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Abstract

In many settings it is important for one to be
able to understand why a model made a partic-
ular prediction. In NLP this often entails ex-
tracting snippets of an input text ‘responsible
for’ corresponding model output; when such a
snippet comprises tokens that indeed informed
the model’s prediction, it is a faithful explana-
tion. In some settings, faithfulness may be crit-
ical to ensure transparency. Lei et al. (2016)
proposed a model to produce faithful ratio-
nales for neural text classification by defining
independent snippet extraction and prediction
modules. However, the discrete selection over
input tokens performed by this method com-
plicates training, leading to high variance and
requiring careful hyperparameter tuning. We
propose a simpler variant of this approach that
provides faithful explanations by construction.
In our scheme, named FRESH, arbitrary fea-
ture importance scores (e.g., gradients from a
trained model) are used to induce binary la-
bels over token inputs, which an extractor can
be trained to predict. An independent classi-
fier module is then trained exclusively on snip-
pets provided by the extractor; these snippets
thus constitute faithful explanations, even if
the classifier is arbitrarily complex. In both
automatic and manual evaluations we find that
variants of this simple framework yield predic-
tive performance superior to ‘end-to-end’ ap-
proaches, while being more general and easier
to train.1

1 Introduction

Neural models dominate NLP these days, but it
remains difficult to know why such models make
specific predictions for sequential text inputs. This
problem has been exacerbated by the adoption of
deep contextualized word representations, whose
architectures permit arbitrary and interdependent

1Code is available at https://github.com/
successar/FRESH

interactions between all inputs, making it particu-
larly difficult to know which inputs contributed to
any specific prediction.

Concretely, in a bidirectional RNN or Trans-
former model, the contextual embedding for a
word at position j in instance x may encode in-
formation from any or all of the tokens at po-
sitions 1 to j-1 and j+1 to |x|. Consequently,
continuous scores such as attention weights (Bah-
danau et al., 2015) induced over these contextu-
alized embeddings reflect the importance not of
individual inputs, but rather of unknown interac-
tions between all input tokens. This makes it mis-
leading to present heatmaps of these scores over
the original token inputs as an explanation for a
prediction (Jain and Wallace, 2019; Wiegreffe and
Pinter, 2019; Serrano and Smith, 2019).

The key missing property here is faithful-
ness (Lipton, 2018): An explanation provided by
a model is faithful if it reflects the information ac-
tually used by said model to come to a disposition.
In some settings the ability of a model to provide
faithful explanations may be paramount. For ex-
ample, without faithful explanations, we cannot
know whether a model is exploiting sensitive fea-
tures such as gender (Pruthi et al., 2020).

We propose an approach to neural text classifi-
cation that provides faithful explanations for pre-
dictions by construction. Following prior work in
this direction (Lei et al., 2016), we decompose our
model into independent extraction and prediction
modules, such that the latter uses only inputs se-
lected by the former. This discrete selection over
inputs allows one to use an arbitrarily complex
prediction network while still being able to guar-
antee that it uses only the extracted input features
to inform its output.

The main drawback to this rationalization ap-
proach has been the difficulty of training the
two components jointly under only instance-level

https://github.com/successar/FRESH
https://github.com/successar/FRESH


Query: What is the only difference between a reflection in a mirror and the actual image ? | Answer: It is exactly the same | Label: False 

[Human] You have seen your own reflection in a mirror . The person looking back at you looks just like you . Where does that reflected person appear to be standing ? Yes , 

they appear to be on the other side of the mirror . That is really strange to think about , but very cool . Have you ever waved at your reflection in a mirror ? The reflected image will 

wave back at you . Here is something to try next time you stand in front of a mirror . Wave to your reflection with your right hand . What hand do you think the reflection will wave 

back with ? The same hand ? A different hand ? You will notice something interesting . The reflection waves back with the hand on the same side as you , but it is their left hand . 

The image in a reflection is reversed . This is just like the image of the sign above . Light rays strike flat shiny surfaces and are reflected . The reflections are reversed . 

[Lei et al.] You have seen your own reflection in a mirror . The person looking back at you looks just like you . Where does that reflected person appear to be standing ? Yes , they 

appear to be on the other side of the mirror . That is really strange to think about , but very cool . Have you ever waved at your reflection in a mirror ? The reflected image 

will wave back at you . Here is something to try next time you stand in front of a mirror . Wave to your reflection with your right hand . What hand do you think the reflection will 

wave back with ? The same hand ? A different hand ? You will notice something interesting . The reflection waves back with the hand on the same side as you , but it is their left 

hand . The image in a reflection is reversed . This is just like the image of the sign above . Light rays strike flat shiny surfaces and are reflected . The reflections are reversed . 

[FRESH] You have seen your own reflection in a mirror . The person looking back at you looks just like you . Where does that reflected person appear to be standing ? Yes , they 

appear to be on the other side of the mirror . That is really strange to think about , but very cool . Have you ever waved at your reflection in a mirror ? The reflected image will wave 

back at you . Here is something to try next time you stand in front of a mirror . Wave to your reflection with your right hand . What hand do you think the reflection will wave back 

with ? The same hand ? A different hand ? You will notice something interesting . The reflection waves back with the hand on the same side as you , but it is their left hand . The 

image in a reflection is reversed . This is just like the image of the sign above . Light rays strike flat shiny surfaces and are reflected . The reflections are reversed . 

 

 

 

Figure 1: Contiguous rationales extracted using Lei et al. (2016) and FRESH models for an example from the
MultiRC dataset. We also show the reference rationale associated with this example (top).

supervision (i.e., without token labels). This
has necessitated training the extraction module
via reinforcement learning — namely REIN-
FORCE (Williams, 1992) — which exhibits high
variance and is particularly sensitive to choice of
hyperparameters. Recent work (Bastings et al.,
2019) has proposed a differentiable mechanism
to perform binary token selection, but this relies
on the reparameterization trick, which similarly
complicates training. Methods using the repa-
rameterization trick tend to zero out token em-
beddings, which may adversely affect training in
transformer-based models, especially when one is
not fine-tuning lower layers of the model due to
resource constraints, as in our experiments.

To avoid the complexity inherent to training
under a remote supervision signal, we introduce
Faithful Rationale Extraction from Saliency
tHresholding (FRESH), which disconnects the
training regimes of the extractor and predictor net-
works, allowing each to be trained separately. We
still assume only instance-level supervision; the
trick is to define a method of selecting snippets
from inputs — rationales (Zaidan et al., 2007) —
that can be used to support prediction. Here we
propose using arbitrary feature importance scor-
ing techniques to do so. Notably, these need not
satisfy the ‘faithfulness’ criterion.

In this paper we evaluate variants of FRESH
that use attention (Bahdanau et al., 2015) and gra-
dient methods (Li et al., 2016; Simonyan et al.,
2014) as illustrative feature scoring mechanisms.
These provide continuous scores for features; we
derive discrete rationales from them using simple
heuristics. An independent network then uses only
the extracted rationales to make predictions.

Disconnecting the training tie between the in-

dependent rationale extractor and prediction mod-
ules means that FRESH is faithful by construc-
tion: The snippet that is ultimately used to inform
a prediction can be presented as a faithful expla-
nation because this was the only text available to
the predictor. In contrast to prior discrete rational-
ization methods, FRESH greatly simplifies train-
ing, and can accommodate any feature importance
scoring metric. In our experiments, we also find
that it yields superior predictive performance.

In addition to being faithful (and affording
strong predictive performance), extracted ratio-
nales would ideally be intuitive to humans, i.e.,
plausible. To evaluate this we run a small user
study (section 8) in which humans both evaluate
the readability of extracted rationales and attempt
to classify instances based on them, effectively
serving as a prediction module in the FRESH
framework. An example illustrating this property
is presented in Figure 1.

2 Related Work

Types of explainability. Lipton (2018); Doshi-
Velez and Kim (2017) and Rudin (2019) pro-
vide overviews on definitions and characteriza-
tions of interpretability. Lertvittayakumjorn and
Toni (2019) classify three possible uses of text ex-
planations: (i) revealing model behavior, (ii) justi-
fying model predictions, and (iii) helping humans
investigate uncertain predictions. Attempting to
guarantee the faithfulness of a feature selection
or explanation generation method is a more chal-
lenging question than finding explanations which
humans find acceptable (Rudin, 2019). But the
benefits of developing such methods is profound:
Faithful explanations provide a means to reveal a
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then defined so that the overall expected loss L is
minimized over both modules:

minimize
✓enc,✓gen

nX

i=1

Ezi⇠gen(xi)L(enc(xi, zi), yi). (1)

The objective in (1) is difficult to optimize as it
requires marginalizing over all possible rationales
z. The authors follow an approximation approach
based on drawing samples from gen(x) and av-
eraging their associated gradients in the learning
process. They find that this REINFORCE-style
estimation works well for rationale extraction, but
may have high variance as a result of the large state
space of possible rationales under consideration,
which is difficult to efficiently explore.2

The loss function L used by Lei et al. (2016) is
a squared `2 loss between the prediction enc(x, z)
and the reference label y, with added regulariza-
tion terms placed on the binary mask z to encour-
age rationale conciseness and contiguity. We mod-
ify the conciseness term so that the model is not
penalized as long as a predefined desired rationale
length d has not been passed:

⌦(z) = �1 max(0, kzk � d) + �2

X

t

|zt � zt�1|.

(2)

3.2 Faithful Rational Extraction from
Saliency tHresholding (FRESH)

To avoid the search-space limitations introduced
by REINFORCE, we introduce FRESH, in which
we decompose the original prediction task into
three sub-components, each fitted by its own in-
dependent model. These are the support model
supp, the rationale extractor model ext, and the
classifier pred.

We train supp end-to-end to predict y, ulti-
mately using its outputs only to extract continu-
ous feature importance scores from instances in
X . These scores are binarized by ext either by a
parameterized model trained on the output scores,
or by discretization heuristics. Finally, pred is
trained (and tested) only on text provided by ext.
Figure 1 depicts this proposed framework. In

2The approach proposed by Lei et al. (2016) was very re-
cently extended in Yu et al. (2019b), in which a third compo-
nent (in addition to gen and enc) was introduced to, in part,
encourage comprehensiveness of extracted rationales. How-
ever, the basic model and optimization procedure remains the
same as in Lei et al. (2016).

downstream application, only ext and pred are
used.

A central advantage of our decomposed setup
lies in the arbitrariness of the rationale extraction
mechanism. Any function over supp’s predictions
which assigns scores to the input tokens in attempt
to quantify their importance can serve as an input
to ext, even if it is applied after the model has
completed its training. Examples of such func-
tions are gradient analysis methods and LIME. In
particular, the function need not faithfully select
features that informed the predictions from supp,
which in itself may not include a built-in impor-
tance scorer such as a token-level attention mod-
ule. Similarly, ext might be trained heuristically,
for example to extract the top k inputs respon-
sible for the greatest mass of scores from an in-
stance. The key design decision here is how best
to map scores to discrete rationales. Any strategy
for this will likely involve trading off conciseness
(shorter rationales) with performance (greater pre-
dictive accuracy).

The guaranteed outcome of this approach is that
pred — the model ultimately used to make pre-
dictions — is faithful by construction. This model
only consumes the text provided by ext, which in
turn was trained separately. In an interpretabil-
ity scenario, we can therefore present users with
the snippet that pred used to make a prediction
as an explanation, and we can be certain that the
only tokens that contributed to the prediction made
by pred are those included in the extracted snip-
pets provided by ext. This is in contrast to stan-
dard end-to-end neural classifiers that induce soft
importance scores over contextualized (hence en-
tangled) representations of inputs; as discussed
above, because such representations may include
information about other inputs, these are not nec-
essarily faithful.

Another advantage to this approach is in the po-
tential of using the lighter pred model as a replace-
ment for supp, both in an inference scenario where
it can consume fewer tokens and act faster, and
in a large-scale training mode where it can con-
sume more instances at a more efficient rate, once
we have faith in ext. In a computer-aided human
classification system, this difference can become
vital as humans take substantially longer time to
read full documents and produce predictions than
if provided rationales, and their time tends to cost
significantly more than that of equivalent com-
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then defined so that the overall expected loss L is
minimized over both modules:

minimize
✓enc,✓gen

nX

i=1

Ezi⇠gen(xi)L(enc(xi, zi), yi). (1)

The objective in (1) is difficult to optimize as it
requires marginalizing over all possible rationales
z. The authors follow an approximation approach
based on drawing samples from gen(x) and av-
eraging their associated gradients in the learning
process. They find that this REINFORCE-style
estimation works well for rationale extraction, but
may have high variance as a result of the large state
space of possible rationales under consideration,
which is difficult to efficiently explore.2

The loss function L used by Lei et al. (2016) is
a squared `2 loss between the prediction enc(x, z)
and the reference label y, with added regulariza-
tion terms placed on the binary mask z to encour-
age rationale conciseness and contiguity. We mod-
ify the conciseness term so that the model is not
penalized as long as a predefined desired rationale
length d has not been passed:

⌦(z) = �1 max(0, kzk � d) + �2

X

t

|zt � zt�1|.

(2)

3.2 Faithful Rational Extraction from
Saliency tHresholding (FRESH)

To avoid the search-space limitations introduced
by REINFORCE, we introduce FRESH, in which
we decompose the original prediction task into
three sub-components, each fitted by its own in-
dependent model. These are the support model
supp, the rationale extractor model ext, and the
classifier pred.

We train supp end-to-end to predict y, ulti-
mately using its outputs only to extract continu-
ous feature importance scores from instances in
X . These scores are binarized by ext either by a
parameterized model trained on the output scores,
or by discretization heuristics. Finally, pred is
trained (and tested) only on text provided by ext.
Figure 1 depicts this proposed framework. In

2The approach proposed by Lei et al. (2016) was very re-
cently extended in Yu et al. (2019b), in which a third compo-
nent (in addition to gen and enc) was introduced to, in part,
encourage comprehensiveness of extracted rationales. How-
ever, the basic model and optimization procedure remains the
same as in Lei et al. (2016).

downstream application, only ext and pred are
used.

A central advantage of our decomposed setup
lies in the arbitrariness of the rationale extraction
mechanism. Any function over supp’s predictions
which assigns scores to the input tokens in attempt
to quantify their importance can serve as an input
to ext, even if it is applied after the model has
completed its training. Examples of such func-
tions are gradient analysis methods and LIME. In
particular, the function need not faithfully select
features that informed the predictions from supp,
which in itself may not include a built-in impor-
tance scorer such as a token-level attention mod-
ule. Similarly, ext might be trained heuristically,
for example to extract the top k inputs respon-
sible for the greatest mass of scores from an in-
stance. The key design decision here is how best
to map scores to discrete rationales. Any strategy
for this will likely involve trading off conciseness
(shorter rationales) with performance (greater pre-
dictive accuracy).

The guaranteed outcome of this approach is that
pred — the model ultimately used to make pre-
dictions — is faithful by construction. This model
only consumes the text provided by ext, which in
turn was trained separately. In an interpretabil-
ity scenario, we can therefore present users with
the snippet that pred used to make a prediction
as an explanation, and we can be certain that the
only tokens that contributed to the prediction made
by pred are those included in the extracted snip-
pets provided by ext. This is in contrast to stan-
dard end-to-end neural classifiers that induce soft
importance scores over contextualized (hence en-
tangled) representations of inputs; as discussed
above, because such representations may include
information about other inputs, these are not nec-
essarily faithful.

Another advantage to this approach is in the po-
tential of using the lighter pred model as a replace-
ment for supp, both in an inference scenario where
it can consume fewer tokens and act faster, and
in a large-scale training mode where it can con-
sume more instances at a more efficient rate, once
we have faith in ext. In a computer-aided human
classification system, this difference can become
vital as humans take substantially longer time to
read full documents and produce predictions than
if provided rationales, and their time tends to cost
significantly more than that of equivalent com-
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then defined so that the overall expected loss L is
minimized over both modules:

minimize
✓enc,✓gen

nX

i=1

Ezi⇠gen(xi)L(enc(xi, zi), yi). (1)

The objective in (1) is difficult to optimize as it
requires marginalizing over all possible rationales
z. The authors follow an approximation approach
based on drawing samples from gen(x) and av-
eraging their associated gradients in the learning
process. They find that this REINFORCE-style
estimation works well for rationale extraction, but
may have high variance as a result of the large state
space of possible rationales under consideration,
which is difficult to efficiently explore.2

The loss function L used by Lei et al. (2016) is
a squared `2 loss between the prediction enc(x, z)
and the reference label y, with added regulariza-
tion terms placed on the binary mask z to encour-
age rationale conciseness and contiguity. We mod-
ify the conciseness term so that the model is not
penalized as long as a predefined desired rationale
length d has not been passed:

⌦(z) = �1 max(0, kzk � d) + �2

X

t

|zt � zt�1|.

(2)

3.2 Faithful Rational Extraction from
Saliency tHresholding (FRESH)

To avoid the search-space limitations introduced
by REINFORCE, we introduce FRESH, in which
we decompose the original prediction task into
three sub-components, each fitted by its own in-
dependent model. These are the support model
supp, the rationale extractor model ext, and the
classifier pred.

We train supp end-to-end to predict y, ulti-
mately using its outputs only to extract continu-
ous feature importance scores from instances in
X . These scores are binarized by ext either by a
parameterized model trained on the output scores,
or by discretization heuristics. Finally, pred is
trained (and tested) only on text provided by ext.
Figure 1 depicts this proposed framework. In

2The approach proposed by Lei et al. (2016) was very re-
cently extended in Yu et al. (2019b), in which a third compo-
nent (in addition to gen and enc) was introduced to, in part,
encourage comprehensiveness of extracted rationales. How-
ever, the basic model and optimization procedure remains the
same as in Lei et al. (2016).

downstream application, only ext and pred are
used.

A central advantage of our decomposed setup
lies in the arbitrariness of the rationale extraction
mechanism. Any function over supp’s predictions
which assigns scores to the input tokens in attempt
to quantify their importance can serve as an input
to ext, even if it is applied after the model has
completed its training. Examples of such func-
tions are gradient analysis methods and LIME. In
particular, the function need not faithfully select
features that informed the predictions from supp,
which in itself may not include a built-in impor-
tance scorer such as a token-level attention mod-
ule. Similarly, ext might be trained heuristically,
for example to extract the top k inputs respon-
sible for the greatest mass of scores from an in-
stance. The key design decision here is how best
to map scores to discrete rationales. Any strategy
for this will likely involve trading off conciseness
(shorter rationales) with performance (greater pre-
dictive accuracy).

The guaranteed outcome of this approach is that
pred — the model ultimately used to make pre-
dictions — is faithful by construction. This model
only consumes the text provided by ext, which in
turn was trained separately. In an interpretabil-
ity scenario, we can therefore present users with
the snippet that pred used to make a prediction
as an explanation, and we can be certain that the
only tokens that contributed to the prediction made
by pred are those included in the extracted snip-
pets provided by ext. This is in contrast to stan-
dard end-to-end neural classifiers that induce soft
importance scores over contextualized (hence en-
tangled) representations of inputs; as discussed
above, because such representations may include
information about other inputs, these are not nec-
essarily faithful.

Another advantage to this approach is in the po-
tential of using the lighter pred model as a replace-
ment for supp, both in an inference scenario where
it can consume fewer tokens and act faster, and
in a large-scale training mode where it can con-
sume more instances at a more efficient rate, once
we have faith in ext. In a computer-aided human
classification system, this difference can become
vital as humans take substantially longer time to
read full documents and produce predictions than
if provided rationales, and their time tends to cost
significantly more than that of equivalent com-

Figure 2: A schematic of the FRESH approach. (1) The first model, supp, is trained end-to-end for prediction but
used only to ‘importance score’ features. These scores can be derived via any method, e.g., gradients or attention,
and are not required to faithfully explain model outputs. Scores are heuristically discretized into binary labels. (2)
An extraction module ext may be a parameterized sequence tagging model trained on the pseudo-targets derived
in (1), or heuristics over importance scores directly, creating a new dataset 〈x̃, y〉 comprising pairs of extracted
rationales only. (3) This new dataset is used to train a final classifier, pred, which only ever sees rationales.

model’s underlying decision-making process.

Issues with current explainability methods in
NLP. A recent line of work in NLP has begun
to critically examine the use of certain methods
for constructing ‘heatmaps’ over input tokens to
explain predictions. In particular, existing fea-
ture attribution methods may not provide robust,
faithful explanations (Feng et al., 2018; Jain and
Wallace, 2019; Wiegreffe and Pinter, 2019; Ser-
rano and Smith, 2019; Brunner et al., 2020; Zhong
et al., 2019; Pruthi et al., 2020).

Wiegreffe and Pinter (2019) argue for classify-
ing model interpretability into two groups: faith-
fulness and plausibility. Lei et al. (2016) note that
a desirable set of criteria for rationales is that they
are sufficient, short, and coherent. Yu et al. (2019)
extend these criteria by additionally arguing for
comprehensiveness, which dictates that a rationale
should contain all relevant and useful information.

Prior efforts (Lei et al., 2016; Yu et al., 2019;
Bastings et al., 2019) have proposed methods
that produce faithful explanations via a two-model
setup, defining a generator network that imposes
hard attention over inputs and then passes these to
a second model for prediction. Yu et al. (2019) ex-
tend this by adding a third adversarial model into
the framework. These models are trained jointly,
which is difficult because hard attention is discrete
and necessitates recourse to reinforcement learn-
ing, i.e., REINFORCE (Williams, 1992), or the
reparameterization trick (Bastings et al., 2019).

Human evaluations. Kim et al. 2016 states: “a
method is interpretable if a user can correctly pre-

dict the method’s result”; they conducted user
studies to test this. In a similar plausibility vein,
others have proposed testing whether humans like
rationales (Ehsan et al., 2018, 2019). We follow
these efforts by eliciting human judgments on ra-
tionales, although we view plausibility as a sec-
ondary aim here.

3 Faithfulness through Discrete
Rationale Selection

We now propose FRESH, our framework for
training explainable neural predictors. We begin
by describing the two-model, discrete rationale se-
lection approach introduced by Lei et al. (2016)
(§3.1), which serves as the starting point for our
framework, detailed in §4.

3.1 End-to-End Rationale Extraction

Consider a standard text classification setup
in which we have n input documents X =
{x1, ..., xn}, xi ∈ V li , where li denotes the num-
ber of tokens in document xi, and V the vocab-
ulary, and their assigned labels y = {y1, ..., yn},
yi ∈ Y . Lei et al. propose a model comprising
a generator (gen) and an encoder (enc). gen is
tasked with extracting rationales from inputs xi,
formalized as a binary mask over tokens sampled
from a Bernoulli distribution: zi ∼ gen(xi) ∈
{0, 1}li . enc makes predictions ŷ = enc(xi, zi)
on the basis of the unmasked tokens.

The objective function is defined so that the
overall expected loss L is minimized over both



modules:

minimize
θenc,θgen

n∑

i=1

Ezi∼gen(xi)L (enc(xi, zi), yi). (1)

This objective (1) is difficult to optimize as it re-
quires marginalizing over all possible rationales z.
Parameter estimation is therefore performed via an
approximation approach that entails drawing sam-
ples from gen(x) and averaging their associated
gradients during the learning process. Lei et al.
(2016) found that this REINFORCE-style estima-
tion works well for rationale extraction, but may
have high variance as a result of the large state
space of possible rationales under consideration,
which is difficult to efficiently explore.

The loss function L used by Lei et al. (2016) is
a squared `2 loss between the prediction enc(x, z)
and the reference label y, with added regulariza-
tion terms placed on the binary mask z to encour-
age rationale conciseness and contiguity.

We modify the conciseness term so that the
model is not penalized as long as a predefined de-
sired rationale length d has not been passed:

Ω(z) = λ1 max

(
0,
|z|
L
− d
)

︸ ︷︷ ︸
conciseness

+λ2

∑
t

|zt − zt−1|
L− 1︸ ︷︷ ︸

contiguity

. (2)

4 Faithful Rationale Extraction from
Saliency tHresholding (FRESH)

To avoid recourse to REINFORCE, we introduce
FRESH, in which we decompose the original pre-
diction task into three sub-components, each with
its own independent model. These are the sup-
port model supp, the rationale extractor model
ext, and the classifier pred.2

We train supp end-to-end to predict y, using its
outputs only to extract continuous feature impor-
tance scores from instances in X . These scores
are binarized by ext either using a parameterized
model trained on the output scores, or via direct
discretization heuristics. Finally, pred is trained
(and tested) only on text provided by ext. Figure 2
depicts this proposed framework.

A central advantage of our decomposed setup
lies in the arbitrariness of the rationale extraction

2This is the most general framing, but in fact supp and
ext may be combined by effectively defining ext as an appli-
cation of heuristics to extract snippets on the basis of scores
provided by supp; any means of procuring ‘importance’
scores for the features comprising instances and converting
these to extracted snippets to pass to pred will suffice.

mechanism. Any function over supp’s predic-
tions that assigns scores to the input tokens in-
tended to quantify their importance can serve as
an input to ext. Note that this means even post-
hoc scoring models (applied after the model has
completed training) are permissible. Examples
of such functions include gradient-based methods
and LIME (Ribeiro et al., 2016).

Notably, the importance scoring function need
not faithfully identify features that actually in-
formed the predictions from supp. This means,
e.g., that one is free to use token-level attention
(over contextualized representations) — the final
rationales provided by FRESH will nonetheless
remain faithful with respect to pred. The impor-
tance scores are used only to train ext heuristi-
cally, for example by treating the top k tokens
(with respect to importance scores) for a given ex-
ample as the target rationale. The key design de-
cision here is designing such heuristics that map
continuous importance scores to discrete ratio-
nales. Any strategy for this will likely involve
trading conciseness (shorter rationales) against
performance (greater predictive accuracy).

For explainability, we can present users with the
snippet(s) that pred used to make a prediction as
an explanation (from ext), and we can be certain
that the only tokens that contributed to the predic-
tion made by pred are those included in the this
text. In addition to transparency, this framework
may afford efficiency gains in settings in which
humans are tasked with classifying documents; in
this case we can use ext to present only the (short)
relevant snippets. Indeed, we use exactly this ap-
proach as one means of evaluation in Section 8.

5 FRESH Implementations

The high-level framework described above re-
quires making several design choices to opera-
tionalize; we propose and evaluate a set of such
choices in this work, detailed below. Specifi-
cally, we must specify a feature importance scor-
ing mechanism for supp (Section 5.1), and a strat-
egy for inducing discrete targets from these con-
tinuous scores (5.2). In addition, we need to spec-
ify a trained or heuristic extractor architecture ext.
In this work, all instances of pred exploit BERT-
based representations.3

3For fair comparison, we have modified all baselines (Lei
et al., 2016; Bastings et al., 2019) to similarly capitalize on
BERT-based representations.



5.1 Feature Scoring Methods
All models considered in this work are based
on Bidirectional Encoder Representations from
Transformer (BERT) encoders (Devlin et al.,
2019) and its variants, namely RoBERTa (Liu
et al., 2019) and SciBERT (Beltagy et al., 2019);
see Appendix B for more details. For sake of
brevity, we simply refer to all of these as BERT
from here on. We define supp as a BERT encoder
that consumes either a single input (in the case of
standard classification) or two inputs (e.g., in the
case of question answering tasks) separated by the
standard [SEP] token.

While we emphasize that the proposed frame-
work can accommodate arbitrary input feature
scoring mechanisms, we consider only a few ob-
vious variants here, leaving additional exploration
for future work. Specifically, we evaluate atten-
tion scores (Bahdanau et al., 2015) and input gra-
dients (Li et al., 2016; Simonyan et al., 2014).

Attention scores are taken as the self-attention
weights induced from the [CLS] token index to
all other indices in the penultimate layer of supp;
this excludes weights associated with any special
tokens added. BERT uses wordpiece tokeniza-
tion; to compute a score for a token, we sum the
self-attention weights assigned to its constituent
pieces. BERT is also multi-headed, and so we av-
erage scores over heads to derive a final score.

5.2 Discretizing Soft Scores
A necessary step in our framework consists of
mapping from the continuous feature scores pro-
vided by supp to discrete labels, or equivalently,
mapping scores to rationales which will either be
consumed directly by pred or be used to train a
sequence tagging model ext. We consider a few
heuristic strategies for performing this mapping.

Contiguous. Select the span of length k that cor-
responds to the highest total score (over all spans
of length k). We call these rationales contiguous.

Top-k. Extract as a rationale the top-k tokens
(with respect to importance scores) from a doc-
ument, irrespective of contiguity (each word is
treated independently). We refer to these ratio-
nales as non-contiguous.

These strategies may be executed per-instance or
globally (across an entire dataset), reflecting the
flexibility of FRESH. Empirically, per-instance
and global approaches performed about the same;

Doc. Len. Rationale Len. N

SST 17 - 9,613
AGNews 30 - 127,600
Ev. Inf. 349 10% 7,193
Movies 728 31% 1,999
MultiRC 297 18% 32,091

Table 1: Dataset details, with rationale length ratios in-
cluded for datasets where they are available.

we report results for the simpler, per-instance ap-
proaches (additional results in Appendix E).

5.3 Extractor model
We experiment with two variants of ext. The first
is simply direct use of the importance scores pro-
vided by supp and discretization heuristics over
these; this does not require training an explicit ext
model. We also consider a parameterized extractor
model that independently makes token-wise pre-
dictions from BERT representations. Using an ex-
plicit extraction model allows us to mix in direct
supervision on rationales alongside the pseudo-
targets derived heuristically from supp.

Tying the sequential token predictions made by
ext via a Conditional Random Field (CRF) layer
(Lafferty et al., 2001) may further improve perfor-
mance, but we leave this for future work.

6 Experimental Setup

6.1 Datasets
We use five English text classification datasets
spanning a range of domains (see Table 1).

Stanford Sentiment Treebank (SST) (Socher
et al., 2013). Sentences labeled with binary sen-
timent (neutral sentences have been removed).

AgNews (Del Corso et al., 2005). News articles
to be categorized topically into Science, Sports,
Business, and World.

Evidence Inference (Lehman et al., 2019).
Biomedical articles describing randomized con-
trolled trials. The task is to infer the reported re-
lationship between a given intervention and com-
parator with respect to an outcome, and to identify
a snippet within the text that supports this. The
original dataset comprises lengthy full-text arti-
cles; we use an abstract-only subset of this data.

Movies (Zaidan and Eisner, 2008). Movie re-
views labeled for sentiment accompanied by ratio-
nales on dev and test sets (DeYoung et al., 2020).



Saliency Rationale SST (20%) AGNews (20%) Ev. Inf. (10%) Movies (30%) MultiRC (20%)

Full text – .90 (.89-.90) .94 (.94-.94) .73 (.73-.78) .95 (.93-.97) .68 (.68-.69)

Lei et al. contiguous .71 (.49-.83) .87 (.85-.89) .53 (.45-.56) .83 (.80-.92) .62 (.62-.64)
top k .74 (.47-.84) .92 (.90-.92) .47 (.38-.53) .87 (.80-.91) .64 (.61-.65)

Bastings et al. contiguous .60 (.58-.62) .77 (.18-.78) .45 (.40-.49) — .41 (.30-.50)
top k .59 (.58-.61) .72 (.19-.80) .50 (.38-.60) — .44 (.30-.55)

Gradient contiguous .70 (.69-.72) .85 (.84-.85) .67 (.62-.68) .94 (.92-.95) .67 (.66-.67)
top k .68 (.67-.70) .86 (.85-.86) .62 (.61-.64) .93 (.92-.94) .66 (.65-.67)

[CLS] Attn contiguous .81 (.80-.82) .88 (.88-.89) .68 (.59-.73) .93 (.90-.94) .63 (.60-.62)
top k .81 (.80-.82) .91 (.90-.91) .66 (.64-.70) .94 (.93-.95) .63 (.62-.64)

Table 2: Model predictive performances across datasets, with rationale length as a percentage of each document in
parentheses. We report mean Macro F1 scores on test sets, and min/max across random seeds. The top row (Full
text) corresponds to a black-box model that does not provide explanations and uses the entire document; this is
upper-bound on performance. We bold the best-performing rationalized model(s) for each corpus.

MultiRC (Khashabi et al., 2018). Passages and
questions associated with multiple correct an-
swers. Following DeYoung et al. (2020), we con-
vert this to a binary classification task where the
aim is to categorize answers as True or False based
on a supporting rationale.

6.2 Model and Training Details

For datasets where human rationale annotations
are available, we set k to the average human ra-
tionale annotation length, rounded to the nearest
ten percent. For the rest, we set k = 20%.

For generality, all models considered may con-
sume both queries and texts, as is required for
MultiRC and Evidence Inference. Rationales can
be extracted from only from the text; this typically
dominates the query in length, and is more infor-
mative in general. Further implementation details
(including hyperparameters) are provided in Ap-
pendix A.

Hyperparameter sensitivity and variance. To
achieve conciseness and contiguity, Lei et al.
(2016) impose a regularizer on the encoder that
comprises two terms (Equation 2) with associated
hyperparameters (λ1, λ2). In practice, we have
found that one needs to perform somewhat exten-
sive hyperparameter search for this model to real-
ize good performance. This is inefficient both in
the sense of being time-consuming, and in terms
of energy (Strubell et al., 2019).

By contrast, FRESH requires specifying and
training independent module components, which
incurs some energy cost. But there are no addi-
tional hyperparameters, and so FRESH does not
require extensive hyperparameter search, which
is typically the most energy-intensive aspect of

model training. We quantify this advantage by re-
porting the variances over different hyperparam-
eters we observed for (Lei et al., 2016) and the
compute time this required to conduct this search
in Appendix B.

In addition to being sensitive to hyperparame-
ters, a drawback of REINFORCE-style training is
that it can exhibit high variance within a given hy-
perparameter setting. To demonstrate this, we re-
port the variance in performance of our proposed
approach and of Lei et al. (2016) as observed over
five different random seeds.

We also find that both Lei et al. (2016) and Bast-
ings et al. (2019) tend to degenerate and predict ei-
ther complete or empty text as rationale. To make
results comparable to FRESH, at inference time,
we restrict the rationale to specified desired length
k before passing it to the corresponding classifier.

7 Quantitative Evaluation

We first evaluate the performance achieved on
datasets by the pred models trained on different
ext-extracted rationales, compared to each other
and to Lei et al. (2016)’s end-to-end rationale ex-
traction framework. As an additional baseline, we
also evaluate a variant of the differentiable binary
variable model proposed in Bastings et al. 2019.
This baseline do not require any hyperparameter
search.

In general, we would expect predictive perfor-
mance to positively correlate with rationale length,
and so we evaluate predictive performance (accu-
racy or F1-score) across methods using a fixed ra-
tionale length for each dataset.

We report results in terms of predictive perfor-
mance for all model variants in Table 2. Here we
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Figure 3: Results for Lei et al. ( ) and FRESH ( ) evaluated across five datasets at two different desired rationale
lengths (as % of document length). Vertical bars depict standard deviations observed over five random seeds.

use the entire train sets for the respective datasets,
and fix the rationale length as described in §6.2
to ensure fair comparison across methods. We
observe that despite its simplicity, FRESH per-
forms nearly as well as Full text while using only
10-30% of the original input text, thereby provid-
ing transparency. FRESH achieves better average
performance than Lei et al.’s end-to-end method,
with the exception of AGNews, in which case the
models are comparable. It also consistently fares
better than Bastings et al.’s system.

Of the two feature scoring functions consid-
ered, [CLS] self-attention scores tend to yield
better results, save for on the MultiRC and Movies
datasets, on which gradients fare better. With
respect to discretizing feature scores, the simple
top-k strategy seems to perform a bit better than
the contiguous heuristic, in what we expect to be
traded off against a greater coherence of the con-
tiguous rationales.

As seen in Table 2, FRESH exhibits lower vari-
ance across runs, and does not require hyperpa-
rameter search (further analysis in Appendix B).

Varying rationale length. Figure 3 plots F1
scores across datasets and associated standard de-
viations achieved by the best rationale variant of
Lei et al. (2016) and FRESH at two different tar-
get rationale lengths. These results demonstrate
the effectiveness of FRESH even in constrained
settings. Note, we had to re-perform hyperparam-
eter search for a different rationale length in case
of (Lei et al., 2016) model.

Incorporating human rationale supervision.
In some settings it may be feasible to elicit direct
supervision on rationales, at least for a subset of
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Figure 4: Results on Evidence Inference for Lei et al.
( ) and FRESH ( ) given varying amounts of explicit
rationale supervision.
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Figure 5: Results on MultiRC for Lei et al. ( ) and
FRESH ( ) given varying amounts of explicit rationale
supervision.

training examples. Prior work has exploited such
signal during training (Zhang et al., 2016; Strout
et al., 2019; Small et al., 2011). One of the po-
tential advantages of explicitly training the extrac-
tion model ext with pseudo-labels for tokens (de-
rived from heuristics over importance scores) is
the ability to mix in direct supervision on ratio-
nales alongside these derived targets.

We evaluate whether direct rationale supervi-
sion improves performance on two datasets for
which we have human rationale annotations (Ev-
idence Inference and MultiRC). In both cases we
provide models with varying amounts of rationale-
level supervision (0%, 20%, 50% and 100%), and
again compare the best variants of Lei et al. (2016)



and our model. For the former, we introduce an
additional binary cross entropy term into the ob-
jective for that explicitly penalizes the extractor
for disagreeing with human token labels.

Explicitly training a sequence tagging model
as ext over heuristic targets from supp did not
improve results in our experiments. However,
as shown in Figure 4 and Figure 5, mixing in
rationale-level supervision when training ext did
improve performance on the Evidence Inference
dataset by a small amount, although not for Mul-
tiRC. This suggests that explicit rationale supervi-
sion may at least sometimes improve performance,
and this is not possible without a parameterized
ext model.

In Lei et al. (2016)’s framework, direct supervi-
sion provides considerable performance improve-
ment in the case of Evidence Inference (although
still suffering from variance effects), and did not
affect performance on MultiRC.

8 Human Analysis

We have proposed FRESH as an architecture
which, in addition to exceeding performance of
previous training regimes, provides a guarantee
for extracting rationales which are faithful. How-
ever, as noted in the introduction, another desir-
able trait of rationales is that they are judged as
good by humans. To assess the plausibility of the
resulting rationales (Herman, 2017; Wiegreffe and
Pinter, 2019), we design a human user study.4 We
evaluate the following attributes of plausibility:

Sufficiency. Can a human predict the correct la-
bel given only the rationale? This condition aligns
with Kim et al. 2016, with Lei et al. 2016, and
with the confidence and adequate justification cri-
teria of Ehsan et al. 2019. In our experiment, we
simply substitute a human user for pred and eval-
uate performance.

Readability and understandability. We test
the user’s preference for a certain style of ra-
tionale beyond their ability to predict the cor-
rect label. Our hypothesis is that humans
will prefer contiguous to non-contiguous ratio-
nales. This condition aligns with coherency (Lei
et al., 2016), human-likeness and understandabil-
ity (Ehsan et al., 2019).

4We received approval for this study from Northeastern
University’s Institutional Review Board (IRB).

8.1 Experiments

We compare extracted rationales on two tasks,
Movies and MultiRC, both of which include refer-
ence human rationales (DeYoung et al., 2020). We
did not choose evidence inference for this set of
experiments since the task requires expert knowl-
edge. Recall that the rationalization task for the
Movies dataset involves selecting those words or
phrases associated with positive or negative sen-
timent. For MultiRC, the rationale must con-
tain sufficient context to allow the user to discern
whether the provided answer to the question is
true, based on the information in the passage.

We extract rationales, both contiguous and non-
contiguous, from 100 randomly-selected test set
instances for the following methods: (1) human
(reference label) rationales, (2) randomly selected
rationales of length k, (3) rationales from the best
Lei et al. 2016 models, and (4) rationales from the
best FRESH models.

We present each extracted rationale to three an-
notators.5 We ask them to perform the following
tasks:

1. Classify examples as either Positive or Negative
(Movies), or as True or False (MultiRC);

2. Rate their confidence on a 4-point Likert scale
from not confident (1) to very confident (4);

3. Rate how easy the text is to read and understand
on a 5-point Likert scale from very difficult (1)
to very easy (5).

The first two tasks are designed to evaluate suffi-
ciency, and the third readability and understand-
ability. We provide images of the user interface in
Appendix C.

We validate the user interface design with gold-
label human rationales. As expected, when using
these rationales Turkers are able to perform the la-
belling task with high accuracy, and they do so
with high confidence and readability (first rows of
Tables 3 and 4). On average, annotators exhibit
over 84% and 89% inter-annotator agreement on
Movies and MultiRC, respectively.6

5We use Amazon Mechanical Turk for the annotation
task, and compensate Turkers at a rate of $0.24 per HIT. Pay
rate is calculated based on the median HIT completion time
in a preliminary experiment (2 minutes) and an hourly wage
of $7.20. We require annotators to be within the U.S., but we
do not explicitly test for English language proficiency.

6We assign the majority predicted document label and av-
eraged Likert value for confidence and readability across the
3 annotators for each instance. We report human Accuracy as



Rationale Human Confidence Readability
Source Acc. (1–4) (1–5)

Human .99 3.44 ±0.53 3.82 ±0.56
Random
Contiguous .84 3.18 ±0.55 3.80 ±0.57
Non-Contiguous .65 2.09 ±0.51 2.07 ±0.69
Lei et al. 2016
Contiguous .88 3.39 ±0.48 4.17 ±0.59
Non-Contiguous .84 2.97 ±0.72 2.90 ±0.88
FRESH Best
Contiguous .92 3.31 ±0.48 3.88 ±0.57
Non-Contiguous .87 3.23 ±0.47 3.63 ±0.59

Table 3: Human evaluation results for Movies.

Rationale Human Confidence Readability
Source Acc. (1–4) (1–5)

Human .87 3.50 ±0.47 4.16 ±0.54
Random
Contiguous .65 2.85 ±0.76 3.49 ±0.74
Non-Contiguous .58 2.56 ±0.68 2.39 ±0.73
Lei et al. 2016
Contiguous .57 2.90 ±0.58 3.63 ±0.71
Non-Contiguous .66 2.45 ±0.67 2.19 ±0.75
FRESH Best
Contiguous .69 2.78 ±0.67 3.68 ±0.6
Non-Contiguous .65 2.60 ±0.68 2.50 ±0.83

Table 4: Human evaluation results for MultiRC.

8.2 Results

We report results in Tables 3 and 4. We observe
that humans perform comparably to the trained
model (Table 2) at predicting document labels
given only the model-extracted rationales. Hu-
mans perform at least as well using our extracted
rationales as they do with other methods. They
also exhibit a strong preference for contiguous ra-
tionales, supporting our hypothesis. Lastly, we
observe that confidence and readability are high.
Thus while our primary goal is to provide faith-
ful rationales, these results suggest that those pro-
vided by FRESH are also reasonably plausible.
This shows that faithfulness and plausibility are
not mutually exclusive, but also not necessarily
correlative.

9 Conclusions

We have proposed Faithful Rationale Extraction
from Saliency tHresholding (FRESH), a simple,
flexible, and effective method to learn explainable
neural models for NLP. Our method can be used
with any feature importance metric, is very sim-

a measure of how well our annotators have done at predicting
the correct document label from only the extracted rationale.
All metrics are averaged over the 100 test documents.

ple to implement and train, and empirically often
outperforms more complex rationalized models.

FRESH performs discrete rationale selection
and ensures the faithfulness of provided explana-
tions — regardless of the complexity of the indi-
vidual components — by using independent ex-
traction and prediction modules. This allows for
contextualized models such as transformers to be
used, without sacrificing explainability (at least at
the level of rationales). Further, we accomplish
this without recourse to explicit rationale-level su-
pervision such as REINFORCE or the reparame-
terization trick; this greatly simplifies training.

We showed empirically that FRESH outper-
forms existing models, recovering most of the per-
formance of the original ‘black-box’ model. Addi-
tionally, we found FRESH rationales to be at least
as plausible to human users as comparable end-to-
end methods.

We acknowledge some important limitations of
this work. Here we have considered explain-
ability as an instance-specific procedure. The fi-
nal explanation provided by the model is limited
to the tokens provided by the extraction method.
Our framework does not currently support further
pruning (or expanding) this token set once the ra-
tionale has been selected.

In addition, while we do have a guarantee under
our model about which part of the document was
used to inform a given classification, this approach
cannot readily say why this specific rationale was
selected in the first place. Nor do we clearly un-
derstand how the pred uses extracted rationale to
perform its classification. We view these as inter-
esting directions for future work.
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A Model Details and Hyperparameters

For each model below, we use BERT-base-
uncased (for SST, AgNews), Roberta-base (for
Multirc), and SciBERT (scivocab-uncased)
(for Evidence Inference) embeddings (from
huggingface library (Wolf et al., 2019) as they
appear in AllenNLP library (Gardner et al., 2018))
as corresponding pretrained transformer model.

Tokenization was performed using tokenizer as-
sociated with each pretrained transformer models.
Only the top two layers of each model were fine-
tuned. For documents greater than 512 in length,
we used staggered position embeddings (for ex-
ample, if an example of length 1024, the position
embeddings used are 1,1,2,2,3,3,...).

Lei et al. and Bastings et al. Models We use
transformer model to generate token embeddings
(max-pooling embeddings from wordpieces) in
the generator, placing a dense classification layer
on top to return a binary decision. The encoder
model also uses the transformer to encode selected
tokens and the start token embedding was used to
perform final classification.

For the movies dataset we used a slightly differ-
ent model to get around theO(n2) memory bottle-
neck. Specifically, we first encode 512 token sub-
sequences with the transformer and then run these
through a 128-d BiLSTM on top of transformer
embeddings. Wordpiece embeddings are averaged
to create token embeddings and these embeddings
are then used to make token level decisions for
generator model. In the encoder model, they are
collapsed using additive attention module (Bah-
danau et al., 2015) into a single vector prior to the
final classification.

We used cross-entropy loss to train the en-
coder, and the optimization was performed using
the Adam Optimizer with a learning rate of 2e-
5. For regularization, we used 0.2 dropout after

transformer embedding layer and placed an 0.001
`2 loss over all weights of our network and a grad
norm of 5.0. Models were trained for 20 epochs
and we kept the best parameters on the basis of
macro-F1 score on dev sets.

Hyperparameter search for Lei et al. (2016)
models was performed over λ1 and λ2 parameters,
with λ1 uniformly selected over log scale in range
[1e-2, 1e-0] and λ2 selected from [0.0, 0.5, 1.0,
2.0]. We performed the hyperparameter search 20
times and selected the best of these on the basis of
F1 score on dev sets.

Bastings et al. (2019) do not require hyper-
parameter search since it uses a Lagrangian
relaxation based optimisation for its regu-
larizers. We use the same initial hyperpa-
rameter settings used by the authors in their
codebase. We use the Hard Kumaraswamy
distribution as provided by the authors here
https://github.com/bastings/
interpretable_predictions.

FRESH For all three components of the FRESH
model, we used the same transformer-based mod-
els as mentioned previously to encode tokens.
Classification was performed using start token
embeddings. Optimisation was performed using
Adam optimizer (Kingma and Ba, 2015) with a
learning rate of 2e-5. We insert a dropout layer fol-
lowing the BERT embedding layer for regularisa-
tion, and impose an 0.001 `2 loss over all weights
of our network. We also enforce a grad norm of
5.0. The model was trained for 20 epochs, and we
again kept the best models with respect to macro
F1 scores on the dev sets.

For the movies dataset, we use similar modifi-
cations as discussed above.

B Hyperparameter sensitivity analysis

In Figure 7, we report the model accuracy for
various hyperparameter searches on three of our
datasets. Note that in many cases, the search does
not converge to the desired length (it either selects
the entire document or completely degenerates, se-
lecting no tokens). We also show in Figure 6 an
analysis of model performance with respect to hy-
perparameter search using the procedure described
in (Dodge et al., 2019).

C Amazon Mechanical Turk Layouts

See Figures 8 and 9 for screenshots of the inter-
faces shown to annotators.

https://github.com/bastings/interpretable_predictions
https://github.com/bastings/interpretable_predictions
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.

D Additional Dataset Details

See Table 5.

E Global Discretization Heuristics

We use following method to construct globally op-
timal rationales :

Global top-k. A ratio of tokens to maintain p is
determined beforehand , but instead of taking the
top p · |xi| tokens from each instance, the training
set (resp. dev, test) is created by only taking the
top p ·∑xi∈Dt∇ |xi| tokens from the entire initial
training set (resp. dev, test). To avoid the possible
complete removal of certain instances, we add a
further constraint where each instance first secures
the top q < p-proportion tokens, before filling up
the remainder globally.

Global Contig. To limit the rationales to a con-
tiguous text span, we first find the maximum-mass
segments for the appropriate range of lengths on
each instance, then run a greedy algorithm to find
per-instance lengths for overall maximal mass:
starting with the minimally-long spans, of total
length Lm, we perform B − Lm iterations of find-
ing the next single-token addition in the entire
dataset which will lead to the maximum increase
in overall weight (each time ranking the marginal
gains for each instance xi of replacing the current
k(xi)-length span with the best k(xi) + 1-length
span in the instance).

In Table 6 we provide average differences be-
tween using global vs instance heuristics to extract
rationales from our documents, given saliency
scores. We also ran a t-test to determine if global
heuristics provided results significantly different
from instance-level methods, finding that they did
not.



Figure 8: Amazon Mechanical Turk layout for Movies tasks.

Figure 9: Amazon Mechanical Turk layout for MultiRC tasks.



N Doc Length Query Length Rationale Length Label Distribution

Evidence Inference

train 5,789 363 / 1010 14 / 66 0.10 / 0.54 0.39 / 0.33 / 0.28
dev 684 369 / 602 14 / 108 0.11 / 0.35 0.40 / 0.35 / 0.25
test 720 362 / 617 16 / 100 0.10 / 0.34 0.39 / 0.35 / 0.26

MultiRC

train 24,029 305 / 618 18 / 92 0.17 / 0.73 0.56 / 0.44
dev 3,214 305 / 562 18 / 83 0.19 / 0.76 0.55 / 0.45
test 4,848 290 / 490 18 / 80 0.18 / 0.56 0.57 / 0.43

Movies

train 1,600 773 / 2,809 7 / 7 0.09 / 0.5 0.5 / 0.5
dev 200 761 / 1,880 7 / 7 0.07 / 0.26 0.5 / 0.5
test 199 795 / 2,122 7 / 7 0.31 / 0.91 0.5 / 0.5

SST

Train 6,920 17 / 48 - - 0.52 / 0.48
Dev 872 17 / 44 - - 0.51 / 0.49
Test 1,821 17 / 52 - - 0.50 / 0.50

AgNews

Train 102,000 31 / 173 - - 0.25 / 0.25 / 0.25 / 0.25
Dev 18,000 31 / 168 - - 0.25 / 0.25 / 0.25 / 0.25
Test 7,600 30 / 129 - - 0.25 / 0.25 / 0.25 / 0.25

Table 5: Dataset statistics. For document, query, and rationale lengths we provide mean and maximum values
(formulated as mean/max), where available. We do not have human rationale annotations for SST and AgNews,
hence we do not report query and rationale lengths for these.

∆ t-statistic p-value
dataset saliency rationale

SST Gradient contiguous -0.0097 -1.8483 0.1383
Non contiguous 0.0120 1.9411 0.1242

[CLS] Attention contiguous -0.0133 -3.1281 0.0352
Non contiguous -0.0025 -0.5036 0.6410

AgNews Gradient contiguous -0.0433 -26.8053 0.0000
Non contiguous -0.0014 -0.7530 0.4934

[CLS] Attention contiguous -0.0257 -19.4711 0.0000
Non contiguous -1.0000 -1.0000 -1.0000

Evidence Inference Gradient contiguous -0.0126 -0.5457 0.6143
Non contiguous -0.0139 -0.9352 0.4026

[CLS] Attention contiguous -0.0145 -1.4655 0.2166
Non contiguous 0.0053 0.3776 0.7249

Movies Gradient contiguous -0.0221 -6.4826 0.0029
Non contiguous -0.0020 -0.2684 0.8016

[CLS] Attention contiguous -0.0232 -3.1249 0.0354
Non contiguous 0.0040 1.6500 0.1743

MultiRC Gradient contiguous -0.0041 -1.4573 0.2188
Non contiguous 0.0066 0.8969 0.4205

[CLS] Attention contiguous -0.0038 -1.1710 0.3066
Non contiguous 0.0012 0.2832 0.7910

Table 6: Comparison of global rationales vs instance level rationale for each dataset, saliency and rationale type
combination. The statistical test used was Welch’s t-test (2-sided). ∆ = (Average F1 score for global) - (average
F1 score for instance level) heuristics.


