Kennesaw State University
Digital Commons@Kennesaw State University

KSU Proceedings on Cybersecurity Education, 2019 KSU Conference on Cybersecurity Education,
Research and Practice Research and Practice

Oct 12th, 1:25 PM - 1:50 PM

Automatic Security Bug Detection with
FindSecurityBugs Plugin

Hossain Shahriar
Kennesaw State University, hshahria@kennesaw.edu

Kmarul Riad

Kennesaw State University, aislamri@students. kennesaw.edu

Arabin Talukder
KSU, mtalukd1 @students.kennesaw.edu

Hao Zhang
KSU, hzhang13@students.kennesaw.edu

Zhuolin Li

Kennesaw State University, zli29@students kennesaw.edu

Follow this and additional works at: https://digitalcommons.kennesaw.edu/ccerp

b Part of the Information Security Commons, Management Information Systems Commons, and

the Technology and Innovation Commons

Shahriar, Hossain; Riad, Kmarul; Talukder, Arabin; Zhang, Hao; and Li, Zhuolin, "Automatic Security Bug Detection with
FindSecurityBugs Plugin” (2019). KSU Proceedings on Cybersecurity Education, Research and Practice. 6.
https://digitalcommons.kennesaw.edu/ccerp/2019/research/6

This Event is brought to you for free and open access by the Conferences, Workshops, and Lectures at Digital Commons@XKennesaw State University. It
has been accepted for inclusion in KSU Proceedings on Cybersecurity Education, Research and Practice by an authorized administrator of

Digital Commons@XKennesaw State University. For more information, please contact digitalcommons@kennesaw.edu.

https://digitalcommons.kennesaw.edu/?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2019%2Fresearch%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/ccerp?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2019%2Fresearch%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/ccerp?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2019%2Fresearch%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/ccerp/2019?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2019%2Fresearch%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/ccerp/2019?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2019%2Fresearch%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/ccerp?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2019%2Fresearch%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2019%2Fresearch%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2019%2Fresearch%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/644?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2019%2Fresearch%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/ccerp/2019/research/6?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2019%2Fresearch%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

Abstract

The security threats to mobile application are growing explosively. Mobile app flaws and security defects could
open doors for hackers to easily attack mobile apps. Secure software development must be addressed earlier in
the development lifecycle rather than fixing the security holes after attacking. Early eliminating against
possible security vulnerability will help us increase the security of software and mitigate the consequence of
damages of data loss caused by potential malicious attacking. In this paper, we present a static security analysis
approach with open source FindSecurityBugs plugin for Android StThe security threats to mobile application
are growing explosively. Mobile app flaws and security defects could open doors for hackers to easily attack
mobile apps. Secure software development must be addressed earlier in the development lifecycle rather than
fixing the security holes after attacking. Early eliminating against possible security vulnThe security threats to
mobile application are growing explosively. Mobile app flaws and security defects could open doors for
hackers to easily attack mobile apps. Secure software development must be addressed earlier in the
development lifecycle rather than fixing the security holes after attacking. Early eliminating against possible
security vulnerability will help us increase the security of software and mitigate the consequence of damages
of data loss caused by povvtential malicious attacking. In this paper, we present a static security analysis
approach with open source FindSecurityBugs plugin for Android Studio IDE. We demonstrate that
integration of the plugin enables developers secure mobile application and mitigating security risks during
implementation time. erability will help us increase the security of software and mitigate the consequence of
damages of data loss caused by potential malicious attacking. In this paper, we present a static security analysis
approach with open source FindSecurityBugs plugin for Android Studio IDE. We demonstrate that
integration of the plugin enables developers secure mobile application and mitigating security risks during
implementation time. udio IDE. We demonstrate that integration of the plugin enables developers secure
mobile application and mitigating security risks during implementation time. ity defects could open doors for
hackers to easily attack mobile apps. Secure software development must be addressed earlier in the
development lifecycle rather than fixing the security holes after attacking. Early eliminating against possible
security vulnerability will help us increase the security of software and mitigate the consequence of damages
of data loss caused by potential malicious attacking. In this paper, we present a static security analysis
approach with open source FindSecurityBugs plugin for Android Studio IDE. We demonstrate that
integration of the plugin enables developers secure mobile application and mitigating security risks during
implementation time.

Location

KSU Center Rm 400

Disciplines
Information Security | Management Information Systems | Technology and Innovation

This event is available at Digital Commons@Kennesaw State University: https://digitalcommons.kennesaw.edu/ccerp/2019/
research/6

https://digitalcommons.kennesaw.edu/ccerp/2019/research/6?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2019%2Fresearch%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/ccerp/2019/research/6?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2019%2Fresearch%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages

Shahriar et al.: Automatic Security Bug Detection with FindSecurityBugs Plugin

INTRODUCTION

With the increased demands of mobile applications in recent years, we have also witnessed
numerous major cyber-attacks, resulting in stolen personal credit card numbers, leakage of
classified information vital for national defense, industrial espionage resulting in major
financial losses, and many more consequences. Hackers have managed to make secure
computing a more difficult task. This has resulted in the need for increased secure mobile
software development tools and resources for professionals (Shahriar et al., 2018; Qian et al.,
2017).

Most mobile security vulnerabilities should be addressed and fixed in the software
development phase. If all the mobile applications are secure or have less security flaws and
vulnerabilities, the security threat risks will be greatly reduced. Computer users, managers, and
developers agree that we need software and systems that are "more secure". Such efforts require
support from both the education and training communities to improve software assurance,
particularly in writing secure code.

Many open source static Java code analysis tools help developers to maintain and clean up
the code through the analysis performed without actually executing the code such as Eclipse
IDE (2019), IntelliJ IDE (2019), and FindBugs (2019). These tools focus on finding probable
bugs such as inconsistencies, helping improve the code structure, conform source code to
guidelines, and provide quick fixes. Source code analysis tools, also referred to as Static
Application Security Testing (SAST) Tools, are designed to analyze source code and to help
to find security flaws with a high confidence that what's found is indeed a flaw (readers can see
the survey (Li et al., 2017) for list of exhaustive state-of-the-art tools). However, there is no
tool that can assist developers securing applications within the development environment.

There are many open source static Java code analysis tool that helps developers to maintain
and clean up the code through the analysis performed without actually executing the code such
as Eclipse IDE, IntelliJ IDE, FindBugs Plugin. These tools focus on finding probable bugs such
as inconsistencies, helping improve the code structure, conform your code to guidelines, and
provide quick-fix. In general, SCA tools are used to ensure code quality from the very
beginning and to make software development more productive. The security vulnerability
checking is not their major task. Source code analysis tools, also referred to as Static
Application Security Testing (SAST) Tools, are designed to analyze source code and to help
to find security flaws with a high confidence that what's found is indeed a flaw.

FindSecurityBugs (2019) is a static code analysis plugin for the FindBugs (a plugin for
Eclipse). It specializes in finding security issues in Java code by searching for security. It can
be used to scan Java applications. However, there is little or no effort to integrate with Android
Studio Development IDE to assist developer building mobile applications securely. Integrating
tools within IDE not only opens the door for designing custom flaw detectors but also to report
the emerging security threats during the software development phase with immediate feedback
to the developer on rather than finding vulnerabilities much later in the development cycle.

In this paper, we introduce FindSecurityBugs (FSB) plugins, which we ported to Android
Development Studio to mitigate security issues during application development time. FSB
allows developer to design custom security vulnerability detectors. We have designed and
developed a number of new security flaw detectors with FindSecurityBugs plug-in for Android
mobile software development based on current OWASP 2017 top 10 mobile risks to increase

the seqyrity vilngrability checking coverage. . 1

. . KSU Proceedings on rsecurityEducation, Research and Practice, Event 6 (2019 . .
This paper is orgamze&gas %ffows. O TGS Feare W([)r(k]Sectlon III 1s an

overview of tainted data flow analysis, followed by examples of integrated FSB plugins for
two common mobile software security bugs — intent spoofing and SQL injection. Section IV
concludes the paper.

RELATED WORKS

Readers are suggested to see the detailed survey [18] for exhaustive list of tools using static
analysis to check Android software for security bugs. In this section, we briefly discuss several
related tools.

FlowDroid is an open source Java based static analysis tool that can be used to analyze
Android applications for potential data leakage. FlowDroid is a context, object sensitive, field,
flow, and static taint analysis tool that specifically models the full Android lifecycle with high
precision and recall (Babil et al., 2013). The tool can detect and analyze data flows, specifically
an Android application’s bytecode, and configuration files, to find any possible privacy
vulnerabilities, also known as data leakage (Artz et al., 2013). However, it cannot find common
security bugs in Android such as SQL Injection, output encoding, Intent leakage, and lack of
secure communication. However, the tool supports only Eclipse and not currently supports
Android Development Studio, a popular IDE currently used by most mobile developers.

Cuckoo (2019) is a widely used malware analysis tool based on dynamic analysis (i.e., it
runs an application under test in a controlled emulator). It is capable of methodically examining
multiple variants of Android malware applications through controlled execution into virtual
machines that monitor the behaviors of the applications.

The DroidSafe project [20] develops effective program analysis techniques and tools to
uncover malicious code in Android mobile applications. The core of the system is a static
information flow analysis that reports the context under which sensitive information is used.
For example, Application A has the potential to send location information to network address.
DroidSafe reports potential leaks of sensitive information in Android applications.

UNCC has designed and developed an Application Security IDE (ASIDE) plug-in for
Eclipse that warns programmers of potential vulnerabilities in their code and assists them in
addressing these vulnerabilities. The tool is designed to improve student awareness and
understanding of security vulnerabilities in software and to increase utilization of secure
programming techniques in assignments. ASIDE is used in a range of programming courses,
from CS1 to advanced Web programming. ASIDE addresses input validation vulnerabilities,
output encoding, authentication and authorization, and several race condition vulnerabilities
(Whitney et al., 2005). ASIDE only works in the Java Eclipse IDE and cannot support the
Android IDE.

Yuan et al. (2016) reviewed current efforts and resources in secure software engineering
education, and provided related programs, courses, learning modules, hands-on lab modules.
Chi (2013) built learning modules for teaching secure coding practices to students. Those
learning modules will provide the essential and fundamental skills to programmers and
application developers in secure programming. The IAS Defensive Programming Knowledge
Areas (KA) have been identified as topics/materials in the ACM/IEEE Computer Science
Curricula 2013 that can be taught to beginning programmers in CS0/CS1 courses (CS
Currucula, 2013). All these works mainly focus on the mobile application development. They
successfully disseminated the mobile computing education but did not emphasize the

importance of SMSD and in their teachings.)

. Shahriar et al.: Aytomatic Security Bug Detection.with FindSecurjtyBugs Plugin .
Android has a powerfuf an compﬁeex comfnunication sysd[em for $harihg and sending data

in both inter and intra apps. Simple static analysis usually cannot satisfy further requirements.
Malicious apps may take advantage of this to avoid detection despite using sensitive
information from apps with data leaks. Recently many security tools already worked with taint
analysis check, like Findbugs (2019) and Dwivedi et al. (2017).Detection of potential taint
flows can be used to protect sensitive data, identify leaky apps, and identify malware.

VULNERABILITY DETECTORS WITH FINDSECURITYBUGS

Taint analysisDetectors for Secure Mobile Software

To meet the ever-increasing demand for high quality information security professionals with
expertise in SMSD, we built innovative Android vulnerability detectors with an open source
FindSecurityBugs API plugin for the popular Android Studio IDE based on the most current
OWASP 2017 top 10 mobile security risks (OWASP, 2017) in the category of SQL injection,
unintended data leakage, insecure communication, insecure data storage vulnerability
detectors. For example, the built in detectors can recognize a vulnerability of SQL injection
and data leakage in an Android mobile application program, which may face the threat of
potential malicious code injection, and then issue a warning on the code line. Following the
provided options, students or developers can enforce a new secure statement to replace the
unsecure statement.

Talukder et al. (2019) developed a plug-in for Android Studio IDE that can parse Android
java source code, identify specific API calls, warn the potential vulnerabilities, recommend
security solutions, and replace code statements. The plugin tool can recognize a vulnerability
of SQL injection and data leakage in an Android mobile application program, which may face
the threat of potential malicious code injection, and then issue a warning on the code line. Once
the developer clicks the warning icon, secure coding prevention and protection options are
shown in the Android Studio.

For many Android security vulnerabilities and flaws on the top 10 mobile risks by OWASP
(2017) and other new identified unlisted flaws we need to develop our own customized
detectors. Figure 1, show the conception of taint analysis. Here a source is the resource from
which data is read, may either come from outside or internal. A sink is a resource to which data
is written or sent. Also, a piece of data is tainted if it originates from a sensitive source.

Based on OWASP top 10 mobile risk reports, we have developed more vulnerability
detectors with FindsecurityBugs for secure Android software development in the categories of
Unintended Data Leakage, Intent Interception and Spoofing, Content Provider Data Sharing,
Input Validation and Output Encoding. Section A shows a SQL injection detector and section
B shows unintended data leakage detector for clipboard cache memory data leakage.

Taint-based Broadcast Intent Detector

Broadcast receivers are used to handle asynchronous requests initiated via an intent. By default,
receivers are exported and can be invoked by any other application. If your BroadcastReceivers
is intended for use by other applications, you may want to apply security permissions to
receivers using the <receiver> element within the application manifest. This will prevent
applications without appropriate permissions from sending an intent to the BroadcastReceivers.

There two types of intent: Explicit intents has its explicit recipient and Implicit intents does not
name its explicit recipient, and it will notify an appropriate component based on the

specification of the intent. o
Published by DigitalCommons@Kennesaw State University, 2019 3

KSUP g Pann) T : R] 1D el I |
T TOTETUINgs o7t CyUeT ST ity CUUTOLION, NeSERITIT 1tt 1 TACLITE, LVENT O | 19

Compl

Intent/Data

Appl

Malicious
App

[ntens Spooling

Figurel: Intent spoofing

Figure 1 illustrates the concept of intent spoofing where compl and comp2 are two
Android components (Activity, Service, or BroadCastReceiver) and appl is a victim. The
comp2 in Appl expects to get intent with data from Compl in the same Appl but instead, it
gets a malicious injection via an implicit intent sent by a Malicious app. This is an inter-app
intent spoofing which can be prevented by explicit intent, setting an exported attribute to false,
claiming permission requirement by app1

To receive an implicit intent an Android component must register the implicit intent with
an intent filter specifying the kinds of intents it is interesting. Implicit intents are useful for an
app to request a service function without knowing exactly the service function provider
(Talukder, Shahriar & Haddad, 2019). It provides flexibility in run-time binding of
components.

1) Intent spoofing is an attack where a malicious application induces or injects undesired
behavior to a component via implicit intent, which only expects to receive intents from other
components within the same app. By default, a component only receives intents from other
components in the same application, but it can also accept intents from other apps if the
android: exported attribute is set in the manifest XML. Figure 2 (a) shows an explicit broadcast
intent is sent where FindSecurityBugs caught it as a vulnerable intent.

https://digitalcommons.kennesaw.edu/ccerp/2019/research/6 4

Serd ot
[#®] Security (1 item)
Broadcast (Android) (1 iterm)
Broadcast (Android) (1 iterm)
Preview MainActivity.java:
intent_putExtra{ nsms "number", value: 1) ;7
intent.addFlags {Intent.FLAG INCLUDE STOPFED FACKASES) ;

intent . setComponent (new ComponentMName
{ pkg. "example.com broadcastreceiwver”,
"example com broadcastreceiver MyBroadCastReceiver™)l);

intent.setAction (" com. example MyBroadoast”);

1 # |[pendBroadcast (intent) i

i
3
Broadcast intents could be received
by a malicious application
Class:
MainActivity (

Method:
onClick (example.co

om.intentsender) line 31

nder.MainActivity. onClick{WView)})

Priority:

Medium Confidence Security
Broadcast (Android)
Broadcastintents can be listen by
any application with the appropriate permission.
It is suggested to avoid transmitting
sensitive information when possible.

Figure 2: Vulnerable Intent found by FindSecurityBugs.

The solution of explicit broadcast intent security issue could be adding the following code

fragment.

Solution (if possible);

Intent i = new Intent{);
i.getlction("com.secure.action.UserConnected™) ;

sendBroadcast (vl);

Figure 2(b): Solution of broadcast Intent security issue.

2) To establish communication between two applications we can use broadcast intent.
However, in this case we may need to add an additional component such as explicit permission
to build a secure communication between two applications. As we know broadcast receiver
receives intent from other application by parsing intent filters action name. FindSecurityBugs
plugin again detects this type of communication as a vulnerable coding practice. Figure 3 shows

FindSecurityBugs plugin detects the intent as a bug.

Published by DigitalCommons@Kennesaw State University, 2019

KSUProwdf%—qubmﬂyﬁermﬁhwzd-anrEvm—#'owj
FindBugs-{DEA

ﬁﬂ Intentsender cund 1 bug iter 1 clas=s)] more...
| Security 1 tern
Broadcast (Android) (1 item)
Broadcast (Android) I ke
E -3 Broadcast intents could be F‘EtE“ﬁIEEE"b}I'-E

Class:
MajnAcivity (com example intentsender) line 39

Problem classification:
Security (Broadcast (Android
AMNDROID_BROADCAST (Broadcast (Android
BroadcastDetector (SECERC

Method:
onClick (com.example intentsendar Malmactihity.
Priority:
Medium Confidence Security

Broadcast (Android)

Broadcast intents can be listen by any application
with the appropriate permission His suggested to
avoid transmitting sensitive information when possible)

Figure 3: Broadcast intent detected by FindSecurityBugs

To secure communication between two applications, we can use customized permission in
the sender applications manifest. See the code fragment in Figure 4.

<manifest ...>

¢!-- Permission declaration -->
<permission android:name="my.app.PERMISSION" />

{receiver
android:name="my.app.BroadcagtReceiver”
android:permission="ny,app. FERMISSION"> <!-- Permission enforcement --»
<intent-filter>
<action android:name="com.secure.action.UserConnected” />
</intent-filter>
</receiver>

</manifest>

Figure 4: Permission to secure intent
This permission can be used in the receiver application’s manifest to detect the intent that is
sent from the sender. In this case, other application will not detect the intent because of the
unavailability of the permission in their manifest. Broadcast class have an additional method
parameter to its “sendBroadcast” method that is “receiverspermission”. To send an intent with
customized permission we can use this method. See an code fragment below:

Intent intent = new Intent("com.example. CUSTOM_ACTION");
intent.putExtras(bundle);
sendBroadcast(intent,"permission");

Now only those application will receive this intent who has the same permission in their
manifest

https://digitalcommons.kennesaw.edu/ccerp/2019/research/6

refal: utomﬁc Security Bug Detection with FindSecurityBugs Plugin

Taint-based Sdflrianjecﬂon etector

SQL injection is a code insertion technique used to attack data driven applications, in which
malicious code is inserted to normal SQL statement to dump contents from database. SQL
injection exploits security vulnerabilities of application, for example, taking use of a user input
to embed malicious code to a hard code SQL statement.

There are several forms of SQL injection, consisting of direct insertion code to user input
variables and then concatenated with SQL statements to be executed or other less direct code
insertion technique. Some of them are listed as below:

1) Incorrectly filtered escape characters: This form occurs if user input is passed to SQL
statement without filtering escape characters. Implementation is illustrated in the following
statement.

“SELECT * FROM users WHERE username= “t+username+”’”

where the variable username can be crafted by attackers, either by inputting an always true
clause or by commenting out the rest of query statement. What’s more, by inserting a
semicolon, attackers are able to execute separate SQL statement in this case.

2) Incorrect type handling: This form of injection takes place when no appropriate type
checking is performed. The implementation of this form can be the same as the previous one.
There are still many forms to perform injection, the point that an injection works is by
prematurely terminating a text string and appending a new command.

3) Defense strategy for SQL injection: In addition to input validation to eliminate the
malicious injection we also should use secure parameterized query statements with
placeholders to receive parameters instead of embedding user input to query statement.
Parameterized queries force the developer to first define all the SQL code, and then pass in
each parameter to the query later. This coding style allows the database to distinguish between
code and data, regardless of what user input is supplied. This strategy will also solve the
problem if there is not a type handling mechanism, because a placeholder can only receive
value of the given type.

Vulnerable code fragment:

cursor = db.rawQuery ("SELECT * FROM usertable WHERE id='" +
info + "'", null);

Secure parameterized query:

String sl = input.getText().toString();
cursor = db.rawQuery ("SELECT * FROM
usertable WHERE id= ? ", sl);

Here is a sample vulnerable SQL injection code detected by the SQL injection detector after
scanning an Android app with the following snippet

EditText input;
String info = input.getText () .toString/()

Published by DigitalCommons@Kennesaw State University, 2019 7

cursor = &PEGERCRPrTsHTREieaon Rt QL EABTL B RE id="" +

info + "'", null);

Figure 5 shows a warning alert and a solution hint in the Android Studio IDE after detector
finds the SQL injection vulnerability:

Vulnerability alert! Use parameterized query with placeholders (“?”) to receive input parameters
instead of embedding user input to query statement with string concatenation (““+”) to avoid
malicious SQL injection.

[+ &Pl 50Linjectiond717 [Hound | Bug i class) MRk
[®] Secwrity (1 it
SOL Injection in SCOLite Android AP

Wulnerability alert

.E’J se parametrized query with placeholders("7"] to receive input parameters inste

Use parametrized gquery with placeholders|*?") to receive
input parameters instead of ambadding user input 1o
query statement with strmu concatenation(*+7) to
avold malicious SCL |n}er.t|un.
Clags:

MainActivity (s gliniection agiiexample sglinjection

lime 42
Problem classifcation:

Security tion n te Android AP
S0l IFRJECTION _AMDROID nerability ale!

Vulnerability alert!

The input values Included in SCL guaries naed 1o De passad in salfaly.
Rind variables in prepared statemants can be wsed o aasily mitigate the
rsk of S0l injection

WVulnerabde Codead

String gquery ="SELECT * FROM messages WHERE uid= "+useringut+=;
Cursaor cursar = this. getReadableDatabase(). ranwluenygueny, null §

Figure 5: Detector for Android SQL injection

CONCLUSION AND FUTURE WORK

In this paper, we introduced a taint analysis-based Android plugin that can be used to
develop secure mobile software while addressing security concerns commonly found in mobile
applications. Our focus is aimed to reduce OWASP Top 10 Mobile Security flaws before
applications are deployed. This effort not only will overcome the shortage of tools within
development environment, but also resources for professionals towards secure mobile software
development. We are currently working to expand the capability of the plugin tools by
developing detectors for common (e.g., insecure communication between mobile applications)
and advanced security concerns (e.g., permission escalation, content sniffing).

ACKNOWLEDGEMENT

The work is partially supported by National Science Foundation (Award #1723578); KSU
Office of Vice President Research (OVPR 2018-2019) Award, and USG ALG Grants (M54,
M87, #422, #429).

https://digitalcommons.kennesaw.edu/ccerp/2019/research/6 8

Shahriar et al.: Automatic Security Bug Detection with FindSecurityBugs Plugin
REFERENCES

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Mcdaniel, P. (2013). FlowDroid: Precise
Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for Android Apps, Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pp. 259-269.

Babil, G., Mehani, O., Roksana, B., Kaafar, M. (2013). On the effectiveness of dynamic taint analysis for
protecting against private information leaks on Android-based devices. Proc. of the 2013 International
Conference on Security and Cryptography (SECRYPT), Reykjavik, Iceland, pp. 1-8.

Chi, H. (2013). Teaching Secure Coding Practices to STEM Students, Proceedings of the 2013 on InfoSecCD '13:
Information Security Curriculum Development Conference, Kennesaw, GA, USA.

Cuckoo. (2019). What is Cuckoo? — CuckooDroid v1.0 Book. (n.d.). Retrieved from https://cuckoo-
droid.readthedocs.io/en/latest/introduction/what/

CS Curricula. (2013). Association for Computing, https://www.acm.org/education/CS2013-final-report.pdf
DroidSafe. (2019). https://mit-pac.github.io/droidsafe-src/

Dwivedi, K., Yin, H., Bagree, P., Tang, X., Flynn, L., Klieber, W., Snavely, W. (2017). DidFail: Coverage and
Precision Enhancement, Technical Report, Carnegie Mellon University,
https://apps.dtic.mil/docs/citations/AD 1044883

Eclipse IDE. (2019). https://www.eclipse.org/ide/
FindBugs. (2019). http://findbugs.sourceforge.net/

FindSecurityBugs. (2019). https://find-sec-bugs.github.io/
IntelliJ IDEA. (2019). https://www.jetbrains.com/idea/

FindBugs. (2019). Plugin for security audits of Java web applications. http://find-sec-bugs.github.io.

Li, L., Bissyand’e, T., Papadakis, M., Rasthofer, S., Bartela, A., Octeauc, D., Kleina, J., Traona, Y. (2017). Static
Analysis of Android Apps: A Systematic Literature Review, Information and Software Technology, Volume 88,
pp. 67-95.

OWASP. 2017). Mobile Security Project - Top Ten Mobile Risks,
https://www.owasp.org/index.php/Projectsf OWASP_Mobile_Security Project - Top_Ten Mobile Risks

Qian, K., Shahriar, H., Wu, F., Tao, L., Bhattacharya, P. (2017). Labware for Secure Mobile Software
Development (SMSD) Education, Proceedings of the 2017 ACM Conference on Innovation and Technology in
Computer Science Education, pp. 375-375.

Shahriar, H., Qian, K., Talukder, M., Patel, N., and Lo, D. (2018). Mobile Software Security Risk Assessment
with Program Analysis. Proc. of the 23" IEEE Pacific Rim International Symposium on Dependable Computing
(PRDC), Taipei, Taiwan, 2 pp.

Talukder, Md., Shahriar, S., Qian, K., Rahman, M., Ahmed, S., Agu, E. (2019). DroidPatrol: A Static Analysis
Plugin For Secure Mobile Software Development, Proc. of 43" IEEE Annual Computer Software and
Applications Conference (COMPSAC), pp. 565-569.

Talukder, Md., Shahriar, S., and Haddad, H. (2019), Point-of-Sale Device Attacks and Mitigation Approaches for
Cyber-Physical Systems, Cybersecurity and privacy in Cyber Physical Systems, CRC Press, pp. 368-383.

Whitney, M., Lipford, H., Chu, B., and Zhu. J. (2015). Embedding Secure Coding Instruction into the IDE: A
Field Study in an Advanced CS Course, Proceedings of the 46" ACM Technical Symposium on Computer Science
Education (SIGCSE), pp. 60-65.

Yuan, X., Williams, K., McCrickard, D., Hardnett, C., Lineberry, L., Bryant, K., Xu, J., Esterline, A., Liu, A.,
Mohanarajah, S., Rutledge, R. (2016). Teaching mobile computing and mobile security, Proc. of Frontiers in
Education (FIE), 2016, pp. 1-6.

Published by DigitalCommons@Kennesaw State University, 2019 9

	Kennesaw State University
	DigitalCommons@Kennesaw State University
	Oct 12th, 1:25 PM - 1:50 PM

	Automatic Security Bug Detection with FindSecurityBugs Plugin
	Hossain Shahriar
	Kmarul Riad
	Arabin Talukder
	Hao Zhang
	Zhuolin Li
	Abstract
	Location
	Disciplines

	Automatic Security Bug Detection with FindSecurityBugs Plugin

