uE to obtain an extension map wt € HY(B,(x0) N QF, N*) such that w* = u* on

OB, (z0) N QF, wi|B (o)1 DaS image in M* that satisfies
w(z) =dT(wh(x)) for H" ' ae. z € B.(zo)NT,
and the estimate (2.6). If we define u: Q — N by

() = wt(x) r € B(x9) NQF,
u(z) x € Q\ By(xo).

Then u € A is a comparison map of u. Hence the energy minimality of v implies that

/ IVt + / Vu P < / Vet + / Vo P,
Q+HBT(I0) QfﬁBr(:lfo) Q+OBT(:E0) QfﬁBr(:lfo)

which, combined with (2.6), then implies (2.11). This completes the proof.
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2.4 Small energy regularity
Another crucial step to prove Theorem 1.1 is the following energy improvement property.

Lemma 2.3 There exist positive constants €,C, and 0 < 1 such that if u € A is an energy
minimizing map that satisfies, for xg € T and some 0 < ro < dist(zg, ),

re” "(/ |Vu|2—|—/ |Vu|2) <€ (2.12)
Q+QBTO(10) QfﬁBrO(Io)

then

o> ([ Vi + [ Vul?)
Q+NBor, (z0) Q~NBgry (z0)

1
< — max {rg_”(/ |Vul? +/ |Vu|2), CLip(I‘)}. (2.13)
2 QO+ B,y (z0) Q-NB,, (z0)

The proof of Lemma 2.3 is based on a blowing up argument, similar to [9, Theorem 3.3].
Before presenting it, we need the following regularity estimate on the linear equation, resulting
from the blow-up process of the nonlinear harmonic map equation (2.2).

Denote by Bi" and B the upper half and lower half unit ball, and set I'y = By N {z,, = 0}.
For at € M+, let a= = ®F(at) € M~. Let Tan(a™, M*) denote the tangent spade of M* at

, and Nor(a*, M*) denote the normal s

e of Mx C NjE at a®
For any + € Tan( ﬁ ompose it as
vy = Uti +l,

where v%. denotes the orthogonal projection of vy into Tan(a®™, M*), and v} denotes the

orthogonal projection of vy into Nor(a™, M¥).

Lemma 2.4 Suppose that vy € Hl(Bli,Tan(ai,Ni)) are two harmonic functions, with
traces ’Ui}l"l € Hz (I, Tan(a®, M*)), satisfying

v_ = DOF(aT)(vy) on I'y,
(%)T - (D@+(a+))t(g%>T on T1. 2
Then vy € C*°(B i UF%), and for any 1 > 1, it holds
Isllonstory) < O 19 Nenseoy, ol oz (2.15)
Proof Since a* € M¥*, we can decompose vy = vl + v so that
Avl. =0 in B, (2.16)

and

Avt =0 in Bf. (2.17)
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Since vt (z) € Tan(a™, M*) for H"~! a.e. x € I';, we have that
vl =0 onl}y. (2.18)

It is readily seen that by (2.17) and (2.18), v} € C*®(Bf U F%), and for any [ > 1,

=

||Ui||cl(13fur%) <, ||”l||H1(Bli))~ (2.19)
2

To show regularity of v, we denote P = D®*(a™) and proceed as follows. Define v_ : B}
T,+N7T be an even extension v_, i.e.,

v_ (2’ ) =v_(2, —x,), (' 2,) € Bf.

Then it is easy to see that

—t .

é/(:)_ —P(}))=0 in B, (2.20)

v_"—=P(vh)=0 on I'y
and

(=) =0 in By,
e (2.21)
elermell

From thi ard theory unctions, we see that (2.20) and (2.21) imply

(5= = PWL)), (o) + P=Y) € C(B] UT,),
5 2
and it holds that, for any [ > 1,
[ P(Ui)”cl(B;Url) + vl + Pt(ﬁt)”cl(B;url) < O ot g py)- (2.22)
b 2 5 2
If PPt =14, i.e., P € O(k) is an orthogonal matrix, then we have
' = P(ol)| = |P(P") — ob)| = [P — o).

This and (2.22) easily yield (2.15).
If PP? # 1, then P~! # P! and we can also see easily that (2.15) follows from (2.22). This
completes the proof.

Proof of Lemma 2.4 The proof follows from a blow-up argument, Lemma 2.4, and the
boundary extension Lemma 2.2. Here we only sketch the argument.

For simplicity, assume that g = 0, 7o = 1, Q@ = By, and I' = T’y so that Lip(T") = 0.
Suppose that the conclusion were false. Then for any 6 € (0, 1), there would exist ¢; — 0 and
a sequence of minimizing harmonic maps u; € A that satisfy

/ |V |? +/ |Vu; |? = é? (2.23)
B By
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and
1
02_"(/ |V |? —I—/ |Vu[|2) > —ef. (2.24)
Bf By 2
0 o

Let E = \F_lll fFl uli denote the average of the two one-sided traces of u; on I'y. By the Poincaré
inequality on I'; and H! trace theory, we have

dist(uf, M*)? <

< uf —uf PAH" Y < o[ Va2, 0 < el
1 Ty

L2(B)

Therefore for i sufficiently large there is a unique nearest point a;" = Il+ (uj) € M™ such
that
lul — a;f| = dist(u; ", MT).

Since u; = ®¥(uj) on I'y, it is readily seen that a; = ®T(a]) € M~ satisfies
- -2 1 F (ot +ah| 2 (pF +_ g t2
i —arP =g [ ot - ot @h)] < @) [ fuf o]
1Jr, I

<e | Juf —ufP el —af? < e

: spnent

a; _
; r € By .

Now we define the corresponding blow

Vg

It is easy to see that

/+ |Vt 2 +/ Vo |2 =1 (2.25)
B1 .

By

and

1
92—"(/ |Vvi+|2+/ |Vv;|2> > = (2.26)
By By 2
By (2.25) and the H'-trace theory, we have
i g1 2y < e

Hence, after taking a subsequence, there exists v : By — R*, with vy (= vlpx) € H'(BE,R¥),
such that v converge to vy weakly in H'(Bi, R¥). In particular, by (2.25), we have

/ |Vv+|2+/ |Vo_|? <1. (2.27)
Bf By
Again passing to a subsequence, we assume that

lim ¢f =a" € M* and lima; =a” =®T(at)e M.

1—00 1—00
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It is not hard to verify that vy (z) € T,+ Nt for a.e. € B, and v_(x) € T,- N~ for a.e.
x € By . Since ui (r) € M* for H" ! a.e. 2 € T'y, it is also not hard to see that

vi(z) € Tan(a®™, M*) and v_(z) = D®*(a¥)(vy(2)) H" ! ae. z € Ty. (2.28)

Since v satisfies
—AvE = AT (WE)(VoE, Vol) in B

and

|AE (uF)(VoE, Vol)| < ¢ |VoE)? <,
B::lk K2 2 2 Bi K2

1
we have, after taking ¢ to infinity, that
—Avy =0 in Bf. (2.29)

Since v also satisfies the trace condition

(6185)”) = (D®" (e;v] (z) + a]))" (e 6; )T on Iy,

we obtain, after taking ¢ to infinity, that

(%) é m (2.30)
tion map. Moreover, we claim

vi dH"" =0. (2.31)
wt—at
Set w = % = and wh = hm w;". Then we have that w* € Nor(at, M*). Hence for H"~*
a.e. x €Iy,
+ +
1—»00 €;

Hx)—al .
since “1(2# converges to a vector in Tan(a®, M T). Thus

() —
lwh [? = hm |wf > = — lim u (@) —a whdH™ =0
|F1| 71— 00 r €; T
This implies
1 1 F—af ot —af
— [ wpdH = him [ LT gt = g U0t =,
|F1| Ty |F1|1—>00 T €; i—00 €;

To see fFl v_dH" 1 = 0, observe that

- —
Uy — 4 _ Dqﬁ(a;i-)(u
€

€

= Do (0 ) (w)") + o(1)[|v || 1y,
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so that

1 u__ —a;
vodH" '= — lim &+—% = —D<1>+ wt) =0.
/n T Ty | oo T, | (a™)(w™)

€

By (2.28)—(2.30), we can apply Lemma 2.4 to conclude that vy € C*(B
(2.27) and (2.31) we have that for any 0 < 0 < 1,

0 ([t =P+ [ Jo- - 0l?)

6 BQ

< 092(/ |V, |? +/ |Vv_|2> < cb?, (2.32)
Bf By

£). Moreover, by

l\)l»—‘

where (v )p = FL [ vedH n=1 By the Poincaré inequality and the trace theory we also have
Ty

0 ([t = @l 4 [ - = )P
Ty Ty
<o ([ el [ Vo) <o (2.33)
Bf By

Since v — vy in L2(Bi) and L*(T'y), it follows from (2.32)(2.33) that for i suffigiently large

fetarmetity

Combini‘i) with (2.34)) we can repeat the argument of [8] to get a desired contradiction.

Proo

eorem 1.1 It is well-known that iterations of Lemma 2.3, combined with the
interior e-regularity, implies that there exist €y > 0 and ag € (0, 1) such that if for o € T', there
exists rg > 0 such that

() Va4 [ ) < &,
Q+ﬂBro(w0) Q_QBTO(‘TO)

then u € C*°(Q*¥ N B w0 (o), N )L Tt follows from this property that the set S(u) of discon-
tinuity for v in Q* UT can be shown to have H""2(S(u)) = 0. It follows from [19] that the
Hausdorff dimension of S(u), dimy(S(u) N (QT U Q7)) < n — 3 for n > 3. Employing the
boundary extension Lemma 2.1 and Federer’s dimension reduction argument, we can proceed,
similar to [9, 20], to conclude that dimy (S(u)NT) < n—3 for n > 3, and S(u) is discrete when
n = 3. This completes the proof.

3 On the Local Existence of Regular Solutions to Heat Flow

In this section, we will consider the gradient flow associated with the minimization problem
(1.12), or, equivalently, the parabolic version of the harmonic map equation (2.1). Under some
further assumptions on M* and T, to be specified below, we will establish the local existence

1Higher order regularity of u, e.g, u € Ch® (Q_i N Brg (z0)), can be shown, provided that the map &7 :
2
M™* — M~ is assumed to be C'*t1:¢ for some [ > 1 and 0 < o < 1.
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of regular solutions of the heat flow under the initial and corresponding boundary conditions.
For the harmonic map heat flow, the reader can refer to the articles [2-3, 24-25].

Before describing the corresponding heat flow problem, we first need to introduce some
notations. For a given T > 0, let {T'(¢) : ¢t € [0,T]} be a smooth family of smooth hypersurfaces,
with T'(0) =T, such that

art)y=0r=%, vo<t<T.

For ¢ € [0,T], decompose © \ T'(¢) into the disjoint union of two simply connected components
QF(t) and Q7 (1), i.e.,
Q\T(t) =0T (t)uQ=(t), telo,T].

Denote QF = Q*(0), and write
Q\I'=0TuQ~, N\X=xTux",
so that 9QT = T'U X+, Set
Qr={(z,t): z€Q, 0<t<T}, 9,Qr = (2 x{0})U (90 x (0,T])
and

Tp={(z,t): x€T(t), 0<t<T} Q ::UGQi t
The ha i follows. We are

, that solves

) in Q;v
- ( in Q7,

(z,t) € ©*F x (0,77,

looking

on QF x {0}, (3.1)
on I'p,
Out\T Ou™\T
gu :D<I>++t[<—>} I'r.
(z—») DeT @) (5 o
Here uO C QF  NE| with uf(z) € M* satisfying ug (z) = ®t(uf(z)) for € T, and
gt = ug }zi are given initial and boundary values.

In order to establish the short time existence of regular solutions to (3.1), we need to set up
the problem appropriately by specifying the assumptions (A), (B), and (C) on N* and M*:

(A) The target Riemannian manifolds (N*, h*) have the same dimension dim(N*) = k+m.
For, otherwise, if k1 = dim(N7T) < ko = dim(N ™), then we can replace (N*,h™) by

(Nt = Nt x S5 1% = bt @ hean),

where hea, denotes the standard metric on S¥2—%1. Notice that dim(]Tf:) = ko. Moreover, for
any map u : Q7 (t) x [0,7] — NT, if we define u(z,t) = (u(z,t),e) : QT (¢) x [0,T] — N+,
where e € S¥27%1 then we can show that if u is a solution to the heat flow of harmonic maps
to N7T, then @ is also a solution to the heat flow of harmonic maps to N+. This follows from
the chain rule and the fact that (N*,hT) is a totally geodesic sub-manifold of (ﬂ, l/L?F)
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(B) The manifolds M* C N* are two k-dimensional compact smooth sub-manifolds, with
OM™* = (), such that there exists a smooth diffeomorphism ®*+ : M* — M~, whose inverse
is denoted by ®~ : M~ — M™. Moreover, there exists 1o = ro(M™*) > 0 such that for any
pT € M, ®T can be extended into a smooth diffeomorphism, still denoted as itself,

ot BN (pt) = {pe N* 1 dy+(p,p?) <10} = BN (07)={pe N~ :dy(p,p") <m0},

whose inverse is also denoted by ®~.
(C) There exists a 0 < 1y = 71 (NT) < ro(M™) such that for any p™ € N7, there exists a
local parametrization of BN" (p*) by (Bf x BJ*,¢"), i.c

U= (Ul U2) ((u17 ,Uk), (uk+17 to 7uk+m)) € B{c X BIn

provides a local representation of qu\lﬁ (p*) via the diffeomorphism ¢ : BY x BJ" qu\lﬁ (p™).
We may assume that U(p™) = (0,0), and if p* € M* then

UMt nBY (pt)) ={U = (U, U?) € Bf x B : U*> =0},

and the Riemannian metric A" on Bi\lﬁ( *) can be expressed by

h@l

M mBN

k+m

and the d metric of ) is given by

Z hi (U, 0)du; @ duy, VU € BY.

4,j=1

It is readily seen that for p* € M™ and p~ = ®*(p™), through the diffeomorphism &% :
B,{\:r (p%) — BN (p), U= (U',U?) € B} x B" provides a local parametrization of BY (p~)
through the diffeomorphism ¢~ := ®*(¢") : BY x B{ — BY (p~). In particular, U(p~) =
(0,0),

UM nBY (p7)={U=(U"U? e B} xB": U?>=0},

and the Riemannian metric A~ on BY (p~) can be expressed by

k+m
=Y h;(U)du; @ du;, VU € Bf x By,

4,J=1
and the induced metric of A~ on M~ N BY " (p~) is given by

h=(U',0) = > hi(U',0)du; @ duy, VU' € BY.

We may assume henceforth that r{(NT) = ro(M™) in the assumptions (B) and (C).
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Remark 3.1 Under the assumptions (A), (B), and (C), it is not hard to see that by choosing

a sufficiently small o = ro(M™) > 0, under the above local parametrization of Bi\gi (p*), the
local representations of the Riemannian metrics A* enjoy the following properties:

Z h5 (U, U)du; @ duy + Hzm h5(U, U)du; @ duy,
1,j=1 1,j=k+1
VU = (U',U?) € BY x By,
such that
k+m
> REUN U < U, YU = (U',U?) € Bf x BY", (3.2)
i,j=k+1

for some C' > 0 depending only on M* and N*.

Now we are ready to state a theorem on the local existence of regular solutions to (3.1),
whose full proof will be given in another future work.

Theorem 3.1 Under the assumptz'ons (A), (B), and (C) on NT and M*, for 0 < a < 1,
let uf € C’l"’o‘(Q_i N*) and g* = ug |Ei € Cto(TE, N be given zmtzal an ary data
) C M* satzsﬁes ug () auo

re exist . e solutzon ut e
f the 1).
f Theorem is more delicate than the usual proofs of short time smooth

solutlons heat flow of harmonic maps under the Dirichlet boundary condition (see [1,

such that uZ (T

for x €
Cl+a,

6]) or the free boundary condition (see [25]). It involves to first show the local existence
of regular solutions over small balls, and then patch these local solutions by extending the
Schwarz alternating method on linear parabolic equations to the quasilinear harmonic map
heat flows into small neighborhoods of points in N*. For this, we have to overcome major
difficulties that arise near the interface I'. A detailed proof will be addressed in a forthcoming
work.The approach that we will utilize is based on the Schwartz reflection method adapted to
the parabolic settings, see [4] and [7] for some backgrounds on this method.

In this part, we will indicate a proof of Theorem 3.1 when the images of u* is contained
in a single coordinate chart of N*. Before doing it, we want to rewrite the system (3.1) in an
intrinsic form near a small neighborhood of a point (x¢,tp) € I'r and also derive a generalized
energy inequality.

3.1 Local representation of (3.1)

For tg € (0,T) and xo € T'(tp), choose a small §p > 0, depending on ||qu||CO(Q¥)7 such that
+ .
uﬂQ% N Ps,(xo,tp)) C qu\g (pg) with pg = ui(xo,to) eM*.

where Ps, (z0,t0) = Bs, (7o) X (to — 62,t0 + 62). Then, by employing the local representations
given by the assumptions (B) and (C) on M* N* we can rewrite the harmonic heat flow
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equation (3.1) as

{atU — AU =THU)(VU,VU)  in QN Ps, (20, t0), 53)

U — AU =T~ (U)(VU,VU)  in Q7 N Py, (z0, to),

where U = (UY,U?) : QF N Ps,(wo,t0) + BY x BP" is the local representation of u = u¥ :
Q7 N Ps,(wo,t0) = N, and T'*(-)(-, ) is the Christoffel symbol of N*.

Observe that within this local coordinate system, the boundary condition the 4th equation
of (3.1) on the free interface I'r gives rise to

U?=0 onD'zN Ps,(x0,t0), (3.4)

and by (3.2) the boundary condition the 5th equation of (3.1) on the free interface I'r reduces
to

U UL ,
Zh+ (U0 ay> :Zhij(Ul,O) ( ), 1<i<k onID7nNPs(zo,to). (3.5)

3.2 Parametrization of domains

Since Q*(t) is t-dependent over [0, T, in this subsection we will re-parametrize the domains
and rewrite (3.1) so that it can be viewed as the heat_flow of harmomc maps domain
but with time-dependent metrics on t

Ass t): Q% [0,7] ¢

such that
U () ¢
and (W(QE(1),t) =%, Vite [O,T].

+ .,

For u — N*, define QF = OF x [0,T] and 4% : Q& — N* through

uF(z,t) = TF(V(x, 1), 1) : QF — NE.

Given that u® : Q% + N7T satisfies (3.1), we want to derive the equation for u* now. To

do it, first set
oV, 0V, nxn
aij(x,t):(8xaﬁi>(x7t):QT’_>R x s

and
aij(y,t) = aij(z,t) : Qp — R™™ ", where (z,t) = ULy, t).

Then direct calculations imply that

St
00 (1.) = 0T (W, 1), 1) + G (Vo 0) 00T,
out  out ov, ’ (3.7)
or, oy g
and
o sout O,
i _— K2
A (ot) = 5= oy (L@ 0:1) )
20+ . , it
A (V(2,1),1) v 0%; | Ou (U(z,1), ) AT,

Bz, 07 | O
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Hence the 1st and 2nd equation of (3.1) becomes

0 out out out out ~
at - 2 (5. _ G At . i O+
O Ay; (a” 0y; ) a; AT (u )( dy; " Oy, ) " Oy in Qr,

0 ou~ ou~ ou~ ou~ N
um — (G — ) = ai; AT (U ; A; in Qr,
o o (a j 0, ) ai; A (u )( By By ) + 9 in Qr

where

Ai(yvt) = aaa;j (yvt) - (A\Ili)(\ll_l(y,t)ﬂf) - (at\Ili)(\Il_l(y7t)vt)7 V(y,t) € QT-

Observe that the boundary condition the 4th equation of (3.1) on the free interface I'r gives
rise to

u (y,t) =0T (") (y,t), V(y,t) el x[0,T], (3.9)

while the boundary condition the 5th equation of (3.1) on the free interface I'y gives rise to

ou~ 4 (OuT
(WM t) = D& (@ >(6y)<y,t>, W(y,1) € T x [0,T), (3.10)
where v(= v(t)) is the unit outer normal of T" with respect to the metric g(¢ ) dydy?.

First we ob: that a sufficientl 1) en nerali energy
inequal
x|

O, V2u e LP(E x [0,T))

For T > 0, and g € CYZ*, N1, if ut € Wg’l(Q%Ni), with Vag—ti €
LQ(Q%), is a strong solution of (3.1), then there exists constant C > 0 depending on T'p such
that

t
E(u(t) + > / -7 ( / 0|2 + / O ?) dadr < CCIBlu(s),  (3.11)
4/, Qt(t) Q- ()

forall0 <s<tel0,T].

Proof Let U(-,t): Q x [0,7] — Q be a smooth family of diffeomorphism given by (3.6).
Define u™* : Qi — N* by

wF o t) = TH(U(,0),1), V(1) € QF.
Then @+ solves (3.8) in @%, (3.9) and (3.10) on I'y, and the Dirichlet boundary condition:
T (y,t) = 97 (y),  (y,t) €92 % [0,T). (3.12)

Within this time dependent parametrization, we can write

1 . o0ut out 1 . /0u- ou-
E(u(t)) = 3 /Q+ aa5<%, 6—y5>dvg + 5/@ aaB< v Dys >dvg,

where dvg = /g dy, and G(y, t) = det(V®) (T~ (y,1),1).
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From u* € W2(QF, N) and V2= € [2(QF), u* € WP (QF, N¥) and VZ= € L2(Q7).
By direct calculations, we have that

%E(u(t)) / aaﬁ<6‘9 >\/dy+/ aag<%(6tﬂ‘),%>\/§dy
ut ou u m
=50/ <§ya o >8taaﬁf W [ (G 5o ) Vi) )
—1(t) + 11(1).

It is easy to see that

[T(#)| < CE(u(t)).

While, applying the integration by parts, (3.8), the boundary conditions (3.9), (3.10) and
(3.12), and the fact that ,u~(x,t) = DOT (uh)(9u™)(w,t) € Tyt (p.yM* for (x,t) € L'y, and
oyu*(z,t) = 0 on ¥F x [0,T], we can show that the boundary contributions on both T and 952
are zeroes. Hence we can estimate I by

1) -~ [ (o %(aaﬂg“:»dvg - [ {oa 5 (asgi) ) g

- [, (s >%{a€ \<‘ ”é?\t

U~ a\/§>

(S

= TII(¢) + IV (t) + V(2).

It is easy to see that

1 ~1 12 ~—12
V()] + V()] < g(/m B dv§+/m 10, | dvg) + CE(u(t)).

7 - —
[I(t)] < —g(/ |8tu+|2dv§—|—/ |Ovu |2 dvg).
Q+ Q-

On the other hand, it follows from the chain rule (3.7) that

/ |ata+|2dv§+/ 0y~ 2 dug
Qt Q-

1

> (/ |0u™|? dz —I—/ |0u™|? dx) — CE(u(t)).
2\ Ja+@) Q- (1)

Putting all these estimate together, we obtain

d —1 w2 de w2 dx U
gPe =3 ( [ oattars [ o Paz) +oB)

Hence

which, combined with Gronwall’s inequality, implies (3.11).
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We will sketch a proof of Theorem 3.1 by employing the fixed point argument, under two
extra assumptions that
(i) the images of uf)t is contained in a single coordinate chart, i.e.,

u(jf(x) C Bi\gi (p(jf), Vo eQ, (3.13)
for a pair of points pi € M= that satisfies p; = ®*(pg); and
(if)
Ot MT s M~ is an isometry. (3.14)

First we will give some heuristic arguments to indicate that the appropriate function spaces
for the local existence of regular solutions are

CoE = (Qr, BN (0))

(uog)
o, o
:{u:QTHB,f\g (p(jf% ut = ufge € CTNTE(QT),
u=1upin Q x {0}, u=gonddx[0,71],

i(m) C M um = <1>+< +>
D<I>+ on FT t
which is ith the norm f ( : ( \
|Cl+a o _(Q+ +llu ||C1+a Q)

To se assume that I'(t) = T for 0 < t < T. Let u* € C1+a’ 2 (QT,B,{Zi (p)) be

(uo0,9)
given, and U = (U',U?) : Qr — BY x B} be a local representation of u* : Q% qu\gi (p).
Consider V = (V1,V?): Qr + B¥ x B} that is a weak solution of

oV — AV =THU)(VU,VU) in QF, (3.15)
oV — AV =T~ (U)(VU,VU) in Q7, )
under the initial and boundary condition:
V= Uo on 8PQT,
V3t t) =V?(z,t) =0, (3.16)
ovt vl
W(!'E 1) = W(!'E 1), (z,t) € I'r.

Here Uy : Q +— BY x BT is a local representation of wug.
It follows from the regularity of linear parabolic equations that V € O+ = (Qi) More-

over, since
I ()T V)| ey + [T~ ONTU VO g ) < CIVU
it follows from the Wg’l—theory of linear parabolic equations that V' & ng(Q%) and

IVl z) < COUTUIEx(gr + Vollcrsegas)),
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for any 1 < p < 0.
By the Sobolev’s embedding theorem (see [11, Lemma II.3.3]), we conclude that V €
CHe S (QF) and

IVl grsa 52 sy < CONVUILx @) + [1Uollcrtaas)).

Proof of Theorem 3.1 under the assumptions (3.13) and (3.14) For a pair of initial
and boundary data (ug, g) given by Theorem 3.1, let Uy : 9,Qr — B¥ x BT be a local represen-

o, e
tation of ug. It follows from the assumptions (3.13) and (3.14) that u € C(l;z 0 2 (Qr, 7{\5 (pF))

if and only if its local representation U belongs to the space

Chr e (Qr. BY X BYY)
- {U (U, U?) € O+ (QF, BF x B1") : U = Uy on 8,Qr,
ou!t ou!t
2 1\ T2 = 1) + o4 — -
U(a*,t) = U(a™ ) = 0, %~ (", 8) = - (27, 1), (w1) € rT}.
Now we define U\o = (ﬁ\ol, 6\02) : Qr — BY x BI" to the solution of the heat equation in Q%:

(9tU0—AUO =0 m QT’

o &e\@ment (3.17)

on FT

ion on Uy, we know that there exists ¢y > 0 such that

From th‘

Hence by the maximum principle, we have that

Us| < 1—4ey, |UG|<1—4e in Q.

1 _2
Up | <1—2ep, |Up |<1-2¢0 in Qr,

and hence Up € C1+a’ 2 (Qr, BY g, X B 5., )-

As a consequence, for any 0 < € < ¢y, we can see that

P 1+a, e m
B(Up, €)= {U € Cpi ™7 (Qr, B x B") : |U — Uy <€}

it (QT)

a,ite . = .
is a ball in Cé:r 2 (Qr, BY x B") with center Uy and radius e.
Now we define the solution map T : IB%(EB, €) — CHa’ 2 (QT,B{C X Bi™) by letting V =
T(U),U € B(E\O, €), be the solution of

I+ (U)(VU,VU) on QF,

I~ (U)(VU,VU) on Q;, (3.18)

8tV—AV:{

subject to the initial and boundary condition (3.16).
Now we need the following lemma.
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Lemma 3.2 There exist € > 0 and T > 0 such that T : B(ﬁ;, €) IB%(E\O, €) is a contractive
map, i.e., for any 0 € (0,1), we can find e >0 and T > 0 such that
VUL, Uy € B(Ug,€).  (3.19)

IT(Ur) = T(U2) 1o opy = 01U = V2]l 1o 14

lgrsn 52 g, o

Therefore there exists a unique U € B(a\o, €) such that U = T(U). In particular, if u* = u}Qi :
T

Q% + NT has U as its local representation, then u is a unique reqular solution of (3.1) in Q.

Proof For U e ]B%(ﬁ:), €), since V — Uy satisfies

I'H(U)(VU,VU) on QF,

I~ (U)(VU,VU) on Q7, (8:20)

at<V—ﬁo)—A<V—ﬁo)={

and

(Qr) <clv - UO||W5’1(Q¥)
< ClIVUP | Lr(@r)
< ClIVU} (T
— "
< C(”UOHCHa,HTO‘(QT) + 6) T>
<€,

provided we choose a sufficiently small T = Ty > 0, depending only on Uy and a. Hence
V =TU) € B(Uy,e).
For i = 1,2, let U; € B(Us, €) and V; = T(U;). Then

F+(U1)(VU1, VU1) - F+(U2)(VU2,VU2) on Q;,

Uy —Us) — AUy — Uy) = {F_(Ul)(VU1,VU1) T (Us)(VU, VU,) on Q, (3.21)
and
U —-U;=0 on 8pQT’
(U1 — U2)2($+,t) = (U1 — U2)2($_,t) =0 onlp,
(U, — Up)! 2+ 1) = (U, — Up)! (x-.1) onTr.

ov ov

Remove Watermark Now
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Hence we can conclude that for any 6 € (0, 1) such that for p = p(a) > n + 2,

101 = Uall o232
< C|U;, — U2||W5’1(Q$)

< CI(IVUL| + VU2 (Ur = Us) + (VUL + [VU2)) V(UL = U2)ll Lo(@r)

< CIIVUL + VU170 UL = Usll L= (@r) + CIIVUL] + [V U2l Lo (@) IV (U1 = Us) || L= (@r)

<O+ (0ol?,... . >T%||U1 A

1ta
¢t (Qr)

< 0||U1 U2||Cl+a (QT)’

provided T' = Ty > 0 is chosen so that

1
O+ Tl 50, )T <0

This completes the proof of both Lemma 3.2 and Theorem 3.1 under the assumptions (3.13)
and (3.14).

4 Boundary Monotonicity Inequality of (3.1)

In this section, we will derive a boundary mon on1c1ty inequality ogous to
Struwe’s monotonicity formula, which ve its é

To resent,

Q=R"

Let u- x [0, +00)

Out — Aut = AT (uT)(Vu™, Vu™) in R%} x (0, +00),
ou” —Au” =A"(u")(Vu™,Vu™) in R™ x (0, 400),
Ot (ut) =u~ in OR% x (0,400), (4.1)

I‘ 6R" for0<t<T.

, with u® € M= for (z,t) € OR" x (0, 00), satisfy

() - e[ om0

For (zg,tg) € R" x (0,+00) and 0 < R < /To, let

1 _lz—zgl? n
G(wo,to)(x7 t) me TWo—1) | (:L', t) e R" x (O,to)

denote the backward heat kernel on R"™. Set
+.
E(u 3 (IL'(), t()), R)
ol / VT G o) (2, 1) d + / V™ P Gay 1) () da |
R™ x {to—R2} R™ x {to—R2}

Lemma 4.1 Suppose that (zo,t0) = (0,0) € IR} x(—00,0] and u* € C?(R} x(—00,0], NF)
is a solution to the system (4.1). Then

“ZE(R) > 0. (4.2)
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Proof Write G(x,t) for G(o,0)(x,t) and define
ug(z,t) = uF(Rx, R*t), (x,t) € R" x (—00,0].

It is easy to see that
E(u*; R) = E(u$;1).

For simplicity, we only verify (4.2) at R = 1. Since

d + + +
@‘RﬂuR—w Vu™* —20u™,

we have
d d
| BwHR) =—| B
dR‘R:l (W5 B) = G|, w1
|z|2

= 2/ Vu - V(z-Vut —20u™)e 1
Ry x{-1}

+ 2/ Vu~ -V(x-Vu~ —20u" )e” +
R™ x{—1}

=-2 [/ V. (Vu+e_|IT) (z - Vut —20,u™)
RY x{-1}

Since
V- (Vu e_%) = Aut — %x SVt = gut — AT (uF)(Vut, ut) — %x - Vut
and
AT (uh)(Vut,ub) - (z - Vut — 20u™) =0,
we have

—2[/ V- (Vu e_%)-(m'Vu+—28tu+)
RY x{-1}

+/ V- (Vu_e_%) (x-Vu~ — 28tu_)}
R™ x{—-1}

lz]

2 . 5
- [/ |z V" — 20 [Pe™ +/ |z - Vu~ — 28tu_|2e—% )
R x{-1} R™ x{—1}

Since x = (2/,0) for x € IR, and

uF (AR x (—00,0)) € M*,
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we have
+ + +
x-Vu™ —20u |6]Rg':><(—oo,O) € Ty (z,y M,
so that
ou* Out\T "
oz, (z - Vut —20,u™) = (E) (x - Vut = 20uF) on IR x (—o0,0).
Since
u (z,t) = T (u(2,¢)) on ORY x (—o0,0),
we have

Viant™ (z,t) = DO®T (ut(2,1))Vianu™ (2,t), O™ (z,t) = DOT (u™ (z,1))0u™ (2, 1)
on ORY x (—00,0) and hence
x-Vu (z,t) — 200" (z,t) = DOT (uT (z,t))(x - VuT (z,t) — 20,u™ (2,t)) on OR% x (—o0,0).

Therefore we have

+ 2|2
[/ Ou (z - Vut —20u™) e
ORY x {1} 3%

L | 1 Slemen
gip Q (2 VuT —20u™)e -l
x{—1} €T

where we have used the boundary condition the 5th equation of (4.1) in the last step. Putting

all these calculations together, we obtain

il +.
dR)R:l (u™; R)
Jo|

12 2
= [/ |z - Vut — 28tu+|26_% +/ |z Vu~ — 28tu_|2e_T} >0. (4.3
R™ x{—1} R™, x{-1}

This completes the proof.
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