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Abstract—Power grids are undergoing major changes due to
the rapid adoption of intermittent renewable energy resources
and the increased availability of energy storage devices. These
trends drive smart-grid operators to envision a future where peer-
to-peer energy trading occurs within microgrids, leading to the
development of Transactive Energy Systems. Blockchains have
garnered significant interest from both academia and industry
for their potential application in decentralized TES, in large part
due to their high level of resilience. In this paper, we introduce
a novel class of attacks against blockchain based TES, which
target the gateways that connect market participants to the
system. We introduce a general model of blockchain based TES
and study multiple threat models and attack strategies. We also
demonstrate the impact of these attacks using a testbed based on
GridLAB-D and a private Ethereum network. Finally, we study
how to mitigate these attack.

Index Terms—Transactive Energy System, Blockchain, Cyber-
security, Cyber-Physical System, Denial of Service, Microgrid

I. INTRODUCTION

Power grids are undergoing major changes due to the rapid
adoption of intermittent renewable resources (e.g., wind and
solar), combined with energy storage devices (e.g., residen-
tial batteries and electric vehicles). Also, Internet of Things
(IoT) devices enable better management of loads and energy
resources. These trends augment the capabilities of residential
users, now called prosumers, because they can both produce
and consume energy.

Smart grid operators envision a future where prosumers
trade energy or services without intermediaries, improving the
efficiency and reliability of power systems. Thus, future grids
will use Transactive Energy Systems (TES) as a distributed
management approach in which smart appliances or Internet
of things (IoT) devices participate autonomously in electricity
markets [1]. TES allows smart appliances to assess the energy
prices in order to adjust their load reducing costs. Likewise,
prosumers can trade their surplus energy with neighbors.

These TES can use either centralized or decentralized
markets. In a centralized market, all participants communicate
with a central entity, which collects bids and returns the energy
price (and the transactions among participants). Centralized
markets suffer from a single point of failure, because they rely
on a single trusted entity to operate the market. Decentralized
markets based on blockchains offer several desirable proper-

ties in energy applications. First, prosumers interact without
intermediaries and conflicts are resolved through protocols.
Second, transactions that have been recorded on the blockchain
are immutable and publicly auditable by design. Third, the
blockchain is fault tolerant, that is, it can operate even if
some of the prosumers fail or act maliciously. These properties
can ensure market transparency, as well as the availability of
detailed information about the system.

More recent blockchain implementations, such as
Ethereum [2], also enable trustworthy computations through
smart contracts [3]. Based on this functionality, these
blockchains can implement various data verification and
market clearing mechanisms for TES [4]. For example, smart
contracts can enforce commitments as well as transfer of
assets between peers.

One benefit of blockchain based TES is resilience: to disrupt
the integrity of the market (e.g., tamper with bids or with
the clearing mechanism), an attacker needs to compromise a
large number of blockchain nodes. A blockchain based system
can also resist availability attacks, since the market remains
operational even with many unavailable nodes [5]. However,
some attacks may degrade the operation of the system.

In practice, IoT devices lack resources required for partic-
ipating in the computing-intensive consensus algorithms of
many blockchains. Thus, prosumers have to connect to a
blockchain-based system through gateway nodes; however, an
adversary can attempt to “cut off” prosumers from the system
by targeting these gateway nodes. For example, an adversary
can launch a (distributed) denial of service (DDoS) attack
against a gateway node to prevent a set of bids from arriving
at the market, which change the market’s equilibria.

In this paper, we study blockchain based Transactive Energy
Systems and introduce a novel class of attacks that target the
gateways between prosumers and the system. The following
are our main contributions:
• We formulate a general model of blockchain based transac-

tive energy systems, which includes both infrastructure and
market mechanisms.

• We introduce a previously unconsidered class of attacks,
which discard or delay trading bids. Our threat model
includes three scenarios, which consider distinct capabilities
and knowledge for the adversary.

• We study attack strategies for each scenario. We also discuss
how to mitigate these attacks by taking advantage of the
distributed nature of the system.



• Finally, we present our testbed based on GridLab-D [6], a
power system simulator, and a private Ethereum network [7].
We show that attacks on miners can change the market
equilibria benefiting adverse generators, but they can be
mitigated using the proposed approach.

The remainder of this paper is organized as follows. In
Section II, we discuss related work on cyber-attacks against
energy systems. In Section III, we introduce our system
model, which includes the infrastructure as well as the market
mechanisms. In Section IV, we introduce our threat model,
specifying the adversary’s capabilities and goal. In Section V,
we investigate adversarial strategies and discuss mitigation. In
Section VI, we present our testbed and experimental results
on attacks and mitigation. Finally, in Section VII, we provide
concluding remarks.

II. RELATED WORK

Recent cyber attacks against critical infrastructure, such as
the attacks on the Ukrainian power grid in 2015 and 2016 [8],
have motivated multiple research efforts to protect critical
infrastructures, in particular, the power grid [9].

Prior works have shown how false data injection (FDI)
attacks can modify sensor measurements to induce errors in
a power system’s operation [10], [11]. With a careful design,
these attacks can damage the system or change the electricity
prices. An adversary can also affect forecast systems, which
are used to plan the power-system operation, by exploiting
vulnerabilities of artificial intelligence models [12], [13].

In most cases, FDI attacks need information about the
state of the system or the models used for making decisions
(e.g., the system’s state, its topology, or prediction models).
However, some attacks leverage the market’s infrastructure to
bypass these restrictions. For example, an adversary that com-
promises bids can induce changes in the market’s equilibria
without knowing details of the system [14], [15].

DDoS attacks represent a significant threat for distributed
electricity markets, because an adversary needs minimal
knowledge (and resources) to mount attacks. Furthermore,
with these attacks, it is extremely difficult to determine the
identity of the adversary. For example, [16] reported that a
company specializing in protection against DDoS attacks co-
authored the Mirai malware to attack some of its customers.

New technologies, such as Internet of Things (IoT) devices,
introduce vulnerabilities for the power grid [17], [18]. As
a result, adversaries can target customer-side components,
such as smart meters, appliances, end-user generation systems
(e.g., solar panels), and electric vehicles, to affect the power
system’s operation [19]. For example, adversaries can com-
promise IoT devices to change their bids [15].

Our work is in line with these efforts to improve the
protection of critical infrastructure. Specifically, we analyze
how blockchain based markets, which are often presented as
a resilient solution, can still be attacked by exploiting market
mechanisms.
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Fig. 1: Decentralized Transactive Energy System
infrastructure.

III. SYSTEM MODEL

In this section, we present our system model for a decentral-
ized TES. We make some assumptions based on the inspection
of various industrial implementations of decentralized TES,
such as LO3 [20] and Power Ledger [21], and scientific
articles, such as Laszka et al. [22], [23] and Wörner et al. [24].

A. Infrastructure

Fig. 1 shows the overall architecture of the decentralized
TES. Below we describe each component.

1) Prosumers: Agents that can both produce and consume
energy, e.g., residential users with solar panels or electric
vehicles. Prosumers have both unresponsive and responsive
loads. Responsive loads, such as heating, ventilation, and
air conditioning (HVAC) systems can adjust their load to
reduce costs (e.g., store energy in thermal form anticipating
high energy prices). On the contrary, unresponsive loads do
not change their consumption regardless of the prices (the
flexibility of loads can change throughout the day).

Prosumers express their intention (and conditions) to trade
energy through bids. We represent a bid as the following tuple:

〈τ, σ, π〉,

where τ specifies the time interval in which energy exchange
can occur; σ indicates the maximum amount of energy avail-
able to trade; and π denotes the reservation price (minimum
or maximum price accepted by sellers or buyers, respectively).

We assume that prosumers cannot change their bills by
tampering the meters that measure their physical energy flow.

2) Blockchain based Electricity Market: A blockchain is
a distributed ledger, this means that multiple nodes have
a copy of the transactions. Special nodes (called miners)
decide the state of the distributed ledger (e.g., the transactions)
through a consensus protocol, which induces a high cost to
modify the ledger e.g., Proof of Work (PoW) [7], [25] and
Proof of Stake (PoS) [26]. The blockchain creates a chain-
like data structure in which each block has a reference to
previous blocks; in this way, the transactions recorded become
practically immutable. Thus, blockchains provide trustworthy
data storage and computation (in the form of smart contracts)
without requiring a trusted entity.
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3) Gateways: Prosumers may not participate directly in
the blockchain network, because consensus protocols typically
have high computational and storage requirements, which IoT
based energy trading devices cannot satisfy. Hence, prosumers
may access the distributed energy market through gateway
nodes. A gateway either forwards messages between the
prosumers and the distributed energy market or acts as miner,
whuch execute the blockchain consensus protocol. To protect
the prosumers’ privacy, the communication between prosumers
and gateways may be encrypted and anonymized, as described
in [27]. Gateways can be operated by the company that
implements the TES or by a third party.

4) Distribution System Operator (DSO): Besides the infor-
mation infrastructure, the system needs a continuous manage-
ment of the physical infrastructure. In this case, we assume that
a DSO supervises the system and is responsible for managing
the distribution grid, billing, installing smart meters, satisfying
the net demand, and maintaining stability [28]. Although we
refer to the DSO as the system’s manager, other entities, such
as electric utilities, can be in a better possition to provide these
services.

B. Electricity Market

Power systems use electricity markets to find efficient and
reliable operations. Efficiency involves maximizing the benefit
of all the participants, while reliability refers to satisfying
engineering constraints. Electricity markets operate periodi-
cally (gather bids and determine the system’s operation) to
guarantee a correct operation at any moment. In our notation,
we omit the time when the transactions occur; however, we
reiterate that the market’s operation occurs periodically (e.g.,
the market accepts bids to decide the price and trades every
five minutes).

1) Ideal Model: Let us denote the set of prosumers as
P . We classify prosumers in two sets, namely the set of
consumers C and the set of generators G. We define the utility
of a consumer i ∈ C as

ui(qi, p) = vi(qi)− qi · p,

where vi(qi) represents the benefit obtained from consuming
qi ≥ 0 units of energy, and p ∈ R is the unit price paid for
the energy. We define the profit of a generator j ∈ G as its
income minus its generation cost, that is,

uj(qj , p) = qj · p− Cj(qj),

where Cj(qj) represents the cost of producing qj ≥ 0 units
of energy. We assume that the market decides the trades
within a feeder. Therefore, consumption qi represents energy
consumed by the feeder’s loads. Moreover, production qj rep-
resents energy produced within the feeder or energy transferred
by external sources to supply loads within the feeder. Thus,
local generators can export energy outside the feeder, but the
local market is not involved in these trades.

Ideally, the power system distributes resources efficiently,
that is, maximizing the benefit of all the participants. In this

kWh

$ πi

σi

(a) Concave valuation function
described by the pair (σi, πi).

kWh

$ πj

σj

(b) Convex cost function de-
scribed by the pair (σj , πj).

Fig. 2: Example of piecewise linear functions.

case, we use the social welfare as our efficiency metric, which
is defined as

f(q, p) =
∑

i∈C
ui(qi, p) +

∑
j∈G

uj(qj , p),

where the vector q = [qi]i∈P denotes the energy consumed
and generated by the prosumers.

Power markets must maintain a balance between trades; in
other words, the total energy sold must equal the total energy
bought. In practice, a small part of the energy delivered may
dissipate as heat in transmission lines. If we ignore these
transmission losses, we can express the balance condition as∑

i∈C
qi =

∑
j∈G

qj .

A system that operates efficiently and reliably has to allo-
cate resources maximizing social welfare and satisfying the
system’s physical constraints. We formulate the system’s goal
as the solution of the following optimization problem:

maximize
q,p

f(q, p) (1a)

subject to
∑

i∈C
qi =

∑
j∈G

qj , (1b)

p = ∂Cj/∂qj(qj), ∀j ∈ G (1c)

Eq. (1b) captures the need to balance the energy transactions,
while Eq. (1c) captures the optimal production of generators
(marginal costs equal the energy price). Let us denote the
optimal equilibria as (q∗, p∗), where q∗ = [q∗i ]i∈P represents
the energy traded (production/consumption) and p∗ demotes
the market’s clearing price.

Although the market defines a unique price, consumers also
pay for congestion and transmission losses. For this reason,
the price paid by a prosumer, which is also called locational
marginal price (LMP), changes with its location. Systems
without transmission constraints and losses have a single LMP;
hence, prosumers observe the same price in our model.

Electricity markets often solve Eq. (1a) through auctions, in
which the participants have incentives to reveal their private
information i.e., the functions vi(·) and Cj(·) [29]. Moreover,
economic models typically assume that the valuation function
vi(·) is concave and that the cost function Cj(·) is convex. As
a consequence, Eq. (1a) has a unique solution.
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2) Approximated Model: Market operators often restrict the
form of the bids [30]. For example, some auctioneers assume
that the functions vi(·) and Cj(·) belong to some family of
functions. In this work, we assume that each prosumer i has
a piece-wise linear function defined by a pair (σi, πi), where
σi denotes the maximum energy available (or needed) and
πi specifies the minimum (or maximum) unit price accepted
by the prosumer [31], [32]. Fig. 2 shows an example of the
functions supported in our market.

With this simplified model we can use a double-auction to
solve the optimization problem in Eq. (1a). The double auction
creates demand and offer curves to find the market’s equilibria.
The demand curve is a piecewise linear function constructed
ordering the buyers’ bids in descending order by their prices.
Likewise, the offer curve is constructed ordering the sellers’
bids in ascending order by their prices. The intersection of
these curves yields the market’s clearing price and the total
energy traded in the market.

Since the market must account for the total demand, it has
to estimate the unresponsive loads. For simplicity, we estimate
the unresponsive loads as the the difference between the total
amount of energy demanded and the total load. In our model,
we assume that the DSO makes this estimate and submits a
bid requesting that amount of energy at the maximum price
allowed [31]. Note that other entities could also act in this
role; our analysis and experimental results are not contingent
on this assumption.

Using a double auction ensures that there is no consumption
or production strategy that will result in better utility for the
prosumers than truthfully reporting σi, πi, which characterize
the functions vi(·) and Cj(·). However, in Section V, we
show that adversarial prosumers may profit by affecting other
prosumers’ bids.

3) Distributed Market Operation: The operation of the
distributed market is ensured by the blockchain miner nodes,
and it is often implemented in the form of a smart contract
(we refer the reader to [22] for more details). Typically, the
operation of the market follows the next iterative steps:

1) The market starts in the Bidding state for a future time
interval τ .

2) Prosumers submit their bids for the interval τ to the gate-
ways, which register the bids on the market (blockchain).

3) Market transits to Clearing state for interval τ . In this
case, we implement a double auction [31], [33], which finds
transactions that maximize social welfare. Nonetheless,
smart contracts provide enough flexibility to implement
other types of auctions and restrictions. The gateways
forward the transactions and clearing price to the pro-
sumers, who will later exchange energy accordingly (recall
Section III-B2 and Fig. 2).

4) Market transits to Bidding state for time τ + 1, and the
gateways notify the prosumers of the beginning of the next
trading interval.

TABLE I: Adversary’s Attack Scenarios

Scenario Know bids prior
to the attack

Target
individual bidders

1 X X
2 x X
3 x x

IV. THREAT MODEL

In this section we describe the adversary’s capabilities, its
goal, and attack strategies.

A. Adversary’s Capabilities

We assume that the adversary cannot tamper with or remove
bids accepted by the market, and it cannot tamper with
or disrupt the market clearing mechanism (the blockchain
guarantees that this requires a large amount of resources).
However, the adversary—who may be one of the prosumers—
can read past bids and clearing prices from the blockchain.

Blockchains can suffer from several vulnerabilities, some of
which lead to thefts of cryptocurrencies or public keys [34].
An adversary may leverage these vulnerabilities to tamper with
the prosumers’ bids. For example, an adversary may steal the
public keys of prosumers to forge bids or compromise smart
appliances or transactive controllers to modify their bidding
strategies. However, it may be much easier to compromise
a single node that is acting as a gateway for a group of
prosumers, than attacking multiple prosumers individually. For
example, the adversary can exploit bugs in the Ethereum soft-
ware to either bypass authentications or to disable miners [35].
We consider three attack scenarios against miners that differ
in the adversary’s knowledge and capabilities of (see Table I
for a summary).
1) Gateway Confidentiality and Integrity Attack: The adver-

sary compromises a gateway and obtains sufficient access
to delay or discard particular bids (i.e., prevent them
from being recorded on the market). In this scenario, the
adversary is also capable of reading all bids before deciding
which bids to discard (e.g., by reading the bids submitted
to the compromised gateway as well as the ones recorded
on the blockchain by other gateways).

2) Gateway Integrity Attack: The adversary can discard or
delay selected bids; however, the adversary must decide
which bids to discard without complete information, rely-
ing only on historical data about the prosumers’ past bids.

3) Gateway Availability Attack: The adversary cannot delay
particular bids, but it has sufficient resources to launch
a DDoS attack against one of the gateways. This attack
prevents the processing of some bids in the market, but the
adversary cannot read bids either.

B. Adversary’s Goal

We consider a rational, profit-oriented adversary, who is
interested in maximizing its own profit. The adversary’s goal
and strategy depend on its role (e.g., generator or consumer).
We focus our attention on adverse generators, who discard
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(or delay) the bids of prosumers. Concretely, we assume
that adverse generators pursue a market equilibria (qa, pa)
that increases the generator’s profit by λ%. We express this
condition as∑

j∈G
uj(q

a
j , p

a) =
∑

j∈G
(1 + λ)uj(q

∗
j , p
∗). (2)

where G represents the set of adverse generators.
Let the total generation before and after the attack be

Q∗ =
∑

j∈G
q∗j and Qa =

∑
j∈G

qaj ,

respectively. Now, let us approximate the aggregate cost func-
tion with the following quadratic function (this is a common
approximation in the literature [36]):∑

j∈G
Cj(qj) ≈ C(Q) = β2 ·Q2 + β1 ·Q,

where Q ≥ 0 and β1 and β2 are constants. Thus, the aggregate
utility of sellers without an attack is∑

j∈G
uj(q

∗
j , p
∗) = Q∗ · p∗ − C(Q∗). (3)

Since p∗ = Ċ(Q∗), we can rewrite Eq. (3) as∑
j∈G

uj(q
∗
j , p
∗) = β2(Q∗)2. (4)

Now, substituting Eq. (4) into Eq. (2), we get

Qa =
√

1 + λQ∗.

Thus, the adversary attempts to increase the total energy traded
in the market by

∆Qa = Q∗(
√

1 + λ− 1). (5)

We assume that the adversary chooses λ subject to some
constraints. First, the adversary limits the impact of its attacks
to avoid damaging the system, which may affect its own assets
and future gains. Second, the market behavior is monitored
by regulators for sudden or excessive deviation from the
expected values. When detected, these deviations may lead
to investigations, which can result in the discovery of the
attack and the punishment of the adversary. Regulators already
monitor the performance of firms to punish those that exercise
market power [37].

V. ANALYSIS

In this section, we discuss strategies that an adversary may
use to increase its profit, given the capabilities that we assumed
in Section IV-A. Then, we discuss strategies for mitigating
such attacks.

A. Attack Strategy

An adverse generator benefits from delaying the bids of
prosumers if the resulting market equilibrium increases its
profit. Fig. 3 shows how a delay attack on either buying or
selling bids changes the equilibrium. In a double auction,
the offer and demand curves capture the trades (price and
quantity) that buyers and sellers would accept. Their inter-
section corresponds to the market equilibrium, a condition
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(a) Market equilibria when delaying the bids of generators.
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(b) Market equilibria when delaying the bids of consumers.

Fig. 3: An adverse generator can increase the market’s equi-
libria price delaying bids of both buyers and sellers.

in which no prosumer would change its trades. Delays in
bids of competing generators (who offer lower prices) forces
the market to procure energy from more expensive generators,
which raises the prices (Fig. 3a illustrates this). We leave the
analysis of such attacks to future work.

The demand curve is constructed with bids ordered by
descending price. In our case, the DSO constructs bids for
the estimated unresponsive loads, which accept the maximum
price allowed in the market. The demand curves in Fig. 3 have
flat regions corresponding to bids of unresponsive loads. The
decreasing regions correspond to the bids of responsive loads.

Delays in buyers’ bids can also benefit the adversary,
because missing bids may lead to overestimation of the
unresponsive loads. In other words, the DSO may assume that
the appliances that do not submit bids will accept any price.
In such cases, the demand curve changes reflecting a higher
willingness to pay for energy, which raises the prices (see
Fig. 3b). Next, we analyze this attack in the three scenarios
that we introduced in Section IV-A.

1) Confidentiality and Integrity Attack: In this scenario,
the adversary can collect all the bids submitted to the com-
promised gateway, and read the bids submitted to the other
gateways. Hence, it can compute the market’s clearing price p∗

and the total energy traded Q∗. The adversary uses these
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values to calculate the desired deviation in the trades ∆Qa

(see Eq. (5)). Then, it selects a subset of bids V such that∑
v∈V

q∗v ≈ ∆Qa.

In practice the impact of the attack will be lower than ∆Qa,
because some appliances may reduce their load as a response
to higher prices.

This is an ideal scenario for the adversary, since it is
able to discard bids possessing complete information about
the market. Further, this scenario allows the adversary to
determine which gateway is the optimal target for the attack.

2) Integrity Attack: In this scenario, the adversary cannot
observe the bids before they reach the market. Instead, the
adversary must rely on historical information about the bids
in order to choose its attack strategy, since it can observe only
past bids and clearing prices. Hence, the adversary must select
which gateway to attack and which consumers’ bids to discard
based on historical data and trends.

Since the total demand typically follows daily patterns, we
assume that it is possible to predict whether the bid of a
prosumer will fall below the market price. Let us model the
bids and the clearing price for a particular time interval as
random variables. We denote with the random variable pτ

the market clearing price, and let (στi , π
τ
i ) denote random

variables of prosumer i’s bid in the time interval τ .
We use the random variable

xτi =

{
1 if πτi ≤ pτ

0 otherwise.

to denote whether discarding the bid of consumer i changes
the market equilibria.

Let us denote with %τi the probability that the adversary de-
lays the bid of consumer i during the time interval τ . Further,
we denote the adversary’s strategy during timer interval τ as
%τ = [%τi ]i∈C . We approximate the impact of an attack (the
reduction in demand) as

Γ(%τ ) =
∑

i∈Ca
%τi E[xτi · qτi ],

where Ca denotes the set of consumers that use the gateway
targeted in the attack. In this case, the adversary chooses its
attack strategy %τ to achieve the desired impact during time
interval τ , which we denote as ∆Qa,τ ; that is,

Γ(%τ ) = ∆Qa,τ . (6)

In particular, by selecting the bids with the highest expected
impact the adversary minimizes the number of targets. Without
loss of generality let us rank the bids according to their
expected impact. Concretely, let E[xτi · qτi ] ≥ E[xτj · qτj ] if
i > j, for all bids i and j. Now, the adversary can select with
probability %τi = 1 the first m bids that satisfy∑m

i=1
E[xτi · qτi ] ≤ ∆Qa,τ ≤

∑m+1

i=1
E[xτi · qτi ]

and select the m + 1 bid with a probability %τm+1 that
satisfies Eq. (6).

3) Availability Attack: In this scenario, the adversary can-
not delay particular bids. Instead, the adversary launches a
DoS attack which leads to discarding bids randomly, with
uniform probability. Hence, %τj = %τ = %τi for all prosumers i
and j that use the targeted gateway, where %τ depends on the
intensity of the attack. Similar to the previous scenario, the
adversary must rely on historical data to select the gateway
and choose the intensity of the attack. Thus, adversary selects

%τ = ∆Q
a,τ
/
∑

i∈Ca
E[x

τ
i q
τ
i ].

We assume that this attack does not affect the bids of the
adversary, who can use a different gateway if necessary.

B. Mitigation Strategy

If a consumer does not receive confirmation from the
gateway, then it might submit its bid to another gateway, after
waiting a certain amount of time.

The amount of time that is required to record a transaction
(e.g., a bid) on a blockchain depends on the time required
to generate the next block, which is non-deterministic, and
for most blockchains follows an exponential distribution [38].
Thus, consumers can wait until they have some confidence
about the state of the gateway (e.g., waiting for two standard
deviations of the block generation time) before resubmitting.

Frequent resubmissions may harm the performance of gate-
ways; hence, it is possible that a resubmitted bid is not
recorded in time for inclusion in the market clearing. For this
reason, prosumers may select wait times according to their risk
preferences. Alternatively, prosumers may reduce the efficacy
of attacks by selecting gateways randomly, thereby increasing
the adversary’s uncertainty about which gateway to target.

VI. EXPERIMENTAL EVALUATION

A. Testbed Implementation

For experimental evaluation, we deployed GridLAB-D [39]
and a private Ethereum blockchain network [2]. GridLAB-D
simulates the smart grid, including prosumer logic for creating
bids. GridLAB-D models retail markets through double auc-
tions [31] that run every five minutes. Our power system has
58 residential commercial houses, which in turn incorporate
appliances such as heating, ventilation, and air conditioning
(HVAC) systems. GridLAB-D models the response of the
loads to weather and market’s prices, giving realism to the sim-
ulations. In this case, transactive controllers manage HVAC
systems and make bids in the market.

The blockchain stores bids, market clearing prices, and
calculates the market equilibria with a smart contract. We built
our testbed on the open-source TRANSAX framework [22],
which provides the prosumer interfaces and a smart contract.
Each prosumer is assigned to one of three Ethereum clients,
which act as gateways to the private Ethereum network. Based
on the prosumers’ allocation, the attacker chooses one of the
Ethereum clients to attack, and delays a subset of the bids sent
to that client. Since each bid is valid for a single interval, this
in effect discards the bids.
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Fig. 4: Impact of attacks (snapshot of five days, from July 1
at 00:00 to July 5 at 00:00).

B. Experimental Results

In the simulations, we use bids and the market’s equilibria
without attacks (q∗, p∗) and with them (qa, pa) to calculate
the surplus of sellers (see Eq. (3)); for instance, we calculate
the profit without attacks as∑

j∈G
uj(q

∗
j , p
∗) = Q∗p∗ −

∑
j∈G

πjq
∗
j .

We measure the impact of the attack as the profit increment
for the generators:

Profit increment =

∑
j∈G

{
uj(q

a
j , p

a)− uj(q∗j , p∗)
}∑

j∈G uj(q
∗
j , p
∗)

Fig. 4 shows the gains of sellers with attack scenarios
described in Table I. This figure illustrates that the attacks
have a larger impact between 9am and 1pm, when some of
the responsive loads (e.g., air conditioning systems) operate.
Likewise, periods with a low or even negative benefit coincide
with periods with less market activity. High prices caused by
the attack alter the demand patterns of some smart appliances.
For this reason, the attack’s actual impact exceeded the desired
gains (we designed the attacks to increase the profit by at most
50%). We also see that for Scenarios 2 and 3, producers can
experience losses, which typically occur around 8pm.

Next, we investigate the impact of attack as a function of
the mitigation rate. In this case, the mitigation rate denotes
the ability of prosumers to submit their bids despite an attack
on their gateway. For example, prosumers who use only the
targeted gateway have a mitigation rate of 0%.

Figs. 5 to 7 show distributions of the attack impact for
the three attack scenarios with different mitigation rates.
These figures show that higher mitigation rates tend to reduce
the impact of attacks (both their mean and their standard
deviation). The impact is highly variable, but on average, they
improve the generators’ utility. Scenario 3, which requires
the least privileges, suffers from higher variance but still
provides increased utility. Scenario 2 has lower variance, but
also achieves lower impact than the other scenarios.
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Fig. 5: Gateway Confidentiality and Integrity Attack: The
adversary designs its attack knowing the bids.
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Fig. 6: Gateway Integrity Attack: The attacker chooses a
gateway to attack based on historical prosumer data. Then,
bids from the targeted prosumers are discarded as they arrive.

Our private blockchain network takes 11 s to generate blocks
(on average), with a standard deviation of 11.4 s. We assume
that the block generation time follows an exponential distribu-
tion; hence, we can compute the likelihood of a false-positive
alert (i.e., timeout without an attack) as F (x; η) = 1− e−ηx.
Assuming that a prosumer waits for two standard deviations,
the wait time is 33 s. Since 1−e− 1

11×33 = 0.95, the prosumer
will have a 5% false-positive rate. Since bids have to be
recorded on the blockchain in the first 4 minutes of the interval,
many blocks will likely be mined before clearing. In fact, a
prosumer may attempt to resubmit around 7 times.

VII. CONCLUSION

In this paper, we examined blockchain based TES, which
have received significant attention recently due to their unique
advantage of providing resilience and integrity in decentralized
systems. We introduced a novel class of cyber-attacks, which
do not target the trading system directly, but rather target the
interface between the prosumers and the system. We found
that even simpler attacks, such as (D)DoS, can effectively
manipulate the clearing price of a blockchain based market.
However, we have also demonstrated that the threat can be
mitigated via detection and gateway switching. We evaluated
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Fig. 7: Gateway Availability Attack: Attacker chooses a gate-
way and executes a (D)DoS attack, resulting in some random
subset of bids being discarded.

the impact of these attacks experimentally using a testbed
based on GridLAB-D and a private Ethereum network.

In the future, we will extend our analysis to consider pro-
active defenses (e.g., through random selection of gateways),
more sophisticated attack detection, and cyber-attacks on in-
dividual prosumers (i.e., compromising their IoT devices).
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[33] E. Mengelkamp, J. Gärttner, and C. Weinhardt, “Decentralizing energy
systems through local energy markets: the LAMP-project,” in Multikon-
ferenz Wirtschaftsinformatik, 2018.

8

https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
https://krebsonsecurity.com/2017/01/who-is-anna-senpai-the-mirai-worm-author/
https://krebsonsecurity.com/2017/01/who-is-anna-senpai-the-mirai-worm-author/
https://powerledger.io/whitepaper/


[34] H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A survey on Ethereum
systems security: Vulnerabilities, attacks and defenses,” arXiv preprint
arXiv:1908.04507, 2019.

[35] C. Details, “Ethereum: Vulnerability statistics,” CVE Details,
2020. [Online]. Available: https://www.cvedetails.com/vendor/17524/
Ethereum.html

[36] D. S. Kirschen and G. Strbac, Fundamentals of power system economics.
John Wiley & Sons, 2018.

[37] J. Lazar, F. Weston, W. Shirley, J. Migden-Ostrander,
D. Lamont, and E. Watson, “Revenue regulation and
decoupling: A guide to theory and application,” Regulatory
Assistance Project, Tech. Rep., 2016. [Online]. Avail-
able: https://www.raponline.org/knowledge-center/revenue-regulation-
and-decoupling-a-guide-to-theory-and-application-incl-case-studies/

[38] R. Bowden, H. P. Keeler, A. E. Krzesinski, and P. G. Taylor, “Block
arrivals in the bitcoin blockchain,” arXiv, vol. abs/1801.07447, 2018.

[39] J. Fuller, “Transactive modeling and simulation capabilities,” in NIST
Transactive Energy Challenge Preparatory Workshop, 2015.

9

https://www.cvedetails.com/vendor/17524/Ethereum.html
https://www.cvedetails.com/vendor/17524/Ethereum.html
https://www.raponline.org/knowledge-center/revenue-regulation-and-decoupling-a-guide-to-theory-and-application-incl-case-studies/
https://www.raponline.org/knowledge-center/revenue-regulation-and-decoupling-a-guide-to-theory-and-application-incl-case-studies/

	Introduction
	Related Work
	System Model
	Infrastructure
	Prosumers
	Blockchain based Electricity Market
	Gateways
	Distribution System Operator (DSO)

	Electricity Market
	Ideal Model
	Approximated Model
	Distributed Market Operation


	Threat Model
	Adversary's Capabilities
	Adversary's Goal

	Analysis
	Attack Strategy
	Confidentiality and Integrity Attack
	Integrity Attack
	Availability Attack

	Mitigation Strategy

	Experimental Evaluation
	Testbed Implementation
	Experimental Results

	Conclusion
	References

