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In this paper we propose a special type of a tree tensor network that has the geometry of a comb—a
one-dimensional (1D) backbone with finite 1D teeth projecting out from it. This tensor network is designed to
provide an effective description of higher-dimensional objects with special limited interactions or, alternatively,
one-dimensional systems composed of complicated zero-dimensional objects. We provide details on the best
numerical procedures for the proposed network, including an algorithm for variational optimization of the wave
function as a comb tensor network and the transformation of the comb into a matrix product state. We compare
the complexity of using a comb versus alternative matrix product state representations using density matrix
renormalization group algorithms. As an application, we study a spin-1 Heisenberg model system which has a
comb geometry. In the case where the ends of the teeth are terminated by spin-1/2 spins, we find that Haldane
edge states of the teeth along the backbone form a critical spin-1/2 chain, whose properties can be tuned by
the coupling constant along the backbone. By adding next-nearest-neighbor interactions along the backbone,
the comb can be brought into a gapped phase with a long-range dimerization along the backbone. The critical
and dimerized phases are separated by a Kosterlitz-Thouless phase transition, the presence of which we confirm
numerically. Finally, we show that when the teeth contain an odd number of spins and are not terminated by
spin-1/2’s, a special type of comb edge states emerge.
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I. INTRODUCTION

Modern condensed-matter physics to a large extent relies
on numerical simulations. The density matrix renormalization
group (DMRG) [1,2] algorithm has established itself as one
of the most powerful numerical tools for strongly correlated
one-dimensional (1D) systems. The method is variational and
in most its accuracy is well controlled by the number of states
kept and the number of sweeps—two external parameters of
the algorithm. In contrast to Wilson’s numerical renormal-
ization group approach, the selection of the effective basis
vectors is not based on energies but on the eigenvalues of
the density matrix or, equivalently, on the entanglement. The
success of DMRG in one dimension inspires its further appli-
cation to two-dimensional systems by mapping the 2D lattice
to a 1D path in a snake-line way. However, according to the
area law [3], the entanglement for multiple leg ladders grows
exponentially with the number of legs. This limits the width L
of these quasi-two-dimensional lattices, and the current state
of the art for two-dimensional cylinders with DMRG is about
L ≈ 6–14, depending primarily on the number of states per
site in the model.

The reformulation of conventional DMRG in terms of
matrix product states (MPS) [4,5] led to a number of gen-
eralizations, most notably for higher dimensions. Probably
the best known example is the projected entangled pair states
(PEPS) [6,7] network, where the tensors living on each phys-
ical site are coupled by nearest-neighbor links. These higher-
dimensional tensors split the entanglement uniformly over
many bonds, so the network satisfies the area law regardless
of the width of the system. On the other hand, the presence

of loops in the network, and the higher number of indices on
each tensor, lead to much higher complexity in terms of the
number of states per link, compared to DMRG. Currently, for
many 2D problems, DMRG and PEPS are complimentary.

In this paper we study another tensor network that goes be-
yond 1D—the comb, shown in Fig. 1. A comb consists of a 1D
backbone, with 1D teeth projecting out from it. A comb is a
special case of a tree tensor network; it can also be considered
a generalization of a Y-junction network, for which DMRG
algorithms were developed for Heisenberg spin systems [8].
It is also related to fork tensor networks introduced recently
for multiorbital Anderson impurity models [9,10]. It may be
that the physical interactions and sites in a system appear in a
comb geometry, in which it is natural to use a comb tensor
network to study the system—see Fig. 1(a). Another, less
obvious, case where a comb may be particularly useful is for
a 1D system composed of complicated, highly entangled but
finite units. In this case a comb geometry can be effective in
isolating the intraunit entanglement into a tooth, leaving the
backbone less entangled—see Fig. 1(b). To be studied with
the comb tensor network the model has to satisfy the one-
dimensional area law (at least along the backbone); otherwise,
the algorithm has the same limitations as a snakelike DMRG
for a two-dimensional system.

The motivation to develop a comb tensor network is
twofold. From a numerical point of view, the complexity of
the algorithm scales with an auxiliary bond dimension D as
D5, which is much lower than two-dimensional PEPS. On the
other hand, for a fixed bond dimension the complexity of the
comb tensor network is higher than in DMRG. However, the
higher-dimensional tensors placed along the backbone split
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(a)

(b)

FIG. 1. Sketches of the lattice geometries suitable for a comb
tensor network. (a) The simplest comb lattice that essentially repeats
the geometry of the tensor network. Each dot represent a lattice
site with local degrees of freedom and links represent an interaction
between nearest neighbors. (b) A one-dimensional chain of com-
plicated zero-dimensional objects. The entanglement between the
clusters is assumed to satisfy a one-dimensional area law.

two channels of entanglement: one within the clusters and one
along the backbone. In DMRG the entanglement from these
two channels is superimposed, which results in a large bond
dimension. Thus, when the entanglement along the backbone
and within the teeth are of the same order of magnitude, the
comb tensor network requires much lower bond dimension
than conventional DMRG.

From the point of view of possible applications, the comb
tensor network is also very promising. First, a comb geometry
itself can lead to exotic phases and phase transitions even
for the simplest Heisenberg model. Among them are various
junctions of spin chains [8,11] and quantum wires [12,13] that
have attracted a lot of attention over the past decade. Modern
technologies allow one to realize comb lattices in cold atom
and adatom experiments. In addition, combs may be used
to study coupling effects in clustered materials, such as the
recently discovered 24-spin boleite [14].

The comb tensor network may also be use for quantum
chemistry. There are molecules which have backbone and
chain geometries resembling combs, such as triglycerides or
polysulfones [15], for which one might make Hubbard-like
models. At the more ab initio level, consider quantum chem-
istry DMRG, where the sites in the algorithm are orbitals,
including core orbitals as well as valence. The entanglement
within a core gets added to the interatomic entanglement. It
would be natural to have the core degrees of freedom of an
atom appear as sites of a tooth, with the atoms connected
along the backbone, separating the two types of entanglement.
In a similar spirit, associating the teeth of the comb with finite-
size Sachdev-Ye-Kitaev (SYK) [16–19] clusters, intercluster
entanglement can be dealt with separately.

The rest of the paper is organized as follows. In Sec. II we
will set up the basic properties of the comb tensor network,
including the transformation of the wave function between the
comb and the traditional matrix-product-state forms and the
mixed canonical form of the comb network. In Sec. III we
provide further details on the numerical approach and discuss

(a) (b)

FIG. 2. (a) Mixed canonical form of a comb tensor network. Cir-
cles are MPS tensors, and rectangles are auxiliary backbone tensors.
A red diamond indicates a diagonal link OC matrix. Arrows indicate
direction of orthogonality and also how to keep track of Abelian
symmetries, as explained in the text. (b) Graphical representation of
various normalization condition for auxiliary tensors on a backbone.
Each pair of tensors contracted over connected lines corresponds to
the identity matrix of dimension equal to the bond dimension of
noncontracted legs.

the variational optimization algorithm of the wave function as
a comb tensor network. In Sec. IV we apply these algorithms
to study the low-energy properties of the Heisenberg spin-1
comb lattice. We summarize our results in Sec. V.

II. QUANTUM STATE AS A COMB NETWORK

A. Mixed canonical form

Putting an MPS into a mixed canonical form (MCF) sim-
plifies drastically both optimization and the following reusage
of the wave function [5]. The MCF is characterized by the
combination of left-orthogonal tensors on the left- and right-
orthogonal tensors on the right, with a site or link between
them called the orthogonality center (OC). If the OC is a
link, then an extra two-index diagonal tensor is associated
with the OC. No orthogonality is associated with OC itself.
In variational optimization, the MCF simplifies a generalized
diagonalization to a simple one and fixes the norm of the wave
function. When extracting local observables, the MCF allows
one to skip the contraction of the complete tensor network,
utilizing only those tensors that are located at and between the
local operators of interest [4].

In analogy with a one-dimensional MPS we introduce an
MCF for the comb tensor network. To reduce the complexity
of the algorithm we associate any physical degrees of freedom
on the backbone to the first sites of the teeth, so that the
backbone tensors, as well as the tooth tensors, only have three
indices. Let us consider the case where the OC is on a tooth,
and specifically on a link, as shown in Fig. 2. The notion of
the left and right normalized tensors of an MPS is generalized
for the comb. We attach arrows to each link, with each arrow
pointing along the path connecting to the OC. For each tensor,
one link (the forward link) points away from the tensor. To
give the orthogonality condition, we contract a tensor with
its conjugate, contracting over all indices except the forward
link. The resulting two-index tensor is equated to the identity
tensor, as shown in Fig. 2. Note that a Hermitian conjugated
tensor has its arrows reversed.

In Fig. 2(b) we show graphical representations of the three
types of orthogonality conditions. As in the case of MPS,
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the MCF simplifies the diagonalization in the variational
optimization at each step from a generalized to a simple
eigenvalue problem, reducing the computational cost and sta-
bilizing the algorithm. The MCF also simplifies measurement
of local observables; for an operator on a tooth, the complexity
is equivalent to the standard DMRG complexity D3. Com-
puting correlation functions along the backbone has higher
complexity D4; however, the contraction of the network on
each tooth can be skipped and the complexity does not depend
explicitly on the length of the teeth.

B. From an MPS to a comb

In principle, an arbitrary tensor network representation of
a wave function on a finite number of sites can be transformed
into an MPS and vice versa. The resulting MPS may, how-
ever, have large bond dimension D, an example being the
conversion of a PEPS wave function for a 2D cluster into
an MPS. Even in cases where the bond dimension of both
represenations is modest, it may not be so easy to transform
back and forth, particularly if the tensor network has loops. An
advantage of the comb network is that there is a very simple,
robust algorithm for transforming back and forth between a
comb and an MPS, using simple contractions and SVDs. In
Fig. 3 we illustrate this transformation. Note that the OC
has to be moved to any sites being contracted, so the SVD
decomposition corresponds to the Schmidt decomposition of
the wave function. Although the figure shows the MPS as
living on a 2D square lattice, only the 1D connections of
the MPS are important for this transformation algorithm. As
immediately follows from Fig. 3, the complexity for this
transformation scales with the bond dimension as D4, where
we have not distinguished between bond dimensions along the
backbone versus a tooth.

III. VARIATIONAL OPTIMIZATION

The direct mapping between the comb tensor network and
an MPS described in the previous section allows one use
standard DMRG on the MPS to get a comb ground state,
but in general it is more natural and probably more efficient
to optimize within the comb geometry. Since the comb has
no loops, the optimization is similar to that of DMRG, but
there are specific techniques for the teeth versus the backbone
sites. In addition, it is useful to represent the Hamiltonian
in a comb tensor network form. Not wishing to introduce
an additional term for this comb operator, we will call this
a projected entangled pair operator (PEPO), borrowing from
PEPS terminology. There are five main ingredients in the
proposed algorithm: the representation of the Hamiltonian as a
PEPO, the creation of a good initial wave function, the recipe
for a full sweep to update all tensors in the network, the recipe
for a back-bone sweep to update only auxiliary tensors along
the backbone, and efficient measurements of observables.

A. Hamiltonian

Let us consider as an example an N × L comb lattice
shown in Fig. 1(a) with Heisenberg nearest-neighbor interac-
tion with coupling constant Jt along the tooth and Jbb along
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FIG. 3. Example of the MPS to comb tensor network transforma-
tion via contraction and SVD decomposition. We show a complete
transformation of one tooth, which can be repeated tooth by tooth
along the backbone. The OC must be moved to the tooth being
transformed, so that any pair of tensors being contracted include the
OC. This assures that the singular values obtained after the SVD
decomposition are equivalent to the Schmidt values and thus allow
optimal truncation.

the backbone:

H = Jbb

N−1∑
i=1

Si,1 · Si+1,1 + Jt

N∑
i=1

L−1∑
j=1

Si, j · Si, j+1, (1)

where i indicates which tooth and j indicates the site within
the tooth, starting from the backbone. The construction of the
matrix product operator (MPO) for 2 � j � L is standard and
is well described, for example, in Ref. [5]. For completeness
we provide the explicit form of the MPO. For 2 � j � L − 1
it is given by

H (i, j) =

⎛
⎜⎜⎜⎝

I . . . .

S− . . . .

S+ . . . .

Sz . . . .

hSz Jt S+ Jt S− Jt Sz I

⎞
⎟⎟⎟⎠, (2)
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FIG. 4. Pictorial representation of nonzero elements of the PEPO
tensors on the backbone. Gray boxes label the identity matrix I , the
yellow box denotes the external field operator hSz, the blue box
corresponds to three elements [JbbS+, JbbS−, JbbSz], the green box
contains the elements [S−, S+, Sz], and the orange box corresponds
to [Jt S+, Jt S−, Jt Sz]. Empty space corresponds to zero elements.

where I is an identity matrix, h is an external magnetic field,
and zero-elements are marked by dots for clarity. Both I and S
are operators; if the operators are written in terms of indices,
then the total rank of the tensor is four. At the tip of the tooth
j = L the tensor is given by the first column of this matrix
and has rank three. At the backbone the rank of the on-site
tensors that represent the Hamiltonian is higher, because on
top of two physical bonds, they contain three auxiliary bonds
that connect them to all their neighbors. Since there are no
loops in the comb, the construction of these PEPO operators
is as simple as the conventional construction of the MPO. In
the tensor Hαβγ we use the label α for the left, β for the upper,
and γ for the right auxiliary legs. The tensor is very sparse,
but we can represent the slice β = 1 as a matrix, and then the
only nonzero elements left have α = 5 and γ = 1, so these
values can be written as a vector in the index β:

Hβ=1 =

⎛
⎜⎜⎜⎝

I . . . .

S− . . . .

S+ . . . .

Sz . . . .

hSz JbbS+ JbbS− JbbSz I

⎞
⎟⎟⎟⎠,

H5,β,1 = [hSz, Jt S
+, Jt S

−, Jt S
z, I] (3)

We find it instructive to show the pictorial representation of
nonzero elements of the backbone PEPO tensor (see Fig. 4),
where the gray boxes denote identity operators, the green box
includes three elements of the first column of the matrix in
Eq. (3) [S−, S+, Sz], the blue box contains three elements of
the last row of this matrix [JbbS+, JbbS−, JbbSz], the orange
box encodes three elements for the interaction within the tooth
[JbS+, JbS−, JbSz], and the yellow box corresponds to the field
term, which is set to zero throughout the paper. Of course,
this form of the Hamiltonian is model dependent, and if the
interaction is more complicated and extends beyond nearest
neighbors the structure of the PEPO is not as simple.

=

(a) (b)

(c)

(d)

FIG. 5. (a) Full tensor network that evaluates the total energy.
The top and bottom layers are the wave function and its conjugate,
while the middle layer is the Hamiltonian. Vertical indices are physi-
cal degrees of freedom. Note that the structure of the Hamiltonian
PEPO is different from the comb wave-function tensor network,
since the wave function puts the backbone connections on auxiliary
tensors (green boxes). (b) Fully contracted tensor network on a single
tooth can be interpreted as an effective PEPO with extended bond
dimension. (c) Connect update: Simultaneous update of auxiliary
backbone tensor and first MPS tensor on a tooth. (d) Backbone
update: Simultaneous update of two auxiliary tensors.

B. Sweep

Let us first explain the variational optimization of the comb
tensor network starting from some initial state. Later, we shall
come back to the creation of a good initial wave function.

Figure 5(a) shows the full tensor network that evaluates
the total energy consisting of a ket wave function |ψ〉 (lower
surface of blue and green tensors), the Hamiltonian in local
representation [middle surface with yellow (MPO) and orange
(PEPO) tensors] and a bra vector 〈ψ |, represented by the
upper surface of tensors. The contraction over all physical
and auxiliary links gives the total energy E = 〈ψ |H |ψ〉. We
assume that the wave function is always written in a canonical
form defined above, so the normalization can be omitted
here. Note that the number of tensors that represent the wave
function is larger than the number of tensors that represent
the Hamiltonian, due to the use of auxiliary backbone tensors
without physical indices. So PEPO backbone Hamiltonian
tensors are contracted with the first MPS tooth tensors.

In a full sweep we go through the whole network shown in
Fig. 5(a) and update the on-site tensors iteratively. During the
first half-sweep we move from left to right and then reverse
during the second half-sweep. Within each tooth we move
from the backbone to the edge and back. At each iteration
we update two on-site tensors. A generalization to single- or
multiple-site update is straightforward.

In most of the cases the update can be reduced to the
diagonalization of the effective Hamiltonian that consists of
the left and right environments and a pair of MPO between
them. So on a tooth this is standard 1D DMRG. For a pair of
auxiliary backbone tensors, one can view a fully contracted
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tensor network on a tooth as an effective MPO as shown in
Fig. 5(b). The effective Hamiltonian for two auxiliary tensors
also looks like the form in 1D DMRG; see Fig. 5(d). However,
there is a special case that cannot be reduced to the standard
network with two environments and two MPOs. When an aux-
iliary tensor is updated together with the first MPS tensor on
a tooth (a connect update) the effective Hamiltonian contains
three environments, each of which is connected to a PEPO in
the middle, as shown in Fig. 5(c).

Depending on the model, we find it useful to alternate
the full sweep with a simplified one that updates only the
backbone tensors. In particular, this make sense when the
backbone chain is critical while the teeth are gapped. This
short sweep consists only of backbone updates.

We increase the number of states every half sweep. We
control three parameters that restrict the number of states: χ

is the bond dimension within the tooth, ζ restricts the bond in
connect updates, and λ controls the dimension of a bond along
the backbone. When all bonds are equivalent χ ≈ λ ≈ ζ ≈ D
the complexity of the backbone update is D5, the complexity
of the connect update is D4, and the complexity of the tooth
update is only D3, as in the standard DMRG. Of course, the
complexity is very different when the number of states on
the tooth and on the backbone are of a different order of
magnitude. For example, if the state on the tooth is close to
the Affleck-Kennedy-Lieb-Tasaki state [20], then the bond
dimensions χ and ζ are small in comparison to λ and the
complexity is only λ3.

C. Initial wave function

We start our simulation by forming a rough initial wave
function. As in 1D DMRG there are various different ap-
proaches and depending on the problem one or another can
be preferable. The simplest one is to start with a product
state-tensor network with auxiliary bond dimension D = 1.
If Abelian symmetry is used, then the chosen product state
should satisfy it. This approach is efficient assuming one
slowly increases the bond dimension in multiple sweeps.

In variational optimization of an MPS it is well established
that one of the most accurate and unbiased guesses can be
obtained through infinite-size DMRG [5]. It starts with small
clusters that can be solved exactly, say, four spins, and at
each iteration the size of the 1D chain increases by two spins.
Infinite-size DMRG produces a guess wave function with
finite bond dimension (typically D ≈ 10–50) that naturally
preserves the symmetry of the network with respect to the
center of a chain and provide an excellent starting point for the
following finite-size routine. We find that an excellent initial
wave function comes from using infinite-size DMRG on a
chain with 2L sites to produce an initial guess for the MPS
tensors on the teeth. The Hamiltonian used in infinite-size
DMRG should be as close as possible to the original MPO
on a tooth. One can translate the 2L MPS tensors to define the
tensors of two adjacent teeth. Since this wave function ignores
the backbone interactions, one can slightly truncate the MPS
bond dimension at the backbone (the middle) to make a sub-
sequent initial set of backbone sweeps fast and inexpensive.
These backbone sweeps can start either with the product-teeth
states or with an infinite-size DMRG along the backbone.

One can also use an infinite-size DMRG to initialize the
backbone after constructing guesses for the tooth tensors.
By treating a fully contracted tooth as an MPO with large
“physical” bond dimension, one can initialize the auxiliary
guess tensors by performing a standard infinite-size DMRG
on the backbone.

In the present paper we produce a guess wave function by
performing infinite-size DMRG in both directions.

D. Implementation of Abelian symmetries

When allowed by the model, the implementation of
Abelian symmetries in the comb tensor network allows one
to select a specific symmetry sector and thus to compute the
energy gap to magnetic excitations in a trivial way. Moreover,
this reduces significantly an effective size of the Hilbert space
and therefore speeds up the convergence at each iteration.
Finally, in the presence of a U(1) symmetry the tensors
have block-diagonal structure that simplifies their storage and
access.

In order to keep track of Abelian symmetry, one can group
the states on each index by quantum number (say, Sz). Then
one stores only nonzero blocks in the tensors, and the arrows
in the diagrams in Fig. 2(a) indicate how one adds up the quan-
tum numbers. For the nonzero blocks, the sum of the in-going
quantum numbers must equal the outgoing quantum number
on each tensor. At the OC, where all arrows point inward, one
can regard the OC tensor as a wave function in an orthonormal
basis. Each link connecting to the OC tensor represents an
orthonormal set of basis states living on the associated branch
of the comb, and the whole basis is the direct product over
all the branches. The total quantum number of the OC-tensor
wave function is the sum of all incoming quantum numbers. If
OC is associated with the tensor that contains physical index,
then its contribution should also be added to the total quantum
number. All nonzero blocks of the OC tensor have this same
quantum number.

E. DMRG versus comb

Let us now compare the complexity of optimizing the
comb versus an equivalent MPS. First, we will consider
a square spin-1/2 comb with antiferromagnetic nearest-
neighbor Heisenberg interactions, where we set both coupling
constants of the Hamiltonian (1) to be equal Jbb = Jt = 1.

The algorithms split the system into two parts in different
ways. It is useful to compare the singular values (square root
of the Schmidt values) for these various cuts. Results for
10 × 10 and 20 × 20 combs are shown in Fig. 6. Note that in
both algorithms the cut α (α̃) across the backbone leads to the
same bipartition of a lattice and thus the singular values are
equal (red dots). In variational optimization of a comb tensor
network it is natural to cut all or part of a tooth from the rest of
the system as sketched in the inset of Fig. 6(a). Here we show
singular values for three example cuts: the whole tooth, which
is the same as tooth-connect (cut δ, blue color); a two-thirds
cut (γ , green color); and a one-third cut (β, magenta color) of
the tooth. We see from Fig. 6(a) and 6(c) that the entanglement
is largest along the backbone and, as expected, decays very
fast on approaching the end of the tooth.
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FIG. 6. Singular values for square spin-1/2 comb with [(a) and
(b)] 10 × 10 and [(c) and (d)] 20 × 20 sites for various bipartition of
the system distinct for the comb tensor network [(a) and (c)] and for
the DMRG [(b) and (d)]. Red: Cut across the backbone in the middle
of the comb; blue: Cut of the whole tooth in the middle on the comb
from the rest of the network; green: Cut between [(a) and (b)] sites 3
and 4 and [(c) and (d)] sites 7 and 8 of the middle tooth; magenta: Cut
between sites [(a) and (b)] sites 7 and 8 and [(c) and (d)] sites 14 and
15. The insets show the schematic position of the corresponding cuts.
Note the difference in the x scale in left and right panels; red lines
are the same on left and right panels and can be taken as a reference.

By contrast, in DMRG applied to a comb lattice the entan-
glement is smallest on the bond that connects the upper and
lower edges of two teeth. It is significantly larger within the
teeth, where the entanglement from both the backbone and
from within the tooth are present. We stress that the drastic
difference between the decay of Schmidt values in DMRG
and the comb network is caused by the different cuts, not any
details of the optimization.

We measure the number of states necessary at each bond
to keep the truncation error below 10−4 for singular values
(and 10−8 for Schmidt values). The results are summarized in
Fig. 7(a). The bond dimension along the backbone λ grows
slowly with the system size. Such slow decay qualitatively
agrees with the slow logarithmic divergence of the bond
dimension for critical systems. The same is true for the bond
within the tooth and the bond that connects the tooth with the
backbone for the comb network. On the other hand, the bond
dimension of the MPS wave function optimized with DMRG
grows much faster with the system size.

We estimate the complexity of the DMRG and variational
optimization of a comb tensor network based on the bond
dimensions. For DMRG the most consuming term is the
contraction of the network in the middle of the tooth with
the single-iteration complexity D3, that has to be performed
about N2 times per half-sweep, so the total complexity is
D3N2. For a comb tensor network, the leading term of the
complexity is given by simultaneous optimization of two
backbone tensors that has single-iteration complexity λ3ζ 2

and has to be performed only N times, so the total complexity
is given by λ3ζ 2N . In the large-N limit we expect the comb
represenation to be generally more efficient; for smaller N the
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FIG. 7. (a) Bond dimensions as a function of linear size of
a square N × N spin-1/2 comb lattice with Heisenberg nearest-
neighbor interaction for various cuts natural for either DMRG, the
comb, or both optimization schemes. A cut across a backbone has the
same bond dimension in both cases and is marked with blue circles;
red squares denote the cut across the middle of a tooth which is
natural for DMRG; green diamonds denote a cut between the whole
tooth and the backbone; and magenta circles denote a cut in the
middle of a tooth in the comb network. (b) Estimate of the leading
term in the complexity of DMRG and variational optimization of
a comb based on the data from panel (a). [(c) and (d)] Same as
(a) and (b) but for spin-1 comb lattice with Jt = 1 and Jbb = 0.1,
and where the end spin of each tooth is replaced by a spin-1/2 to
lift the macroscopic quasidegeneracy of the ground state due to edge
states.

comparison depends on the difference in bond dimensions for
the MPS along the backbone versus in the middle of the teeth.

For a spin-1/2 Heisenberg comb, the optimization of the
wave function directly in a comb geometry gives slightly
lower complexity only starting from the lattice with 30 × 30
sites as shown in Fig. 7(b). However, the two curves follow
each other very closely and we expect these behavior to persist
even for larger clusters.

Now we compare the computational cost of a spin-1
comb with strong coupling along the teeth Jt = 1 and weak
backbone interaction Jbb = 0.1. The main difference from
the previous case is that now the teeth are essentially gaped
subsystems, each of which corresponds to the Haldane finite-
size chain. At the edge of each tooth spin-1/2 edge states
emerge. As soon as a backbone coupling is nonzero these edge
states interact between themselves. While spin-1/2 edge states
emergent at the backbone interact with the coupling Jbb, the
effective coupling between the edge states at the end of the
teeth is exponentially suppressed with the length of the tooth.
This leads to a massive degeneracy of the ground state with
exponentially small splitting between many in-gap states. In
order to avoid this, we replaced spin-1 degrees of freedom at
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the end of each tooth by a spin-1/2. Below we will provide
the detailed study of the model, but here we only focus on the
algorithm efficiency.

Since the teeth are expected to be in a gapped state,
according to the area law the corresponding bond dimension
within the teeth is expected to approach a constant in the
thermodynamic limit. Indeed, one can observe it in the green
and magenta lines in Fig. 7(c). On the other hand, spin-1/2
edge states are expected to form a critical chain and so the
bond dimension across a backbone diverges logarithmically
with the number of teeth. In DMRG the entanglement induced
by the critical chain is also seen inside the teeth, so in DMRG
each bond dimension diverges with the length of the comb.
For the chosen set of parameters, comb tensor network turns
out to be more efficient than standard DMRG starting from
very small systems of 8 × 8 sites (see Fig. 7).

To summarize, there exist classes of models, for which
the optimization of the wave function directly in the comb
geometry has lower computational cost than standard one-
dimensional algorithms. Moreover, in some particular cases,
e.g., dimerized state on the backbone, the comb tensor net-
work is less likely to get stuck in local minima than the
DMRG, in which the dimers are formed between sites that
are far apart.

In the following section we use this algorithm to study the
Heisenberg model on a spin-1 comb lattice.

IV. SPIN-1 HEISENBERG MODEL ON A COMB LATTICE

A. The model

The spin-1 Heisenberg chain has long been known to have
a finite bulk gap [21] and spin-1/2 edge states [22,23]. This
is one of the simplest examples of a topologically nontrivial
state realized in spin systems. Here we couple a set of these
spin-1 chains into a comb with Heisenberg nearest-neighbors
interactions defined by Eq. (1).

In the absence of any backbone interaction the edge states
of a tooth couple. If the number of spins per tooth is even
they form a singlet and the first excited state is a Kennedy
triplet [22]. When the number of sites on a tooth is odd, the
ground state is a triplet, and the first excitation is a singlet.
In both cases, the energy splitting between the ground state
and the in-gap excited state(s) decays exponentially with the
length of the tooth. Introducing a backbone interaction, one
couples the backbone edge states into a spin-1/2 chain. This
chain is then decorated with the spin-1/2 degrees of freedom
at the tips with an effective coupling constant that decays
exponentially fast with tooth length. So for large L the pendant
spins cause a macroscopic degeneracy of the ground state
with 2N states, where N is the number of teeth. To avoid this
massive degeneracy, for most of our calculations we remove
the emergent spin-1/2 degrees of freedom at the end of each
tooth by replacing the last spin-1 site by a spin-1/2. We will
come back to the model with all spins-1 and study the effect
of the edge spins at the end of the paper.

B. Critical spin-1/2 chain

When the backbone coupling is small the emergent spin-
1/2 edge states, coupled to each other along the backbone, are
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FIG. 8. (a) Dimerization profile along a backbone of a Heisen-
berg spin-1 comb and (b) scaling of the entanglement entropy as a
function of conformal distance. Results are shown for a comb with
100 teeth and 12 (blue) and 20 (green) sites per tooth, and backbone
coupling constant Jbb = 0.1.

only slightly changed and form a spin-1/2 chain. According to
conformal field theory (CFT) the Heisenberg spin-1/2 chain
is critical and can be described by the Wess-Zumino-Witten
(WZW) SU(2)1 critical theory. As a confirmation to that, we
extract the critical exponent d from the decay of the Friedel
oscillations. The latter naturally appears in the finite-size
chain, because open edges of a critical spin-1/2 chain favor
dimerization and therefore fix the boundary conditions. We
define the local dimerization order parameter as an absolute
value of a difference between spin-spin correlations on the
neighboring bonds on a backbone:

Dbb(i, N ) = |〈Si,1 · Si+1,1〉 − 〈Si+1,1 · Si+2,1〉|, (4)

where i is the tooth index and N is the total number of teeth.
Then, according to boundary CFT, the dimerization decays
away from the boundary as:

Dbb(i, N ) ∝ 1

[N sin(π i/N )]d
, (5)

where d = 1/2 is a critical exponent of the WZW SU(2)1.
In Fig. 8 we plot the dimerization profile of the Friedel

oscillations on a comb with 100 teeth and both 12 (blue)
and 20 (green) sites per tooth. One can immediately see that
the dimerization profile is independent of the width of the
comb and the data collapse is almost perfect. A fit to the
CFT prediction of Eq. (5) shown in Fig. 8(a) gives the critical
exponent d ≈ 0.57, which is higher than the CFT prediction
1/2 due to the presence of logarithmic corrections in the
Heisenberg spin-1/2 chain.

In addition, we can extract the central charge from the
scaling of the entanglement entropy. Following Ref. [24],
we define the reduced entanglement entropy on a backbone
S̃bb(i, N ) with the Friedel oscillations removed:

S̃bb(i, N ) = Sbb(i, N ) − ζ 〈Si,1 · Si+1,1〉, (6)

where ζ is a nonuniversal parameter. Then, according to
CFT the reduced entanglement entropy scales with conformal
distance d (i) = 2N

π
sin(π i/N ) as [25]:

S̃bb(i, N ) = c

6
log d (i) + s1 + log g. (7)

From the fit shown in Fig. 8(b) we find the central charge
c ≈ 0.87. This is in reasonable agreement with the S = 1/2
chain value c = 1.
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FIG. 9. (a) Correlation graphs that present the strength of the
spin-spin correlations 〈Si, j · Si′, j′ 〉 where either [i′ = i; j ′ = j + 1]
or [i′ = i + 1; j ′ = j] in a spin-1 comb. The width and the intensity
of the lines are linearly proportional to the strength of the correla-
tions. Blue lines correspond to the nearest-neighbor pairs that appear
in the Hamiltonian, green lines state for the correlations between the
corresponding sites on the neighboring teeth. All correlations have a
negative sign. (b) and (c) are enlarged parts of the correlation graphs
in the vicinity of the middle of the backbone for (b) Jbb = 0.1 and
(c) Jbb = 2, before and after the crossover in Jbb.

C. Crossover

Let us now investigate how the ground state of a spin-
1 Heisenberg comb changes on tuning the backbone in-
teraction. In order to understand how the structure of the
ground state changes we look at the local correlations be-
tween nearest neighbors on a comb. Figure 9(a) shows the
strength of the spin-spin correlations 〈Si, j · Si′, j′ 〉 where either
[i′ = i; j′ = j + 1] or [i′ = i + 1; j′ = j]; in other words, we
look at the nearest-neighbor correlation of a square lattice.
(The Hamiltonian, however, has couplings only along the
comb.) In Fig. 9(a) we present our results for a square comb
with 20 × 20 sites and large backbone interaction Jbb = 2.
Note that the Haldane state is well preserved along the tooth
and only a few sites are affected by the presence of a backbone

(a) (b)

FIG. 10. Valence bond singlet (VBS) sketch of the ground state
in the limit of weak (a) and strong (b) backbone interaction. Each
spin-1 (ellipse) is represented by a pair of spin-1/2 (dots), each
of which form a VBS singlet with its neighbor so the bulk is in
the Haldane (AKLT) state with single VBS singlet per bond. The
unpaired spin-1/2 become an edge state (arrow). In the presence of a
nonzero backbone interaction arrows couple into a critical spin-1/2
chain. (a) In the limit when the backbone interaction is weak the
critical chain is located on the backbone. (b) For large Jbb � 1 the
system prefers the Haldane state along the backbone and the critical
chain is formed out of next sites.

interactions. We can be even more specific here, since each
tooth has a bulk gap, also in the thermodynamic limit and the
correlation length is finite along the tooth. In this respect, the
presence of the backbone interaction changes the boundary
conditions of the tooth without affecting its bulk properties. So
in the next two panels we focus on the sites in the vicinity of
the backbone. In Figs. 9(b) and 9(c) we show an enlarged part
of the correlation graph two values of the backbone interaction
Jbb = 0.1 and Jbb = 2. One can clearly see the difference
between the two: In Fig. 9(b) the strongest correlations are
always along the tooth; there is a light dimerization along both
teeth and the backbone due to Friedel oscillations induced
by open edges; and the correlation between the teeth above
the backbone is negligibly small. In contrast, in Fig. 9(c)
the backbone correlations are almost as strong as the upper
part of the teeth, while the correlation between the first two
sites on each tooth are much weaker, which indicates that the
backbone is in the Haldane state and is less entangled with the
teeth than in Fig. 9(b). Moreover, the correlation between
the second sites of each tooth is significant, which corresponds
to the critical spin-1/2 chain that is now formed above the
backbone.

The two states are sketched in Fig. 10, where Fig. 10(a)
corresponds to the limit of weak backbone interaction so the
emergent edge states (arrows) form a critical spin-1/2 chain
(dashed red line) and Fig. 10(b) corresponds to the limit of
strong backbone interaction with the Haldane chain on the
backbone and critical spin-1/2 chain on the second sites of the
teeth. Interestingly, the effective size of the critical spin-1/2
chain changes: In the limit of weak and strong backbone
coupling the critical chain is formed out of the edge states
of all N teeth, while in the intermediate coupling the system
favors the state with very long Haldane chain that includes
the first tooth, the backbone, and the last tooth, so the critical
chain is formed by the second sites on N − 2 teeth only.

We find that the two regimes sketched at the Figs. 10(a) and
10(b) are connected by a smooth crossover. In both regimes
the system is critical due to the presence of a critical spin-
1/2 chain, regardless of its location. In the thermodynamic
limit the bulk gap is closed for all values of the backbone
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FIG. 11. (a) Total magnetization localized at the backbone (blue)
and the second row (red). (b) Local spin-spin correlations on the
backbone (red) and between the first two sites on a teeth (blue). In
both panels the results are for square combs of size 10 × 10 (squares)
and 20 × 20 (crosses). A crossover is associated with the crossing
point.

interaction. Also, the universality class of the underlying
critical theory in the two regimes is the same. All the argu-
ments above together with the extremely smooth change of
all measured observables (more details below) suggests that
two regimes are indeed connected by a crossover rather than
a phase transition.

In order to approximately locate the crossover we look
at the location of magnetic excitations. For that we compute
the lowest energy state in the sector of total magnetization
Sz

tot = 1 and calculate the total local magnetization along the
backbone and along the chain next to the backbone. The
results are summarized in Fig. 11(a). When the backbone
interaction is very small, the backbone has magnetization
close to

∑N
i=1 Sz

i,1 = 1. The magnetization of the second row
is nonzero due to finite (nonzero) correlation length in the
Haldane phase on a teeth; it takes the opposite sign to the
magnetization of the backbone due to strong antiferromag-
netic correlations between the first two sites on the teeth.
On increasing the backbone interaction the localization of the
magnetic excitation on the backbone is smeared out and even-
tually the second row carries higher magnetization than the
backbone. As shown in Fig. 11(a), the two lines cross when
the backbone coupling is about Jbb ≈ 1.1. We performed the
calculations on square combs with 10 × 10 and 20 × 20 sites,
finding that the finite-size effects are very small.

As a alternative method, we measure nearest-neighbor
correlation in the middle of the backbone and between the first
two sites on the middle tooth. In Fig. 9 we already discussed
a qualitative difference between the local correlation pattern
in the two regimes. In Fig. 11(b) we provide a quantitative
comparison. We find that the backbone correlation becomes
stronger than the connect correlations (correlations between
the first two sites on a tooth) when the the backbone coupling
exceeds Jbb ≈ 1.3. This value is in a decent agreement with
results on spin-1 localization presented above.

D. Zig-zag backbone and Kosterlitz-Thouless transition

In this section we show that one can manipulate the
emergent critical spin-1/2 chain by adding frustration such
as next-nearest-neighbor interaction. In a true spin-1/2 chain,

FIG. 12. An alternative representation of a comb lattice, in which
both nearest- and next-nearest-neighbor interaction along the back-
bone naturally appears.

this would lead to a gapped dimerized phase when the next-
nearest-neighbor coupling constant J2 exceeds J2 = 0.2411
[26]. The critical phase near J2 = 0 is separated from the
dimerized one by a Kosterlitz-Thouless (KT) phase transition
[27]. Both the critical phase and the KT transition are charac-
terized by the WZW SU(2)1 universality class. The KT critical
line can be identified by vanishing logarithmic corrections,
which are present inside the critical phase due to a marginal
operator. Apart from the KT transition point, there is another
special point, known as the Majumdar-Ghosh [28] point and
located at J2 = 1/2, where the ground state is given by an
exactly dimerized state.

Here we include an antiferromagnetic next-nearest-
neighbor interaction along the backbone of a comb. The most
natural way to imagine this is shown in Fig. 12 with a zig-zag
ladder as a backbone, decorated with chains or teeth.

The traditional ways to locate the quantum phase transi-
tion, such as finite-size scaling of the order parameter or gap
closing, which normally work well for gapped phases, can-
not provide very accurate results for the Kosterlitz-Thouless
transition, because the phase on one side of the transition is
critical. Here we closely follow the method used to locate the
end point on the critical lines described in Ref. [29] and also
used to locate the KT transition in the spin-3/2 chain [30,31].
We briefly review the main idea here. From a CFT point of
view, the transition between the critical and the dimerized
phase is driven by tuning the coupling constant of the marginal
operator in the Hamiltonian. When this coupling constant is
negative (up to a convention), it can be renormalized to zero
and the system can be described by WZW SU(2)1 critical
theory with nonvanishing logarithmic corrections that appear
due to the renormalization process. By contrast, when the cou-
pling constant of the marginal operator is positive, it cannot be
renormalized to zero and lead to the gapped dimerized phase.
At the KT transition this coupling constant is equal to zero and
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FIG. 13. (a) Apparent critical exponent and (b) apparent veloc-
ities as a function of the next-nearest-neighbor coupling along the
backbone of a square comb with 20 × 20 sites and Jt = Jbb = 1.
The apparent critical exponent deviates from the CFT prediction
d = 1/2 due to the presence of the logarithmic corrections to the
WZW SU(2)1 theory on the left and inside the gapped phase on
the right. (b) Velocities extracted for different levels coincide only
at the KT point, where the conformal tower is restored. On the left
of it the structure of the spectrum is destroyed due to the logarithmic
corrections, and on the right, the system is no longer gappless, so the
velocities move away from each other very fast.

therefore the system is in the WZW SU(2)1 universality class
without any logarithmic corrections. So, the identification of
the KT point is equivalent to the identification of the point
where the critical behavior is maximally close to the WZW
SU(2)1 even on a finite-size system.

We consider a square comb with 20 × 20 sites and we
set Jt = Jbb = 1. While tuning the next-nearest-neighbor cou-
pling on the backbone we extract the apparent critical expo-
nent and velocity. In order to extract the critical exponent we
first note that the ground state favors dimerization at the edges
of the backbone. This effect is similar to one observed in
the simple spin-1/2 chain and remains robust in the presence
of decorating teeth. The dimerized states at the edge of a
chain fix the boundary conditions and therefore induce the
Friedel oscillations, which according to boundary conformal
field theory takes the following form:

Dbb(i, N ) ∝ 1

N[sin(π i/N )]d
, (8)

where Dbb(i, N ) is an absolute value of the dimerization
at site i along the backbone with N teeth. In the absence
of logarithmic corrections the critical exponent predicted by
boundary CFT is d = 1/2. When logarithmic corrections are
not vanishing, the fit of the Friedel oscillations to this form
gives an apparent critical exponent that deviates from the true
CFT value. While approaching the thermodynamic limit the
deviation slowly (logarithmically) goes to zero and in the
thermodynamic limit the critical exponent is equal to d = 1/2
below and at the KT transition and zero above it. On a finite-
size system, the curve is often very smooth. The apparent
critical exponent extracted from a comb with 20 × 20 sites is
shown in Fig. 13(a). One can see that it monotonically decays
and crosses the d = 1/2 line around J2bb ≈ 0.37.

The second way to locate the KT transition is based on
the vanishing logarithmic corrections in the excitation spectra.
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FIG. 14. (a) Dimerization profile (Friedel oscillations) along a
backbone of a square comb with 20 × 20 (green) and 28 × 28 (blue)
sites fit to CFT prediction of Eq. (5). The resulting critical exponents
are d20 ≈ 0.485 and d28 ≈ 0.483, in good agreement with the CFT
prediction for WZW SU(2)1 d = 1/2. (b) Finite-size scaling of the
excitation energies above the ground state. Only the lowest levels for
each magnetization sectors with Sz

tot = 1, 2, 3 are shown. Symbols
are the DMRG data, red lines are the CFT predictions with a
reference velocity vref = 0.451 (see main text for details). Dashed
line is a guide to the eye for the finite-size scaling of a quintuplet
state that appears below the corresponding bulk excitation on a small
system sizes.

For critical WZW SU(2)1 spin-1/2 chain with an even number
of sites and fixed boundary conditions (see above) the ground
state is a singlet and the excitation energy scales with the
length of the chain N as

� = πvn

N
, (9)

where n = 1, 4, 9 for the first triplet, quintuplet, and septuplet
correspondingly. Due to logarithmic corrections the scaling
can deviate on a finite-sized systems. One can therefore
extract an apparent velocity as vap = �N

πn , with the correspond-
ing integer n. When the logarithmic corrections vanish and
the structure of the excitation spectrum (conformal tower)
is preserved on a finite-size system, the apparent velocities
extracted for various levels take the same value. Away from
the KT transition inside the critical phase the velocities are
different, due to the presence of the logarithmic corrections,
while in the dimerized phase the spectrum is gapped and its
structure changes drastically. Velocities extracted for three
excited states with Sz

tot = 1, 2, 3 as a function of the next-
nearest-neighbor coupling are shown in Fig. 13(b). All ve-
locities come close to each other around J2bb ≈ 0.37, which
agrees with the results from the analysis of the apparent
critical exponent in Fig. 13(a).

Figure 14(a) provides an example of the fit of the Friedel
oscillations on a finite-size comb with 20 × 20 and 28 × 28
sites. For both sizes the extracted critical exponent agrees with
the CFT prediction d = 1/2 within 4%. We also look at the
finite-size scaling of the excitation spectrum (only lowest en-
ergy states in the sectors with Sz

tot = 0, 1, 2, 3). The results are
summarized in Fig. 14(b). The reference velocity is estimated
by the singlet triplet gap of the largest available system size
(N = 28, L = N) as vref = (ET − ES )N/(π ). Then we use
this nonuniversal constant to plot three lines lines of the CFT
prediction � = (πvrefn)/N for n = 1, 4, 9 and see very good
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agreement with our numerical data. Discrepancy between the
CFT prediction and the data for Sz

tot = 3 for N−1 > 0.05 can
be because of low-lying states with a finite gap (dashed line)
which is lower than the first bulk septuplet excitation for
system sizes smaller than N ≈ 20.

To summarize, by introducing an additional next-nearest-
neighbor frustration along the backbone we were able to
drive the comb into the dimerized state on the backbone
passing through the Kosterlitz-Thouless critical point. For
Jt = Jbb = 1 we locate the KT transition around J2bb ≈ 0.37,
which is significantly higher than in the simple spin-1/2
chain with J1-J2 interaction where the transition takes place
at J2/J1 ≈ 0.2411. This suggests that partial localization of
the edge states on the second sites of the teeth induce an
effective ferromagnetic coupling between the next-nearest-
neighbor teeth. This is confirmed by our simple calculation for
Jbb = 0.1 for which the KT transition is located approximately
at J2bb ≈ 0.25, much closer to the KT transition of the original
spin-1/2 chain.

E. Higher-order edge states

We return to our original comb model with all spins-1,
including at the tooth ends. In a comb with an odd number
of sites per teeth, the edge states of each tooth form a triplet
as the ground state. Therefore each tooth can be viewed as
a composite spin-1 object. By tuning the interaction along
the backbone one also tunes the correlation between the
edge spin-1/2 at the end of the teeth, although the effective
interaction between them vanishes exponentially fast with the
length of the teeth. It is very natural to think here in terms
of the valence bond singlet (VBS) singlets: Each tooth with
a pair of spin-1/2 edge states corresponds to a composite
spin-1 object. The ground state is then given by the Haldane
state, where each spin-1/2 is connected by a VBS to one of
its neighbor. In a simple spin-1 chain two spins-1/2 inside a
spin-1 object are perfectly symmetrized, so the Haldane state
is not affected by a specific arrangements of a VBS singlets, as
soon as each nearest-neighbor bond contains one and only one
VBS singlet. The situation is a bit different on a comb, since
the interaction between the edge spins-1/2 on a backbone is
much stronger than the interaction between the edge spins
at the end of each tooth. As we know, the open boundary
condition in the spin-1/2 chain favors dimerization. Most of
the interactions between the composite S = 1’s of an effective
Haldane chain is due the backbone. So the total energy of
the comb is minimized when the first VBS singlets of the
composite Haldane chain is located at the first bond of the
backbone. The next VBS singlet is then placed between
the edge spins-1/2 at the end of teeth 2 and 3, then again on
the backbone between teeth 3 and 4, etc. This state is sketched
in Fig. 15.

Within the described VBS picture it is clear that the end
spins of the first and last teeth remain unpaired and form the
edge states of an entire comb. On a finite-size system, these
two spins-1/2 can couple to each other and form triplet and
singlet in-gap states with an extremely small energy splitting.
To confirm this picture we extract the local magnetization
of a comb with 20 × 7 sites within the sector of total mag-
netization Sz

tot = 1, so both edge states are polarized in the

FIG. 15. Sketch of the ground state of the spin-1 Heisenberg
comb with with odd number per tooth. Each tooth is in the Haldane
phase with spin-1/2 edge states at each end of the tooth. Because the
length of the tooth is odd, the edge spin-1/2 form a triplet ground
state and the entire comb is equivalent to a spin-1 chain, the ground
state which corresponds to the Haldane chain. Since the energy cost
of the upper and lower VBS singlets on this effective spin-1 chain are
not equal, there is an energetically preferred Haldane state with the
fist and the last VBS singlets sitting on the backbone. Therefore the
emergent spins-1/2 at the edges of the Haldane chain are localized
at the end of the first and the last teeth.

same directions. Figure 16 show the distribution of local
magnetization over the comb. Since the teeth are coupled
only along one line—a backbone—there is some freedom on
how to visualize this lattice. In the present case, we find it
instructive to show the results on a two-side comb, but the
lattice and the model are equivalent to the one introduced in
Fig. 16.

When plotted as a two-dimensional lattice but with very
special interaction these emergent edge states can be viewed
as the simplest example of a higher-order edge states dis-
cussed in the context of the topological insulators [32].

FIG. 16. Local magnetization profile of a spin-1 comb with 20
teeth and 7 spins per tooth in the sector of total magnetization
Sz

tot = 1. The size of the circles is proportional to the local magneti-
zation, and red and blue indicate positive and negative magnetization
correspondingly. The edge state of the Haldane state on each tooth
forms a triplet, so the entire comb is equivalent to the spin-1 chain,
which is also in the Haldane phase with one valence bond singlet
between the pair of neighboring tooth. The edge states emergent
in this Haldane chain are localized at the end of the first and the
last teeth—the two furthest points of a comb. On two neighboring
teeth the spins equally distant from the backbone are antiparallel.
The maximal polarization is 0.15.
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FIG. 17. Local magnetization profile of a spin-1 comb with 20
teeth and 6 spins per tooth, in the sector of total magnetization
Sz

tot = 1. The size of the circles is proportional to the local magne-
tization; red and blue indicate positive and negative magnetization
correspondingly. Each tooth is in the singlet sector and the system
is equivalent to a spin-1/2 ladder with weak rungs and one strong
and one weak (or absent) leg. The magnetic excitation is delocalized
over the whole comb, but most of the weight is on the edge of the
teeth. On two neighboring teeth the spins equally distant from the
backbone are parallel. The maximal polarization is at the edge of
the middle tooth and is equal to 0.08.

A comb with even an number of spins per tooth corre-
sponds to a spin-1/2 chain decorated with weakly coupled
spin-1/2’s with antiferromagnetic legs and rungs. Therefore
the magnetic excitation is mostly localized on a second weak
leg and, due to finite correlation length, slightly delocalized
along the teeth, as shown in Fig. 17.

V. CONCLUSION

In the present paper we describe an alternative type of
tree tensor network applicable to one-dimensional models
with complicated on-site clusters. This numerical set-up par-
tially fills the gap between one-dimensional DMRG and two-
dimensional PEPS tensor network algorithms. While DMRG
has established itself as the most efficient numerical tool for
one-dimensional system of strongly interacting particles, in
more complicated cases, such as a chain of clusters each with
substantial entanglement, the intra- and intercluster entangle-
ment are both sent through one auxiliary bond, so the total

bond dimension required may be large. Higher-dimensional
tensor networks, such as PEPS, can distribute entanglement
through many links to satisfy the area law naturally, but
they involve complicated algorithms with high complexity in
the bond dimension. The comb tensor network is a useful
compromise, with much of the computational efficiency of
DMRG but with the ability to separate intra- and intercluster
entanglement. Of course, for true two- or higher-dimensional
lattices, the bond dimension within the tooth would grow
exponentially, and the comb is not likely to be useful.

The comb algorithms presented here have great flexibility,
including allowing local changes to the Hamiltonian or disor-
der, alteration, or variability in the local degrees of freedom
(e.g. spin value), beyond nearest-neighbor interactions, the
length of the teeth, etc. Along any tooth one has the full
flexibility of an MPS along with the favorable complexity of
an MPS, allowing, for example, each tooth to represent a finite
higher-dimensional or randomly connected cluster.

Of course, the most natural system for a comb tensor
network is a system with a comb geometry, or one whose
strong local interactions have the topology of a comb. In
the present paper we discussed spin-1 Heisenberg model on
a comb lattice. The teeth in this system have a bulk gap
and are in a Haldane phase, which is topological and has
emergent edge states. The spin-1/2 edge states of the teeth
are coupled by the backbone interaction and form a critical
chain. This provides a simple recipe for how half-integer-spin
criticality can be realized with integer spins only. In an S =
1/2 comb, the teeth themselves are critical. The tuning of the
backbone interaction also tunes effectively the dimensionality
of the entire system. We will present results for this intriguing
system elsewhere [33].
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