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A NONLINEAR ELIMINATION PRECONDITIONED INEXACT
NEWTON METHOD FOR HETEROGENEOUS HYPERELASTICITY∗

SHIHUA GONG† AND XIAO-CHUAN CAI‡

Abstract. We propose and study a nonlinear elimination preconditioned inexact Newton
method for the numerical simulation of diseased human arteries with a heterogeneous hyperelas-
tic model. We assume the artery is made of layers of distinct tissues and also contains plaque.
Traditional Newton methods often work well for smooth and homogeneous arteries but suffer from
slow or no convergence due to the heterogeneousness of diseased soft tissues when the material is
quasi-incompressible. The proposed nonlinear elimination method adaptively finds a small number
of equations causing the nonlinear stagnation and then eliminates them from the global nonlinear
system. By using the theory of affine invariance of Newton method, we provide insight into why
the nonlinear elimination method can improve the convergence of Newton iterations. Our numerical
results show that the combination of nonlinear elimination with an initial guess interpolated from
a coarse level solution can lead to the uniform convergence of Newton method for this class of very
difficult nonlinear problems.
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1. Introduction. Nonlinearly preconditioned inexact Newton (IN) algorithms
[7, 8, 14, 15] have been applied with significant success to solve difficult nonlinear
problems in computational fluid dynamics involving boundary layers, local singular-
ities, or shock waves. In this paper, we consider applying nonlinear preconditioning
techniques to solve a heterogeneous hyperelastic problem arising from the modeling of
diseased arteries. Arterial walls are composed of three distinct tissue layers from inside
to outside: the intima, the media, and the adventitia. The mechanical properties of
the intima can be negligible. The other two layers can be modeled as fiber-reinforced
materials composed of a nearly incompressible matrix embedded with collagen fibers.
For the disease of atherosclerosis, some plaque components of calcification and lipids
may build up inside the arteries. In [6], the authors consider several material models
for diseased arterial walls in order to study the mechanical response and the influence
on the nonlinear iterations. It is reported that both the heterogeneousness of diseased
soft tissues and the quasi-incompressibility have negative effects on the convergence
of Newton method.

To accelerate the convergence of Newton iteration, nonlinear preconditioning is
introduced as built-in machinery for the IN algorithm [9, 11] in order to deal with the
unbalanced nonlinearities. It can be applied on the left or on the right of the nonlinear
function. The additive Schwarz preconditioned inexact Newton algorithm (ASPIN)
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[7] is an example of the left preconditioning and was observed in [7] to provide a
more “balanced” system. On the other hand, right preconditioning techniques such
as nonlinear elimination (NE) [8, 14, 15, 20] effectively modify the variables of the
nonlinear system. NE is easier to implement than ASPIN since the nonlinear function
does not have to be changed and the NE step does not have to be called at every
outer Newton iteration. Moreover, more efficient and sophisticated linear solvers can
be applied to the unchanged Jacobian.

An early work on NE is presented in [20], where the authors discussed how NE
can retain the higher-order convergence of Newton method near the root of the sys-
tem of nonlinear equations. It is still a nontrivial task to choose some subfunctions or
variables to eliminate such that the convergence of Newton method becomes faster.
For some computational fluid dynamics problems, the robustness and the effective-
ness of NE are demonstrated in [14, 15]. Here NE is applied to those variables with
high local nonlinearity as characterized by the local Lipschitz constant. The non-
linear FETI-DP (finite element tearing and interconnecting dual-primal) and BDDC
(balancing domain decomposition by constraint) [16, 17, 18] domain decomposition
methods also use the concept of NE and obtain satisfying parallel scalability using
different NE strategies.

However, a straightforward application of NE to hyperelasticity does not work well
probably because it introduces sharp jumps in the residual near the boundary of the
eliminating subdomains. We refer to this as the thrashing phenomenon. Such jumps
deteriorate the performance of nonlinear preconditioning. To resolve this problem,
we use the theory of affine invariance [10] to analyze the convergence of the damped
Newton method with exact NE, and then provide some insight into how to design
the NE preconditioner. Our proposed algorithm is a two-level method with two key
components: an adaptive NE scheme and a nodal-value interpolation operator. The
interpolation operator provides an initial guess with a coarse level approximation to
deal with the global nonlinearity. Note that for quasi-incompressible linear elasticity,
the nodal interpolation is unstable since it does not preserve the volume. Thus, the IN
method fails even with an initial guess interpolated from a coarse level solution, which
is observed from our numerical experiments. Another reason for this may be due to
the different geometry approximations by different level meshes for a curved domain.
The interpolation may introduce local pollution to the initial guess. However, with the
help of an adaptive NE scheme, we can capture the local pollution causing unbalanced
nonlinearity and then eliminate it from the global system. We numerically show that
this combination leads to a uniform convergence for Newton iterations.

The rest of the paper is organized as follows. We present the model and the
discretization for arterial walls in section 2. The NE preconditioned Newton method
is proposed and discussed in section 3. In section 4, some numerical experiments are
presented to demonstrate the performance of the NE preconditioning. The concluding
remarks are given in the last section.

2. Model and discretization. We consider a hyperelastic model for arterial
walls and its finite element discretization. First, we introduce some basic notation
in continuum mechanics. The body of interest in the reference configuration is de-
noted by Ω ∈ R3, parameterized by X, and the current configuration by Ω̃ ∈ R3,
parametrized by x. The deformation map φ(X) = X + u : Ω 7→ Ω̃ is a differen-
tial isomorphism between the reference and the current configuration. Here u is the
displacement defined on the reference configuration. The deformation gradient F is
defined by
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F (X) = ∇φ(X) = I +∇u

with the Jacobian J(X) = detF (X) > 0. The right Cauchy–Green tensor is defined
by

C = F TF .

The hyperelastic materials postulate the existence of an energy density function
ψ defined per unit reference volume. By the principle of material frame indifference
[19], one can prove that the energy function is a function of C, i.e., ψ = ψ̂(C). Based
on a specific form of the energy function, the first and second Piola–Kirchhoff stress
tensors are

P = FS and S = 2
∂ψ

∂C
.

And the Cauchy stress is given by σ = J−1FSF T . The balance of the momentum is
governed by the hyperelastic equation

−div(FS) = f on Ω,

u = ū on Γg,

PN = t̄ on Γh,

(2.1)

where f is the body force vector, N denotes unit exterior normal to the boundary
surface Γh, and ∂Ω = Γg ∪ Γh with Γg ∩ Γh = ∅. In the rest of the paper, we always
consider homogeneous Dirichlet boundary condition ū = 0 and the situation where
the deformation is driven by external applied pressure load. The simple pressure
boundary condition is a distributed load normal to the applied surface in the reference
configuration; it reads as t̄ = −pN. We are also interested in the follower pressure
load [5], which is applied to the current deformed state; it reads as

t̄ = −p(cofF )N.

Here cofF = JF−T is the cofactor of F . It concerns the change in direction of the
normals as well as the area change. The dependence on the deformed geometry makes
this a nonlinear boundary condition, which brings extra challenge for the convergence
of the nonlinear solvers.

2.1. Energy functions for arterial walls with plaques. We are interested
in a diseased artery with two layers and two plaque components. The schematic cross
section of the artery is presented in Figure 2.1. There are a calcification and a lipid
pool. The adventitia and the media are modeled by a polyconvex energy function [4]

Fig. 2.1. Schematic cross section of a diseased artery with two plaque components.
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ψA = c1

(
I1

I
1/3
3

− 3

)
+ ε1

(
Iε23 +

1

Iε23

− 2

)
+

2∑
i=1

α1

〈
I1J

(i)
4 − J

(i)
5 − 2

〉α2

.(2.2)

Here, 〈b〉 denotes the Macaulay brackets defined by 〈b〉 = (|b|+ b)/2, with b ∈ R. And
I1, I2, I3 are the principal invariants of C, i.e.,

I1 := tr(C), I2 := tr(cofC), I3 := detC.

The additional mixed invariants J
(i)
4 , J

(i)
5 characterize the anisotropic behavior of

arterial wall and are defined as J
(i)
4 = tr[CM (i)], J

(i)
5 := tr[C2M (i)], i = 1 : 2, where

M (i) := a(i)⊗ a(i) are the structural tensors with a(i), i = 1, 2, denoting the direction
fields of the embedded collagen fibers. This is based on the fact that only weak
interactions between the two fiber directions are observed; for further arguments, see
[13]. The polyconvexity condition in the sense of [2] is the essential condition to ensure
the existence of energy minimizers and the material stability.

Following [6], the lipid is modeled by the isotropic part of ψA used for the ad-
ventitia and media. The calcification area is modeled as an isotropic Mooney–Rivlin
material with the following energy function:

ψC = β1I1 + η1I2 + δ1I3 − δ2 ln I3.

To obtain a stress-free state in the reference configuration, the parameter δ2 has to
satisfy δ2 = β1 + 2η1 + δ1. The model parameters of the above energy functions are
listed in Table 2.1.

2.2. Finite element discretization. As reported in [3], the lowest-order La-
grange finite element with linear shape functions is not sufficient to provide a good
approximation for the arterial wall stresses. We use the P2 Lagrange finite element
to approximate the displacement. Let V0 ⊂ H1(Ω,R3) be the finite element space
defined on Ω. The variational problem finds a solution u ∈ V0 such that

a(u, v) :=

∫
Ω

FS : ∇v dX +

∫
Γh

pJF−TN · v ds =

∫
Ω

f · v dX ∀v ∈ V0.(2.3)

Here the subscript of V0 indicates that the functions in V0 vanish on Γg. Newton-type
methods require the Jacobian form of a(u, v), i.e.,

δa(u; δu, v) =

∫
Ω

F T∇δu : C : F T∇v +∇δuS : ∇v dX

+

∫
Γh

pJ
(

tr(F−1∇δu)I − F−T (∇δu)T
)
F−TN · v ds,

(2.4)

where C = ∂S
∂C = ∂2ψ

∂C∂C is the material tangential moduli. An explicit formula to
compute C for the general form of free energy can be found in [22]. The first term

Table 2.1
Model parameters [6] of the energy functions.

Comp. c1[kPa] ε1[kPa] ε2[-] α1[kPa] α2[-] β1[kPa] η1[kPa] δ1[kPa] δ2[kPa]

Adv. 6.6 23.9 10 1503.0 6.3 – – – –
Med. 17.5 499.8 2.4 30001.9 5.1 – – – –
Liq. 17.5 499.8 2.4 – – – – – –
Cal. – – – – – 80.0 250.0 2000.0 2580.0
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on the right-hand side of (2.4) is corresponding to the material stiffness, while the
second term is corresponding to the geometric stiffness and the last term arises due
to the follower pressure load. In the section of numerical results, we also consider the
case using the simpler pressure load.

3. Inexact Newton method with nonlinear elimination preconditioning.
In this section, we first describe the motivation of nonlinear preconditioning based on
an affine invariant convergence theorem of Newton-type methods. After that, we
analyze the precondtioning effect of NE and then give a detailed description of the
NE preconditioned inexact Newton method (NEPIN).

We rewrite (2.3) as a system of n equations

F (u∗) = 0,(3.1)

where F ∈ C1(D), F : D 7→ Rn with an n by n Jacobian J = F ′(u) and D ⊂ Rn open
and convex. Given an initial guess u0 of a solution u∗, the damped Newton method
finds a sequence of iterates {uk} computed through

F ′
(
uk
)
pk = −F

(
uk
)
,(3.2)

uk+1 = uk + λkpk, λk ∈ (0, 1].(3.3)

Here pk is the Newton direction and λk is a scalar determined by a monotonicity test
such that

T (uk+1) ≤ θT
(
uk
)
,(3.4)

where θ ∈ (0, 1) and T (u) is a level function measuring how close u is to the solution
u∗. In most cases, one sets T (u) = 1

2‖F (u)‖22. We use ‖ · ‖ to denote a generic norm
and ‖ · ‖p for the `p-norm.

The convergence of {uk} to u∗ is quadratic if the initial guess is close enough to
the desired solution and λk → 1. However, a good initial guess is generally unavailable
and the monotonicity test (3.4) often results in a really small step length λk. This
phenomenon is described rigorously in Theorem 3.1 under the framework of affine
invariance [10] with a localized version of the affine contravariant Lipschitz condition.
The first assumption of our analysis is given as follows.

Assumption 1. Assume the affine contravariant Lipschitz condition holds:

‖ (F ′(v)− F ′(u)) (v − u)‖ ≤ ω̃F ‖F ′(u)(v − u)‖2 for any v, u ∈ D.(3.5)

Here we call ω̃F a global affine contravriant Lipschitz constant.

Let p be the Newton direction of F at u and set v − u = λp in (3.5) for any
λ ∈ (0, 1]. Thus, for any u ∈ D and λ ∈ (0, 1], let ωF,u,λ be the minimum constant
such that

‖ (F ′(u+ λp)− F ′(u)) p‖ ≤ ωF,u,λλ‖F ′(u)p‖2.(3.6)

Here we call ωF,u,λ a local affine contravariant Lipschitz constant. We also denote
ωF,u = supλ∈(0,1] ωF,u,λ and ωF = supu∈D ωF,u. Note that ωF,u,λ ≤ ω̃F by Assump-
tion 1. Thus, the supremums ωF,u and ωF taken over a set of values bounded from
above are well defined.
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Theorem 3.1. Let F ′(u) be nonsingular for all u ∈ D and Assumption 1 holds.
With the notation hk := ωF,uk‖F (uk)‖, and λ ∈ (0,min(1, 2/hk)], we have

‖F (uk + λpk)‖ ≤ tk(λ)‖F
(
uk
)
‖,(3.7)

where tk(λ) := 1− λ+ 1
2λ

2hk. Moreover, if hk < 2, we have

‖F (uk + pk)‖ ≤ 1

2
ωF ‖F

(
uk
)
‖2.(3.8)

Proof. The proof here is presented for completeness; see [10] for the original one.
By applying the Newton–Leibniz formula and Assumption 1, we obtain the estimate
(3.7):

∥∥F (uk + λpk
)∥∥ =

∥∥∥∥∥F (uk)+

∫ λ

t=0

F ′
(
uk + tp

)
p dt

∥∥∥∥∥
=

∥∥∥∥∥(1− λ)F
(
uk
)

+

∫ λ

t=0

(
F ′
(
uk + tpk

)
− F ′

(
uk
))
pk dt

∥∥∥∥∥
≤
∥∥(1− λ)F

(
uk
)∥∥+

∫ λ

t=0

tωF,uk
∥∥F (uk)∥∥2

dt

=

(
1− λ+

1

2
λ2hk

)
‖F
(
uk
)
‖.

To get a reduction on the norm of residual, the step length should be chosen in the
interval (0,min(1, 2/hk)]. Moreover, if hk < 2, let λ = 1 and then we obtain the
quadratic convergence (3.8).

According to the theorem, the convergence is quadratic when hk < 2. For hk ≥ 2,
the optimal step size is λ̄k := 1

hk
. And then the optimal reduction rate of the residual,

i.e., the minimal value of tk(λ) in (3.7), is t̄k := 1 − 1
2hk

. If hk has a uniform upper
bound for all k, then the convergence of the damped Newton iteration would be
acceptable.

However, if there are some iterations for which hk is too large, stagnation in the
nonlinear iteration may occur. Our main objective is to introduce built-in machinery
(nonlinear preconditioning) to prevent the stagnation. The nonlinear residual curve
behaves in several different ways:

• The estimate (3.7) is sharp; see the blue curve in Figure 3.1. The feasible
step size λ that satisfies the monotonicity test (3.4) should be very small, and
our theoretical analysis applies well in such a situation.
• The estimate (3.7) is not sharp; see the red and green curves in Figure 3.1.

For the green one, there is no stagnation. For the red one, stagnation occurs
and we need to apply nonlinear preconditioning, but our analysis is not able
to explain the performance of the algorithm.

Based on the above discussion, an intuitive idea to precondition Newton method
(to prevent the stagnation) is to make the quantity

hk := ωF,uk‖F
(
uk
)
‖(3.9)

smaller. In the following, we transform the nonlinear function F (uk) to F(ũk) via NE.
Under appropriate assumptions, we prove that the local affine contravariant Lipschitz
constant ωF,ũk,λ of F as well as the new residual ‖F(ũk)‖ is smaller than that of the
original nonlinear function F (uk).
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Fig. 3.1. Possible residual curves for large hk.

3.1. Exact nonlinear elimination. Assume F (u) is partitioned as

F (u) =

[
F1(u1, u2)
F2(u1, u2)

]
,(3.10)

and u = (u1, u2). The Jacobian is partitioned accordingly as

J := F ′(u) =

[
J11 J12

J21 J22

]
,(3.11)

where Jij = ∂Fi
∂uj

. We make the following assumption for the partition, with which the

preconditioning effect is proved.

Assumption 2. For all u ∈ D and all the considered partitions in (3.10), it holds
that

1. J11(u) is nonsingular;
2. ‖J21(u)J−1

11 (u)‖1 ≤ 1.

Remark 1. The first condition in Assumption 2 is essential to ensure the solvabil-
ity of the subproblem F1(u1, u2) = 0 for any fixed u2. The second condition asserts a
strong upper bound for J21(u)J−1

11 (u) in a certain norm. It is equivalent to

‖J11v1‖1 ≥ ‖J21v1‖1

for every v1 with the same dimension of u1. If we restrict the dimension of u1 to
1, it is exactly the diagonally dominant property of a matrix. The ramification of
this condition does not affect the computability of the NE algorithm but may lead to
the residual oscillation during the iterations. Actually, the estimate (3.17) below still
holds with an extra constant, namely

‖F(u2)‖ ≤ max(1, ‖J21J
−1
11 ‖1)‖F (u1, u2)‖,

which indicates that the oscillation of the residual is stable. In order to obtain a better
estimate, we assume ‖J21J

−1
11 ‖1 ≤ 1, which is similar to the proof of the convergence

of the Jacobi and Gauss–Seidel methods for diagonally dominant linear systems of
equations.
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Since J11 is nonsingular, for any u2 in a projection set D2 = {u2 | (u1, u2) ∈ D},
there is an implicitly defined function g(u2) such that

F1(g(u2), u2) = 0.(3.12)

Then our preconditioned nonlinear problem reads as follows: find u2 such that

F(u2) := F2(g(u2), u2) = 0.(3.13)

We call ū = (g(u2), u2) as the cut-extension of u2. Next, we analyze the convergence
of the Newton method applied to the preconditioned system.

To derive the Jacobian of F , one can first take the derivative of (3.12) with respect
to u2 and then have J11g

′(u2) + J12 = 0. Since J11 is nonsingular, we have

g′(u2) = −J−1
11 J12.(3.14)

Then, by differentiating (3.13) and using (3.14), we have

J (u2) := F ′(u2) =
(
J22 − J21J

−1
11 J12

)
(g(u2), u2).(3.15)

Note that J (u2) is the Schur complement of J(ū), where ū = (g(u2), u2) is the cut-
extension of u2. Let p2 := −J−1(u2)F(u2) be the Newton direction of F . We define
a harmonic extension of p2 by p = (h(p2), p2) such that h(p2) satisfies

J11(ū)h(p2) + J12(ū)p2 = 0,

or equivalently h(p2) = g′(u2)p2. Thus, we have the linear approximation property

g(u2 + λp2) ≈ g(u2) + g′(u2)λp2 = g(u2) + λh(p2)

for sufficiently small λ.
Moreover, one can show that p actually is the Newton direction of F at ū since

J(ū)p =

[
J11 J12

J21 J22

] [
h(p2)
p2

]
=

[
0

J (u2)p2

]
=

[
−F1 (g(u2), u2)
−F2 (g(u2), u2)

]
= −F (ū).(3.16)

Thus, we can obtain the precondtioned Newton direction p2 directly by solving the
original Jacobian system J(ū)p = −F (ū) without assembling the Schur complement
J (u2).

Lemma 3.2. If Assumption 2 holds, then for any u = (u1, u2) ∈ D, we have

‖F(u2)‖1 ≤ ‖F2(u1, u2)‖1 + ‖J21J
−1
11 ‖1‖F1(u1, u2)‖1 ≤ ‖F (u1, u2)‖1.(3.17)

Proof. By the Taylor expansion, we have[
F1(g(u2), u2)
F2(g(u2), u2)

]
=

[
F1(u1, u2)
F2(u1, u2)

]
+

[
J11(uθ1, u2)(g(u2)− u1)
J21(uθ1, u2)(g(u2)− u1)

]
,

where uθ1, u1, g(u2) are colinear. Since F1(g(u2), u2) = 0 and J11 is nonsingular, we
have g(u2)− u1 = −J−1

11 F1(u1, u2). Thus,

F(u2) = F2(u1, u2)− (J21J
−1
11 )(uθ1, u2)F1(u1, u2).

By Assumption 2, we have ‖J21J
−1
11 ‖1 ≤ 1. Thus, (3.17) follows from the triangle

inequality

‖F(u2)‖1 ≤ ‖F2(u1, u2)‖1 + ‖J21J
−1
11 F1(u1, u2)‖1 ≤ ‖F (u1, u2)‖1.
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Lemma 3.3. If Assumption 2 holds, then for any u2 ∈ D2, we have

‖(J (u2 + λp2)− J (u2))p2‖1
λ‖J (u2)p2‖21

≤ ‖ (J(v̄)− J(ū)) p‖1
λ‖J(ū)p‖21

.(3.18)

Here p2 := −J−1(u2)F(u2) and p := −J−1(ū)F (ū) are the Newton directions of F
and F , respectively. And ū := (g(u2), u2) and v̄ := (g(u2 + λp2), u2 + λp2) are the
cut-extension of u2 and u2 + λp2, respectively.

Proof. By (3.16), we have

‖J (u2)p2‖1 = ‖J ūp‖1.(3.19)

Here we use the superscript ū to indicate that the Jacobian is evaluated at ū, i.e.,
J ū = J(g(u2), u2). Set v̄ = (g(u2 + λp2), u2 + λp2) and v2 = u2 + λp2. We have

‖
(
J v̄ − J ū

)
p‖1 =

∥∥∥∥[J v̄11h(p2) + J v̄12p2

J v̄21h(p2) + J v̄22p2

]
−
[

0
J (u2)p2

]∥∥∥∥
1

=

∥∥∥∥[(−J v̄11(J ū11)−1J ū12 + J v̄12

)
p2(

−J v̄21(J ū11)−1J ū12 + J v̄22

)
p2

]
−
[

0
J (u2)p2

]∥∥∥∥
1

=

∥∥∥∥[ J̃12p2

J v̄21(J v̄11)−1J̃12p2

]
+

[
0

(J (v2)− J (u2)) p2

]∥∥∥∥
1

= ‖J̃12p2‖1 + ‖J v̄21(J v̄11)−1J̃12p2 + (J (v2)− J (u2)) p2‖1
≥ ‖ (J (v2)− J (u2)) p2‖1 +

(
1− ‖J v̄21(J v̄11)−1‖1

)
‖J̃12p2‖1,

(3.20)

where J̃12 = −J v̄11(J ū11)−1J ū12 + J v̄12. Assumption 2 asserts 1 − ‖J v̄21(J v̄11)−1‖1 ≥ 0.
Thus,

‖ (J (u2 + λp2)− J (u2)) p2‖1 ≤ ‖
(
J v̄ − J ū

)
p‖1.(3.21)

By (3.19) and (3.21), we complete the proof.

The analysis provides us some insight about how to design the NE preconditioner:
1. The nonlinear preconditioning effect. The convergence of Newton-type methods

relies on a certain form of Lipschitz condition. In (3.18) of Lemma 3.3, the left-
hand side is a characterization of the affine contravariant Lipschitz constant of F ,
whereas, for the right-hand side of F , it is not valid since the cut-extension

v̄ :=

(
g(u2 + λp2)
u2 + λp2

)
6= ū+ λp =

(
g(u2) + λh(p2)

u2 + λp2

)
.

However, we have g(u2 + λp2) = g(u2) + λh(p2) + O(λ2) and then v̄ ≈ ū + λp.
Thus, let F be sufficiently smooth and by Lemma 3.3 we obtain, for small λ and
in the sense of `1-norm,

ωF,u2,λ ≤ ωF,ū,λ +O(λ).

If the stagnation in the nonlinear residual appears, Theorem 3.1 tells us that the
optimal step length λ̄k = 1

hk
should be really small. In such situations, the NE

elimination accelerates the convergence of the Newton iteration by making the
residual and the local affine contravariant Lipschitz constant smaller.
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2. How to perform NE? To apply a Newton step to the nonlinear elimination pre-
conditioned system (3.13), one requires a solve of the Schur complement system

J p2 = F

and several solves of g(u2 + λp2) during the line search step to satisfy

‖F(g(u2 + λp2), u2 + λp2)‖ ≤ θ‖F(g(u2), u2)‖.

This is often considered too expensive in realistic applications. Fortunately, accord-
ing to our analysis, we can obtain the precondtioned Newton direction p2 directly
by solving the original Jacobian system

J(ū)p = −F (ū),

provided that F1(ū) = F1(g(u2), u2) = 0. And then we have p = (h(p2), p2).
Moreover, we have the approximation (g(u2 + λp2), u2 + λp2) ≈ ū+ λp. Thus, the
line search can be carried out approximately as

‖F (ū+ λp)‖ ≤ θ‖F (ū)‖.

From this point of view, the NE preconditioner only needs to update the approxi-
mate solution u = (u1, u2) to ū = (g(u2), u2) before each Newton iteration of the
original problem, and the implementation of the Newton iteration does not change,
including assembling the Jacobian matrix and assembling the residual vector and
the linear solver.

3. How to choose the eliminated equations? According to Lemma 3.2, the reduction
rate on the residual is bounded by

‖F2‖1 + ‖J21J
−1
11 ‖1‖F1‖1

‖F‖1
.

Note that the subscripts in F1, F2, J11, and J21 correspond to a partition of the
nonlinear functions and variables. Assumption 2 ensures that there exists a uniform
upper bound for ‖J21J

−1
11 ‖1 with respect to all partitions under consideration. If

the upper bound for ‖J21J
−1
11 ‖1 is strictly smaller than 1, one should choose F1 to

be as large as possible such that these values are reduced through a multiplication
with ‖J21J

−1
11 ‖1.

4. How to choose the eliminated variables? Assumption 2 asserts ‖J21J
−1
11 ‖1 ≤ 1. A

weaker requirement is
‖J21(u)‖1 ≤ ‖J11(u)‖1.

For some elliptic problems, it is usually satisfied due to the diagonally dominant
property. In the cases of the finite element discretization, each equation is asso-
ciated with a basis function and the variables are the coefficients of the solution.
To maximize the norm ‖J11(u)‖1, one should choose the eliminated variables such
that the eliminated equations and the eliminated variables are associated with the
same finite element basis functions. For the saddle-point problems, we should use
some point-block strategies, which means we group all physical components asso-
ciated with a mesh point as a block and always perform elimination for this small
block. This paper does not cover the point-block strategies; please see [14] for more
details.
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3.2. Inexact nonlinear elimination. In this subsection, we first present a
basic nonlinear solver: an IN method [9, 11]. After that, we propose a nonlinearity
checking scheme to detect the eliminated equations and then embed the NE precondi-
tioner into IN, which is briefly described here. Suppose uk is the current approximate
solution; a new approximate solution uk+1 is computed through the following two
steps

ALGORITHM 1 (IN).
Step 1. Find the IN direction pk such that

‖F
(
uk
)

+ F ′(uk)pk‖ ≤ max(ηa, ηr‖F
(
uk
)
‖).

Step 2. Compute the new approximate solution with suitable damping coefficient λk

uk+1 = uk + λkpk.

Here ηa and ηr ∈ [0, 1) are the absolute and relative tolerances that determine
how accurately the Jacobian system needs to be solved, and λk is another scalar that
determines how far one should go in the selected direction.

3.2.1. Nonlinearity checking and subproblem construction. As discussed
following the proof of Theorem 3.1, the nonlinear preconditioning is introduced to
prevent stagnation in the nonlinear iteration. Thus, before performing NE, we need
to evaluate the local nonlinearity of the nonlinear function. We use the following
criterion for the nonlinearity checking:

‖F
(
uk
)
‖

‖F (uk−1)‖
≤ ρrdt,

where ρrdt ∈ (0, 1) is a prechosen tolerance. If the reduction rate in the residual
is smaller than ρrdt, the global IN iteration works well and the NE is not needed.
Otherwise, we perform NE.

NE substitutes the current guess uk by ūk, which is obtained by solving a nonlinear
subproblem. Next we construct the subproblem in an algebraic way. Let n be the
size of the global nonlinear problem and

S = {1, . . . , n}

be the global index set, i.e., one integer for each unknown ui and the corresponding
Fi. Note that, different from the subscripts in section 3.1, here we abuse the notation
of the subscript to indicate a component of the vectors or the degree of freedom. The
following index set collects the degrees of freedom with large residual components
(which we call bad components):

Sb := {j ∈ S
∣∣ |Fj (uk) | > ρres‖F

(
uk
)
‖∞}.

Here ‖F (uk)‖∞ = maxni=1 |Fi(uk)| is the infinity norm taken over the global index set
S and ρres ∈ (0, 1) is a prechosen tolerance.

According to our numerical tests, sharp jumps in the residual function would be
introduced if we only eliminate the equations and variables with indices in Sb. A
trick to prevent these jumps is to extend Sb to Sδb by adding the degrees of freedom
with overlapping δ to Sb. Here the overlapping δ is an integer corresponding to the
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connectivity in the graph characterized by the global Jacobian matrix. Thus, the
resulting subspace is denoted by

V δb = {v | v = (v1, . . . , vn)T ∈ Rn, vi = 0, if i 6∈ S
δ

b}.

The corresponding restriction matrix is denoted by Rδb ∈ Rn×n, whose ith column is
either zero if i 6∈ Sδb or the ith column of the indentity matrix In×n.

Given an approximate solution uk and an index set Sδb , the NE algorithm finds
the correction by approximately solving uδb ∈ V δb ,

F δb (uδb) := RδbF (uδb + uk) = 0.(3.22)

The new approximate solution is obtained as ūk = uδb + uk. It is easy to see that the
Jacobian of (3.22) is Jδb (uδb) = RδbJ(uδb + u)(Rδb)

T , where J = F ′ = ( ∂Fi∂uj
)n×n.

Before performing NE, we need to estimate the computational cost for solving
the subproblem (3.22). If the size of the subproblem is too large, it indicates that the
residual is large in most of the domain and the current approximate solution is really
bad. We need to find a better initial guess or perform the global inexact Newton
iteration in such a situation. If the condition

#(Sδb ) < ρsizen

is satisfied, we solve the subproblem (3.22) approximately such that

‖F δb (uδb)‖ ≤ max(γa, γr‖RδbF
(
uk
)
‖).

Here ρsize is the tolerance to limit the size of the subproblem and γa, γr are the
absolute and relative tolerances on how accurately the subproblem needs to be solved.
We list all the algorithm parameters related to the NE in Table 3.1.

3.2.2. Preconditioned algorithm. We summarize the NEPIN: Given an ini-
tial guess u0 (zero or interpolated from a coarse level solution), a sequence of approx-
imate solution {uk} is computed as follows.

ALGORITHM 2 (NEPIN).
Step 1. Perform the nonlinearity checking:

1.1. If the reduction rate ‖F (uk)‖
‖F (ūk−1)‖ ≤ ρrdt, set ūk = uk and go to Step 3.

1.2. Find the eliminated degrees of freedom and construct the index set Sδb .
1.3. If #(Sδb ) < ρsizen, go to Step 2. Otherwise, set ūk = uk and go to Step 3.

Table 3.1
A list of parameters needed in NE.

NE parameters Description
ρrdt A tolerance to evaluate the local nonlinearity. If the reduction rate of the

residual is smaller than ρrdt, we skip NE.
ρres A tolerance to determine how large a residual component should be for elimi-

nation.
δ An integer to enrich the eliminating index set Sb.

ρsize A tolerance to restrict the size of the subproblem.
γa An absolute tolerance on how accurately the subproblem should be solved.
γr A relative tolerance on how accurately the subproblem should be solved.
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Step 2. Compute the correction uδb ∈ V δb by solving the subproblem approximately

F δb (uδb) := RδbF
(
uδb + uk

)
= 0

with a tolerance tol = max(γa, γr‖RδbF (uk)‖). If ‖F (uδb + uk)‖ < ‖F (uk)‖,
accept the correction and update ūk ← uδb + uk. Go to Step 3.

Step 3. Compute the new approximate solution uk+1 by one step of IN for the original
nonlinear problem

F (u) = 0

with the current guess ūk. If the global convergent condition is satisfied, stop.
Otherwise, go to Step 1.

In an NE step, we only accept the correction by NE if the resulting residual
norm is smaller. This is based on Lemma 3.2, which tells us that an effective NE
should reduce the global residual. This requirement actually is very strong. However,
according to our numerical tests, it can be satisfied if a good initial guess is provided
or the tolerance δ is appropriately set.

3.2.3. Parallelization and global algebraic solvers. The index set Sδb for
the bad components is constructed in a purely algebraic fashion. And the NE step
described in previous sections is carried out on the whole domain. For the purpose
of parallel computing, we decompose the domain into nonoverlapping subdomains
Ω = ∪Nl=1Ω̄l and construct index sets of bad components on every subdomain. The
NE on the subdomains can be carried out in parallel. Moreover, the parallel iterative
linear solver with restricted additive Schwarz (RAS) preconditioner is implemented
based on the same data layout.

First we discuss the parallelization of NE in detail. We assume that S1, . . . , SN
is a nonoverlapping partition of S in the sense that

S = ∪Ni=lSl, Sl ∩ Sk = ∅ if l 6= k.

One can form the index set Si by collecting all the degrees of freedom located in
subdomain Ωi. The index sets corresponding to the bad components are defined as

Sb,l = Sb ∩ Sl = {j ∈ Sl
∣∣ |Fj (uk) | > ρres‖F

(
uk
)
‖∞}, l = 1 : N.

Note that the subscript b is an abbreviation of “bad,” while l is the index for the
subdomain. The selection procedure of Sb,l is carried out locally on subdomain Ωl,
but the threshold ‖F (uk)‖∞ is evaluated globally on all processors. The extension
from Sb,l to Sδb,l is by adding the degrees of freedom with an algebraic distant δ to

Sb,l. Thus, Sδb,l may contain some ghost indices, which belong to other processors.
We can then define the local spaces of bad components similarly as

V δb,l = {v | v = (v1, . . . , vn)T ∈ Rn, vi = 0, if i 6∈ S
δ

b,l},

as well as the corresponding restriction (also prolongation) matrix Rδb,l. The subprob-

lem on each subdomain is to approximately find uδb,l ∈ V δb,l such that

F δb,l(u
δ
b,l) := Rδb,lF

(
uδb,l + uk

)
= 0

with zero initial guess. In the situation of parallel computing, we do not restrict the
size of the subproblems. The parallel NE step is ended by a restricted update for the
approximate solution
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ūk ← uk +
N∑
l=1

R0
b,lu

δ
b,l.

Note that we accept the update only if the global residual ‖F (ūk)‖ is smaller than
‖F (ūk)‖.

Second, we discuss some basic components of the global algebraic solvers. Both
the IN and NEPIN algorithms involve a global Newton iteration, for which we always
use the same global settings. The stopping criterion for the global Newton iterations is

‖F
(
uk
)
‖ ≤ max(1e−10, 1e−6‖F (u0)‖).

The backtracking line search strategy is used to determine the maximum step length
to move along the approximate Newton direction. For solving the global Jacobian
systems, we use the right-preconditioned GMRES with zero initial guess and the
restart is set to 200. The stopping criterion for the linear solver is

‖F
(
uk
)

+ F ′(uk)pk‖ ≤ max(1e−10, 1e−5‖F
(
uk
)
‖).

The RAS preconditioner is implemented based on the same data layout as the NE
elimination. Corresponding to the partition S = ∪Nl=1Sl, we denote the local spaces by

Vl and the local restriction (also prolongation) by Rδ̃l . Thus, the RAS preconditioner
can be written as

Bk =
∑
l

R0
l (A

k,δ̃
l )−1Rδ̃l ,

where Ak,δ̃l = Rδ̃l J
kRδ̃l . We set the overlap as δ̃ = 3 and use LU factorization to solve

the subdomain problems. There are many other choices for the linear solver and the
linear preconditioner. Since the focus of the paper is on the nonlinear solver, we don’t
exploit the other possibilities related to the linear problems.

4. Numerical results and discussion. In this section, we present some numer-
ical results for solving the nonlinear variational problem (2.3). Our three-dimensional
geometry is built through extruding the cross section in Figure 2.1 by 2mm. We
assume the inner radius of the artery is 1cm. The thickness of the media and ad-
ventitia layers is 1.32mm and 0.96mm (see [12]), whereas the mean thickness of the
plaques of lipid pool and calcification are 3mm and 2mm. A pressure of up to 24kPa
(≈ 180mmHg) is applied to the interior of the arterial segment, which is the upper
range of the physiological blood pressure. The discretization for hyperelasticity and
the nonlinear solvers described in the previous sections are implemented by using
FEniCS [21] and PETSc [1], respectively.

We first validate our algorithm and implementation. Then we compare the per-
formance of the classical IN method with our new algorithm. In the end, we discuss
the robustness of NE.

4.1. Validation of algorithm and software. It is hard to construct an ana-
lytic solution for the nonlinear variational problems. One way to validate the result is
to observe the mesh convergence of the numerical solutions. We generate four tetra-
hedral meshes for the arterial segment, denoted M1, M2, M3, and M4. The degrees of
freedom defined on these meshes are 10080, 21693, 101046, and 653601, respectively.
Because of the curved boundary of the artery, the domains occupied by these meshes
are a little bit different. We plot the numerical solutions of displacement in Figure 4.1
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Fig. 4.1. Numerical solutions of the displacement corresponding to meshes M1, M2, M3, M4

from left to right (simple boundary load).

Fig. 4.2. von Mises stresses on the deformed configurations corresponding to meshes M1, M2,
M3, M4 from left to right (follower boundary load).

Table 4.1
Errors of numerical solutions: ē = Ih4

hi
ūhi − ūh4

, ei = Ih4
hi
uhi − uh4

, and dalg stands for the

difference of numerical solutions obtained by IN and NEPIN.

Simple pressure load Follower pressure load

Mesh ‖dalg‖0 |dalg |1 ‖ēi‖0 |ēi|1 ‖dalg‖0 |dalg |1 ‖ei‖0 |ei|1
M1 2.63e−07 2.72e−09 0.294 0.617 4.48e−10 7.23e−11 0.247 0.698
M2 4.23e−10 4.96e−11 0.147 0.401 1.99e−9 1.52e−9 0.175 0.449
M3 3.04e−9 3.62e−10 0.071 0.234 1.95e−7 1.28e−6 0.089 0.274

for the case of the simple boundary load and the von Mises stresses in Figure 4.2 for
the case of follower boundary load. The deformation driven by the simple pressure
load is bigger than that driven by the follower pressure load, but their distributions
and the stresses are similar.

We compute the difference of the numerical solutions obtained by IN and NEPIN;
see Table 4.1. They are almost identical. We also consider the actual measurements
of the solution error by taking the numerical solution on the finest mesh as a reference
solution and interpolating the coarse level solutions into the finest mesh. Table 4.1
lists the errors in L2- and H1-norms. We denote by ūhi the numerical solution on Mi

driven by the simple pressure load and by uhi that driven by the follower pressure

load. We also denote the nodal interpolation operator by I
hj
hi

, which prolongates the
numerical solutions from Mi to Mj . Note that some nodal values are computed via
extrapolation since these nodes of the fine mesh are outside the domain occupied by
the coarse mesh. We cannot compute the convergence orders since the meshes are not
quasi-uniform. But it is still clear that the computed solutions converge as the mesh
size goes to zero.

4.2. A comparison of IN and NEPIN. To get the best performance of
NEPIN, we try various settings of the parameters needed in NE and eventually
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Table 4.2
Settings for the parameters needed in NE.

Mesh ρrdt ρres δ ρsize γa γr
M1 0.7 0.9 0 5% 1e−6 1e−1
M2 0.7 0.9 0 5% 1e−6 1e−1
M3 0.7 0.8 1 5% 1e−6 1e−1
M4 0.7 0.8 2 5% 1e−6 1e−1
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Fig. 4.3. Histories of IN and NEPIN (left: simple pressure load; right: follower pressure load).

recommend using the settings in Table 4.2. Figure 4.3 shows the histories of the
residual of IN and NEPIN starting from the best available initial guesses. Namely,
the initial guess for Mi is interpolated from the numerical solution of Mi−1. The
convergence of NEPIN is almost uniform for all meshes if the initial guesses are in-
terpolated from a coarse level approximation. For the coarsest grid, the result is not
as good as others. But NE still improves the convergence a little bit in this case. In
the context of quasi-incompressible linear elasticity, the nodal interpolation is unsta-
ble since it does not preserve the volume. Note that the change of material volume
induces a large residual due to the volumetric term in the hyperelastic energy. But in
our numerical tests for quasi-incompressible hyperelasticity, the combination of NE
with the nodal interpolation works well.

We also use different initial guesses to compare the performance of IN and NEPIN.
The numbers of global Newton iterations are summarized in Tables 4.3–4.4. The letter
F indicates that the iteration does not converge in 200 steps. The first thing we observe
from Tables 4.3–4.4 is that NEPIN always converges faster than IN while using the
same initial guess and the same mesh. For the zero initial guess, the performance of
NE is not good enough. Actually, both methods with zero initial guess fail in the case
of the follower load. If an initial guess is too far from the solution, the local NE does
not help much for the global Newton iteration. However, once an approximate initial
guess is provided, the performance of nonlinear elimination is prominent. Note that
IN with the same initial guess still suffers from slow convergence.

4.3. The effect of the tolerances in NEPIN. It is unfair to directly compare
the total number of global nonlinear iterations of IN and NEPIN, since NEPIN has
another Newton iteration wrapped inside. In this subsection, we expose the detail
of the inner Newton iteration of NEPIN. We set ρrdt = 0.7 to evaluate the local
nonlinearity and set ρsize = 5% to limit the subproblem size. There are two main
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Table 4.3
The number of global Newton iterations with different initial guesses (simple pressure load).

Method IN NEPIN
Initial guess\mesh M1 M2 M3 M4 M1 M2 M3 M4

0 104 121 109 93 38 49 58 92

I
hi
h1
ūh1

100 94 F 21 24 F

I
hi
h2
ūh2

106 F 21 23

I
hi
h3
ūh3

F 22

Table 4.4
The number of global Newton iterations with different initial guesses (follower pressure load).

Method IN NEPIN
Initial guess\Mesh M1 M2 M3 M4 M1 M2 M3 M4

0 F F F F F F F F

I
hi
h1
ūh1

28 88 144 F 23 28 30 69

I
hi
h1
uh1

87 97 F 20 21 F

I
hi
h2
uh2

42 F 14 33

I
hi
h3
uh3

F 17

Table 4.5
The performance of NEPIN using different tolerances δ and ρres (GN: the number of global

Newton iterations; ANE: the total Newton iterations for NE
the number of NE

; pct.: the maximum percentage of the elim-

inated equations).

Mesh M2 M3 M4

δ \ρres 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9

0
GN 25 23 21 30 34 47 31 52 50

ANE 21
10

22
14

25
17

68
17

57
29

77
42

60
26

118
47

108
45

pct. 3.9% 4.4% 3.0% 3.3% 4.3% 0.8% 0.8% 0.5% 0.2%

1
GN 25 32 30 24 21 26 24 28 34

ANE 42
5

30
4

71
10

99
12

133
12

108
21

119
16

135
22

175
26

pct. 4.9% 4.9% 4.9% 4.0% 4.1% 4.1% 3.6% 1.9% 0.6%

2
GN 100 69 56 29 30 22 26 21 30

ANE 0
0

8
1

50
3

161
13

131
12

117
12

110
12

128
14

199
23

pct. 0% 4.5% 4.9% 4.4% 3.6% 4.8% 3.0% 2.7% 1.2%

factors impacting the performance of NEPIN: how to choose the equations to eliminate
(which depends on the choice of δ and ρres) and how approximately the subproblems
need to be solved (which depends on the choice of γa and γr). Next we investigate
these two factors one by one based on the test example with simple pressure load.

First, we fix γa = 1e−6 and γr = 1e−1. The index set Sδb of the eliminated
equations is determined by two tolerances ρres and δ. Table 4.5 lists the convergence
results of NEPIN for different values of ρres and δ. In the middle row of the table,
where δ = 1, the performance of NEPIN is not sensitive to the choice of ρres. The
number (GN) of global Newton iterations varies from 21 to 34, which indicates the
convergence of NEPIN is almost uniform with respect to the mesh size. In the other
rows of the table, the values of GN in the blocks of (δ = 0,M4) and (δ = 2,M2) vary
drastically as ρres is changed. For the coarse mesh M2, δ should not be larger than 1;
otherwise the size of Sδn, i.e., the number of equations to eliminate, is larger than the
threshold nρsize and hence the NE step is skipped. For the fine mesh M4, δ should be
larger than 0; otherwise the preconditioning effect of NEPIN is too weak and hence
the decrease of the residual is too slow.
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Table 4.6
The performance of NEPIN using different tolerance γr for subproblems.

Mesh\γr 1e−1 1e−2 1e−4 one step
GN ANE GN ANE GN ANE GN ANE

M2 23 25
17

25 80
18

23 66
17

23 21
21

M3 24 121
14

25 203
15

24 251
15

70 44
44

M4 24 180
17

19 202
12

19 301
15

98 82
82

A satisfying observation from Table 4.5 is that the percentage (see the values of
pct.) of the equations to eliminate decreases as the mesh is refined, which indicates
that the size of the subproblems is not proportional to the size of the global problems.
Another statistic in Table 4.5 is ANE, which stands for the average Newton iterations
per NE step. The denominator of ANE is the number of NE steps applied during the
global nonlinear iteration, while the numerator of ANE is the total Newton iterations
for all the NE steps. The value of ANE increases if δ increases, which indicates that
more computational cost is paid for enforcing the nonlinear preconditioning effect.
For the recommended choice δ = 1, the value of ANE is about 8 for all the testing
meshes, but the number of NE steps increases a little bit.

Second, we fix δ = 1, ρres = 0.7, and γa = 1e−6. Table 4.6 shows the performance
of NEPIN for different γr. A very loose tolerance γr = 1e−1 is sufficient, which is the
same as the results in [15]. Higher accuracy does not improve the convergence too
much. However, only one step in the nonlinear iteration of NE is not enough. Note
that it is always the relative tolerance γr that stops the nonlinear iteration of NE. If the
residual is of magnitude γa = 1e−6, the quadratic convergence of Newton’s method
is observed for our test examples. That is why we do not expose the performance of
NEPIN for different γa.

5. Conclusions. The main contribution of this paper is to present a detailed
analysis of the preconditioning effect of NE and to apply the proposed method to
three-dimensional heterogeneous hyperelastic problems. In theory, we prove that the
exact NE is able to reduce the residual and the local Lipschitz constant of the nonlinear
function and hence accelerates the convergence of the Newton method. For numerical
computation, we propose a robust strategy to detect the equations causing the non-
linear stagnation. We also find two effective tricks to ease the thrashing phenomenon
of NE: using an initial guess interpolated from a coarse level solution and extending
the eliminating index set by adding the neighboring degrees of freedom. In future
work, we will consider other arterial wall problems with patient-specific geometry and
the parallel performance of the algorithm.
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