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Large-Scale Traffic Signal Offset Optimization
Yi Ouyang, Richard Y. Zhang, Javad Lavaei, and Pravin Varaiya

Abstract—The offset optimization problem seeks to coordinate
and synchronize the timing of traffic signals throughout a net-
work in order to enhance traffic flow and reduce stops and delays.
Recently, offset optimization was formulated into a continuous
optimization problem without integer variables by modeling
traffic flow as sinusoidal. In this paper, we present a novel
algorithm to solve this new formulation to near-global optimality
on a large-scale. Specifically, we solve a convex relaxation of the
nonconvex problem using a tree decomposition reduction, and use
randomized rounding to recover a near-global solution. We prove
that the algorithm always delivers solutions of expected value at
least 0.785 times the globally optimal value. Moreover, assuming
that the topology of the traffic network is “tree-like”, we prove
that the algorithm has near-linear time complexity with respect
to the number of intersections. These theoretical guarantees are
experimentally validated on the Berkeley, Manhattan, and Los
Angeles traffic networks. In our numerical results, the empirical
time complexity of the algorithm is linear, and the solutions have
objectives within 0.99 times the globally optimal value.

Index Terms—Traffic control, traffic signal timing, offset op-
timization, convex relaxation, semidefinite programming, tree
decomposition

I. INTRODUCTION

In transportation engineering, traffic signal timing is the
problem of selecting and adjusting the timing of traffic lights
in order to reduce congestion and improve traffic flow. This
classical problem is commonly formulated as three subprob-
lems:
• Cycle length optimization, where the total network is

divided into subsections, and a common cycle period is
assigned to each subsection;

• Green split optimization, where traffic lights within the
same intersection are timed to avoid conflicts; and

• Offset optimization, where traffic lights over different
intersections are coordinated to enhance network-wide
performance.

Ideally, these subproblems would be solved simultaneous-
ly for the best performance [2], [3]. Owing to issues of
computational tractability, however, the established practice
is an iterative procedure: manually divide the network into
subsections, sweep the cycle length over a range of values,
and solve the green split and offset optimization subproblems
alternatingly for each fixed cycle length [4], [5]. This is
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precisely the solution procedure implemented in the industry-
standard software packages TRANSYT-7F [6, Sec 2.4] and
Synchro [7, Ch. 18].

In this paper, we focus our attention on the offset optimiza-
tion subproblem. The goal is to create green waves, in which
green lights are synchronized to allow a car to drive through
multiple intersections without stopping for a red light, and
to maximize the length or bandwidth of these green waves.
Clearly, green waves are only possible if cycle lengths are the
same, or else the synchronization would be lost over time.
For this reason, the standard model represents traffic flow as
square waves with a common cycle length but separate green
times and red times. The exact green splits are assumed to
be given and fixed, with the understanding that they will be
separately optimized at a later stage.

A. Previous Approaches

The offset optimization problem is highly nonconvex, so
solution approaches based on incremental adjustments—such
as those implemented in TRANSYT and Sychro—can get
stuck at a locally optimal solution. In order to obtain a globally
optimal solution, the standard approach is to reformulate the
problem into a mixed-integer program [8–11] and apply a
general-purpose integer programming solver like Gurobi or
CPLEX. The latter approach is highly effective on a small
scale, but—as is typical for techniques based around integer
programming—suffers from severe computational issues as the
problem size grow large. In practice, it may not even find a
feasible point that does not violate constraints in a reasonable
amount time, let alone a globally optimal solution.

Instead, computing globally optimal solutions to large-scale
networks generally requires simplifying assumptions. In par-
ticular, if a penalty function known as a link delay function is
assigned to each road link with respect to the offset difference,
then dynamic programming can be used to minimize the sum
of all link delay functions [4], [12], [13]. For certain network
topologies, this approach is guaranteed to compute a globally
optimal solution in linear time. However, it is often tricky to
choose a link delay function that accurately reflects real-world
considerations like queues, delays, and green waves [5], [12].
Also, its use relies on an assumption of link independence that
may not be fully realistic [5].

Recently, Coogan et al. [14], [15] proposed an approach
that outperforms the link delay function approach described
above [15], as well as the incremental adjustment approach
found in Synchro [16]. By modeling traffic flow as sinusoidal,
the problem of minimizing total queue lengths can be posed
as a quadratically-constrained quadratic program (QCQP).
The QCQP is nonconvex, but can be relaxed into a convex
semidefinite program (SDP) using standard techniques, and
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solved using an interior-point method. In turn, the solution to
the SDP can often recover a globally optimal solution for the
QCQP. If desired, the solution can be further refined using
TRANSYT or Synchro [17].

Nevertheless, the Coogan et al. [14], [15] approach suffers
two serious computational issues that prevent its use on
real traffic networks. First, the approach often yields, but
does not guarantee, a globally optimal solution. Indeed, such
a guarantee is not even possible in general unless P=NP.
Moreover, the convex SDP that underpins the approach has
a worst-case solution complexity of O(n4.5) time and O(n2)
memory. While these figures are formally polynomial, their
large exponents limit the number of intersections n to no more
than a few hundred.

B. Main Results

Our main contribution in this paper is an algorithm that is
guaranteed to solve the formulation of Coogan et al. [15] to
near-global optimality in near-linear time. In Section III, we
prove that the algorithm always delivers solutions of expected
value at least π/4 ≥ 0.785 times the globally optimal value.
Moreover, assuming that the topology of the traffic network
is “tree-like”, we prove in Section IV that the algorithm has
near-linear O(n1.5) time complexity and linear O(n) memory
complexity with respect to the number of intersections n.
These theoretical guarantees are experimentally validated in
Section V on the Berkeley, Manhattan, and Los Angeles traffic
networks. In our numerical results, the algorithm achieves a
linear empirical time complexity, and the solutions found all
have objectives within 0.99 times the globally optimal value.

Our algorithm works by reformulating offset optimization
into a complex-valued quadratically-constrained quadratic pro-
gram (QCQP) with a similar form to the classic MAX-
CUT problem in combinatorial optimization [18], and relaxing
the QCQP into a semidefinite program (SDP). Inspired by
the Goemans–Williamson algorithm for MAX-CUT [19], we
prove that projecting the SDP solution onto a random hyper-
plane recovers a solution to the QCQP with an approximation
ratio of π/4. We solve the SDP relaxation using the sparsity-
exploiting chordal conversion technique of Fukuda et al. [20]
and the dualization technique recently developed by Zhang and
Lavaei [21]. Directly solving the SDP in the complex domain
yields significant improvement on runtime, compared to our
previous results in the conference version of this paper [1].
When a network is “sparse” in the sense that it has a bounded
treewidth [22], we prove that the overall algorithm has worst-
case complexity of O(n1.5) time and O(n) memory.

Notation

The sets R and C are the real and complex numbers.
Subscripts indicate element-wise indexing. The notation XI,J
indicates the submatrix of X indexed by columns sets I,J ⊆
{1, 2, . . . , n}. The superscripts “T ” and “H” refer to the
transpose and the Hermitian transpose. We write i =

√
−1

and use Re(x), Im(x), x̄, 6 x, and |x| to denote the real
part, imaginary part, conjugate, angle, and absolute value.
The identity matrix is I and the vector-of-ones is 1; their

sizes are inferred from context. The trace, rank, and column
vectorization are denoted tr(X), rank(X), and vec(X). X � 0
means that X is Hermitian and positive semidefinite. |S|
denotes the cardinality of a set S.

II. PROBLEM FORMULATION

To determine traffic signal offsets, we adopt the traffic
network model with sinusoidal approximation proposed in
[15]. In what follows, we will first describe the model and
explain this sinusoidal approximation technique. Then, using
this model, we formulate a mathematical optimization problem
to select offsets that minimize the lengths of vehicle queues
of the networks.

A. Traffic Network Model

τ(l)

σ(l)Source ε

l

Fig. 1: Traffic Network

Consider a traffic network described by a directed graph
G = (S ∪{ε},L). Each node of the graph represents an inter-
section; node i ∈ S = {1, 2, . . . , |S|} represents a signalized
intersection and node ε is the dummy intersection (source) for
traffic originating outside the network. Let n = |S|+1 be the
number of intersections including the dummy intersection. The
dummy node ε is also referred to as node n. Each directed edge
in L represents a traffic link between two intersections/signals
and the vehicle queue associated with the link. For each l ∈ L,
τ(l) ∈ S indicates its upstream intersection and σ(l) ∈ S
represents the downstream intersection which serves the queue
of the link. E = {l ∈ L, τ(l) = ε} ⊂ L is the set of entry
links that direct exogenous traffic from the dummy intersection
(source) to the network; other links are non-entry links and the
travel time from its upstream to downstream intersections is
denoted by λl. There is no need to explicitly model links that
exit the network because exiting traffic are considered in the
calculation of turn ratios, which will be defined later.

The vehicle queue associated with each link l ∈ L has
length ql(t) at time t. The queue length ql(t) follows a
continuous-time fluid queue model given by

q̇l(t) = al(t)− dl(t) (1)

where al(t) is the arrival rate for vehicles arriving from
the upstream intersection and dl(t) is the departure rate that
depends on the downstream intersection signal. Both al(t) and
dl(t) are in units of vehicles per hour.
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Vehicles coming from a link are allowed to pass through an
intersection when the link is activated by the traffic signal, i.e.,
green light for the link. To avoid collision, each signal switches
among activation patterns of non-conflicting links according
to a signal control sequence. All intersections are assumed to
operated under fixed time control [23] with common cycle.
This means that the signal control sequence of each intersec-
tion has a fixed periodic cycle, and all intersections have a
common cycle time T = 1 time unit.

The signal offset θs ∈ [0, 1) for an intersection s ∈ S
represents the phase difference of the signal control sequence
from a global clock. For each link l ∈ L, vehicles from its
queue is allowed to pass through intersection σ(l) at times
n + θσ(l) + γl for n = 0, 1, 2, . . ., where γl ∈ [0, 1) is called
the link’s green split that represents the time difference of the
midpoint of the activation time for the link and the beginning
of the offset time θσ(l). For l, k ∈ L, the turn ratio βlk ∈ [0, 1]
denotes the fraction of vehicles that are routed to link k upon
exiting link l. When σ(l) 6= τ(k), βlk = 0 because the two
links are not connected. For every link l ∈ L it holds that∑

k∈L

βlk ≤ 1

where strict inequality in the above equation models the
situation that a fraction of vehicles exit the network via an
unmodeled link from intersection σ(l).

Similarly to [15], we assume that the network is in the
periodic steady state and approximate all arrivals, departures,
and queue lengths by sinusoid functions with period T = 1.
Specifically, the departure rate of link l is assumed to be

dl(t) =fl(1 + cos(2π(t− θσ(l) − γl)))

where fl is the average departure rate of link l. By defining
zj = ei2πθj for j ∈ S and Dl = fle

−i2πγl , one can write the
departure rate at link l as

dl(t) =fl + Re
(
ei2πtDlz̄σ(l)

)
. (2)

Since vehicles arrive at a non-entry link from its upstream
links after a delay equal to the travel time, the arrival rate of
a non-entry link l ∈ L \ E is given by

al(t) =
∑
k∈L

βkldk(t− λl).

The periodic steady-state assumption implies that the average
arrival rate is the same as the average departure rate at each
link [23], i.e., ∫ 1

0

al(t)dt =

∫ 1

0

dl(t)dt.

Therefore, we have ∑
k∈L

βklfk = fl.

Then, the arrival rate can be further expressed as

al(t) =fl + Re
(
ei2πtAlz̄τ(l)

)
(3)

where Al = e−i2πλl
∑
k∈L βklDk.

For an entry link l ∈ E , the approximation assumes that

al(t) = fl + αl cos(2π(t− φl)))
= fl + Re

(
ei2πtAlz̄τ(l)

)
(4)

where zτ(l) = ei2πθn = 1 with the offset θn of the dummy
intersection ε (intersection n) defined to be 0 in the above
equation, αl ≤ fl is the relative amplitude of the arrival peak
minus the average rate, Al = αle

−2πφl , and φl ∈ [0, 1) is the
offset for the center of the arrival peak.

It follows from the queue dynamics (1), departure rate (2)
and arrival rate (3)-(4) of the links that the queue length ql(t)
of each link l ∈ L evolves according to the equation

q̇l(t) = al(t)− dl(t)
= Re

(
ei2πt(Alz̄τ(l) −Dlz̄σ(l))

)
.

Accordingly, the average queue length at link l, denoted by
Ql, is given by

Ql =
1

2π
|(Alz̄τ(l) −Dlz̄σ(l))|.

B. Offset Optimization Problem

The average queue lengths Ql where l ∈ L, are im-
portant performance metrics for traffic networks. Following
the approach in [15], we formulate the offset optimization
problem as selecting offsets θs, s = 1, 2, . . . , n with the goal of
minimizing the total average squared queue length. Note that
the queue lengths are invariant to a constant shift for all θs
where s = 1, 2, . . . , n. Therefore, instead of restricting θn = 0
for the dummy intersection ε, one can allow θn to be a variable
that takes any value in the interval [0, 1) and set the offset of
each intersection s ∈ S to be the relative offset θs−θn. Then,
the offset optimization problem can be formulated as follows:

minimize
θ1,...,θn

∑
l∈L

Q2
l (5)

subject to Ql =
1

2π
|(Alz̄τ(l) −Dlz̄σ(l))|

zs = ei2πθs , s = 1, 2, . . . , n.

Note that the queue length of each link satisfies

Q2
l =

1

(2π)2
|(Alz̄τ(l) −Dlz̄σ(l))|2

=
1

(2π)2
(|Al|+|Dl|)2

− 1

(2π)2
(2|Al||Dl|+D̄lAlz̄τ(l)zσ(l) +DlĀlzτ(l)z̄σ(l)).

Since (|Al|+|Dl|)2 is constant, minimizing
∑
l∈LQ

2
l is equiv-

alent to maximizing∑
l∈L

(2|Al||Dl|+D̄lAlz̄τ(l)zσ(l) +DlĀlzτ(l)z̄σ(l))

=
∑
l∈L

(|Al||Dl||zτ(l)|2+|Al||Dl||zσ(l)|2

+ D̄lAlz̄τ(l)zσ(l) +DlĀlzτ(l)z̄σ(l))

= zHWz (6)
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where z ∈ Cn is the vector of variables zj , and W ∈ Cn×n
is a Hermitian matrix whose elements are given by:

Wj,j =
∑

l∈L:τ(l)=j

|Al||Dl|+
∑

l∈L:σ(l)=j

|Al||Dl| (7a)

Wj,k =
∑

l∈L:τ(l)=j,σ(l)=k

D̄lAl +
∑

l∈L:τ(l)=k,σ(l)=j

DlĀl

for j 6= k. (7b)

Lemma 1. The matrix W is positive semidefinite.

Proof: For every z ∈ Cn, it follows from (6) that

zHWz =
∑
l∈L

(|Al||Dl||zτ(l)|2+|Al||Dl||zσ(l)|2

+ D̄lAlz̄τ(l)zσ(l) +DlĀlzτ(l)z̄σ(l)).

In addition, for every link l it holds that

D̄lAlz̄τ(l)zσ(l) +DlĀlzτ(l)z̄σ(l)

= 2Re(D̄lAlz̄τ(l)zσ(l)) ≥ −2|Al||Dl||zτ(l)||zσ(l)|.

Therefore,

zHWz ≥
∑
l∈L

(|Al||Dl||zτ(l)|2+|Al||Dl||zσ(l)|2

− 2|Al||Dl||zτ(l)||zσ(l)|

=
∑
l∈L

|Al||Dl|(|zτ(l)|−|zσ(l)|)2 ≥ 0.

This concludes that W is positive semidefinite.
Now, one can formulate the offset optimization problem (5)

as the following QCQP:

maximize
z∈Cn

zHWz (8)

subject to |zj |2= 1, j = 1, 2, . . . , n.

Given a solution ẑ to the QCQP (8), one can obtain the optimal
offsets of the traffic network via the equation

θs =
1

2π
(6 ẑs − 6 ẑn) (9)

for every intersection s ∈ S.

Remark 2. Note that the QCQP (8) formulated in this paper is
subtly different from the one considered in [15]. Specifically,
the diagonal elements of the matrix W in [15] are all zero so
the matrix is not positive semidefinite. In our formulation, the
matrix W in (8) is positive semidefinite, which will enable us
to compute the approximation ratio of the relaxation.

III. APPROXIMATION ALGORITHM

In the previous section, offset optimization was cast as the
optimization problem (8) that maximizes a convex objective
function subject to nonconvex constraints. This QCQP formu-
lation results in a nonconvex optimization problem. In fact,
such nonconvex QCQP is known to be NP-hard [24]. Unless
P=NP, we have to focus on finding an efficient approximation
algorithm with polynomial complexities for large-scale traffic
networks.

Note that this formulation of offset optimization has a
similar structure as the QCQP formulation of the classic MAX-
CUT problem in combinatorial optimization [18]. Indeed, if
the variable z in problem (8) is forced to be real, as in z ∈ Rn,
then the constraint |zj |= 1 implies zj ∈ {+1,−1}, and the
maximization of a quadratic form subject to ±1 variables
is exactly MAX-CUT. Consequently, we may view (8) as a
complex version of the MAX-CUT problem.

Based on the celebrated Goemans–Williamson algorithm
[19] for MAX-CUT, we provide below a polynomial com-
plexity algorithm that solves (8) with a performance guarantee
of π/4 ≥ 0.785 (i.e., the value of the solution is at least
a factor π/4 times the globally optimal value). In practice,
the proposed algorithm might perform even better than the
provable guarantees. Our numerical results in Section V find
that every solution enjoys a performance guarantee of more
than 0.99.

Following the idea of the Goemans–Williamson algorithm,
one can interpret (8) as an optimization problem over the one-
dimensional unit sphere. This means that the problem restricts
each decision variable zj ∈ C to be an one-dimensional unit
vector. Replacing each one-dimensional vector zj ∈ C by an
n-dimensional unit vector vj ∈ Cn leads to the relaxation:

maximize
v1,...,vn∈Cn

n∑
j=1

n∑
k=1

Wj,kv
H
j vk (10)

subject to ‖vj‖2= 1, j = 1, . . . , n.

This nonconvex problem can be reformulated into a convex
problem by a change of variables X = [vHj vk] ∈ Cn×n:

maximize
X∈Cn×n

tr(WX) (11)

subject to Xj,j = 1, j = 1, . . . , n,

X � 0.

Lemma 3. Problem (11) is a relaxation of (8), and therefore,
its value gives an upper-bound for the optimal value of (8).

Proof: Given any feasible solution z ∈ Cn of (8), let
vj = (zj , 0, 0, . . . , 0) ∈ Cn for j = 1, 2, . . . , n. Then, vHj vk =
z̄jzk for all j, k = 1, 2, . . . , n. Consequently, (v1, v2, . . . , vn)
is feasible for (11) and its objective value in (11) is the same
as the objective value of z in (8).

Problem (11) is an SDP for which an interior-point method
is able to compute an optimal solution X̂ in polynomial
time with a given accuracy. We can recover a corresponding
globally-optimal set of vectors v̂1, . . . , v̂n ∈ Cn for (10) by
factoring X̂ = V̂ H V̂ and taking each v̂j to be the j-th column
of the matrix V̂ .

Remark 4. The SDP (11) can also be generated from (8)
using a standard SDP relaxation procedure [25]. Specifically,
by adding a rank constraint rank(X) = 1 in (11), one obtain
the original QCQP (8) because any rank-one matrix X can be
factored into X = zzH . The relaxation (11) becomes exact
if its solution X̂ has rank one. This special situation occurs
for certain types of networks [26] and the offsets obtained
from the SDP solution achieves optimal performance for these
cases [15]. In general, however, the solution X̂ of (11) has
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a rank strictly greater than one. Nevertheless, we observe in
our numerical experiments in Section V that the associated
performance guarantee (i.e. the ratio between the upper- and
lower-bounds on the performance) exceeds 99% for every
case.

In spirit of the Goemans–Williamson idea method, one can
project an optimal set of vectors v̂1, . . . , v̂n ∈ Cn for (10)
back onto the one-dimensional unit sphere in C by randomized
rounding

sj = rH v̂j , ẑj = sj/|sj |. (12)

Here, r ∈ Cn is a random vector whose real and imaginary
parts are selected independently and identically from the n-
dimensional Gaussian distribution, as in

r = r1 + ir2, r1, r2 ∼ N (0, I) (13)

where N (0, I) denotes the n-dimensional Gaussian distribu-
tion with identity covariance matrix and zero mean.

This rounding method can be repeated with several choices
of r, and we select the candidate solution with the best
objective value. The follow result states that this randomization
rounding offers a remarkably high-quality solution.

Theorem 5. Given the optimal solution v̂1, . . . , v̂n ∈ Cn for
(10), define the candidate solution ẑ ∈ Cn for (8) using (12)
for each ẑj ∈ C, in which r ∈ Cn is selected as in (13). Then,

n∑
j=1

n∑
k=1

Wj,kv̂
H
j v̂k ≥ optQCQP ≥ E

[
ẑHWẑ

]
≥ π

4
optQCQP,

where optQCQP is the globally optimal value of (8) and E [·]
is the expectation operator.

Proof: The first bound is true because (10) is a relaxation
of (8) by Lemma 3, and the second bound holds because
ẑ1, . . . , ẑn ∈ C is not necessarily optimal for (8). The third
bound follows from a result of [24], noting that W � 0 from
Lemma 1.

In summary, this section describes a π/4-approximation
algorithm for the QCQP (8) of the offset optimization problem
that comprises two key steps:

1) Solve the SDP relaxation (11) and obtain the optimal
solution X̂ ∈ Cn×n; and

2) Round v̂1, . . . , v̂n ∈ Cn into ẑ1, . . . , ẑn ∈ C using the
randomized procedure in (12).

Standard algorithms implement these two steps with a com-
bined complexity of O(n4.5) time and O(n2) memory, with
the first step dominating the overall complexity. These figures
are polynomial, and hence “efficient” in theory. In practice,
however, they become prohibitive for large-scale traffic net-
works with more than 1000 intersections.

IV. EFFICIENT IMPLEMENTATION FOR SPARSE NETWORKS

When a traffic network is large but sparse in the sense that it
has a bounded treewidth [22], we show in this section that the
approximation algorithm described in the previous section can
be implemented in near-linear O(n1.5) time and linear O(n)
memory.

In the following, we first describe the concept of tree
decomposition and use it to convert the original problem
to a reduced-complexity problem. Then, we further simplify
the complexity to obtain a near-linear time approximation
algorithm for offset optimization.

A. Tree Decomposition

For a traffic network G = (S∪{ε},L), the graph theoretical
concepts of tree decomposition and treewidth are defined as
follows:

Definition 6. A tree decomposition of a graph G of is a pair
(I, T ), where I = {I1, . . . , In} are n subsets of nodes of G,
and T is a tree with vertices I, such that:

1) (Node cover) For every node s of G, there exists Ij ∈ I
such that s ∈ Ij ;

2) (Edge cover) For every edge l of G, there exists Ik ∈ I
such that σ(l) ∈ Ik and τ(l) ∈ Ik; and

3) (Running intersection) If s ∈ Ij and s ∈ Ik, then we
also have s ∈ Im for every Im that lies on the path from
Ij to Ik in the tree T .

Definition 7 ([22]). The width of a tree decomposition (I, T )
is ω − 1 where

ω = max
j

|Ij |, (14)

i.e., the width is one less than the maximum number of
elements in any subset Ik ∈ I. The treewidth of a network
is the minimum width amongst all tree decompositions. The
network is said to have a bounded treewidth if its treewidth is
O(1), i.e., independent of the number of nodes n.

From the definition, the empty graph has treewidth of zero,
and tree and forest graphs have treewidths of one. Basically,
the treewidth of a graph indicates how “tree-like” the graph
is. The treewidth can be viewed as a sparsity criterion which
determines the complexities of many problems related to a
graph. The problem of computing the exact treewidth of a
graph is known to be NP-complete [27]. For bounded treewidth
networks known a priori to have small ω � n, the treewidth
and the corresponding tree decomposition can be determined
in O(2ωn) time [28]. In practice, it is much easier to compute
a “good-enough” tree decomposition with a small but subopti-
mal value of ω, using one of the heuristics originally developed
for the fill-reduction problem in numerical linear algebra. In
our implementation, we use the simple approximate minimum
degree algorithm in generating a tree decomposition [29]. This
approximately coincides with the simple “greedy algorithm”,
and does not typically enjoy strong guarantees. Regardless,
the algorithm is extremely fast, generating permutations for
graphs containing millions of nodes and edges in a matter of
seconds.

Algebraically, a tree decomposition of our traffic network
can also be described by a fill-reducing permutation matrix P .
More specifically, given a permutation matrix P ∈ Rn×n, we
can factor the matrix W of the network into a Cholesky factor
L satisfying

LLH = PWPH , L is lower-triangular, Lj,j ≥ 0. (15)
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Let I1, . . . , In ⊆ {1, . . . , n} be the column index sets from
the sparsity pattern of L defined by

Ij = {k ∈ {1, . . . , n} : Lk,j 6= 0}. (16)

From the column index sets I1, . . . , In, define a set of parent
pointers p : {1, . . . , n} → {1, . . . , n}:

p(j) =

{
j |Ij |= 1,

mini{i > j : i ∈ Ij} |Ij |> 1.
(17)

Lemma 8. The collection of the column index sets I =
{I1, . . . , In} together with the tree T constructed by nodes
I and edges {(Ij , Ip(j)), j = 1, 2, . . . , n} constitute a tree
decomposition for the network G.

Proof: According to [30], the pair (I, T ) forms a tree
decomposition of W . From the definition (7) of W , the entry
Wj,k is zero if no link connects between the j-th intersection
and the k-th intersection. Therefore, the sparsity pattern of the
matrix W is the same as the traffic network G.

For networks with a bounded treewidth, we are able to find
a tree decomposition whose width is ω = maxj |Ij |= O(1).
Since the Cholesky factor L of W has at most ω nonzero
elements per column, L of such networks will be a sparse
matrix containing at most O(n) nonzero elements.

In the case of real-world traffic networks, the graphs are
almost planar by construction, because the vast majority of
roads do not cross without intersecting. Planar graphs with
n nodes have treewidths of at most O(

√
n), attained by

grid graphs; a tree decomposition within a constant factor
of the optimal can be explicitly computed using the planar
separator theorem and a nested dissection ordering. Practical
traffic networks tend to have treewidths possibly much smaller
than the O(

√
n) figure. While local networks may resemble

grids, inter-area networks interconnecting wider regions are
more tree-like. Accordingly, their treewidth is usually bounded
by the square-root of the size of the largest grid, which is
relatively small even for networks typically thought of as
“grid-like” such as Manhattan and Downtown Los Angeles.

B. Clique Tree Conversion and Recovery

Using the concept of tree decomposition, this subsection de-
scribe the clique tree conversion technique of [20] to simplify
the π/4−approximation algorithm proposed in the previous
section.

Suppose that the network has a bounded treewidth and we
are given a tree decomposition with ω = O(1) represented
by a fill-reducing permutation P , its associated index sets
I1, . . . , In, and the parent pointers p. From now on, without
loss of generality, we assume that P = I; otherwise, we can
solve the permuted problem with W̃ = PWPT , and reverse
the ordering z = PT z̃ once a solution z̃ has been computed.

Given the tree decomposition, the clique tree conversion
technique reformulates (11) into a reduced-complexity prob-
lem with the variables Xj ∈ C|Ij |×|Ij |, j = 1, . . . , n:

minimize
X1,...,Xn

n∑
j=1

tr(WjXj) (18)

subject to (Xj)k,k = 1, j = 1, . . . , n, k = 1, . . . , |Ij |
Rp(j),j(Xj) = Rj,p(j)(Xp(j)),

Xj � 0, j = 1, . . . , n,

where W1, . . . ,Wj are matrices satisfying
n∑
j=1

tr(WjXIj ,Ij ) = tr(WX)

with respect to the original W matrix, over all Hermitian
choices of X ∈ Cn×n. The exact method to construct
W1, . . . ,Wj can be found in [21]. The linear operator Rk,j :
C|Ij |×|Ij | → C|Ik|×|Ik| is defined to output the overlapping
elements of two principal submatrices indexed by Ik and Ij ,
given the latter as the argument:

Rk,j(XIj ,Ij ) = XIk∩Ij ,Ik∩Ij = Rj,k(XIk,Ik). (19)

The associated constraints Rp(j),j(Xj) = Rj,p(j)(Xp(j)) in
(18) are known as the overlap constraints.

From the bounded treewidth property, this conversion re-
duces the number of decision variables from O(n2) for X in
(11) to O(ωn) for {Xj , j = 1, . . . , n} in (18).

Lemma 9. The solutions X̂1, X̂2, . . . , X̂n of (18) are related
to the solution X̂ of (11) by

X̂Ij ,Ij = X̂j , j = 1, . . . , n.

Proof: The proof is omitted as its essentially the same as
the real-valued version in [20].

The above relation allows us to recover the solution X̂
of (11) from solutions X̂1, . . . , X̂j of (18). Note that X̂
is generally a dense matrix, so simply forming the matrix
would push the overall complexity up to quadratic O(n2)
time and memory. Fortunately, the Cholesky factorization of
X̂ is sparse due to the bounded treewidth property. Therefore,
we compute X̂ implicitly in factorized form a sparse factored
form X̂ = F−HDF−1, where D is diagonal and F is lower-
triangular with the same sparsity pattern as L in (15). This
can be done by the following Algorithm 1 adopted from [30].

Algorithm 1 Positive semidefinite matrix completion
Input. The column index sets I1, . . . , In defined in (16) and
the solutions X̂1, . . . , X̂j to (18).
Output. The solution X̂ to (11) in the form of X̂ =
F−HDF−1, where D is a diagonal matrix and F is a lower-
triangular matrix with the same sparsity pattern as L.
Algorithm. Iterate over j ∈ {1, . . . , n} in any order. Set
Fj,j = 1 and solve for the j-th column of D and F by finding
any Dj,j and FIj\{j},j that satisfy

X̂j

[
1

FIj\{j},j

]
=

[
Dj,j

0

]
.
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With the factorized solution X̂ = F−HDF−1, we can now
efficiently implement the randomized rounding procedure de-
scribed earlier in (12). Specifically, from X̂ = F−HDF−1 =
V̂ H V̂ we obtain V̂ = D1/2F−1. Then, (12) is equivalent to

FHs = D1/2r, ẑj = sj/|sj | (20)

where we recall that the real and imaginary parts of the random
vector r ∈ Cn are selected independently and identically from
the n-dimensional Gaussian distribution. Since F is a lower-
triangular matrix (with the same sparsity pattern as L), one can
compute ẑ from (20) by solving a sparse triangular system of
equations in O(ωn) time.

In summary, this subsection presents a reduced-complexity
implementation of a π/4-approximation algorithm for the
QCQP (8) of the offset optimization problem given a tree
decomposition with ω = O(1). The main steps are described
as follows:

1) Reformulate (11) into the reduced complexity problem
(18).

2) Solve (18) to obtain solutions X̂1, . . . , X̂n.
3) Recover the solution of (11) in the sparse factored form

X̂ = F−HDF−1 using Algorithm 1.
4) Recover a choice of ẑ1, . . . , ẑn ∈ C via the randomized

rounding method (20).
We will show later that the complexity of the overall algorithm
is dominated by Step 2, i.e., the cost of solving the semidefinite
program (18). An interior-point method solves (18) in O(

√
n)

iterations, with the cost of each iteration dominated by the
solution of a set of linear equations over O(n) variables. These
equations can be fully dense despite sparsity in the original
problem, so the worst-case complexity of an interior-point
solution of (18) is O(n3.5) time and O(n2) memory. Next, we
show that these complexity figures can be reduced to linear
by using dualization to exploit sparsity.

C. Dualization

A recent result of [21] shows that the complexity of solving
the real-valued version of (18) can be significantly improved to
near-linear O(n1.5) time and linear O(n) memory complexi-
ties by a dualization procedure. We present in this subsection a
complex-valued version of the algorithm of [21] for the traffic
offset optimization problem.

To solve (18), we begin by putting (18) into primal canon-
ical form:

minimize
x1,...,xn∈Cn2

n∑
j=1

w̄Hj xj (21)

subject to



N11 · · · N1n

. . .
Nn1 · · · Nnn
M1 0

. . .
0 Mn


x1...
xn

 =


0
1
...
1

 ,

xj ∈ Kj , j = 1, . . . , n.

Each variable xj = vec(Xj) (respectively, wj = vec(Wj)) is
the vectorization of Xj (respectively, Wj) and each Kj is the
corresponding positive semidefinite cone. The matrices Njk
implement the overlap constraints in (19). That is, for each
j, the j-th block row Nj1, . . . , Njn implements the overlap
constraint between Ij and its parent Ip(j). Therefore, the j-
th block row has at most two nonzero sub-blocks: Njk = 0
except k = j or k = p(j). Each constraint matrix Mj isolates
the diagonal of Xj , as in (Mjxj)k = (Xj)k,k.

Let N and M denote the matrices for the constraints:

N =

N11 · · · N1n

. . .
Nn1 · · · Nnn

 , M =

M1 0
. . .

0 Mn

 .
Then, the complexity of each step of the interior-point iteration
solving (21) depends on the sparsity pattern of M̃M̃H where
M̃ = [NH ,MH ]H . Despite the nice sparsity structure of M̃ ,
the matrix M̃M̃H is generally dense (see [21] for an example).
Therefore, it takes O(n3.5) time and O(n2) memory to solve
(21) using an interior-point solver.

On the other hand, the matrix M̃HM̃ is sparse from the
block sparsity structure of N and M .

Lemma 10. The matrix M̃HM̃ has O(ω4n) nonzero elements,
and it takes O(ω6n) operations to compute M̃HM̃ from N
and M .

Proof: This is a corollary of the result of [21]. In
particular, M is the adjacency matrix of an empty graph, so the
block sparsity structure of M̃HM̃ is the same as the sparsity of
the adjacency matrix of the tree T of the tree decomposition.
Then, M̃HM̃ has O(n) nonzero blocks, and each of the blocks
has at most O(ω4) nonzero elements. The computation of
M̃HM̃ is done by adding up O(ω2n) sets of blocks with
O(ω4) elements which takes O(ω6n) operations.

In order to exploit the sparsity structure of M̃HM̃ , one way
is to dualize the problem [30]. The dualized problem of (21),
posed in dual canonical form, is given by:

maximize
y1,...,yn∈Cn2

−
n∑
j=1

w̄Hj yj (22)

subject to



N11 · · · N1n

. . .
Nn1 · · · Nnn
M1 0

. . .
0 Mn


y1...
yn

+ s0 =


0
1
...
1

 ,

− yj + sj = 0, j = 1, . . . , n

s0 ∈ {0}n+1, sj ∈ Kj .

Here, {0}n+1 denotes the so-called “equality-constraint cone”,
whose dual cone is a free variable of dimension n+ 1.

Since (22) is the dual problem, with a general-purpose
interior-point method like SeDuMi, SDPT3, and MOSEK,
each iteration involves solving a normal equation of matrix
M̃M̃H . We then achieve the desired complexity results from
the sparsity of M̃M̃H .
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Theorem 11. A general-purpose interior-point method solves
the SDP (18) by solving its dual canonical form (22) to ε-
accuracy in

O(ω6.5n1.5 log ε−1) time and O(ω4n) memory.

Proof: The proof in [21] for real-valued SDPs can be
adopted to prove this theorem. First, note that a general-
purpose interior-point method solves an order-θ linear con-
ic program posed in the canonical form to ε-accuracy in
O(
√
θ log ε−1) iterations. The cone in (22) has order θ =

O(ωn) from the construction of the tree decomposition, so
the interior-point method converges in O(ω0.5n0.5 log ε−1)
iterations.

At each interior-point iteration, the complexity is dominated
by the solution of the normal equations that are linear equa-
tions described by a matrix H whose sparsity pattern is the
same as M̃HM̃ . From Lemma 10, forming M̃HM̃ requires
O(ω6n) time and O(ω4n) memory. We then have the stated
memory complexity, and the time complexity result is obtained
by multiplying O(ω0.5n0.5 log ε−1) with O(ω6n).

D. Overall Algorithm

This section presents a reduced-complexity implementation
of a π/4-approximation algorithm for the QCQP (8) of the
offset optimization problem. The full algorithm is described
as follows:

1) Compute a tree decomposition for the traffic network G
and its fill-reducing permutation P using the minimum
degree algorithm.

2) Permute W as W ← PWPH , compute the Cholesky fac-
tor L as in (15), and determine the index sets I1, . . . , In
and the parent pointers p, as in (16) and (17).

3) Use the clique tree conversion technique to reformulate
(11) into (18).

4) Convert (18) to the dualized problem (22).
5) Solve (22) as a dual canonical problem using a

general-purpose interior-point method to obtain solutions
X̂1, . . . , X̂n of (18).

6) Recover the solution of (11) in the sparse factored form
X̂ = F−HDF−1 using Algorithm 1.

7) Recover a choice of ẑ1, . . . , ẑn ∈ C via the randomized
rounding method (20). This randomization step can be run
several times to obtain a solution with the best objective
value.

8) Reverse the fill-reducing permutation ẑ ← PH ẑ.

Corollary 12. The proposed algorithm generates a choice of
ẑ1, . . . , ẑn ∈ C that satisfy the bounds in Theorem 5 and can
be computed with the same time and memory complexity as
described in Theorem 11.

Proof: The minimum degree algorithm in Step 1 takes
O(ωn) time and memory. Step 2 is dominated by the Cholesky
factorization step, for O(ω3n) time and O(ω2n) memory.
Steps 3 and 4 are algebraic manipulations, requiring O(ω2n)
time and memory. Step 5 uses O(ω6.5n1.5 log ε−1) time and
O(ω4n) memory according to Theorem 11. Algorithm 1 in
Step 6 is dominated by solving n linear systems of up to

size ω2 for O(ω3n) time and O(ω2n) memory. The round-
ing method of (20) in Step 7 can be performed by back-
substitution in O(ωn) time and memory. Finally, Step 8 takes
O(n) time and memory to obtain an approximate solution with
the guarantees in Theorem 5.
Remark 13. The offset optimization problem (8) is formulated
as a complex-valued QCQP. This complex-valued QCQP has
an equivalent real-valued formulation. Specifically, consider
z = x− iy where x, y ∈ Rn are the real and imaginary parts
of z. Then, (8) is equivalent to

maximize
x,y∈Rn

[xHyH ]

[
Re (W ) Im (W )
−Im (W ) Re (W )

] [
x
y

]
(23)

subject to x2j + y2j = 1, j = 1, 2, . . . , n.

One can then follow a similar procedure to solve this trans-
formed real-valued problem as in our conference version [1].
However, transforming a complex QCQP into its real-valued
counterpart also doubles its treewidth. In practice, the resulting
algorithm is about a constant factor of 10 times slower than
the one proposed in this paper. See [31] for such speed-up in
optimization solvers using complex numbers instead of real
numbers.

V. NUMERICAL EXPERIMENTS

In the previous sections, we proved that our algorithm solves
offset optimization to a global optimality ratio of π/4 ≥ 0.785
in near-linear O(n1.5) time. In this section, we benchmark
these guarantees on two datasets:

1) Realistic dataset for the Manhattan network, with real
network topology, flow rates and turning ratios.

2) Synthetic dataset for the Berkeley, Manhattan, and Los
Angeles networks, with real network topologies but syn-
thetic flow rates and turning ratios.

In our numerical results described below, the empirical time
complexity of the algorithm is linear O(n), and the computed
solutions have global optimality ratios exceeding 0.99.

A. Realistic Manhattan dataset

We demonstrate our algorithm in a real-world setting, by
solving offset optimization on a realistic traffic model of
Manhattan from Osorio et al. [32]. Our network graph contains
189 nodes and 472 edges, and covers the area between 7th
and 12th Avenues, and 30th and 50th Streets. Detailed traffic
simulations were performed to result in five sets of flow rates
and turn ratios. In each case, green splits were assigned in
order to make north-south links completely out of phase with
east-west links.

We implement our algorithm in MATLAB and perform our
experiments on a 3.3 GHz 4-core Intel Xeon E3-1230 v3
CPU with 16 GB of RAM. For each set of flow rates and
turn ratios, we solve the convex relaxation to obtain a lower-
bound (“lower”), and perform randomized rounding 200 times
to obtain a suboptimal solution and an upper-bound (“upper”).
As shown in Table I, all of the five optimization problems
completed within ten seconds, to result in global optimality
ratios of ≥ 0.996. We emphasize that global optimality
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TABLE I: Offset optimization on the realistic Manhattan
dataset

dataset 1 2 3 4 5 mean
upper 93591 104339 96160 107935 98639 100133
lower 93544 104267 96159 107740 98247 99991
ratio 0.9995 0.9993 1.0000 0.9982 0.9960 0.9986
sec 4.46 3.60 4.91 3.53 3.89 4.08

must be interpretted within the context of the formulation.
In particular, they assume that traffic flow can be adequately
approximated as being sinusoidal.

B. Synthetic OpenStreetMap dataset

To benchmark the scalability of our algorithm over a range
of network sizes, we generate synthetic test cases using real-
world network topologies collected from the OpenStreet Map
data [33]. For each test case, we consider a rectangular area
of the real-world map. From each area, we construct a traffic
network by assuming that all intersections in the area are
signalized. Entry links are added for roads/ways entering the
target rectangular area, and a non-entry link is added from one
intersection to another one if there is a road/way between the
two intersections following the corresponding direction. We
assume that vehicles travel at a constant speed, so the travel
time λl of each link is assigned to be proportional to the length
of the link in the real-world map. The turn ratios βlk’s are set
to be such that, when vehicles entering an intersection form
a link, the traffic traveling straight is twice the traffic making
each turn direction (left or right). The average flow fl’s of
all entry links are assumed to be the same constant, and the
flows of non-entry links are calculated from the turn ratios by
solving fl =

∑
k∈L βklfk for all l ∈ L.

Since the focus is on the offsets, other signal control param-
eters are set to be fixed. The cycle lengths of all intersections
are the same constant as described in the network model. For
each network, the splits and phase sequences are described by
the green split parameters γl. In the numerical experiments,
we do not optimize the green splits γl and set them based
on the orientations of the links for convenience. In particular,
at each intersection, the green split of a link is the angle
between the corresponding road/way and the longitude line
of the intersection on the real-world map.

The first set of the networks is generated using the map
of the Berkeley area as shown in Fig. 3a. The Berkeley-1
network has 405 intersections and 1122 links connecting the
intersection, while the Berkeley-4 has 7000 intersections and
12176 links that includes the network of Berkeley, Oakland,
and their surrounding areas. The second set of networks is
generated from the map of the Manhattan area as in Fig. 3b,
and the third set of networks is based on the Downtown Los
Angeles area as in Fig. 3c.

The network parameters and numerical results are presented
in Table II. The number of intersections n ranges from 405
to 12176 among the networks in our experiments. In every
case, the tree decomposition parameter ω is bounded by 50.
The lower bound (“lower”) on the squared queue length is the
optimal value of the optimization problem (18) obtained from

TABLE II: Offset optimization on the synthetic Berkeley
(“Berk”), Manhattan (“NYC”), and Los Angeles (“LA”)
datasets

Cases |S| |L| ω lower upper ratio sec
Berk-1 405 1122 14 79209 79498 0.9964 6
Berk-2 2036 5789 36 477449 479725 0.9953 253
Berk-3 6979 19222 41 1588518 1597089 0.9946 1253
Berk-4 12176 33725 42 2795240 2810684 0.9945 2657
NYC-1 1430 2748 37 301366 303057 0.9944 234
NYC-2 2016 3854 31 417186 419692 0.9940 232
NYC-3 3923 7841 37 780878 787526 0.9916 655
NYC-4 9968 20945 39 2022529 2039907 0.9915 2565
LA-1 733 2180 22 182811 183403 0.9968 28
LA-2 1838 5170 36 458209 460708 0.9946 171
LA-3 3062 8838 43 747805 752536 0.9937 707
LA-4 4239 12773 50 1139072 1146237 0.9937 2207

102 103 104 105

Number of Intersections

100

101

102

103

104

105

R
un

tim
e 

(s
)

Fig. 2: Runtime against number of intersections. The regres-
sion line plots a linear empirical time complexity.

Step 5 of the algorithm. The optimal value of (18) serves as a
bound according to Theorem 5. For each network, the upper
bound (“upper”) is the result from the best solution ẑ in 200
runs of the randomized rounding method in Step 6 of the
algorithm. The algorithm is implemented in MATLAB, and
the numerical experiments are performed on an HP SE1102
server with 2 quad-core 2.5GHz Xeon and 24 GB memory.

As observed in Table II, the performance of the algorithm
is much better than the theoretical (worst-case) π/4 guarantee
in Theorem 5. In fact, the gap between the upper and lower
bounds on the queue lengths is less than 1% for all cases (99%
optimal guarantee). Therefore, despite being an approximation
algorithm, the proposed algorithm is able to provide almost
globally optimal solutions for the offset optimization problem
generated from real-world traffic networks.

In terms of runtime, the algorithm can solve the SDP
relaxations and compute near-optimal offsets for networks
with up to twelve thousand intersections within an hour. This
allows the potential to re-compute offsets every hour based
on real-time traffic conditions. Furthermore, Fig. 2 shows that
the runtime scales almost linearly with respect to the number
of intersections in the network. This agrees with the claim of
Corollary 12 and it demonstrates the ability of our algorithm
in solving large-scale traffic offset optimization.

VI. CONCLUSION

We describe an algorithm to solve a recently formula-
tion [15] of the traffic signal offset optimization problem
to near-global optimality in near-linear time. The algorithm



10

(a) (b)

(c)

Fig. 3: The three road networks under study: (a) Berkeley; (b)
Manhattan; (c) Downtown Los Angeles

performs a randomized rounding of an SDP relaxation to
yield a suboptimal solution with global optimality bound
π/4 ≥ 0.785. Assuming that the traffic network has a “tree-
like” topology, we prove that the algorithm has O(n1.5) time
complexity and O(n) memory complexity with respect to the
number of intersections n. Numerical experiments verify the
underlying complexity result, and the algorithm is able to
obtain almost optimal solutions for networks with up to twelve
thousand intersections within an hour.
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