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Abstract

We consider the task of measuring time with probabilistic threshold gates implemented
by bio-inspired spiking neurons. In the model of spiking neural networks, network evolves in
discrete rounds, where in each round, neurons fire in pulses in response to a sufficiently high
membrane potential. This potential is induced by spikes from neighboring neurons that fired
in the previous round, which can have either an excitatory or inhibitory effect.

Discovering the underlying mechanisms by which the brain perceives the duration of
time is one of the largest open enigma in computational neuro-science. To gain a better
algorithmic understanding onto these processes, we introduce the neural timer problem. In
this problem, one is given a time parameter t, an input neuron x, and an output neuron y.
It is then required to design a minimum sized neural network (measured by the number of
auxiliary neurons) in which every spike from x in a given round i, makes the output y fire
for the subsequent t consecutive rounds.

We first consider a deterministic implementation of a neural timer and show that Θ(log t)
(deterministic) threshold gates are both sufficient and necessary. This raised the question
of whether randomness can be leveraged to reduce the number of neurons. We answer this
question in the affirmative by considering neural timers with spiking neurons where the
neuron y is required to fire for t consecutive rounds with probability at least 1 − δ, and
should stop firing after at most 2t rounds with probability 1 − δ for some input parameter
δ ∈ (0, 1). Our key result is a construction of a neural timer with O(log log 1/δ) spiking
neurons. Interestingly, this construction uses only one spiking neuron, while the remaining
neurons can be deterministic threshold gates. We complement this construction with a
matching lower bound of Ω(min{log log 1/δ, log t}) neurons. This provides the first separation
between deterministic and randomized constructions in the setting of spiking neural networks.

Finally, we demonstrate the usefulness of compressed counting networks for synchronizing
neural networks. In the spirit of distributed synchronizers [Awerbuch-Peleg, FOCS’90], we
provide a general transformation (or simulation) that can take any synchronized network
solution and simulate it in an asynchronous setting (where edges have arbitrary response
latencies) while incurring a small overhead w.r.t the number of neurons and computation
time.
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1 Introduction

Understanding the mechanisms by which brain experiences time is one of the major research
objectives in neuroscience [MHM13, ATGM14, FSJ+15]. Humans measure time using a global
clock based on standardized units of minutes, days and years. In contrast, the brain perceives
time using specialized neural clocks that define their own time units. Living organisms have
various other implementations of biological clocks, a notable example is the circadian clock that
gets synchronized with the rhythms of a day.

In this paper we consider the algorithmic aspects of measuring time in a simple yet bio-
logically plausible model of stochastic spiking neural networks (SNN) [Maa96, Maa97], in which
neurons fire in discrete pulses, in response to a sufficiently high membrane potential. This model
is believed to capture the spiking behavior observed in real neural networks, and has recently
received quite a lot of attention in the algorithmic community [LMP17a, LMP17b, LMP17c,
LM18, LMPV18, PV19, CCL19]. In contrast to the common approach in computational neu-
roscience and machine learning, the focus here is not on general computation ability or broad
learning tasks, but rather on specific algorithmic implementation and analysis.

The SNN network is represented by a directed weighted graph G = (V,A,W ), with a special
set of neurons X ⊂ V called inputs that have no incoming edges, and a subset of output
neurons1 Y ⊂ V . The neurons in the network can be either deterministic threshold gates or
probabilistic threshold gates. As observed in biological networks, and departing from many
artificial network models, neurons are either strictly inhibitory (all outgoing edge weights are
negative) or excitatory (all outgoing edge weights are positive). The network evolves in discrete,
synchronous rounds as a Markov chain, where the firing probability of every neuron in round
τ depends on the firing status of its neighbors in the preceding round τ − 1. For probabilistic
threshold gates this firing is modeled using a standard sigmoid function. Observe that an
SNN network is in fact, a distributed network, every neuron responds to the firing spikes of its
neighbors, while having no global information on the entire network.

Remark. In the setting of SNN, unlike classical distributed algorithms (e.g., LOCAL or
CONGEST), the algorithm is fully specified by the structure of the network. That is, for a given
network, its dynamic is fully determined by the model. Hence, the key complexity measure here
is the size of the network measured by the number of auxiliary neurons2. For certain problems,
we also care for the tradeoff between the size and the computation time.

1.1 Measuring Time with Spiking Neural Networks

We consider the algorithmic challenges of measuring time using networks of threshold gates and
probabilistic threshold gates. We introduce the neural timer problem defined as follows:

Given an input neuron x, an output neuron y, and a time parameter t, it is required to
design a small neural network such that any firing of x in a given round invokes the firing
of y for exactly the next t rounds.

In other words, it is required to design a succinct timer, activated by the firing of its input
neuron, that alerts when exactly t rounds have passed.

A trivial solution with t auxiliary neurons can be obtained by taking a directed chain of
length t (Fig. 1): the head of the chain has an incoming edge from the input x, the output y has
incoming edges from the input x, and all the other t neurons on the chain. All these neurons are
simple OR-gates, they fire in round τ if at least one of their incoming neighbors fired in round
τ − 1. Starting with the firing of x in round 0, in each round i, exactly one neuron, namely the
ith neuron on the chain fires, which makes y keep on firing for exactly t rounds until the chain
fades out. In this basic solution, the network spends one neuron that counts +1 and dies. It is

1In contrast to the definition of circuits, we do allow output neurons to have outgoing edges and self loops.
The requirement will be that the value of the output neurons converges over time to the desired solution.

2I.e., neurons that are not the input or the output neurons.
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noteworthy that the neurons in our model are very simple, they do not have any memory, and
thus cannot keep track of the firing history. They can only base their firing decisions on the
firing of their neighbors in the previous round.

With such a minimal model of computation, it is therefore intriguing to ask how to beat this
linear dependency (of network size) in the time parameter t. Can we count to ten using only
two (memory-less) neurons? We answer this question in the affirmative, and show that even
with just simple deterministic threshold gates, we can measure time up to t rounds using only
O(log t) neurons. It is easy to see that this bound is tight when using deterministic neurons
(even when allowing some approximation). The reason is that o(log t) neurons encode strictly
less than t distinct configurations, thus in a sequence of t rounds, there must be a configuration
that re-occurs, hence locking the system into a state in which y fires forever.

Theorem 1 (Deterministic Timers). For every input time parameter t ∈ N>0, (1) there exists
a deterministic neural timer network N with O(log t) deterministic threshold gates, (2) any
deterministic neural timer requires Ω(log t) neurons.

This timer can be easily adapted to the related problem of counting, where the network
should output the number of spikes (by the input x) within a time window of t rounds.

Does Randomness Help in Time Estimation? Neural computation in general, and neural
spike responses in particular, are inherently stochastic [Lin09]. One of our broader scope agenda
is to understand the power and limitations of randomness in neural networks. Does neural
computation become easier or harder due to the stochastic behavior of the neurons?

We define a randomized version of the neural timer problem that allows some slackness both
in the approximation of the time, as well as allowing a small error probability. For a given error
probability δ ∈ (0, 1), the output y should fire for at least t rounds, and must stop firing after at
most 2t rounds3 with probability at least 1− δ. It turns out that this randomized variant leads
to a considerably improved solution for δ = 2−O(t):

Theorem 2 (Upper Bound for Randomized Timers). For every time parameter t ∈ N>0, and er-
ror probability δ ∈ (0, 1), there exists a probabilistic neural timer network N with O(min{log log 1/δ, log t})
deterministic threshold gates plus additional random spiking neuron.

Our starting point is a simple network with O(log 1/δ) neurons, each firing independently
with probability 1 − 1/t. The key observation for improving the size bound into O(log log 1/δ)
is to use the time axis : we will use a single neuron to generate random samples over time,
rather than having many random neurons generating these samples in a single round. The
deterministic neural counter network with time parameter of O(log 1/δ) is used as a building
block in order to gather the firing statistics of a single spiking neuron. In light of the Ω(log t)
lower bound for deterministic networks, we get the first separation between deterministic and
randomized solutions for error probability δ = ω(1/2t). This shows that randomness can help,
but up to a limit: Once the allowed error probability is exponentially small in t, the deterministic
solution is the best possible. Perhaps surprisingly, we show that this behavior is tight:

Theorem 3 (Lower Bound for Randomized Timers). Any SNN network for the neural timer
problem with time parameter t, and error δ ∈ (0, 1) must use Ω(min{log log 1/δ, log t}) neurons.

Neural Counters. Spiking neurons are believed to encode information via their firing rates.
This underlies the rate coding scheme [Adr26, TM97, GKMH97] in which the spike-count of the
neuron in a given span of time is interpreted as a letter in a larger alphabet. In a network of
memory-less spiking neurons, it is not so clear how to implement this rate dependent behavior.
How can a neuron convey a complicated message over time if its neighboring neurons remember
only its recent spike? This challenge is formalized by the following neural counter problem:
Given an input neuron x, a time parameter t, and Θ(log t) output neurons represented by a
vector ȳ, it is required to design a neural network such that the output vector ȳ holds the binary

3Taking 2t is arbitrary here, and any other constant greater than one would work as well.
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representation of the number of times that x fired in a sequence of t rounds. As we already
mentioned this problem is very much related to the neural timer problem and can be solved
using O(log t) neurons. Can we do better?

The problem of maintaining a counter using a small amount of space has received a lot of
attention in the dynamic streaming community. The well-known Morris algorithm [Mor78, Fla85]
maintains an approximate counter for t counts using only log log t bits. The high-level idea of
this algorithm is to increase the counter with probability of 1/2C

′
where C ′ is the current read of

the counter. The counter then holds the exponent of the number of counts. By following ideas
of [Fla85], carefully adapted to the neural setting, we show:

Theorem 4 (Approximate Counting). For every time parameter t, and δ ∈ (0, 1), there exists
a randomized construction of approximate counting network using O(log log t+ log(1/δ)) deter-
ministic threshold gates plus an additional single random spiking neuron, that computes an O(1)
(multiplicative) approximation for the number of input spikes in t rounds with probability 1− δ.

We note that unlike the deterministic construction of timers that could be easily adopted to
the problem of neural counting, our optimized randomized timers with O(log log 1/δ) neurons
cannot be adopted into an approximate counter network. We therefore solve the latter by
adopting Morris algorithm to the neural setting.

Broader Scope: Lessons From Dynamic Streaming Algorithms. We believe that ap-
proximate counting problem provides just one indication for the potential relation between suc-
cinct neural networks and dynamic streaming algorithms. In both settings, the goal is to gather
statistics (e.g., over time) using a small amount of space. In the setting of neural network there
are additional difficulties that do not show up in the streaming setting. E.g., it is also required
to obtain fast update time, as illustrated in our solution to the approximate counting problem.

1.2 Neural Synchronizers

The standard model of spiking neural networks assumes that all edges (synapses) in the network
have a uniform response latency. That is, the electrical signal is passed from the presynaptic
neuron to the postsynaptic neuron within a fixed time unit which we call a round. However,
in real biological networks, the response latency of synapses can vary considerably depending
on the biological properties of the synapse, as well as on the distance between the neighboring
neurons. This results in an asynchronous setting in which different edges have distinct response
time. We formalize a simple model of spiking neurons in the asynchronous setting, in which the
given neural network also specifies a response latency function ` : A→ R≥1 that determines the
number of rounds it takes for the signal to propagate over the edge. Inspired by the synchronizers
of Awerbuch and Peleg [AP90], and using the above mentioned compressed timer and counter
modules, we present a general simulation methodology (a.k.a synchronizers) that takes a network
Nsync that solves the problem in the synchronized setting, and transform it into an “analogous”
network Nasync that solves the same problem in the asynchronous setting.

The basic building blocks of this transformation is the neural time component adapted to the
asynchronous setting. The cost of the transformation is measured by the overhead in the number
of neurons and in the computation time. Using our neural timers leads to a small overhead in
the number of neurons.

Theorem 5 (Synchronizer, Informal). There exists a synchronizer that given a network Nsync

with n neurons and maximum response latency4 L, constructs a network Nasync that has an
“analogous” execution in the asynchronous setting with a total number of O(n+L logL) neurons
and a time overhead of O(L3).

We note that although the construction is inspired by the work of Awerbuch and Pe-
leg [AP90], due to the large differences between these models, the precise formulation and
implementation of our synchronizers are quite different. The most notable difference between

4I.e., L correspond to the length of the longest round.
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the distributed and neural setting is the issue of memory: in the distributed setting, nodes
can aggregate the incoming messages and respond when all required messages have arrived. In
strike contrast, our neurons can only respond (by either firing or not firing) to signals arrived
in the previous round, and all signals from previous rounds cannot be locally stored. For this
reason and unlike [AP90], we must assume a bound on the largest edge latency. In particular,
in App. A we show that the size overhead of the transformed network Nasync must depend, at
least logarithmically, on the value of the largest latency L.

Observation 1. The size overhead of any synchronization scheme is Ω(logL).

This provably illustrates the difference in the overhead of synchronization between general
distributed networks and neural networks. We leave the problem of tightening this lower bound
(or upper bound) as an interesting open problem.

Additional Related Work To the best of our knowledge, there are two main previous the-
oretical work on asynchronous neural networks. Maass [Maa94] considered a quite elaborated
model for deterministic neural networks with arbitrary response functions for the edges, along
with latencies that can be chosen by the network designer. Within this generalized framework,
he presented a coarse description of a synchronization scheme that consists of various time mod-
ules (e.g., initiation and delay modules). Our work complements the scheme of [Maa94] in the
simplified SNN model by providing a rigorous implementation and analysis for size and time
overhead. Khun et al. [KSPS10] analyzed the synchronous and asynchronous behavior under
the stochastic neural network model of DeVille and Peskin [DP08]. Their model and framework
is quite different from ours, and does not aim at building synchronizers.

Turning to the setting of logical circuits, there is a long line of work on the asynchronous
setting under various model assumptions [AFM69, Hau95, Spa01, BM06, MM17] that do not
quite fit the memory-less setting of spiking neurons.

Comparison with Concurrent Work [WL19]. Independently to our work, Wang and Lynch
proposed a similar construction for the neural counter problem. Their work restricts attention
to deterministic threshold gates and do not consider the neural timer problem and synchronizers
which constitute the main contribution of our paper. We note that our approximate counter
solution with O(log log t+ log(1/δ)) neurons resolves the open problem stated in [WL19].

1.3 Preliminaries

We start by defining our model along with useful notation.
A Neuron. A deterministic neuron u is modeled by a deterministic threshold gate. Letting

b(u) to be the threshold value of u. Then it outputs 1 if the weighted sum of its incoming
neighbors exceeds b(u). A spiking neuron is modeled by a probabilistic threshold gate that
fires with a sigmoidal probability p(x) = 1

1+e−x where x is the difference between the weighted
incoming sum of u and its threshold b(u).

Neural Network Definition. A Neural Network (NN) N = 〈X,Z, Y,w, b〉 consists of n
input neurons X = {x1, . . . , xn}, m output neurons Y = {y1, . . . , ym}, and ` auxiliary neurons
Z = {z1, ..., z`}. In a deterministic neural network (DNN) all neurons are deterministic threshold
gates. In spiking neural network (SNN), the neurons can be either deterministic threshold
gates or probabilistic threshold gates. The directed weighted synaptic connections between
V = X ∪ Z ∪ Y are described by the weight function w : V × V → R. A weight w(u, v) = 0
indicates that a connection is not present between neurons u and v. Finally, for any neuron v,
b(v) ∈ R≥0 is the threshold value (activation bias). The weight function defining the synapses
is restricted in two ways. The in-degree of every input neuron xi is zero, i.e., w(u, x) = 0 for all
u ∈ V and x ∈ X. Additionally, each neuron is either inhibitory or excitatory: if v is inhibitory,
then w(v, u) ≤ 0 for every u, and if v is excitatory, then w(v, u) ≥ 0 for every u.

Network Dynamics. The network evolves in discrete, synchronous rounds as a Markov
chain. The firing probability of every neuron in round τ depends on the firing status of its
neighbors in round τ − 1, via a standard sigmoid function, with details given below. For each
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neuron u, and each round τ ≥ 0, let uτ = 1 if u fires (i.e., generates a spike) in round τ . Let
u0 denote the initial firing state of the neuron. The firing state of each input neuron xj in each
round is the input to the network. For each non-input neuron u and every round τ ≥ 1, let
pot(u, τ) denote the membrane potential at round τ and p(u, τ) denote the firing probability
(Pr[uτ = 1]), calculated as:

pot(u, τ) =
∑
v∈V

wv,u · vτ−1 − b(u) and p(u, τ) =
1

1 + e−
pot(u,τ)

λ

(1)

where λ > 0 is a temperature parameter which determines the steepness of the sigmoid. Clearly,
λ does not affect the computational power of the network (due to scaling of edge weights and
thresholds), thus we set λ = 1. In deterministic neural networks (DNN), each neuron u is a
deterministic threshold gate that fires in round τ iff pot(u, τ ) ≥ 0.

Network States (Configurations). Given a network N (either a DNN or SNN) with N
neurons, the configuration (or state) of the network in time τ denoted as sτ can be described as
an N -length binary vector indicating which neuron fired in round τ .

The Memoryless Property. The neural networks have a memoryless property, in the
sense that each state depends only on the state of the previous round. In a DNN network, the
state sτ−1 fully determines sτ . In an SNN network, for every fixed state s∗ it holds Pr[sτ =
s∗ | s1, ...sτ−1] = Pr[sτ = s∗ | sτ−1]. Moreover for any τ, τ ′, r > 0, it holds that Pr[sτ+r =
s∗ | sτ ] = Pr[sτ ′+r = s∗ | sτ ′ ].

Hard-Wired Inputs. We consider neural networks that solve a given parametrized problem
(e.g., neural timer with time parameter t). The parameter to the problem can be either hard-
wired in the network or alternatively be given as part of the input layer to the network. In most
of our constructions, the time parameter is hard-wired. In some cases, we also show constructions
with soft-wiring.
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Figure 1: Illustration of timer networks with time parameter t. Left: The näıve timer with Θ(t) neurons.
Mid: deterministic timer with Θ(log t) neurons. Right: randomized timer with O(log log 1/δ)) neurons,
using the DetTimer modules with parameter t′ = log 1/δ.

2 Deterministic Constructions of Neural Timer Networks
As a warm-up, we start by considering deterministic neural timers.

Definition 1 (Det. Neural Timer Network). Given time parameter t, a deterministic neural
timer network DT is a network of threshold gates, with an input neuron x, an output neuron y,
and additional auxiliary neurons. The network satisfies that in every round τ , yτ = 1 iff there
exists a round τ > τ ′ ≥ τ − t such that xτ

′
= 1.

Lower Bound (Pf. of Thm. 1(2)). For a given neural timer network N with N auxiliary
neurons, recall that the state of the network in round τ is described by an N -length vector
indicating the firing neurons in that round. Assume towards contradiction that there exists a
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neural timer with N ≤ log t − 1 auxiliary neurons. Since there are at most 2N different states,
by the pigeonhole principle, there must be at least two rounds τ, τ ′ ≤ t − 1 in which the state
of the network is identical, i.e., where sτ = sτ ′ = s∗ for some s∗ ∈ {0, 1}N . By the correctness
of the network, the output neuron y fires in all rounds τ ′′ ∈ [τ + 1, τ ′ + 1]. By the memoryless
property, we get that sτ ′′ = s∗ for τ ′′ = τ + i · (τ ′− τ) for every i ∈ N≥0. Thus y continues firing
forever, in contradiction that it stops firing after t rounds. Note that this lower bound holds
even if y is allowed to stop firing in any finite time window.

A Matching Upper Bound (Pf. Thm. 1(1)). For ease of explanation, we will sketch here
the description of the network assuming that it is applied only once (i.e., the input x fires once
within a window of t rounds). Taking care of the general case requires slight adaptations5, see
Appendix B for the complete details.

At the high-level, the network consists of k = Θ(log t) layers A1, . . . , Ak each containing two
excitatory neurons ai,1, ai,2 denoted as counting neurons, and one inhibitory neuron di. Each
layer Ai gets its input from layer Ai−1 for every i ≥ 2, and A1 gets its input from x. The role of
each layer Ai is to count two firing events of the neuron ai−1,2 ∈ Ai−1. Thus the neuron alog t,2
counts 2log t rounds.

Because our network has an update time of log t rounds (i.e., number of rounds to update
the timer), for a given time parameter t, the construction is based on the parameter t̂ where
t̂+ log t̂ = t.
• The first layer A1 consists of two neurons a1,1, a1,2. The first neuron a1,1 has positive

incoming edges from x and a1,2 with weights w(x, a1,1) = 3 , w(a1,2, a1,1) = 1, and thresh-
old b(a1,1) = 1. The second neuron a1,2 has an incoming edge from a1,1 with weight
w(a1,1, a1,2) = 1 and threshold b(a1,2) = 1. Because we have a loop going from a1,1 to a1,2
and back, once x fired a1,2 will fire every two rounds.

• For every i = 2 . . . log t̂, the ith layer Ai contains 3 neurons, two counting neurons ai,1, ai,2
and a reset neuron di. The first neuron ai,1 has positive incoming edges from ai−1,2, and
a self loop with weight w(ai−1,2, ai,1) = w(ai,1, ai,1) = 1, a negative incoming edge from
di with weight w(di, ai,1) = −1, and threshold b(ai,1) = 1. The second counting neuron
ai,2 has incoming edges from ai−1,2 and ai,1 with weight w(ai−1,2, ai,2) = w(ai,1, ai,2) = 1,
and threshold b(ai,2) = 2. The reset neuron di is an inhibitor copy of ai−1,2 and therefore
also has incoming edges from ai−1,2 and ai,1 with weight w(ai−1,2, di) = w(ai,1, di) = 1 and
threshold b(di) = 2. As a result, ai,1 starts firing after ai−1,2 fires once, and ai,2 fires after
ai−1,2 fires twice. Then the neuron di inhibits ai,1 and the layer is ready for a new count.

• The output neuron y has a positive incoming edge from x as well as a self-loop with
weights w(x, y) = 2, w(y, y) = 1. In addition, it has a negative incoming edge from the
last counting neuron alog t̂,2 with weight w(alog t̂,2, y) = −1 and threshold b(y) = 1. Hence,
after x fires the output y continues to fire as long as alog t̂,2 did not fire.

• The last counting neuron alog t̂,2 also has negative outgoing edges to all counting neurons
(neurons of the form ai,j) with weight w(alog t̂,2, ai,j) = −2. As a result, after the timer
counts t rounds it is reset.

The key claim that underlines the correctness of Thm. 1(1) is as follows.

Claim 1. If x fires in round t0, for each layer i the neuron ai,2 fires in rounds t0 + ` · 2i + i− 1
for every ` = 1 . . . bt̂/2ic.

Proof. The proof is by induction on i. For i = 1, once x fires in round t0, neuron a1,1 fires in
round t0 + 1 and a1,2 fires in round t0 + 2. Because there is a bidirectional edge between a1,1

5I.e., whenever x fires again in a window of t rounds, one should reset the timer and start counting t rounds
from that point on.

7



and a1,2, the second counting neuron a1,2 keeps firing every two rounds. Assume the claim holds
for neuron ai−1,2, and consider the ith layer Ai. Recall that ai,2 fires in round t′ only if ai,1 and
ai−1,2 fired in round t′ − 1. The neuron ai,1 fires one round after ai−1,2 fires and keeps firing
as long as di did not fire. By the induction assumption ai−1,2 fired for the first time in round
2i−1 + i− 2 and therefore ai,1 starts firing in round 2i−1 + i− 1. Note that in round 2i−1 + i− 1
the neuron ai−1,2 did not fire, and therefore the neurons ai,2 and di can start firing only after
ai−1,2 fires again. Hence, only in round 2 · 2i−1 + i− 2 + 1 = 2i + i− 1 the neurons ai,2 and di
fires for the first time. In the next round, because of the inhibition of di both counting neurons
ai,1 and ai,2 do not fire and we can repeat the same arguments considering the next time the
counting neurons ai,1, ai,2 fire.

We note that once the neuron alog t̂,2 fires for the first time in round t0 + 2log t̂ + log t̂− 1 =

t0 + t̂+ log t̂− 1, it inhibits all the counting neurons. Hence, as long as x did not fire again, all
counting neurons will be idle starting at round t0 + t̂+ log t̂ = t0 + t.

The complete proof of Thm. 1(1) is given in Appendix B.2.
Timer with Time Parameter. In Appendix B.3, we show a slight modified variant of neural
timer denoted by DetTimer∗ which also receives as input an additional set of log t neurons
that encode the desired duration of the timer. This modified variant is used in our improved
randomized constructions.
Neural Counters. In Appendix B.3 we show a modification of the timer into a counter network
DetCounter that instead of counting the number of rounds, counts the number of input spikes
in a time interval of t rounds.

Lemma 1. Given time parameter t, there exists a deterministic neural counter network which
has an input neuron x, a collection of log t output neurons represented by a vector ȳ, and O(log t)
additional auxiliary neurons. In a time window of t rounds, for every round τ , if x fired rτ times
in the last τ rounds, the output ȳ encodes rτ by round τ + log rτ + 1.

This extra-additive factor of log rτ is due to the update time of the counter. In Appendix
C, we revisit the neural counter problem and provide an approximate randomized solution with
O(log log t+ log(1/δ)) many neurons where δ is the error parameter. This construction is based
on the well-known Morris algorithm (using the analysis of [Fla85]) for approximate counting in
the streaming model.

3 Randomized Constructions of Neural Timer Networks

We now turn to consider randomized implementations. The input to the construction is a time
parameter t and an error probability δ ∈ (0, 1), that are hard-wired into the network.

Definition 2 (Rand. Neural Timer Network). A randomized neural timer RT for parameters
t ∈ N>0 and δ ∈ (0, 1), satisfies the following for a time window of poly(t) rounds.

• For every fixed firing event of x in round τ , with probability 1 − δ, y fires in each of the
following t rounds.

• yτ ′ = 0 for every round τ ′ such that τ ′ − Last(τ ′) ≥ 2t with probability 1 − δ, where
Last(τ ′) = max{i ≤ τ ′ | xi = 1} is the last round τ in which x fired up to round τ ′.

Note that in our definition, we have a success guarantee of 1 − δ for any fixed firing event
of x, on the event that y fires for t many rounds after this firing. In contrast, with probability
of 1− δ over the entire span of poly(t) rounds, y does not fire in cases where the last firing of x
was 2t rounds apart. We start by showing a simple construction with O(log 1/δ) neurons.
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3.1 Warm Up: Randomized Timer with O(log 1/δ) Neurons

The network BasicRandTimer(t, δ) contains a collection of ` = Θ(log 1/δ) spiking neurons A =
{a1, . . . , a`} that can be viewed as a time-estimator population. Each of these neurons have a
positive self loop, a positive incoming edge from the input neuron x, and a positive outgoing
edge to the output neuron y. See Figure 2 for an illustration. Whereas these ai neurons are
probabilistic spiking neurons6, the output y is simply a threshold gate. We next explain the
underlying intuition. Assume that the input x fired in round 0. It is then required for the
output neuron y to fire for at least t rounds 1, . . . , t, and stop firing after at most 2t rounds
with probability 1 − δ. By having every neuron ai fires (independently) w.p (1 − 1/t) in each
round given that it fired in the previous round7, we get that ai fires for t consecutive rounds
with probability (1 − 1/t)t ≈ 1/e. On the other hand, it fires for 2t consecutive rounds with
probability (1− 1/t)2t = 1/e2. Since we have Θ(log 1/δ) many neurons, by a simple application
of Chernoff bound, the output neuron y (which simply counts the number of firing neurons in
A) can distinguish between round t and round 2t with probability 1− δ.

x

y

…
𝑎1 𝑎2 𝑎

log(
1
𝛿
)

Figure 2: Illustration of the BasicRandTimer(t, δ) network. Each neuron ai fires with probability 1− 1/t
in round τ given that it fired in the previous round, and therefore fires for t consecutive rounds with
constant probability. The output y fires if at least 1/(2e) fraction of the ai neurons fired in the previous
round.

Detailed Construction. The network BasicRandTimer(t, δ) has input neuron x, output neuron
y, and ` = Θ(log 1/δ) spiking neurons A = {a1, . . . , a`}. We set the weights of the self loop of each
ai, and the weight of the incoming edge from x to be w(x, ai) = w(ai, ai) = log(t − 1) + b(ai).
The threshold value of ai is set to b(ai) = Θ(log(t`/δ)). This makes sure that given a firing
of either x or ai in round τ , the probability that ai fires in round τ + 1 is 1 − 1/t. In the
complementary case (neither x nor ai fired in round τ), ai fires in round τ with probability at
most O(δ/poly(t`)). For the output y, we set w(ai, y) = 1 for each ai, the weight of the edge
from x to be w(x, y) = `

2e , and its threshold b(y) = `
2e . This makes sure that y fires in round τ ′

if either x or at least 1/2e fraction of the ai neurons fired in round τ ′ − 1. We next analyze the
construction.

Lemma 2 (Correctness). Within a time window of poly(t) rounds it holds that:

• For every fixed firing event of x in round τ , with probability 1 − δ, y fires in each of the
following t rounds.

• yτ ′ = 0 for every round τ ′ such that τ ′ − Last(τ ′) ≥ 2t with probability at least 1− δ.

Proof. When x fires in round τ0, each neuron ai fires for the following t consecutive rounds
independently with probability 1/e. Therefore, the expected number of neurons in A that fired
for t consecutive rounds starting round τ0 + 1 is `

e . Using Chernoff bound upon picking a large
enough constant c s.t ` = c · log(1/δ), at least `/2e auxiliary neurons fired for t consecutive
rounds and y fires in rounds [τ0 + 2, τ0 + t] with probability 1− δ. Since y has an incoming edge
from x, it fires in round τ0 + 1 as well.

6A neuron that fires with a probability specified in Eq. (1)
7A neuron ai that stops firing in a given round, drops out and would not fire again with good probability.
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Next, recall that for each neuron ai ∈ A, given that ai or x did not fire in round τ , the
probability that ai fires in round τ+1 is at most δ/poly(`t). Hence by union bound, in a window
of poly(t) rounds, the probability there exists a neuron ai ∈ A that fired in round τ ′ but did
not fire in round τ ′ − 1 is at most δ/2. Assuming no ai ∈ A fires unless it fired previously,
each ai ∈ A fires for 2t consecutive rounds with probability 1/e2. Using Chernoff bound the
probability at least `

2e neurons from A fired for 2t consecutive rounds is at most δ/2 (again
we choose ` accordingly). Thus, we conclude that the probability there exists a round τ ′ s.t
τ ′ − Last(τ ′) ≥ 2t in which yτ

′
= 1 is at most δ.

3.2 Improved Construction with O(log log 1/δ) Neurons

We next describe an optimal randomized timer ImprovedRandTimer with an exponentially im-
proved number of auxiliary neurons. This construction also enjoys the fact that it requires a
single spiking neuron, while the remaining neurons can be deterministic threshold gates. Due
to the tightness of Chernoff bound, one cannot really hope to estimate time with probability
1 − δ using o(log(1/δ)) samples. Our key idea here is to generate the same number of samples
by re-sampling one particular neuron over several rounds. Intuitively, we are going to show that
for our purposes having ` = log(1/δ) neurons a1, . . . , a` firing with probability 1− 1/t in a given
round is equivalent to having a single neuron a∗ firing with probability 1− 1/t (independently)
in a sequence of ` rounds.

Specifically, observe that the distinction between round t and 2t in the BasicRandTimer
network is based only on the number of spiking neurons in a given round. In addition, the
distribution on the number of times a∗ fires in a span of ` rounds is equivalent to the distribution
on the number of firing neurons a1, . . . , a` in a given round. For this reason, every phase of
ImprovedRandTimer simulates a single round of BasicRandTimer. To count the number of firing
events in ` rounds, we use the deterministic neural counter module with log ` = O(log log 1/δ)
neurons.

We now further formalize this intuition. The network ImprovedRandTimer simulates each
round of BasicRandTimer using a phase of `′ = Θ(log 1/δ) rounds 8, but with only O(log log 1/δ)
neurons. In the BasicRandTimer network each of the neurons ai fires (independently) in each
round w.p 1 − 1/t. Once it stops firing in a given round, it basically drops out and would not
fire again with good probability. Formally, consider an execution of the BasicRandTimer and
let ni be the number of neurons in A that fired in round i. In round i + 1 of this execution,
we have ni many neurons each firing w.p 1 − 1/t (while the remaining neurons in A fire with
a very small probability). In the corresponding i+ 1 phase of the network ImprovedRandTimer,
the chief neuron a∗ fires w.p 1 − 1/t′ where t′ = t

`′ for n′i ≤ ` consecutive rounds9 where n′i is
the number of rounds in which a∗ fired in phase i.

The dynamics of the network ImprovedRandTimer is based on discrete phases. Each phase
has a fixed number of `′ = O(`) rounds, but has a possibly different number of active rounds,
namely, rounds in which a∗ attempts firing. Specifically, a phase i has an active part of n′i
rounds where n′i is the number of rounds in which a∗ fired in phase i−1. In the remaining `′−n′i
rounds of that phase, a∗ is idle. To implement this behavior, the network should keep track
of the number of rounds in which a∗ fires in each phase, and supply it as an input to the next
phase (as it determines the length of the active part of that phase). For that purpose we will
use the deterministic modules of neural timers and counters. The module DetCounter with time
parameter Θ(log 1/δ) is responsible for counting the number of rounds that a∗ fires in a given
phase i. The output of this module at the end of the phase is the input to a DetTimer∗ module10

in the beginning of phase i+ 1. In addition, we also need a phase timer module DetTimer with

8Due to tactical reasons each phase consists of `′ = `+ log ` rounds instead of `.
9Note that because each phase takes `′ = Θ(log 1/δ) rounds, we will need to count t′ = t

`′ many phases. Thus
a∗ fires with probability 1− 1/t′ rather then w.p 1− 1/t.

10Here we use the variant of DetTimer in which the time is encoded in the input layer of the network.
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time parameter Θ(log 1/δ) that “announces” the end of a phase and the beginning of a new one.
Similarly to the network BasicRandTimer, the output neuron y fires as long as a∗ fires for at least
(1/2e) fraction of the rounds in each phase (in an analogous manner as in the BasicRandTimer
construction). See Fig. 3 for an illustration of the network. Note that since we only use
deterministic modules with time parameter Θ(log 1/δ), the total number of neurons (which are
all threshold gates) will be bounded by O(log log 1/δ). We next give a detailed description of
the network and prove Thm. 2.

Complete Proof of Thm. 2: We first describe the modules of the network ImprovedRandTimer
that gets as input the time parameter t and error probability δ.

Network Modules:

• A Global-Phase-Timer module implemented by a (slightly modified) module of DetTimer(`′).
Due to the update time of DetCounter (lemma 1), we set the length of each phase to
`′ = ` + log ` where ` correspond to the number of spiking neurons in BasicRandTimer.
Upon initializing this timer, the output neuron of this module fires after `′ rounds (in-
stead of firing for `′ rounds). This firing is the wake-up call for the network that a phase
has terminated (`′ rounds have passed). This will activate some cleanup steps, and a
subsequent “announcement” for the start of a new phase.

To allow this module to inhibit as well as excite other neurons in the network, we will have
two output (copy) neurons, one will be inhibitor and the other excitatory. The inhibitor
activates a clean-up round (in order to clear the counting information from the previous
phase). After one round, using a delay neuron the excitatory neuron safely announces the
beginning of a new phase.

• An Internal-Phase-Timer module also implemented by a (yet a differently slightly modi-
fied) variant of DetTimer. The role of this module is to indicate to the spiking neuron a∗

the number of rounds in which it should attempt firing in each phase. Recall that each
phase i starts by an active part of length ni in which a∗ attempts firing w.p. 1 − 1/t′ in
each of these rounds. In the remaining `′ − ni rounds till the end of the phase, a∗ is idle.
In each phase i, we then set the internal timer to ni, this will activate a∗ for ni rounds.
The time parameter ni is given as input to this module. For that purpose, we use the
DetTimer∗ variant in which the time parameter is given as an input. In our case, this
input is supplied by the output layer of the counting module (describe next) at the end of
phase i − 1. In particular, at the end of the phase, the output of the counting module is
fed into the input layer of the Internal-Phase-Timer module. Then, the information will
be deleted from the counting module, ready to maintain the counting in the next phase.

Since we would need to keep on providing the counting information throughout the entire
phase, we augment the input layer of this module by self loops that keeps on presenting
this information thought the phase.

• A Phase-Counter module implemented by the DetCounter network, maintains the number
of rounds in which a∗ fires in the current phase. At the end of every ith phase, the output
layer of this module stores the number of rounds in which a∗ fired in phase i. At the end of
the phase, upon receiving a signal from the Global-Phase-Timer, the output layer copies its
information to the input layer of the Internal-Phase-Timer module using an intermediate
layer of neurons, and the information of the module is deleted (by inhibitory connections
from the Global-Phase-Timer module).

Complete Description (Edge Weights, Bais Values, etc.)

• The neuron a∗ has threshold b(a∗) = Θ(log(`t/δ)), and a positive incoming edge from the
output z1 of the Internal-Phase-Timer module with weight w(z1, a

∗) = ln(t′ − 1) + b(a∗).
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Therefore a∗ fires with probability 1 − 1/t′ if z1 fired in the previous round, and w.h.p11

does not fire otherwise.

• Each neuron in the output of the Phase-Counter has a positive outgoing edge to an inter-
mediate copy neuron ci with weight 1. In addition, each ci has a positive incoming edge
from the Global-Phase-Timer excitatory output with weight 1, and threshold b(ci) = 2.
The copy neurons have outgoing edges to the input of the Internal-Phase-Timer and are
used to copy the current count for the next phase.

• The inhibitor output of the Global-Phase-Timer has outgoing edges to all neurons in the
Internal-Phase-Timer and Phase-Counter with weight −5. This is used to clean-up the
out-dated counting information at the end of the phase.

• The excitatory output of the Global-Phase-Timer has an outgoing edge to a delay neuron
d with weight 1 and threshold b(d) = 1. Hence, d fires one round after a phase ended, and
alerts the beginning of the new phase. The neuron d has outgoing edges to the input of
Global-Phase-Timer and Internal-Phase-Timer with large weight.

• The output neuron y has incoming edges from the time input neurons q1, . . . , qlog ` of the
Internal-Phase-Timer module each with weight w(qi, y) = 1 and threshold b(y) = `

2e .

Therefore y fires if a∗ fired for at least `
2e times in the previous phase. In addition, y has

positive incoming edges from x and the delay neuron d of the Global-Phase-Timer module,
each with weight `

2e . This insures that y also fires between phases.

• The Global-Phase-Timer input has an incoming edge from x with large weight, in order
to initialize the timer when the input x fires. In addition, x has outgoing edges with large
weight to the time input of the Internal-Phase-Timer, such that the decimal value of the
input is set to `.

All neurons except for a∗ are threshold gates, see Figure 3 for a schematic description of the
ImprovedRandTimer network.

Correctness. For simplicity we begin by showing the correctness of the construction assuming
that there is a single firing of the input x during a period of 2t rounds. Taking care of the general
case requires minor modifications that are described at the end of this section.

Our goal is to show that each phase of the ImprovedRandTimer network is equivalent to a
round in the BasicRandTimer network. Toward that goal, we start by showing that the length of
the active part of phase i has the same distribution as the number of neurons ni−1 that fire in
round i−1 in BasicRandTimer(t′, δ), where t′ = t/`′. In the BasicRandTimer(t′, δ) construction, let
B̄i be a random variable indicating the event that there exists a neuron a ∈ A which fired in round
τ ≤ i but a as well as x did not fire in round τ − 1. Similarly, for the ImprovedRandTimer(t, δ)
construction, let B̄′i be a random variable indicating the event that there exists a phase τ ≤ i,
where neuron a∗ fired in an inactive round of phase τ . Note that in both constructions, the
probability that a∗ fired in an inactive round, and the probability that a ∈ A fired given that it
did not fire in the previous round is identical. Moreover, within a window of τ = poly(t) rounds,
by union bound both probabilities Pr[Bτ ] and Pr[B′τ ] are at most δ/2.

Let Yi be a random variable for the number of neurons that fired in the ith round in
BasicRandTimer(t′, δ), and let Xi be the random variable for the number of rounds a∗ fired
during phase i in ImprovedRandTimer(t, δ). In both constructions we assume that the input
neuron x fired only in round 0.

Claim 2. For any k ≥ 0 and i ≥ 1, Pr[Xi = k | B̄′i] = Pr[Yi = k | B̄i].
11Here high probability refers to probability of 1 − δ/poly(t).
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Det-Timer*
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Counter

Global 
Phase Timer

Det-
Timer

Phase Counter𝑥

𝑦

Internal Phase Timer

RandImprovedTimer

Figure 3: Schematic description of the randomized timer. In each module only the input
layer and the output layer are shown. Excitatory (inhibitory) relations are shown in green (red)
arrows. Each module is deterministic and has Θ(log log 1/δ) threshold gates. The lower right
module (Internal-Phase-Timer) uses the variant of the deterministic neural timer in which the
time parameter is softly encoded in the input layer. This is crucial as the length of the (i+ 1)th

active phase depends on the spike counts of a∗ in phase i. This value is encoded by the output
layer of the Phase-Counter module at the end of phase i. In contrast, the Global-Phase-Timer
module uses the standard neural timer network (hard-wired), as the length of each phase is
fixed.
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Proof. By induction on i. For i = 1, given B̄1, B̄′1, the random variable X1 as well as Y1 are
the sum of ` independent Bernoulli variables with probability 1 − 1/t′ and therefore X1 = Y1.
Assume Pr[Xi = k | B̄i] = Pr[Yi = k | B̄i] and we will show the equivalence for i + 1.
First recall that in the BasicRandTimer(t′, δ) construction, each a ∈ A fires with probability
1 − 1/t′ given that it fired in the previous round. Moreover, conditioning on B̄i+1, given that
a did not fire in round i, it does not fire in round i + 1 as well. Thus, for any k, j it holds
that Pr[Yi+1 = k | Yi = j, B̄i+1] =

(
j
k

)
(1 − 1/t′)k · (1/t′)j−k (i.e., a binomial distribution).

Similarly, in the ImprovedRandTimer(t, δ) construction, since we assumed that a∗ fires only in
the active rounds of each phase, given that a∗ fired j times in phase i, in phase i + 1 it holds
that Pr[Xi+1 = k | Xi = j, B̄′i+1] =

(
j
k

)
(1 − 1/t′)k · (1/t′)j−k. By the law of total probability

we conclude that

Pr[Xi+1 = k | B̄′i+1] =
∑̀
j=0

Pr[Xi+1 = k | Xi = j, B̄′i+1] · Pr[Xi = j | B̄′i+1]

=
∑̀
j=0

Pr[Xi+1 = k | Xi = j, B̄′i+1] · Pr[Yi = j | B̄i]

=
∑̀
j=0

(
j

k

)
(1− 1/t′)k · (1/t′)j−k · Pr[Yi = j | B̄i]

=
∑̀
j=0

Pr[Yi+1 = k | Yi = j, B̄i+1] · Pr[Yi = j | B̄i] = Pr[Yi+1 = k | B̄i+1],

where the second equality is due to the induction assumption.

Hence, by the correctness of the network BasicRandTimer(t′, δ), with probability at least 1−δ
the neuron a∗ fires at least `/2e times in each of the first t′ phases. Since every phase consists
of `′ = ` + log ` rounds, y fires for at least `′ · t′ = t rounds w.h.p. On the other hand, with
probability at most δ/2 the neuron a∗ fires in an inactive round during one of the first 2t′ phases.
Given that a∗ fired only in active-rounds, we conclude that with probability at most δ/2 the
output y fires for at least 2t′ phases. All together, with probability at least 1 − δ the output y
stops firing by round 2t′ · `′ = 2t.

Finally, we describe the small modifications needed to handle the case where x fires several
times within a window of 2t rounds. Upon any firing of x, all modules get reset, and a new
counting starts. To implement the reset, we connect the input neuron x to two additional
neurons, an inhibitor neuron x1, and an excitatory neuron x2 where w(x, x1) = w(x, x2) = 1
with thresholds b(x1) = b(x2) = 1. The inhibitor x1 has outgoing edges to all auxiliary neurons
in the network with weight −4. The excitatory neuron x2 has outgoing edges to the input of
Global-Phase-Timer and the time input of the Internal-Phase-Timer, such that the decimal
value is equal to ` with weights 6. Thus, after one round of cleaning-up, the network starts to
account the last firing of x. The output y has incoming edges from x and x2 each with weight
w(x, y) = w(x1, y) = `

2e , this makes y fire during the reset period.

3.3 A Matching Lower Bound

We now turn to show a matching lower bound with randomized spiking neurons. Assume
towards contradiction there exists a randomized neural timer N for a given time parameter t
with N = o(log log 1/δ) neurons that succeeds with probability at least 1− δ. This implies that
once x fired, y fires for t consecutive round with probability 1 − δ. Moreover, there exists some
constant c ≥ 2 such that y stops firing after (c− 1) · t rounds w.p 1− δ. Throwout the proof, we
assume w.l.g that x fired in round 0. Recall that the state of the network in time τ denoted as sτ
can be described as an N -length binary vector. Since we have N many neurons, the number of
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distinct states (or configurations) is bounded by S = 2N = o(log 1/δ). We start by establishing
useful auxiliary claims.

We first claim that because we have relatively small number of states, and the memoryless
property discussed in section 1.3 in every window of t rounds there exists a state that occurs at
least twice (and with sufficient distance). Let s∗ be a state for which the probability that there
exist rounds t′, t′′ ≤ t such that t

3·S ≤ t
′ − t′′ ≤ t and st′ = st′′ = s∗ is at least 1/S.

Claim 3. There exists such a state s∗.

Proof. Note that because N = o(log log 1/δ) and 1/δ ≤ 2poly(t) it holds that t
3·S ≥ 1. We

partition the interval [0, t] into 2 · (S + 1) balanced intervals, each of size t/2(S + 1). Because
we have only S different states, in every execution of the network for t many rounds, there must
be a state that occurs in at least two even intervals. Thus, there exists a state s∗ for which the
probability that s∗ occurred in two even intervals is at least 1/S. Because each interval is of size
t/2(S + 1) ≥ t/3S we conclude that the claim holds.

Next we use the assumption that with probability at least 1− δ the output y fires in rounds
[0, t] as well as the memoryless property to show that given that state s∗ occurred in round t′,
with a sufficiently large probability, s∗ occurs again with a long enough interval, and y fires in
all rounds between the two occurrences of s∗. Let p(t′) = Pr[∃t′′ ∈ [t′ + t/(3S), t′ + t], st′′ =
s∗ and yt

∗
= 1 ∀t∗ ∈ [t′, t′′] | st′ = s∗]. By the memoryless property, we have:

Observation 2. p(t′) = p(t′′) for every t′, t′′.

Define p∗ = p(1) = p(t′) for any round t′. The next claim shows that p∗ is sufficiently large.

Claim 4. p∗ ≥ 1/S − δ.

Proof. Let A be an indicator random variable for the event that there exist 0 < t′, t′′ < t such
that t′′− t′ ∈ [t/3S, t], st′ = st′′ = s∗. Let B be the indicator random variable for the event that
there exists t∗ ∈ [0, t] such that yt

∗
= 0. By Claim 3, Pr[A] ≥ 1/S, and by the success guarantee

of the network, Pr[B] ≤ δ. Hence, by union bound, we get Pr[A ∧ B̄] ≥ 1/S − δ .
Let A(t′, t′′) be the indicator random variable for the event that st′ = st′′ = s∗ and yt

∗
= 1

for every t∗ ∈ [t′, t′′]. Let F (t′) be the indicator random variable for the event that s∗ appears
in round t′ for the first time. Hence, we get

1/S − δ ≤ Pr[A ∧ B̄] ≤
∑

0<t′<t−t/(3S)

Pr[F (t′) ∧
(
∃t′′ ∈ [t′ + t/3S, t] s.t st′′ = s∗

)
∧ B̄]

≤
∑

0<t′<t−t/(3S)

Pr[F (t′) ∧
(
∃t′′ ∈ [t′ + t/3S, t] s.t A(t′, t′′) = 1

)
]

=
∑

0<t′<t−t/(3S)

Pr[F (t′)] · Pr[
(
∃t′′ ∈ [t′ + t/3S, t] s.t A(t′, t′′) = 1

)
| F (t′)]

=
∑

0<t′<t−t/(3S)

Pr[F (t′)] · Pr[
(
∃t′′ ∈ [t′ + t/3S, t] s.t A(t′, t′′) = 1

)
| st′ = s∗]

=
∑

0<t′<t−t/(3S)

Pr[F (t′)] · p∗ ≤ p∗,

where the second inequality is by union bound over all possibilities for event A. The third
equation is due to the memoryless property, the probability that the event occurred conditioning
on F (t′), is equivalent to conditioning on st′ = s∗. The last equality follows by summing over a
set of disjoint events F (t′).
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We are now ready to complete the proof of Theorem 3.

Proof of Thm. 3. We bound the probability that y fires in each of the first c · t rounds.
Let C be the indicator random variable for the event that there exists a sequence of rounds
0 = τ0 < τ1 < τ2 < · · · < τ3c·S such that for every i ≥ 1, it holds that:

• yt∗ = 1 for all t∗ ∈ [τi−1, τi].

• sτi = s∗.

• τi − τi+1 ∈ [t/3S, t].

Note that because τi+1− τi ≥ t/3S, it holds that τ3c·S ≥ c · t. Hence, the probability that y fires
in each of the first c · t rounds is at least Pr[C]. Next, we calculate the probability of the event
C. Recall that given that sτi = s∗, the probability there exists a round τi+1 ∈ [τi + t/3S, τi + t]
for which A(τi, τi+1) is equal to p(τi) = p∗. Moreover, by Claim 3 and the success guarantee,
the probability there exists 0 < τ1 < t such that A(0, τ1) is at least 1/S − δ. By Claim 4 and
the memoryless property, we have:

Pr[C] = Pr[∃τ1 < t s.t A(0, τ1)] ·
3c·S−1∏
i=1

Pr[∃τi+1 ∈ [τi + t/3S, τi + t] s.t A(τi, τi+1) | sτi=s∗ ]

≥ (1/S − δ)
3c·S−1∏
i=1

p∗ ≥ (1/S − δ)3cS .

Taking N ≤ (log log 1/δ−log log log 1/δ)−log 6c = log( log 1/δ
log log 1/δ )−log 6c, the number of different

states is bounded by S < log 1/δ
6c·log log 1/δ . Thus the network fails with probability at least

(1/S − δ)3c·S >
(

6 · c · log log 1/δ

log 1/δ
· 1

2

) log 1/δ
log log 1/δ

> δ ,

in contradiction to the success guarantee of at least 1 − δ.

4 Applications to Synchronizers

The Asynchronous Setting. In this setting, the neural network N = 〈X,Z, Y,A,w, b〉 also
specifies a response latency function ` : A→ N>0. For ease of notation, we normalize all latency
values such that mine∈A `(e) = 1 and denote the maximum response latency by L = maxe∈A `(e).
Supported by biological evidence [IB06], we assume that self-loop edges (a.k.a. autapses) have
the minimal latency in the network, that `((u, u)) = 1 for self-edges (u, u). This assumption is
crucial in our design12. Indeed the exceptional short latency of self-loop edges has been shown
to play a critical role in biological network synchronization [MSJW15, FWW+18]. The dynamic
proceeds in synchronous rounds and phases. The length of a round corresponds to the minimum
edge latency, this is why we normalize the latency values so that mine∈A `(e) = 1. If neuron u
fires in round τ , its endpoint v receives u’s signal in round τ + `(e). Formally, a neuron u fires
in round τ with probability p(u, τ):

pot(u, τ) =
∑

v∈X∪Z∪Y
wv,u · vτ−`(u,v) − b(u) and p(u, τ) =

1

1 + e−
pot(u,τ)

λ

(2)

Synchronizer. A synchronizer ν is an algorithm that gets as input a network Nsync and outputs
a network Nasync = ν(Nsync) such that V (Nsync) ⊆ V (Nasync) where V (N ) denotes the neurons

12In a follow-up work, we actually show that this assumption is necessary for the existence of syncrnoizers even
when L = 2.

16



of a network N . The network Nasync works in the asynchronous setting and should have similar
execution to Nsync in the sense that for every neuron v ∈ V (Nsync), the firing pattern of v in
the asynchronous network should be similar to the one in the synchronous network. The output
network Nasync simulates each round of the network Nsync as a phase.

Definition 3 (Pulse Generator and Phases). A pulse generator is a module that fires to declare
the end of each phase. Denote by t(v, p) the (global) round in which neuron v receives the pth spike
from the pulse generator. We say that v is in phase p during all rounds τ ∈ [t(v, p− 1), t(v, p)].

Definition 4 (Similar Execution (Deterministic Networks)). The synchronous execution Πsync

of a deterministic network Nsync is specified by a list of states Πsync = {σ1, . . . , } where each σi is a
binary vector describing the firing status of the neurons in round i. The asynchronous execution
of network Nasync denoted by Πasync is defined analogously only when applying the asynchronous
dynamics (of Eq. (2)). The execution Πasync is divided into phases of fixed length. The networks
Nsync and Nasync have a similar execution if V (Nsync) ⊆ V (Nasync), and in addition, a neuron
v ∈ V (Nsync) fires in round p in the execution Πsync iff v fires during phase p in Πasync.

For simplicity of explanation, we assume that the network Nsync is deterministic. However,
our scheme can easily capture randomized networks as well (i.e., by fixing the random bits in
the synchronized simulation and feeding it to the async. one).

4.1 Extension for Randomized Networks

For networks Nsync that contain also probabilistic threshold gates, the notion of similar execution
is defined as follows. Consider a fixed execution Πsync of the network Nsync. In each round of
simulating Nsync, the spiking neurons flip a coin with probability that depends on their potential.
Once we fix those random coins used by the neurons in the execution Πsync, the process becomes
deterministic. Formally, for every round p and neuron v, let R(v, p) be the set of random coins
used by the neuron v in round p in the execution Πsync. The firing decision of v in round p is
fully determined given those bits. The asynchronous network Nasync contains a set of neurons V ′

that are analogous to the neurons in Nsync and an additional set of deterministic threshold gates.
When simulating this network, the neurons in V ′ will use the same random coins as those used
by their corresponding neurons in Πsync: in each phase p in the execution Πasync, the neuron v
will be given the bits R(v, p) and will base its firing decision using a deterministic function of
its current potential, bias value and R(v, p). This allows us to restrict attention to deterministic
networks13.

The Challenge. Consider a network of a threshold gate z with two incoming inputs: an
excitatory neuron x, and an inhibitory neuron y. The weights are set such that z computes
X ∧ Ȳ thus it fires in round τ if x fired in round τ −1 and y did not fire. Implementing an X ∧ Ȳ
gate in the asynchronous setting is quite tricky. In the case where both x and y fire in round
τ , in the synchronous network, z should not fire in round τ + 1. However, in the asynchronous
setting, if `(x, z) < `(y, z), then z will mistakenly fire in round τ + `(x, z). This illustrates the
need of enforcing a delay in the asynchronous simulation: the neurons should attempt firing
only after receiving all their inputs from the previous phase. We handle this by introducing a
pulse-generator module, that announces when it is safe to attempt firing.

To illustrate another source of challenge, consider the asynchronous implementation of an
AND-gate X ∧Y . If both x and y fire in round τ , then z fires in round τ + 1 in the synchronous
setting. However, if the latencies of the edges `(x, z) and `(y, z) are distinct, z receives the
spike from x and y in different rounds, thus preventing the firing of z. Recall, that z has no
memory, and thus its firing decision is based only on the potential level in the previous round.
To overcome this hurdle, in the transformed network, each neuron in the original synchronous

13Where the neurons in those networks are not necessarily threshold gates, but rather base their firing decision
using some deterministic function
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network is augmented with 3 copy-neurons, some of which have self-loops. Since self-loops have
latency 1, once a neuron with a self-loop fires, it fires in the next round as well. This will make
sure that the firing states of x and y are kept on being presented to z for sufficiently many
rounds, which guarantees the existence of a round where both spikes arrive.

While solving one problem, introducing self-loops into the system brings along other troubles.
Clearly, we would not want the neurons to fire forever, and at some point, those neurons should
get inhibition to allow the beginning of a new phase. This calls for a delicate reset mechanism
that cleans up the old firing states at the end of each phase, only after their values have already
being used. Our final solution consists of global synchronization modules (e.g., pulse-generator,
reset modules) that are inter-connected to a modified version of the synchronous network. Before
explaining those constructions, we start by providing a modified neural timer DetTimerasync
adapted to asynchronous setting. This timer will be the basic building block in our global
synchronization infrastructures.

Asynchronous Analog of DetTimer. A basic building block in our construction is a variant
of DetTimer to the asynchronous setting. Observe that the DetTimer implementation of Sec. 2
might fail miserably in the asynchronous setting, e.g., when the edges (ai−1,2, ai,2) have latency
2 for every i ≥ 2, and the remaining edges have latency 1, the timer will stop counting after
Θ(log t) rounds, rather than after t rounds. In Appendix D.1, we show:

Lemma 3. [Neural Timer in the Asynchronous Setting] For a given time parameter t, there
exists a deterministic network DetTimerasync with O(L · log t) neurons, satisfying that in the
asynchronous setting with maximum latency L, the output neuron fires at least Θ(t) rounds, and
at most Θ(L · t) rounds after each firing of the input neuron.

Description of the Syncronizer. The construction has two parts: a global infrastructure,
that can be used to synchronize many networks14, and an adaptation of the given network Nsync

into a network Nasync. The global infrastructures consists of the following modules:

• A pulse generator PG implemented by DetTimerasync with time parameter Θ(L3).

• A reset module R1 implemented by a directed chain of Θ(L) neurons 15 with input from
the output neuron of the PG module.

• A delay module D implemented by DetTimerasync with time parameter Θ(L2) and input
from the output of of the PG module.

• Another reset module R2 implemented by a chain of Θ(L) neurons with input from D.

The heart of the construction is the pulse-generator that fires once within a fixed number of
` ∈ [Θ(L3),Θ(L4)] rounds, and invokes a cascade of activities at the end of each phase. When
its output neuron g fires, it activates the reset and the delay modules, R1 and D. The second
reset module R2 will be activated by the delay module D. Both reset modules R1 and R2 are
implemented by chains of length L, with the last neuron on these chains being an inhibitor
neuron. The role of the reset modules is to erase the firing states of some neurons (in Nasync)
from the previous phase, hence their output neuron is an inhibitor. The timing of this clean-up
is very delicate, and therefore the reset modules are separated by a delay module that prevents
a premature operation. The total number of neurons in these global modules is O(L · logL).
We next consider the specific modifications to the synchronous network Nsync (see Fig. 4).
Modifications to the Network Nsync. The input layer and output layer in Nasync are exactly
as in Nsync. We will now focus on the set of auxiliary neurons V in Nsync. In the network
Nasync, each v ∈ V is augmented by three additional neurons vin, vdelay and vout. The incoming
(resp., outgoing) neighbors to vin (resp., vout) are the out-copies (resp., in-copies) of all incoming

14It is indeed believed that the neural brain has centers of synchronization.
15Each neuron in the chain has an incoming edge from its preceding neuron with weight 1 and threshold 1.
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(resp., outgoing) neighboring neurons of v. The neurons vin, v, vdelay and vout are connected by
a directed chain (in this order). Both vdelay and vout have self-loops.

In case where the original network Nsync contains spiking neurons, the neuron vin will be given
the exact same firing function as v in Πsync. That is, in phase p, vin will be given the random
coins16 used by v in round p in Πsync. The other neurons v, vdelay and vout are deterministic
threshold gates. The role of the out-copy vout is to keep on presenting the firing status of v
from the previous phase p− 1 throughout the rounds of phase p. This is achieved through their
self-loops. The role of the in-copy vin is to simulate the firing behavior of v in phase p. We will
make sure that vin fires in phase p only if v fires in round p in Πsync. For this reason, we set the
incoming edge weights of vin as well as its bias to be exactly the same as that of v in Nsync. The
neuron v is an AND gate of its in-copy vin and the PG output g. Thus, we will make sure that v
fires at the end of phase p only if vin fires in this phase as well. The role of the delay copy vdelay
is to delay the update of vout to the up-to-date firing state of v (in phase p). Since both neurons
vdelay and vout have self-loops, at the end of each phase, we need to carefully reset their values
(through inhibition). This is the role of the reset modules R1 and R2. Specifically, the reset
module R1 operated by the pulse-generator inhibits vout. The second reset module R2 inhibits
the delay neuron vdelay only after we can be certain that its value has already being “copied” to
vout. Finally, we describe the connections of the neuron vout. The neuron vout has an incoming
edge from the reset module R1 with a super-large weight. This makes sure that when the reset
module is activated, vout will be inhibited shortly after. In addition, it has a self-loop also of
large weight (yet smaller than the inhibition edge) that makes sure that if vout fires in a given
round, and the reset module R1 is not active, vout also fires in the next round. Lastly, if vout
did not fire in the previous round, then it fires when receiving the spikes from both the delay
module and from the delay copy vdelay. This will make sure that the firing state of vdelay will be
copied to vout only after the output of the delay module D fires.
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Figure 4: Illustration of the syncronizer modules. Left: global modules implemented by neural timers. Right:

a neuron v ∈ Nsync augmented by three additional neurons that interact with the global modules.

4.2 Analysis of the Syncronizers.

Throughout, we fix a synchronous execution Πsync and an asynchronous execution Πasync. For
every round p, recall that V +

sync(p) is the set of neurons that fire in round p in Πsync (i.e., the
neurons with positive entries in σp). In our simulation, we will make sure that each v in Nasync

has the same firing pattern as its copy in Nsync.

Observation 3. Consider a neuron v with incoming neighbors u1, . . . , uk. If there is a round τ
such that u1, . . . , uk fire in each round τ ′ ≥ τ , v fires in every round τ ′′ ≥ τ + maxui `(v, ui).

Lemma 4. The networks Nsync and ν(Nsync) = Nasync have similar executions.

16I.e., the random coins that are used to simulate the firing decision of v.
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Proof. We will show by induction on p that V +
sync(p) = V +

async(p). For p = 1, let V +
sync(0) be

the neurons that fired at the beginning of the simulation in round 0. We now show that every
neuron v ∈ V fires at the end of phase 1 iff v ∈ V +

sync(1). Without loss of generality, assume that
g fired at the end phase 0 and begins the simulation in round 0. We begin with the following
claim.

Claim 5. For every u ∈ V , for its in-copy uin there is a round τu ≤ c2L
3 + L in which all its

incoming neighbors in V +
sync(0) fire (and the remaining neighbors do not fire), for a constant c2.

Proof. We first show that for v ∈ V +
sync(0), the out-copy vout fires when it receives a signal from

the delay module D. Because each edge has latency at most L, by round L, neuron v has fired.
Since the delay neuron vdelay has a self loop (with latency one), it starts firing in every round
starting round τd ∈ [2, 2L] (until it is inhibited by the reset module R2). Recall that the out-copy
vout is connected to the delay module D, and fires only when receiving a spike from both the
output neuron of D and the delay-neuron vdelay. We claim that vout receives a signal from D
and starts firing after it gets a reset from R1. The reset module R1 receives the signal from g
by round L and starts counting L rounds. Thus, the output neuron of R1 fires in some round
τ ′r1 ∈ [L + 1, L2 + L]. This insures that by round L2 + 2L the neuron vout is inhibited by the
output of R1. The delay module D is implemented by DetTimerasync with time parameter 2L2.
Therefore, the output neuron of D fires in round τD ∈ [2L2, 10L3], ensuring that it fires only
after vout has been reset by the module R1. Moreover, the reset module R2 counts L rounds
after receiving a signal from D. This ensures that the inhibitory output of R2 starts inhibiting
vdelay only after vout has received the signal from D in round τout. Overall, we conclude that vout
fires in round τout ∈ [c1 ·L2, c2 ·L3], for some constants c1, c2. Due to the self loop, vout also fires
in each round τ ′′ ≥ τout in that phase. As a result for every u ∈ V , its in-copy uin has a round
τu ≤ c2L

3 + L in which all its incoming neighbors in V +
sync(0) fire. Note that for every neuron

v /∈ V +
sync(0), non of its copy neurons vout, vdelay fire during the phase.

Hence, uin start firing in round τu only if u fires in round 1 in Πsync, i.e., if u ∈ V +
sync(1). We set

the pulse-generator with time parameter c3 ·L3 for a large enough c3 such that c3 ·L3 > c2L
3+2L.

Since the out-copies keep on presenting the firing states of phase 0, uin continues to fire in the
last L rounds of the phase. Thus, when the pulse-generator spikes again, the neurons in V +

sync(1)
indeed fire as both g and vin fired in the previous rounds.

Next, we assume that V +
sync(p) = V +

async(p) and consider phase p + 1. Let τ∗ be the round
that the PG fired at the end of phase p. We first show the following.

Claim 6. For every v ∈ V , the neuron vdelay starts firing by round τ∗ + 2L, iff v ∈ V +
sync(p).

Proof. Recall that all delay copies are inhibited by the reset module R2 at most L2 + 2L rounds
after the delay module D has fired. We choose the time parameter of the PG to be large enough
such that this occurs before the next pulse of PG in round τ∗. Hence, when phase p ended in
round τ∗, all delay copies vdelay are idle. Because each edge has latency of at most L, by round
τ∗ + L, all the neurons in V +

sync(p) have fired (and by the assumption other neurons did not fire
during phase p). As a result, the neuron vdelay starts firing by round τ∗+2L, iff v ∈ V +

sync(p).

We next show there exists a round in which the in-copies of V +
sync(p+ 1) begin to fire.

Claim 7. For every u ∈ V for its in-copy uin there is round τu ∈ [τ∗ + c1 · L2, τ∗ + c2 · L3 + L]
in which all its incoming neighbors in V +

sync(p) fire, and the remaining neighbors do not fire.

Proof. The output neuron of R1 fires in some round τ ′ ∈ [τ∗+L+1, τ∗+L2+L], and therefore all
neurons vout are inhibited by round τ∗+L2+2L. Recall that the delay module D is implemented
by DetTimerasync with time parameter 2L2. Therefore the output neuron of D fires in round
τD ∈ [τ∗ + 2L2 + 1, τ∗ + 10L2], ensuring D fires after vout was inhibited by R1. Recall that
the reset module R2 counts L rounds after receiving a signal from D. This ensures that the
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inhibitory output of R2 starts inhibiting vdelay after vout received the signal from D. By Claim 6
we conclude that when neuron vout receives the signal from the delay module D in some round
τout ∈ [τ∗ + c1 · L2, τ∗ + c2L

3], it fires iff v ∈ V +
sync(p). As a result, due to the self loops of the

out-copies, uin has a round τu ∈ [τ∗ + c1 · L2 + 1, τ∗ + c2 · L3 + L] in which all its incoming
neighbors in V +

sync(p) fire.

Therefore, uin starts firing in round τu only if u ∈ V +
sync(p + 1) and it continues firing from

round τu ahead in that phase due to the self loops of the out-copies of its neighbors. Since the
pulse generator fires to signal the end of phase p + 1 in round τ∗ + c3L

3 > τ∗ + c2 · L3 + 2L,
every neuron v ∈ V +

sync(p+ 1) fires in round t(v, p+ 1) since both g and vin fired previously (and
other neurons are idle).

Acknowledgment: We are grateful to Cameron Musco, Renan Gross and Eylon Yogev for
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A Missing Details for the Introduction

Proof of Observation 1. We will show that implementing a simple NOT-gate in the asyn-
chronous setting requires Ω(logL) neurons. In the synchronous setting, one can easily implement
a NOT-gate by connecting the input neuron to the output neuron with negative weight and set-
ting the bias of the output to 0.

Assume towards contradiction that there exists a deterministic network N with N = o(logL)
neurons, an input neuron x, and an output neuron y that computes y = NOT (x) within T
rounds. If x fires in round 0, the output z should not fire in any of the rounds [0, T ], and if x
does not fire, then there exists a round τ ∈ [0, T ] in which y fires. We set the latencies on the
edges of N such that the outgoing edges from x have latency L, and all other edges have latency
1.

Consider an execution Πyes where x fires in rounds [0, L + 1], and an execution Πno where
x do not fire at all. The initial states of all other neurons are set to 0 in both Πyes and Πno.
By the correctness guarantee, during the execution Πyes, the output neuron y do not fire in
rounds [1, L + 1], and during the execution Πno there exists a round τ ∈ [0, T ] in which z fires.
Recall that the state of the network in round t is described by an N -length vector indicating the
firing neurons in that round. Note that because the network contain N = o(logL) neurons, the
network has at most L/2 distinct firing states.

Since the latency on all outgoing edges from x is L, during rounds [1, L] of execution Πyes,
the signal from x does not reach any other neuron. Hence, the states of all neurons but x during
rounds [1, L] of execution Πno are identical to those of execution Πyes. In other words, except
for the state of x, the two executions are indistinguishable over the first L rounds. By the
correctness of Πyes, we have that y is idle during the first L round, and therefore it is also idle
in Πno during these rounds.

Since the network has at most L/2 distinct states, there must be a state s that occurs at
least twice during rounds [1, L] in both executions Πyes and Πno. In addition, in all the rounds
between the two occurrences of s, the output y does not fire (as y is idle in the first L rounds).
Due to the memory-less property of the neurons, we conclude that the execution Πno is locked
into a no-configuration in which y will never fire, contradicting the correctness of the network.

B Missing Proofs for Det. Neural Timer

B.1 Complete Description of The DetTimer Network

Handling the General Case: We begin by extending the DetTimer(t) network to handle the
case where x fired more than once within the execution.

• Case 1: x fires several times within a span of t rounds. We introduce an additional
reset (inhibitory) neuron r that receives input from x with weight w(x, r) = 1, has outgoing
edges to all neurons except a1,2 and y with negative weight of −2, and threshold value
b(r) = 1.

• Case 2: x fires again just one round before alog t̂,2 fires. To process this new spike,
we introduce a control neuron c that receives input from x with weight w(c, x) = 1 and
threshold b(c) = 1 and fires one round after x. The control neuron c has outgoing edges to
y and a1,2 with weights w(c, y) = w(c, a1,2) = 3. Therefore even if alog t̂,2 fires one round
after x, the control neuron will cancel the inhibition on the output y and on a1,2 and the
timer will continue to fire.

Figure 5 illustrates the structure of the network.
We next use Claim 1 in order to prove the the first part of Thm. 1.
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Figure 5: Illustration of the DetTimer network. Left: The simplified network for the case that x
fired once. The neurons y, a1,2 and the set of neurons {a1,1, . . . , alog t̂,1} have threshold 1. For i ≥ 2 the
threshold of ai,2 and di is 2. Right: A complete network description for the general case, where the input
can fire several times during the execution. The reset neuron r resets the timer in case x fires several
times. The control neuron c takes care of the special extreme case where x fires again one round before
the last counting neuron alog t̂,2 fires.

B.2 Complete Proof of Thm. 1(1)

Proof. We start by considering the case where x fires once in round t′. If x fired in round t′,
due to the self loop of y, starting from round t′+ 1, the output keeps firing as long as alog t̂,2 did

not fire. By Claim 1, alog t̂,2 fires in round t′ + t̂+ log t̂− 1 = t′ + t− 1, and therefore y will be
inhibited in round t′+ t. Note that alog t̂,2 also inhibits all other auxiliary neurons, and therefore
as long as x will not fire again, y will also not fire. Next we consider the case where x also fired
in round t′′ ≥ t′ + 1.

• Case 1: t′′ ≥ t′ + t. Because in round t′ + t − 1 the neuron alog t̂,2 inhibits all counting
neurons in the network, starting round t′ + t no counting neuron fires until x fires again
in round t′′. Thus, after x fires in round t′′ the network behaves the same as after the first
firing event.

• Case 2: t′′ ≤ t′+ t−3. In round t′′+ 1 ≤ t′+ t−2 the reset neuron r inhibits all counting
neurons except for a1,2. Hence, in round t′′ + 2 only y and a1,2 fire, and the neural timer
continues to count for additional t− 2 rounds.

• Case 3: t′′ = t′+ t−1. The neuron alog t̂,2 fires on the same round as x. Since the weights
on the edges from x to y and a1,1 are greater than the weight of the inhibition from alog t̂,2,
the timer continues to fire based on the last firing event of x.

• Case 4: t′′ = t′ + t− 2. In this case x fires in round t′′ and in the next round, alog t̂,2 fires
and inhibits the output y (at the same round that the reset neuron r fires). Recall that in
round t′′ + 1 the control neuron c also fires. Hence, in round t′′ + 2 neuron c excites y and
a1,2 canceling the inhibition of alog t̂,2.

B.3 Useful Modifications of Deterministic Timers

We show a slightly modified variant of neural timer denoted by DetTimer∗ which receives as
input an additional set of log t neurons that encode the desired duration of the timer.

(1) Time Parameter as a Soft-Wired Input. The DetTimer construction is modified to
receiving a time parameter t′ ≤ t as a (soft) input to the network. That is, we assume that t
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Figure 6: Left: Det. neural timer DetTimer∗ with a soft-wired time parameter. The input
neurons z1, . . . , zlog t encode the time parameter t′. The intermediate neurons c1, . . . , clog t control
how many layers are used depending on the time parameter t′. Once the timer reaches layer
i = Θ(log(t′)) for which ci fires, the inhibitor ri inhibits the output y and the counting terminates.
Right: neural counter DetCounter, the output neurons ȳ encode the number of times x fired in
a time window of t rounds.

is the upper limit on the time parameter. The same network can be used as a timer for any
t′ ≤ t rounds, and this t′ can be given as an input to the network. In such a case, once the
input neuron x fires, the output neuron y will fire for the next t′ consecutive rounds. The time
parameter t′ is given in its binary form using log t input neurons denoted as z1 . . . zlog t. We
denote this network as DetTimer∗(t). The idea is that given time parameter t′, we want to use
only log(t′′) layers out of the log t, where t′′ = t′ + log(t′) (we use t′′ due to the log(t′′) delay in
the update of the timer). The modifications are as follows.

1. The time input neurons are set to be inhibitors.

2. The intermediate layer of neurons c1 . . . clog t′′ determine how many layers we should use.
Each ci has negative edges from z1, . . . , zlog t′′ with weights w(ci, zj) = −2j−1, and threshold
b(ci) = −i− 1− 2i−1. Hence ci fires iff i− 1 + 2i−1 ≥ dec(z̄) = t′.

3. We introduce log t′′ inhibitors r1, . . . rlog t′′ in order to inhibit the output y after we count
to t′ and reached layer t′′. Each ri has incoming edges from ci and ai,1, and fires as an AND
gate. Hence, each ri fires only when the timer count reach 2i−1 + i−1 and i−1+2i−1 ≥ t′.

4. The output neuron y receives negative incoming edges from the neurons r1 . . . rlog t′′ with
weight w(ri, y) = −1, and stops firing if at least one neuron ri fired in the previous round.

5. Every neuron ri also has negative outgoing edges to all counting neurons aj,k k ∈ {1, 2}, j =
1 . . . log t with weight w(ri, aj,k) = −2 in order to reset the timer when we finish counting
to t′.

See Figure 6 for an illustration of DetTimer∗(t) network.

(2) Extension to Neural Counting. We next show a modification of the timer into a neural
counter network DetCounter that instead of counting the number of rounds, counts the number
of input spikes in a time interval of t rounds. This network also uses O(log t) auxiliary neurons.
To improve upon this bound, we resort to approximation and in Appendix C, we combine the
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DetCounter network with the streaming algorithm of [Fla85] to provide an approximate counting
network with O(log log t + log(1/δ)) neurons where δ is the error parameter. We next describe
the required adaptation for constructing the network described in Lemma 1.

The DetCounter with parameter t contains log t layers, all layers i ≥ 2 are the same as in
DetTimer and only the first layer is slightly modified. The first counting neuron a1,1 has a positive
incoming edge from x with weight w(x, a1,1) = 4, and a self loop with weight w(a1,1, a1,1) = 1.
In addition a1,1 has a negative edge from the inhibitor d1 with weight w(d1, a1,1) = −1, and
threshold b(a1,1) = 1. The second counting neuron a1,2 has positive edges from x and a1,1 with
weights w(x, a1,2) = w(a1,1, a1,2) = 1, a negative edge from d1 with weight w(d1, a1,2) = −2
and threshold b(a1,2) = 2. The reset neuron d1 is an inhibitor copy of a1,2 and therefore also
has positive edges from x and a1,1 with weights w(x, d1) = w(a1,1, d1) = 1, a negative self loop
with weight w(d1, d1) = −2 and threshold b(d1) = 2. We then connect the counting neurons
a1,1, · · · alog t,1 to the output vector directly, where yi has an incoming edge from ai,1 with weight
w(ai,1, yi) = 1 and threshold b(yi) = 1. Figure 6 demonstrate the DetCounter(t) network.

Next we show that once the counter is updated, the number of times that x fired is repre-
sented as a binary number where the counting neuron ai,1 represents the ith bit in the binary
representation (a1,1 is the least significant bit). We note that if the last firing of x occurs is in
round τ then after at most log c+ 1 rounds the counter is updated with the new value, where c
is the value of the counter before round τ . We start by showing the following claim concerning
the first layer.

Claim 8. If x fired in round τ , neurons d1 and a1,2 fire in round τ+1 iff x fired an even number
of times by round τ .

Proof. By induction on the number of times x fired, denoted as n. Since d1 and a1,2 have
identical potential functions it is sufficient to prove the claim for the neuron d1. For n = 1, if
x fired once in round τ , then a1,1 fires for the first time in round τ + 1, and since d1 fires only
if a1,1 fired in the previous round, in round τ + 1 both neuron d1 and a1,2 are idle. For n = 2,
since x fired for the first time in some round τ ′ ≤ τ − 1, starting round τ ′ + 1 neuron a1,1 fires
on every round until d1 fires. Hence, in round τ + 1 the neuron d1 receives spikes from both
x and a1,1 and therefore fires. Assume the claim holds for every k ≤ n − 1 and we will show
correctness for n. Denote the round in which x fired for the (n− 1)th time by τ ′ ≤ τ − 1.

• (Case 1: n is even.) Since n − 1 is odd, by the induction assumption d1 did not fire in
round τ ′ + 1. Hence a1,1 is not inhibited until round τ + 1, and due to the self loop a1,1
also fires in round τ . Therefore d1 and a1,2 fire in round τ + 1.

• (Case 2: n is odd.) If τ ′ = τ − 1, by the induction assumption d1 fires in round τ ′+ 1 = τ ,
and due to the negative edges from d1, both d1 and a1,2 are idle in round τ +1. Otherwise,
τ ′ ≤ τ − 2. By the induction assumption, d1 fires in round τ ′ + 1. Since x did not fire
in round τ ′ + 1 (as it fires again only in round τ), in round τ ′ + 2 ≤ τ the neuron a1,1
is inhibited by d1 and therefore in round τ the neurons d1 and a1,2 receives a signal only
from x and does not fire.

Next, we show that if x fired in round τ for the last time, for each layer i ∈ [1, log n], neuron
ai,2 fires in round τ + i only if x fired ` · 2i−1 times by round τ for some integer ` ≥ 1.

Claim 9. For every layer i ∈ [2, log t] if ai−1,2 fired in round τ for the nth time, the neurons di
and ai,2 fire in round τ + 1 iff n is even.

Proof. By induction on n. For n = 1, one round after the first time neuron ai−1,2 fires, the
neuron ai,1 fires for the first time, and therefore ai,2, di do not fire. For n = 2, the second time
ai−1,2 fires, due to the self loop on ai,1, it fires as well and therefore after one round ai,2 and
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di fire. Assume that ai−1,2 fired in round τ ′ for the (n − 1)th time. If n is even, then by the
induction assumption di does not fire in round τ ′ + 1 ≤ τ . Hence, due to the self loop of ai,1, in
round τ also ai,1 fires and therefore di and ai,2 fire in round τ + 1. If n is odd, by the induction
assumption di fires in round τ ′ + 1. By Claim 8 there is at least one round distance between
every two firing events of a1,2. Thus, there is at least one round distance between every two
firing events of ai−1,2, and therefore τ ≥ τ ′+ 2. Hence, because ai,1 was inhibited by di in round
τ ′ + 1 < τ , it is idle in round τ and the neurons di and ai,2 do not fire in round τ + 1.

Corollary 1. If x fired for the nth time in round τ , for every layer i ∈ [1, log t] the neurons di
and ai,2 fire in round τ + i iff (n mod 2i) = 0.

Proof. By induction on i. The base cases for i = 1 follows from Claim 8. Assume that the
claim holds for layer i and we will show it also holds for layer i + 1. If (n mod 2i) = 0, then
n = q · 2 · 2i−1 for some integer q. Therefore by the induction assumption, ai,2 fires in round
τ + i, and moreover it fired an even number of times by that round. Hence, by Claim 9 the
neurons di+1 and ai+1,2 fire in round τ + i + 1. Otherwise, if (n mod 2i) 6= 0, by the induction
assumption ai,2 does not fire in round τ + i and therefore di+1 and ai+1,2 do not fire in round
τ + i + 1. If (n mod 2i) = 0 but (n mod 2i+1) 6= 0, then by the induction assumption ai,2 fired
an odd number of times by round τ + i and by Claim 9 neurons di and ai,2 do not fire in round
τ + i+ 1.

The first counting neuron ai,1 fires one round after ai−1,2 fires, and as long as di and ai,2
did not fire. Hence, we can conclude that if x fired for the last time in round τ , by round
τ + log rτ + 1, the neurons a1,1, . . . , alog t,1 hold a binary representation of the number of times
rτ that x fired by round τ .

C Approximate Counting

In this section, we provide improved constructions for neural counters by allowing approximation
and randomness. Our construction is inspired by the approximate counting algorithm of Morris
as presented in [Mor78, Fla85] for the setting of dynamic streaming. The idea is to implement
a counter which holds the logarithm of the number of spikes with respect to base α = 1 + Θ(δ).
The approximate neural counter problem is defined as follows.

Definition 5 ((Approximate) Neural Counter). Given a time parameter t and an error probabil-
ity δ, an approximate neural counter has an input neuron x, a collection of log t output neurons
represented by a vector ȳ, and additional auxiliary neurons. The network satisfies that in a time
window of t rounds, in every given round, the output ȳ encodes a constant approximation of the
number of times x fired up to that round, with probability at least 1− δ.

Throughout, we assume that 1/δ < t. For smaller values of δ, it is preferable to use the
deterministic network construction of DetCounter with O(log t) neurons described in Lemma 1.
For the sake of simplicity, we first describe the construction under the following promises:

• (S1) The firing events of x are sufficiently spaced in time, that is there are Ω(log t) rounds
between two consecutive firing events.

• (S2) The state of ȳ encodes the right approximation in every round τ such that the last
firing of x occurred before round τ − log rτ where rτ is the number of x’s spikes (firing
events) up to round τ .

High Level Description. The network ApproxCounter(t, δ) consists of two parts, one for
handling small number of spikes by the input x and one for handling the large counts. The
first part that handle the small number of spikes is deterministic. Specifically, as long as the
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Figure 7: Schematic description of the network ApproxCounter. In each module only the in-
put and output layers are shown. The Small-Counter module SC is responsible for counting
up to Θ(log 1/δ) spikes, and is implemented by the DetCounter module with time parameter
Θ(1/δ). For handling large counts, we use the Approx-Counter AC module implemented by
the DetCounter module with time parameter Θ(log t/δ). The Approx-Counter module simulates
Morris’ algorithm and maintain an estimate for the logarithm of the spikes count. The neurons
vI and vr switch between the two stages (small and large counts) during the execution.

number of spikes by x is smaller than s = Θ(1/δ2), we count them using the exact neural
counter network (presented in Appendix B.3), using O(log 1/δ) neurons. We call this module
Small Counter (SC) and it is implemented by the DetCounter network with time parameter
Θ(1/δ2).

To handle the large number of spikes, we introduce the Approximate Counter (AC) imple-
mented by DetCounter with time parameter logα t. The AC module approximates the logarithm
of the number of rounds x fired with respect to base α = 1 + Θ(δ). This module is randomized,
and provides a good estimate for the spikes count given that it is sufficiently large. The idea is
to update the AC module (by adding +1) upon every firing event of x with probability 1

1+αc

where c is the current value stored in the counterTo do so, we have a spiking neuron a∗ that
has incoming edges from the output of the AC module, and fires with the desired probability.
The reason we use probability 1

1+αc instead of 1
αc as suggested in Morris algorithm, is due to the

sigmoid probability function of spiking neurons (see Eq. (1)). Once the count is large enough
(more than s), we start using the AC module. This is done by introducing an indicator neuron
vI , indicating that the small-counter is full. The neuron vI starts firing after SC is full (finished
the count), and keeps on firing due to a self loop.

The input to AC, denoted as xac computes an AND of the input x, the spiking neuron a∗

and the indicator neuron vI . In addition, vI initiates a reset of the small counter SC to make
sure that the output ȳ receives only information from the large-count module AC. Figure 7
provides a schematic description of the construction.

Detailed Description. Let rn be the number of times x fired in the first n rounds, and let
α = 1 + Θ(δ) be the base of the counting in the approximate counting module.

• Handling Small Counts. The module Small-Counter (SC) is implemented by the
DetCounter module with time parameter s and input from x, where s = 1

δ(α−1) . Since

α = 1 + Θ(δ), it holds that s = Θ(1/δ2). In addition, we introduce an excitatory indicator
neuron vI that has an incoming edge from the last layer of SC (i.e. neuron alog s,2) as
well as a self loop, each with weight 1 and threshold b(vI) = 1. The indicator neuron vI
has an outgoing edge to an inhibitory reset neuron vr with weight w(vI , vr) = 1, which is
connected to all neurons in SC with negative weight −5. The reset neuron vr also has an
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incoming edge from alog s,2 with weight 1 and threshold b(vr) = 1. As a result, one round
after SC reaches the value s, it is inhibited.

• Handling Large Counts. The Approximate-Counter (AC) is implemented by a DetCounter
module with time parameter logα t, and its input neuron is denoted by xac. Denote by
` = log2 logα t the number of layers in the AC module, and for every 1 ≤ i ≤ `, denote the
counting neuron ai,1 by ci. To initialize the counter we connect the last output neuron of
SC to the counting neurons ci1 . . . cik in AC which correspond to the binary representation
of logα(1/δ + 1) with weights 5. We introduce a probabilistic spiking neuron a∗ that is
used to increase the counter with the desired probability. In order for a∗ to receive nega-
tive weights from AC, we connect each counting neuron ci to an inhibitor copy ci,2 with
weight w(ci, ci,2) = 1 and threshold 1. We then connect the inhibitors c1,2, . . . , c`,2 to a∗

with weights w(ci,2, a
∗) = −2i−1 · lnα, and set b(a∗) = 0. Hence, a∗ fires in round τ with

probability 1
1+αc , where c is the value of AC in round τ − 1. Finally, the input neuron xac

has incoming edges from a∗, x and vI each with weight 1 and threshold b(xac) = 3. As a
result, xac fires only if vI , x and a∗ fired in the previous round.

• The Output Neurons. The counter modules SC and AC are connected to the out-
put vector ȳ as follows. Each yi has incoming edges from neurons c1, . . . , c` with weight
w(ci, y) = logα ·2i−1, and threshold b(yi) = i+log(α−1). In addition, each output neuron
yi has an incoming edge from the ith output of SC with weight b(yi). Hence, yi fires in
round τ if either logα · (

∑
`
j=1 cj · 2j−1)− log(α − 1) ≤ i, or the ith output of SC fired in

the previous round.

Size Complexity. All neurons except the spiking neuron a∗ are threshold gates. Recall that
α = 1 + Θ(δ). Hence the size of the counter AC is O(log2 logα t) = O(log log t+ log(1/δ)). Since
the size of the counter SC is O(log 1/δ), overall we have O(log log t+log(1/δ)) auxiliary neurons.

Analysis (under the simplifying assumptions). We first show the correctness of the
ApproxCounter construction under the two promises. At the end of the section we will show
correctness for the general case as well. Let rτ be the number of times x fired up to round
τ . If rτ ≤ s the correctness of ApproxCounter follows from the correctness of the DetCounter
construction (see Lemma 1). From now on, we assume rτ ≥ s+ 1. Let zn be a random variable
holding the value of AC after x fired n times (i.e when rτ = n). We start with bounding the
expectation of αzn .

Claim 10. E[αzn ] ∈ [n(α− 1)(1− δ) + 1, n(α− 1) + 1].

Proof. The AC counter starts to operate after x fired s = 1
δ(α−1) spikes, and we initiate the

counter with value c = logα(1/δ+ 1). Hence, for n = s we get αzn = n(α− 1) + 1 and the claim
holds. For n ≥ s+ 1 we get

E[αzn ] =
n−1∑
j=c

E[αzn | zn−1 = j] · Pr[zn−1 = j]

=

n−1∑
j=c

Pr[zn−1 = j] · (αj+1 · 1

αj + 1
+ αj · (1− 1

αj + 1
))

= E[αzn−1 ] + (α− 1) ·
n−1∑
j=c

Pr[zn−1 = j] · ( αj

1 + αj
) . (3)

Note that for j ≥ c, it holds that 1 > αj

1+αj
> 1− δ. Therefore

n−1∑
j=c

Pr[zn−1 = j] · ( αj

1 + αj
) ∈ [1− δ, 1] .
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By combining this with Eq. (3) we conclude that E[αzn ] ∈ [n(α− 1)(1− δ), n(α− 1) + 1].

Claim 11. Pr[|αzn − µ| > 1/2 · µ] ≤ δ, where µ = E[αzn ].

Proof. We will use Chebyshev’s inequality, and start by computing E[α2zn ] in order to bound
the variance of αzn .

E[α2zn ] =
n−1∑
j=c

E[α2zn | zn−1 = j] · Pr[zn−1 = j]

=

n−1∑
j=c

Pr[zn−1 = j] ·
(
α2j+2 · 1

αj + 1
+ α2j · (1− 1

αj + 1
)

)

= E[α2zn−1 ] +
n−1∑
j=c

Pr[zn−1 = j] · (α
2j(α2 − 1)

αj + 1
) ≤ E[α2zn−1 ] + (α2 − 1)E[αzn−1 ]

≤ E[α2zn−1 ] + (α2 − 1) · ((n− 1)(α− 1) + 1) , (4)

where Ineq. (4) is due to Claim 10. For n = s, it holds that

E[α2zs ] = s2(α− 1)2 + 2s(α− 1) + 1 ≤ (α+ 1)(α− 1)
s∑
i=1

i+ (α− 1)(α+ 1)s ,

and combined with Eq. (4) we get

E[α2zn ] ≤ 1

2

(
n(3α2 − α3 + α− 3) + n2(α+ 1)(α− 1)2

)
.

Therefore the variance is bounded by

V ar[αzn ] = E[α2zn ]− (E[αzn ])2

≤ 1

2
n2(α− 1)2

(
(α− 1) + δ2

)
+ n

(
(α− 1)(2α+ 1− a2) + 2αδ

)
.

Using Chebyshev’s inequality and Claim 10 we can now conclude the following:

Pr[|αzn − µ| ≥ 1/2 · µ] ≤ V ar[αzn ]

((1/2) · µ)2
≤ 4V ar[αzn ]

n2(α− 1)2(1− δ)2

≤ 4
(
(α− 1) + δ2

)
+

8n (α− 1 + 2δ)

n2(α− 1)2(1− δ)2
, (5)

since we assume n ≥ s = 1/δ(α−1) it holds that n ≤ n2(α−1)δ. As a result, by Eq. (5) we get:

Pr[|αzn − µ| ≥ 1/2 · µ] ≤ 4
(
(α− 1) + δ2

)
+ 10δ (1 + 2δ/(α− 1)) .

Since α = 1 + Θ(δ), we have that V ar[αzn ] ≤ Θ(δ). We can use δ′ = Θ(δ) in our construction
and set parameter α accordingly in order to achieve

Pr[|αzn − µ| ≥ 1/2 · µ] ≤ δ .

Combining Claim 10 and Claim 11 we conclude that αzn ∈ [n(α − 1)/4, 2n(α − 1)] with
probability at least 1 − δ. Let S = logα · zn − log(α− 1). Thus, S ∈ [log(n/4), log(2n)]. Recall
that after SC gets reset, each yi fires only if logα · zn − log(α− 1) ≤ i. As a result, the value of
the output ȳ is given by

dec(ȳ) =

S∑
i=1

2i = 2S+1 − 2 ∈ [n/2− 2, 4n− 1] ,
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which is a constant approximation of n as desired.

Adaptation to the General Case. We now explain the modifications needed to handle
the general case without the two simplifying assumptions. In order to fire with the correct
probability without the spacing guarantee, every time we increase AC, we wait until its value
gets updated before we attempt to increase it again. In order for the output ȳ to output the
correct value also during the update of the counter AC, we introduce an intermediate layer of
neurons c′′1, . . . , c

′′
` that will hold the previous state of AC during the update.

• Removing Assumption (S1): In the DetCounter construction, we say that there are
k active layers in round τ if the value of the counter in round τ is at most 2k and no
neuron in layer j ≥ k + 1 fired. Once we increase the counter, after at most k + 1 rounds
the value is updated. During this update operation, the network waits and ignores spikes
from x that might occur during this time window. To implement this waiting mechanism,
we introduce a Wait-Timer (WT ) module which uses the DetTimer∗ module17. This
DetTimer∗ gets an input from xac and the time parameter input q̄ with log ` neurons
where ` = log2 logα t is the number of layers in the module AC. The counting neurons
c1, . . . , c` of AC are connected to q̄ as follows. Each qi has an incoming edge from c2i−1

with weight w(c2i−1 , qi) = 1 and threshold b(qi) = 1. Hence, the value of q̄ is at least
k + 1 and at most 4k where k is the number of active layers in AC. In order for the time
parameter to stay stable throughout the update, for each qi we add a self loop with weight
w(qi, qi) = 1. The WT module has two outputs, an inhibitor gr which fires as long as the
timer did not finish the count, and an excitatory g which fires after the count is over. We
connect rr to xac with weight w(gr, xac) = −5, preventing it from firing while the counter
is not updated. We connect g to an additional inhibitor neuron qr which inhibits the time
parameter neurons q1, . . . , q` one round after we finished the count. The size of WT is
O(log `) = O(log log 1/δ + log log log t).

• Removing Assumption (S2): Two copies of the counting neurons c1, . . . , c` are intro-
duced. The first copy c′1, . . . c

′
` allows us to copy the state of the counter AC once its update

proceess is complete. Each c′i has incoming edges from ci and the excitatory output of the
WT module, each with weight w(g, c′i) = w(ci, c

′
i) = 1 and threshold b(c′i) = 2. Thus, c′i

fires iff in the previous round both ci and g fired (implying that neuron ci was active when
the counter finished the update). The second copy c′′1, . . . , c

′′
` holds the previous state of

AC during the update of the module. Each c′′i has an incoming edge from c′i with weight
2, a self loop with weight 1, a negative edge from the inhibitor gr with the weight (−1)
and threshold 1. Note that the inhibition of c′′i occurs on the same round it receives the
updated state from neuron c′i. Finally, the output layer ȳ has incoming edges from neurons
c′′1, . . . , c

′′
` instead of c1, . . . , c` with the same weights.

Figure 8 illustrates the modifications made to handle the general case.

Proof of Thm. 4 (for the general case). Assume x fired n times up to round τ . If n ≤ s we
count the number of times x fired explicitly via the SC module. We note that in round τ the
counter might be still updating the last O(log n) spikes of x. By the DetCounter construction,
the value of the counter is at least n−log n

2 = Θ(n), and therefore we indeed output a constant
approximation of n with probability 1.

Otherwise, n ≥ s. First note that when we switch from the SC to the AC counter, we might
omit at most Θ(log 1/δ) spikes due to the delay in the DetCounter module. Since n ≥ s = Θ(1/δ2)
this is negligible, as we want a constant approximation. Next, we bound the number of times
x might have fired during the rounds in which the wait module WT was active. As we only

17Recall that DetTimer∗ is a variant of the neural timer in which the time parameter is given as a soft-wired
input and the upper bound on this input time is hard coded in the network.
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Figure 8: A description of the modifications in ApproxCounter (to handle the general case). The
Wait-Timer (WT ) module is implemented as a DetTimer∗ with input from xac and time input
from the counting neurons of AC. The inhibitor output of WT inhibits the input neuron xac,
preventing it from firing during the update process of the AC counter. We have two copies of
the counting neurons of AC denoted as c′ and c′′. These copies are used for the output vector
ȳ to receive a correct input from AC at all times, even during the update process of the AC
counter. Once the WT module finishes its count, in order to copy the information from c to c′′,
we use c′ as that OR gates between c and the excitatory output of the module WT .

omit attempts to increase the counter, by Claim 11 with probability at least 1− δ, the value of
counter has been increased for at most logα(2n(α− 1)) times.

Each time that the counter value is increased, the waiting module WT is active for at most
4 log2 logα 2n(α− 1) ≤ 4 log n rounds. Thus, in total we omit at most 4 log n · logα(2n(α− 1)) <
4
√
n log2 n spiking events. In addition, since the copy neurons c′′1, . . . , c

′′
` might hold the previous

value of the counter in round τ , we might lose another factor of two in the output layer. All
together, in round τ the output ȳ holds a constant approximation of n and Theorem 4 holds for
the general case as well.

D Missing Details for Synchronizers

D.1 Missing Details for the Asynchronous Analog of DetTimer

Proof of Lemma 3. The construction starts with t′ = t/2L layers of the DetTimer network.
These layers are modified as follows (see Figure 9 for comparison with the standard construction).

• Neurons a1,1 and a1,2 are connected by a chain of length 4L. all neurons in the chain as
well as a1,2 have an incoming edge from the previous neuron in the chain with weight 1
and threshold 1.

• For every i ≥ 2, the inhibitor neuron di has an incoming edge only from ai,2 with weight
w(ai,2, di) = 1 and threshold b(di) = 1.

• For every i ≥ 1, the neurons ai−1,2 and ai,1 are connected by a chain of length L, instead
of a direct edge, where the weight of the edge from the end of the chain to ai,1, is 1.

• The neuron alog t′,2 is an excitatory (rather than an inhibitory) neuron, and the output
neuron y has one incoming edge from alog t′,2 with weight w(alog t′,2, y) = 1 and threshold
b(y) = 1.
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Figure 9: DetTimerasync versus DetTimersync. Left: The deterministic timer DetTimersync net-
work. Right: The modified DetTimerasync network which works in the asynchronous setting. We
add a chain of L neurons in the first layer and between neurons ai−1,2 and ai,1, where L is the
upper bound on the response latency of a single edge in the asynchronous setting.

• A newly introduced inhibitor neuron r that has an incoming edge from alog t′,2 with weight
w(alog t′,2, r) = 1, threshold b(r) = 1, and negative outgoing edges to all neurons in the
timer with weight −2 for clean-up purpose.

The correctness is based on the following auxiliary claim.

Claim 12. Fix a layer i ≥ 2. Assume that (1) ai−1,2 fired for the first time in round fi−1, and
that (2) it fires every τi−1 rounds. It then holds that (1a) ai,2 fires for the first time in round
fi for fi ∈ [fi−1 + τi−1 + 1, fi−1 + τi−1 + L2 + L], and that (1b) ai,2 fires from that point on for
every τi ∈ [2 · τi−1, 2 · τi−1 + (L2 + L)] rounds.

Proof. Assume that neuron ai−1,2 fires every τi−1 rounds starting round fi−1. It then holds that
ai,2 gets the spike from ai−1,2 strictly before the spike of ai,1. Specifically, it gets the spike from
ai−1,2 by round τ ≤ fi−1 +L, and it receives the spike from ai,1 in some round τ ′ ≥ fi−1 +L+ 1.
Note that it is crucial that the spike from ai−1,2 arrives earlier to ai,2, as otherwise ai,2 will
fire in round τ . As a result, the first time ai,2 fires is after round fi−1 + τi−1 + 1 and therefore
fi ≥ fi−1 + τi−1 + 1. Due to the self loop on ai,1, neuron ai,2 gets a spike from ai,1 in every
round τ ′′ ≥ τ ′. Because the latencies are fixed, ai,2 gets a signal from ai−1,2 every τi−1 rounds,
and therefore ai,2 fires by round τ ′ + τi−1. Since each edge has latency of at most L, it holds
that τ ′ ≤ fi−1 + L2 + L, hence fi ≤ fi−1 + L2 + L+ τi−1 and (1a) follows.

We now show (1b). We first observe that ai,1 stops firing at least L rounds before the next
firing of ai−1,2. This holds since once ai,2 fires in round fi, after at most L rounds the inhibitor
di fires, and after at most 2L rounds neuron ai,1 is inhibited. Since τj ≥ 4L (due to the chain in
the first layer), it indeed holds that in the next round when ai−1,2 fires, no neuron in layer i fires.
Since the latency of each edge is fixed and ai−1,2 fires every τi−1 rounds by our assumption, we
conclude that ai,2 fires every τi rounds where τi ∈ [2τi−1, 2τi−1 + L2 + L].

Claim 13. Assume that x fired in round τ0. Then for every i ≥ 1 it holds that: (1) the neuron
ai,2 fires for the first time during the interval [τ0 + 2i · 2L, τ0 + 2i · 8L2] and (2) it fires every τi
rounds for τi ∈ [2i · 2L, 2i · (4L2)].

Proof. Once the input neuron x fired in round τ0, the neuron a1,2 fires for the first time in round
f1 ∈ [τ0 + 4L, τ0 + 4L2 + L] and continue to fire every τ1 rounds for τ1 ∈ [4L, 4L2 + L]. This
is due to the chain between a1,1 and a1,2 and the fact that the latency `(e) is fixed for every e.
Using Claim 12 in an inductive manner, we conclude that for every i ≥ 1: (1) ai,2 fires every
τi ∈ [2i·2L, 2i·4L2] rounds, (2) ai,2 fires for the first time in round fi ∈ [τ0+2i·2L, τ0+2i·8L2].
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Since the edge between neuron alog t′,2 and the output neuron has latency at most L, we
conclude that if the input neuron x fires in round τ0, the output neuron fires in round τ ∈
[τ0 + 2Lt′, τ0 + 9L2t′]. Because t′ = t/2L, given that the input x fired in round τ , the output
neuron fires between round τ + t and round τ + 5Lt and Lemma 3 follows.

35


	1 Introduction
	1.1 Measuring Time with Spiking Neural Networks
	1.2 Neural Synchronizers
	1.3 Preliminaries

	2 Deterministic Constructions of Neural Timer Networks
	3 Randomized Constructions of Neural Timer Networks
	3.1 Warm Up: Randomized Timer with O(log1/) Neurons
	3.2 Improved Construction with O(loglog1/) Neurons
	3.3 A Matching Lower Bound

	4 Applications to Synchronizers
	4.1 Extension for Randomized Networks
	4.2 Analysis of the Syncronizers.

	A Missing Details for the Introduction
	B Missing Proofs for Det. Neural Timer
	B.1 Complete Description of The DetTimer Network
	B.2 Complete Proof of Thm. ??(1)
	B.3 Useful Modifications of Deterministic Timers

	C Approximate Counting
	D Missing Details for Synchronizers
	D.1 Missing Details for the Asynchronous Analog of DetTimer


