
Motion Segmentation and Synthesis
for Latency Mitigation
in a Cloud Robotic Tele-Operation System

Nan Tian, Ajay Kummar Tanwani, Ken Goldberg and Somayeh Sojoudi

Abstract Network latency is a major problem in Cloud Robotics for human robot
interaction such as tele-operation. Routing delays can be highly variable in a het-
erogeneous computing environment, imposing challenges to reliably tele-operate a
robot with a closed-loop feedback controller.

In this work, we attempt to solve the latency problemwithmachine learning (ML)
and supervised shared autonomy. By sharing Gaussian Mixture Model (GMM),
Hidden Semi-Markov Models (HSMMs), and linear quadratic tracking (LQT) con-
trollers between the Cloud and the robot, we build a motion recognition, seg-
mentation, and synthesis framework for Cloud Robotic tele-operation. We further
introduce a set of latency mitigation network protocols under this framework. As
a proof-of-concept, we program a dynamic robot arm using this framework to per-
form learned hand-written letter motions. With this task, we benchmark the motion
recognition errors, motion synthesis errors, and the latency mitigation performances
of this Cloud Robotic tele-operation system.

1 Introduction

Cloud Robotics enables robots with limited computation power to offload compute
and storage to the Cloud through the Internet. It allows robots to access computation
intense machine learning (ML) models in the Cloud. One important application
of Cloud Robotics is tele-operation when a human operator remotely controls a
robot arm to perform everyday life tasks such as minimally invasive surgeries, secu-

Nan Tian
Department of EECS, UC Berkeley, e-mail: neubotech@berkeley.edu

Ajay Kummar Tanwani
Department of EECS, UC Berkeley, e-mail: ajay.tanwani@berkeley.edu

Ken Goldberg
Department of EECS, UC Berkeley, e-mail: goldberg@berkeley.edu

Somayeh Sojoudi
Department of EECS, UC Berkeley, e-mail: sojoudi@berkeley.edu

1

neubotech@berkeley.edu
ajay.tanwani@berkeley.edu
goldberg@berkeley.edu
sojoudi@berkeley.edu

2 Nan Tian, Ajay Kummar Tanwani, Ken Goldberg and Somayeh Sojoudi

Fig. 1 Intelligent Motion
Segmentation and Synthesis
System for Latency Miti-
gating: (Top) The Cloud en-
codes GMM/HSMM models
for handwritten letters. (Left)
The Remote tele-operator in-
terface recognizes letters and
motion segments based on
user’s partial demonstration,
and send compact information
to (Right) the Edge robotic
controller where segments of
motion are executed in a way
that reduces effects of network
latency.

rity/surveillance, telepresence, warehouse management, remote patient monitoring,
inspection/exploration in deep underwater or space missions [14]. Tele-operation
provides a low cost solution to offload tedious works from people, so that they
can reach distant and/or hazardous environment. The task entails a closed-loop
controller for the robot to react to human operator input interactively in real-time.

Network latency is a major problem in Cloud Robotics and long-range tele-
operation. It is caused by propagation delays and network routing delays which
can be highly variable and unpredictable. This imposes challenges to build a reli-
able cloud-based real-time closed-loop controller to tele-operate dynamic robots,
because variable delays in the feedback communication can lead to uncontrollable
oscillations. These can be unsafe for human rich environments. Further, an unpre-
dictable lag in response to a human action can cause counter-intuitive human robot
interactions, which would lead to sub-optimal user experience.

One way to mitigate latency in Cloud Robotics is to hide network latency inside
segments of robot motion executions. To do this, we need an ML based closed-loop
controller that can recognize and predict which motion the tele-operator intends to
perform, and can synthesize and execute similar motion segments on the robot. Such
supervised and shared autonomy can help the robot move to intermediate targets on
time while eliminating network delays.

In this paper, we demonstrate a prototype ML system that assists a remote tele-
operator to interactively control a dynamic robotic arm for drawing handwritten
letters. This is done in four-stages: (1) learn a dictionary of Hidden Semi-Markov
Models (HSMMs) [15, 21] for each letter by segmenting the motion into K clusters;
(2) share these models with both remote tele-operator interface and the robot edge
controller; (3) remotely command the robot to execute these segments in response
to partial human demonstration using inferencings from the learned models; (4)
synthesize motion segments with linear quadratic tracker (LQT) [3, 13] at the Edge,
so that the robot controller can catch up to the remote human demonstrations during
execution (Fig. 1 and Fig. 3).

Title Suppressed Due to Excessive Length 3

We further propose another network latency mitigation protocol (Fig. 6) based
on our motion segment recognition and synthesis approach, and provide outlooks
to future closed-loop, interactive Cloud Robotic tele-operation systems for general
human motions.

This work makes below contributions:

1. Probabilistic learning-based motion segmentation using HSMM models to en-
code hand-written letters in the Cloud.

2. Generate synthetic motions with LQT controller at the Edge for stable, dynamic
robot control.

3. Propose network latency mitigation protocols that predict and generate motions
interactively based on partial demonstrations from the tele-operator.

2 Related Work

2.1 Cloud, Edge, and Fog Robotics

Cloud Robotics, introduced by James Kuffner in 2010 [8], refers to any robot or
automation system that relies on either data or code from a network to support
its operation [6]. It can be used to provide powerful machine learning systems for
distributed robots. Network costs in the form of privacy, security latency, bandwidth,
and reliability present a challenge in Cloud Robotics. Fog Robotics, a variant of
Cloud Robotics, has been introduced recently to bring cloud computing resources
closer to the robot to balance storage, compute and networking resources between
the Cloud and the Edge [5, 16]. A closed-loop Cloud-Edge hybrid controller was
built to control a dynamic balancing robot in our earlier work [17].

2.2 Latency Mitigation

Latency Mitigation is important as unpredictable network latency presents primary
challenge in building a closed-loop interactive robotic controller over the network.
Network controlled system (NCS) often encounters similar problems [22][20] [19],
and the delays can be dealt with predictive control and a delay compensator. Previous
work on intention recognition showed that intent prediction can assist tele-operator
to perform robotic manipulation task under various network conditions [14]. Fur-
ther, network latency can hide within robot motion execution in Cloud Robotics
[18]. Motion synthesis using a generative model [15] is needed to achieve latency
mitigation for interactive tele-operations.

4 Nan Tian, Ajay Kummar Tanwani, Ken Goldberg and Somayeh Sojoudi

2.3 Motion Segmentation and Synthesis

Motion Segmentation and Synthesis for robotics has been explored with dynamic
motion primitives (DMP) [9] [10], recurrent neural netorks (RNNs) [2], stochastic
optimal control [3], transition state clustering [7], Gaussian mixture models [4],
HSMM and LQT [12, 15] for trajectories, and human skeleton movements. Learn-
ing from Demonstration (LfD) is a promising way to learn a model from examples
demonstrated by a teacher [1]. In this work, we focus on the latency mitigation
protocols for tele-operation with supervised autonomy using existing motion seg-
mentation and synthesis algorithms.

2.4 Tele-operation with Shared Autonomy

Tele-operation controllers range from direct control to supervisory control with
shared control in the middle. The more autonomous the tele-operation system is,
the more tolerant it is against network delays [11]. We leverage generative models
such as GMM, HMM, and HSMM to build assisted tele-operation system between
the human and robot [14]. Our system for motion segmentation and synthesis fall
into the supervisory control of the tele-operation spectrum.

3 Problem Statement

Consider a tele-operator that controls a robot arm in a remote site. The tele-operator
performs a partial demonstration of a trajectory ξ comprising of datapoints ξ t ∈ RN

at time t,

ξ = {ξ1, ξ2, ..., ξ t ..., ξT } t ∈ 1,2...t (1)

where ξ t is a column vector of position, velocity, and acceleration, respectively, in
2D space, so ξ t = [xt, Ûxt, Üxt]

>.
We assume that the demonstration ξ comprises of the segments {zi}Di=1 ∈ Z that

constitute the latent space of the demonstrated trajectory

ξ t ∈ {z
1
T1
, z2

T2
, ...zDTD } (2)

where zDTD is the Dth segment index with the duration of TD . More precisely, each
motion segment is

ξD
TD
= ξD

tD ,tD+TD
(3)

where tD is the starting time of the segment, and ξD
tD

and ξD
tD+TD

are the starting and
ending point of the Dth segment. We define starting points ξD

tD
as the way-points of

trajectory.
Without loss of generality, we assume that the trajectory demonstration corre-

sponds to a handwritten letter l denoted as lξ where l ∈ {A,B, . . . , Z}. In the

Title Suppressed Due to Excessive Length 5

first stage, the objective is to learn models of motion segments from tele-operator
demonstrations for each letter. This is the encoding step. Subsequently during the
decoding step, the learned segments are used for recognizing the intention of the
tele-operator as writing a particular letter l from the partial demonstration sequence,
and synthesize the motion for letter l on the remote robot. We denote the generated
motion sequence on the robot with a hat as

l ξ̂ =l ξ̂
1
T1,

l ξ̂
2
T2, ...

l ξ̂
D
TD

l ∈ {A,B,C, ..., Z} (4)

With the above definitions, we frame the motion segmentation and synthesis for
the tele-operation task over the network (see Fig. 1):

1. The Cloud: learn models from data lξ to represent motion segments lξD
TD

, and
share the learned models on both the Remote and Edge controllers.

2. The Remote: Recognize current motion segment ID D and letter ID l from
partial tele-operator demonstration ξ t , and send these high level commands to
the Edge on the remote site.

3. The Edge: Given learned models, upon receiving D (segment ID), l (letter ID),
synthesize motion segments l ξ̂

D or trajectory l ξ̂ so that the robot can finish
motion execution before the designated duration T .

4 MOTHION SEGMENTATION FOR LATENCY
MITIGATION

4.1 Circle vs. Square, A Toy Example

We use a circle drawing example to illustrate that both motion segmentation and
synthesis are necessary for tele-operation. (Fig 2) In the naive case, drawing a circle
requires the robot’s end-effector to follow a densely sampled circle trajectory. If the
samples were sent through network one-by-one, unpredictable variable delays could
affect the circle drawing significantly.

If we break the circle into four segments and only send out the way-points,
the Edge controller would interpret the arcs as linear paths via interpolation. The
robot would draw a square instead of a circle. However, if both the Remote and
the Edge share the shapes of these motion segments, the Edge can fill in the trajec-
tories between way-points to reproduce motions similar to the tele-operator’s. The
shape information shared can either be pre-stored raw motion segments or learned
generative models that are capable of motion recognition and synthesis.

4.2 Motion Segmentation with Stationary Point Criteria

To establish amotion segmentation base-linewith handwritten letter demonstrations,
we first use well known minimum velocity and acceleration heuristics H [10] to
automatically identify stationary points xs .

6 Nan Tian, Ajay Kummar Tanwani, Ken Goldberg and Somayeh Sojoudi

Fig. 2 Motion Segmenta-
tion. (Row I) Circle vs.
Square This toy example
shows the naive, undesired,
and desired trajectories that
can be generated for our sys-
tem. (Row II & III) Motion
Segmentation with Station-
ary Points Here we show
that we can perform motion
segmentation using stationary
way-points from data, both for
a circle and handwritten letter
A. After segmentation, we
execute these motions one-by-
one to perform tele-operation.

xs ∈ {lξ t | H u 0} where H = | | Ûxt | |
2 + | | Üxt | |

2 (5)

We perform K-means to group these stationary points into clusters i ∈ K with
centroid-means of µi . Cluster centroid IDs are re-ordered so that they are in the
sequential order of the demonstrations. Motion segments can then be defined as
trajectories between adjacent clusters of stationary points.

ξ = {ξ1
T1
, ξ2

T2
, ...ξK

TK
} where µi ∈ {µ1, µ2, ...µK } (6)

We then share the re-ordered k-mean clusters and example trajectories to both
the Remote and the Edge controllers, so that the Edge can replay pre-stored motion
segments based on the closest clusters:

iID := argmin
i∈{1,...,K }

| |xs − µi | |2 (7)

Control sequence re-played with Protocol I are shown in Fig. 2 for letter “A".

4.3 Latency Mitigation Protocol I: Catch-up and Wait

Based on previous findings that robot motion executions can hide network latency
[18], we propose latency mitigation protocols for tele-operation using an intelligent
motion segmentation and synthesis. Fig 3 presents the simplest form of this protocol.
The Remote controller recognizes which segment the tele-operator is performing,
and predicts where the intermediate target, or way-point of this segment is. The
Remote controller sends motion segments to the Edge robot controller to execute,
with a delay that includes both network latency and recognition delay. The Edge
controller speeds up the motion execution so that the robot can catch up to the

Title Suppressed Due to Excessive Length 7

human demonstration segment-by-segment. In the end, the robot finishes the entire
trajectory as if there were no delays in the network transmission.

Fig. 3 Latency Mitigation Protocol I: Tele-operation commands are sent in segments, and the
robot controller executes thesemotions in a catch-up andwait fashion tomitigate network latencies.

5 PROBABILISTIC MOTION SEGMENTATION AND
SYNTHESIS

With probabilistic generative models, we need to recognize which letter the tele-
operator is performing based on partial trajectory demonstrations. Therefore, we
need to encode and decode both temporal and spatial information. We use GMM
(spatial) and HSMM (temporal) to encode and decode hand-written letter demon-
strations. We then use LQT to synthesize motions [12]. This technique generalizes
well from a limited number of demonstrations than the motion segmentation re-play
base-line technique described in the last section.

5.1 Spatial Encoding/Decoding

Given eight handwritten sample trajectories per letter represented by position and
velocity ξ t = [xt; Ûxt], we train a separate GMM model to encode each letter in the
alphabet.

P(ξ t | θ) =
K∑
i=1

πiN(ξ t, | µi,Σi) (8)

where P(ξ t | θ) is the probability density function of sample point ξ t conditioned on
parameters θ = {πi, µi,Σi}Ki=1, a set of prior πi , mean µi , and covariance matrix Σi
for each of the K mixtures. The GMM are learned using Expectation-Maximization

8 Nan Tian, Ajay Kummar Tanwani, Ken Goldberg and Somayeh Sojoudi

Fig. 4 Motion Segmentation of All Handwritten Letters using GMM: colored 2D Gaus-
sian clusters overlaying on demonstration trajectory. GMM clusters are used to represent motion
segments, and are used to generate synthetic motions.

(EM) algorithms. The resulting GMM mixture models for each letter is shown in
Fig. 4 and Fig. 5I.

During decoding, given a sample ξ i and the GMM for a single letter, we decide
the sample belong to which mixture zt = i using maximum log likelihood

izt := argmax
i∈{1,...K }

log
(
πiN(ξ t | µi,Σi)

)
(9)

5.2 Temporal Encoding/Decoding for Letter Recognition

We use both hidden Markove model(HMM) or its generalization hidden semi-
Markov model(HSMM) [13] to encode and decode temporal state sequences.
GMMs obtained from above are used as latent states zt = i in HMM at
time t. During encoding, the GMM-based HMM model parameterized by θ =
{{ai, j}Kj=1,Πi, µi,Σi}i learns: (a) transition probabilities ai, j , (b) emission proba-
bilities Πi , (c) mean µi and covariance Σi via EM algorithm. Here, ai, j represents
transition probabilities between the K Gaussians in GMM, and i, j ∈ {1, ...K} are
indexes of Gaussian mixtures.

We use the forward-backward Viterbi algorithm to decode latent states from zt
from forward variable α = P(zt = i, ξ1...ξ t | θ). The probability of a data point ξ t
to be in state i at time t given the partial observation {ξ1...ξ t } can be calculated as:

ht ,i = P(zt | ξ1, ..., ξ t) =
αt ,i∑K

k=1 αt ,k
(10)

where the forward variable α is

αt ,i =
(K∑
j=1

αt−1,iaj ,i

)
N(ξ t | µi,Σi) (11)

Title Suppressed Due to Excessive Length 9

Fig. 5 Trajectory generation
with HSMM: (I) HSMM
mixtures overlay on data
We learn a HSMM for each
letter from eight trajectory
samples per letter. (II)HSMM
State Probabilities of a
given trajectory inferred
through forward-backward
Viberbi algorithm Generated
Trajectories: (III) from the
same start positions (circle) as
the original demon, and (IV)
from different start positions
(circle) to show autonomy and
robustness

HSMM generalized HMM by explicitly modeling an additional state duration
probability so that state transition depends on not only current state, but also on the
elapsed time in the current state. In HSMM, forward variable can be calculated:

αt ,i =

min(smax ,t−1)∑
s=1

K∑
j=1

αt−s,iaj ,iN(s | µsi ,Σ
s
i) (12)

where s represent state duration steps in HSMM. For more details, please refer to
[13] and [14].

To recognize the letter ID based on the available partial trajectory {ξ1, ..., ξ t },
we apply eq. (10) to all 26 HMMs with the parameters lθ where l ∈ {A,B, ...Z}.
The HMMmodel with the highest probabilities is selected as the letter that is being
recognized based on partial trajectory:

l := argmax
l∈{A,B,...Z }

P(zt | ξ1, ..., ξ t ; lθ) (13)

5.3 Motion Synthesis based on Predicted State Sequence

We compute the desired state sequence zt in future using the forward variable at
time t using the forward variable for the most likely decoded letter,

zt = {zt, ..., zTD } = argmax
i

αt ,i . (14)

The desired state sequence is used for a step-wise reference trajectory distribution
N(µ̂t, Σ̂t) by assigning the predicted parameters µ̂t and Σ̂t at time t as the parameters

10 Nan Tian, Ajay Kummar Tanwani, Ken Goldberg and Somayeh Sojoudi

µzt
and Σzt for the predicted future states zt . Samples at time t can be generated

from this reference trajectory distribution:

ξ̂ t ∼ N(µ̂t = µzt
, Σ̂t = Σzt) where t ∈ {t ...TD} (15)

The Edge robot controller uses a linear quadratic tracking (LQT) to synthesize
trajectory in order to follow the demonstrated observation sequence in a smooth
manner weighted by Qt = Σ̂

−1
t while minimizing the control cost u weighted by R.

ct (ξ t, ut) =

T∑
t=1
(ξ t − µ̂t)

>Qt (ξ t − µ̂t) + u>t Rtut (16)

s.t . Ûξ t = Aξ t + But

where A and B represent the double integrator system as a simplified analogue of
robot dynamical system. For more details on LQT, refer to [13] and [15].

5.4 Latency Mitigation Protocol II: Recognize and Finish

Benchmarks of letter recognition and motion synthesis suggest that the motion
recognition is poor at the initial part of the tele-operator demonstration, which can
lead to large synthesis errors (see section 6 and Fig. 7). Therefore, we modify
Protocol I into Protocol II to make it more practical for supervised tele-operation.

In this new protocol (Fig. 6III), during the initial period when the Remote
controller is not sure about which letter the tele-operator is demonstrating, the
Edge controller follows the exact trajectory of the tele-operator, while tolerating the

Fig. 6 Latency Mitigation Protocol II for tele-operating handwritten letters: Phase I: the
Robot perform direct tele-operation when the Cloud is not sure about which letter the tele-operator
is demonstrating. There is network delays associated with this phase. Phase II: the Robot finishes
the letter motions when the Cloud recognizes the letter from partial demonstration. In this phase,
the robot motion is generated locally at the robot with GMM/HSMM. The motion is also executed
at an accelerated speed automatically so that it can counter network latencies. See video for demo.

https://youtu.be/fjlx5kXiMhc

Title Suppressed Due to Excessive Length 11

network delay. As soon as the Remote controller recognizes and decides which letter
is being drawn, the Edge controller receives the letter ID, and commits to drawing the
recognized letter through motion synthesis. This way, during the latency mitigation
second phase, the Edge can catch up or surpass human demonstration, so that it can
reduce or eliminate network latencies.

6 EXPERIMENTS AND RESULTS

We use a handwritten letter dataset to train the GMM based HSMM model. The
dataset contains eight sample trajectories per letter in the alphabet. Each sample
trajectory contains 200 sample points with 2D position in the range of [−10,10] cm.
By differentiation of the position data, we extract additional velocity and acceleration
features that are needed to encode motion segmentation and synthesis models. We
learn 26 HSMM models (one for each letter) in the encoding stage, and use the
models to extract the state sequences, regenerate trajectories that have either the
same or different starting points as the original trajectory in the decoding stage (Fig.
5 III and IV).

6.1 Recognition vs. Synthesis Error

There are two stages in the decoding phase: 1) recognition of letter given partial
trajectory for HSMMmodel selection; 2) prediction of future state sequences so that
a trajectory can be generated using LQT. The two decoding stages are associated
with separate phases in the latency mitigation protocol–recognition and synthesis
phase.

To quantitatively evaluate our system, we benchmark recognition and synthesis
performance on variable length trajectories with injected noise (Fig. 7). Given a
partial trajectory ξ t ending at time t, recognition error is defined as the number
of wrong letter recognition trials over total trials, whereas synthesis error is the
average position L2 error between the generated trajectory ξ̂ t ,T and the respective
demonstration segment ξ t ,T from time t to finish time T .

Recognition Error = 1 −
NSuccess

NTotal
, (17)

Synthesis Error =
| |ξ̂ t ,T − ξ t ,T | |2

T − t
. (18)

Note that the synthesis error is normalized by the number of time samples generated,
which accounts only part of the entire trajectory and has T − t sample points. This
way, L2 distance of each sample contribute equally to synthesis error, so that we can
compare synthesis error across partial trajectory generations with different lengths.

We conducted 10 trials per letter on partial trajectories with variable length
(0−100%) injectedwith uniformly distributed randomnoise (varianceσpos = 2 cm,

12 Nan Tian, Ajay Kummar Tanwani, Ken Goldberg and Somayeh Sojoudi

Fig. 7 See video for demo. (I) Interactive Recognition and Synthesis Trials: (Top) Uniformly
Distributed Noise Injected to position (left, σ = 2 cm) and velocity (left, σ = 20 cm/sample)
of trajectory “G" for benchmarks. (Bottom) Synthesized Trajectory (red trajectory) based partial
noisy demonstrations (black trajectory with green noise). (bottom left) Shorter partial demon-
stration causes the model to falsely recognize the trajectory as “E". (bottom right) Longer partial
demonstration provides correct recognition and generates intended trajectory “G". (II) Recog-
nition (top) and Synthesis (bottom) Errors vs. Length of Trajectory shows that both errors
reduce dramatically as demonstration progresses passing the 30% (red line) (III) Synthesis Error
is much lower when recognition is correct, therefore, recognition error contributes to the majority
of the synthesis error.

σvel = 2 cm/sample, Fig. 7I (top)). Fig. 7I (bottom) shows examples of generated
trajectory based on correct and wrong recognition results. In Fig. 7II, we plot both
recognition and synthesis error of all trials against the length of the partial trajectory
shown to the system.

We observe that both recognition and synthesis drop dramatically around 30%
trajectory demonstration length. This suggests that recognition is not reliable for
short trajectorieswith 30% length, and it becomesmore reliable as the demonstration
progresses (Fig. 7II bottom).

It also suggests a strong correlation between recognition and synthesis error,
as, naturally, synthesis error would grow dramatically if the letter recognition is
wrong. We show that recognition error contributes to the majority of the synthesis
error in Fig. 7III where the synthesis errors of all the trials with correct and wrong
recognitions are compared against each other.

6.2 Latency Mitigation Effects

We want to observe how much latency the system can tolerate for the two latency
protocols. Protocol I with stationary point segmentation is used as base-line. Intu-
itively, Protocol I can tolerate delays at most to a fraction of the length of segments.
The duration of the four segments of the letter “A" are 63, 43, 81, 12 steps. Assum-
ing that the robot can move twice as fast as the demonstrator, then the system can
tolerate up to 31, 21, 40, and 6 sample points. Consequently, it can mitigate up to
0.5, 0.3, 0.7, and 0.1 seconds of delays respectively when a 60 Hz sample rate is

https://youtu.be/fjlx5kXiMhc

Title Suppressed Due to Excessive Length 13

assumed. Any delay that is lower than the estimated duration, unpredictable it might
be, is going to be eliminated.

Protocol II can toleratemore delays asmotion synthesis allow it to be autonomous
over the entire second phase of the protocol, after successful letter recognition.
In the demo video for Protocol II, we show the interaction between the Remote
demonstrator and the Edge controller when drawing letter “G", “H", “B", “P", and
“K". The synthesized trajectory is red during first phase, and it changes when the
system is not sure which letter it is early on in the demonstration. After recognize the
letter with high confidence, the Remote controller execute the motion at 2x speed,
so that the robot can finish the motion even before the tele-operator.

The second phase lasts for 153, 107, 83, 61, and 127 steps for letters “G", “H",
“B", “P", and “K", which lasts 2.6, 2.8, 1.4, 1.0, and 2.1 seconds. Half of that
period, or 1.3, 1.4, 0.7, 0.5, and 1.0 seconds, is used to mitigate latency. Protocol II
naturally has more tolerance against unpredictable latency than Protocol I because
of the autonomous motion generation phase.

To gain high confidence in letter recognition, we use a 40 sample window (0.6
seconds) during which the recognition result needs to be the same letter in order to
enter the second phase. This recognition delay is introduced to trade for the price
to eliminate network delays during the second phase. We believe that the benefit of
eliminating not only unpredictable network delays, but also potential instabilities in
a dynamical system is justified at the cost of recognition delay.

7 DISCUSSION AND FUTUREWORK

We presented an intelligent latency mitigation tele-operation system for handwritten
letter drawing. Motion segmentation and synthesis are used to reduce the effects
of network latency by hiding network delays inside generated synthetic motion
segments. We used two different algorithms to perform motion segmentation based
on either: 1) stationary points heuristics withK-means, or 2) HSMMstate sequences.
The HSMM method is particularly desirable for motion synthesis. We introduced
and evaluated latencymitigation communication protocols based on recognition and
synthesis error for writing hand-written letters.

There are trade-offs, however, in the latency mitigation system. Although we
reduce the effect of unpredictable network latency on a dynamical system, we
introduce recognition delays into the system that reduce the time period for robot
controller to catch up to the tele-operator. Consequently, longer motion segments
are more desirable, leaving more room for the Remote site to recognize the segment
and for the Edge robot controller to autonomously generate the movement.

A further modification of this protocol, we denote as Protocol III, is also possible.
Illustrated in Fig. 8 left, the Edge controller in Protocol Three would synthesize and
execute motion in segments instead of finishing the entire motion all at once during
the second phase when the correct letter is recognized. Protocol III can be more
general, but is not implemented in this work.

In future work, we plan to hierarchically group Gaussian mixtures to represent
mega-segments of the entire dataset, so that a hierarchical HSMMcan be recognized
and regenerated mega-segments based on a execution tree (Fig. 8 Right). For exam-

https://youtu.be/fjlx5kXiMhc

14 Nan Tian, Ajay Kummar Tanwani, Ken Goldberg and Somayeh Sojoudi

Fig. 8 (Left) Future Protocol III that recognize both letters and motion segments for intelligent
latency mitigation (Right) Proposing a future hierarchical GMM/HSMM that can recognize
and generate longer motion segments for the entire alphabet. These videos of “B,P" and “C, S"
illustrate the concept. Notice that the model should decide to continue drawing “B" or to stop
and finish “P" at super-node {B, P }. Ideally, a single hierarchical GMM/HSMM model should
represent all 26 letters in the alphabet.

ple, in the letter set {B,C,P,S}, super-nodes {B,P} and {C,S} contain letters that
are partially similar in the drawing process. In such a hierarchical HSMM model,
when drawing the letter B, the model should traverse top-to-bottom in the tree to
command the Edge controller to execute motion segment P first, the meta-segment
shared by B and P. The controller would then decide whether to finish drawing letter
B with an additional motion segment or not at super-node {B,P}, upon additional
demonstration given by the tele-operator.

Moreover, following strong results for 2D handwritten letter drawing dataset,
we plan to use our system to imitate 3D-human-skeleton based HRI interactions
leveraging human-human interaction datasets.

ACKNOWLEDGMENTS

We thank Prof. Joseph Gonzalez for discussions on hybrid synchronous and asyn-
chronous Systems. We also thank Matthew Tesch, David Rollinson, Curtis Layton,
and Prof. Howie Choset from HEBI robotics for supports on the 5DoF robot arm.

Fundings from Office of Naval Research, NSF EPCN, and Cloudminds Inc.
are acknowledged. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of the Sponsors.

https://www.youtube.com/watch?v=769PBu_V4IQ
https://www.youtube.com/watch?v=ptxpGqE7zpE

Title Suppressed Due to Excessive Length 15

References

[1] Argall BD, Chernova S, Veloso M, Browning B (2009) A survey of robot
learning from demonstration. Robotics and autonomous systems 57(5):469–
483

[2] Berio D, Akten M, Leymarie FF, Grierson M, Plamondon R (2017) Calli-
graphic stylisation learning with a physiologically plausible model of move-
ment and recurrent neural networks. In: Proceedings of the 4th International
Conference on Movement Computing, ACM, p 25

[3] Borrelli F, Bemporad A, Morari M (2011) Predictive control for linear and
hybrid systems. Cambridge University Press

[4] Calinon S, D’halluin F, Sauser EL, Caldwell DG, Billard AG (2010) Learn-
ing and reproduction of gestures by imitation: An approach based on hidden
Markov model and Gaussian mixture regression. IEEE Robotics and Automa-
tion Magazine 17(2):44–54

[5] Gudi S, Ojha S, Johnston B, Clark J, Williams MA (2017) Fog robotics: An
introduction. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems

[6] Kehoe B, Patil S, Abbeel P, Goldberg K (2015) A survey of research on
cloud robotics and automation. IEEE Transactions on Automation Science
and Engineering 12(2):398–409

[7] Krishnan S, Garg A, Patil S, Lea C, Hager G, Abbeel P, Goldberg K (2018)
Transition State Clustering: Unsupervised Surgical Trajectory Segmentation
for Robot Learning, Springer International Publishing, Cham, pp 91–110.
DOI 10.1007/978-3-319-60916-4_6

[8] Kuffner JJ, et al. (2010) Cloud-enabled robots. In: IEEE-RAS international
conference on humanoid robotics, Nashville, TN

[9] Meier F, Theodorou E, Stulp F, Schaal S (2011)Movement segmentation using
a primitive library. In: 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IEEE, pp 3407–3412

[10] Meier F, Theodorou E, Schaal S (2012) Movement segmentation and recogni-
tion for imitation learning. In: Artificial Intelligence and Statistics, pp 761–769

[11] SongD, TanwaniAK,GoldbergK (2019)Networked-, cloud- and fog-robotics.
In: Siciliano B (ed) Robotics Goes MOOC, Springer

[12] Tanwani A, Calinon S (2016) Learning robot manipulation tasks with task-
parameterized semitied hidden semi-markov model. Robotics and Automation
Letters, IEEE 1(1):235–242, DOI 10.1109/LRA.2016.2517825

[13] Tanwani AK (2018) Generative Models for Learning Robot Manipulation
Skills from Humans. PhD thesis, Ecole Polytechnique Federale de Lausanne,
Switzerland

[14] Tanwani AK, Calinon S (2017) A generative model for intention recog-
nition and manipulation assistance in teleoperation. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, IROS, pp 43–50, DOI
10.1109/IROS.2017.8202136

[15] TanwaniAK,Lee J, ThananjeyanB, LaskeyM,Krishnan S, FoxR,GoldbergK,
Calinon S (2018) Generalizing robot imitation learning with invariant hidden
semi-markov models. 1811.07489

1811.07489

16 Nan Tian, Ajay Kummar Tanwani, Ken Goldberg and Somayeh Sojoudi

[16] Tanwani AK, Mor N, Kubiatowicz J, Gonzalez J, Goldberg K (2019) A fog
robotics approach to deep robot learning: Application to object recognition
and grasp planning in surface decluttering. In: IEEE International Conference
on Robotics and Automation (ICRA)

[17] TianN, Chen J,MaM, ZhangR, HuangB, GoldbergK, Sojoudi S (2018) A fog
robotic system for dynamic visual servoing. arXiv preprint arXiv:180906716

[18] Tian N, Kuo B, Ren X, Yu M, Zhang R, Huang B, Goldberg K, Sojoudi S
(2018) A cloud-based robust semaphore mirroring system for social robots.
In: 2018 IEEE 14th International Conference on Automation Science and
Engineering (CASE), IEEE, pp 1351–1358

[19] Wang H, Tian Y, Christov N (2014) Event-triggered observer based control
of networked visual servoing control systems. Journal of Control Engineering
and Applied Informatics 16(1):22–30

[20] Wu H, Lou L, Chen CC, Hirche S, Kuhnlenz K (2013) Cloud-based networked
visual servo control. IEEE Transactions on Industrial Electronics 60(2):554–
566

[21] Yu SZ (2010) Hidden semi-Markov models. Artificial Intelligence 174:215–
243

[22] Zhang W, Branicky MS, Phillips SM (2001) Stability of networked control
systems. IEEE Control Systems 21(1):84–99

	 Motion Segmentation and Synthesis for Latency Mitigation in a Cloud Robotic Tele-Operation System
	Nan Tian, Ajay Kummar Tanwani, Ken Goldberg and Somayeh Sojoudi
	Introduction
	Related Work
	Cloud, Edge, and Fog Robotics
	Latency Mitigation
	Motion Segmentation and Synthesis
	Tele-operation with Shared Autonomy

	Problem Statement
	MOTHION SEGMENTATION FOR LATENCY MITIGATION
	Circle vs. Square, A Toy Example
	Motion Segmentation with Stationary Point Criteria
	Latency Mitigation Protocol I: Catch-up and Wait

	PROBABILISTIC MOTION SEGMENTATION AND SYNTHESIS
	Spatial Encoding/Decoding
	Temporal Encoding/Decoding for Letter Recognition
	Motion Synthesis based on Predicted State Sequence
	Latency Mitigation Protocol II: Recognize and Finish

	EXPERIMENTS AND RESULTS
	Recognition vs. Synthesis Error
	Latency Mitigation Effects

	DISCUSSION AND FUTURE WORK
	ACKNOWLEDGMENTS
	References
	References

