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Abstract— The optimal decentralized control (ODC) problem 
is known to be NP-hard and many sufficient tractability 
conditions have been derived in the literature for its convex 
reformulations or approximations. We delve into the computa-
tional complexity of the problem to better understand the root 
cause of the non-existence of efficient methods for solving ODC. 
We consider the design of a static decentralized controller and 
show that there is no polynomial upper bound on the number 
of connected components of the set of stabilizing decentralized 
controllers. In particular, we present a subclass of problems 
for which the number of connected components is exponential 
in the order of the system and, in particular, any point in 
each of these components is the unique solution of the ODC 
problem for some quadratic objective functional. The results 
of this paper have two implications. First, the recent effort in 
machine learning advocating the use of local search algorithms 
for nonconvex problems, which has also been successful for the 
optimal centralized control problem, fails to work for ODC 
since it needs an exponential number of initializations. Second, 
a reformulation of the problem through a smooth change of 
variables does not reduce the complexity since it maintains the 
number of connected components. On the positive side, we show 
in special cases that ODC may not be complex for structured 
systems, such as highly damped systems.

I. INTRODUCTION

Classical state-space solutions to optimal centralized con-
trol problems do not scale well as the dimension increases
[1]. Real-world controllers also have structural constraints,
such as locality and delay. The optimal decentralized control
problem (ODC) has been proposed in the literature to bridge
this gap. On the one hand, ODC can have nonlinear optimal
solutions even for linear systems and is NP-hard in the
worst case [2], [3]. On the other hand, the existence of
dynamic structured feedback laws is completely captured by
the notion of fixed modes [4]. Furthermore, several works
have discovered structural conditions on the system and/or
the controller under which the ODC problem admits tractable
solutions. The conditions include spatially invariance [5],
partially nestedness [6], positiveness [7], and quadratic in-
variance [8]. More recently, the System Level Approach
[9] has convexified structural constraints at the expense of
working with many impulse response matrices. Promising
approximation [10]–[12] and convex relaxation techniques
[13]–[16] also exist in the literature.
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A recent line of research, initiated in the machine learning
community, suggests using nonlinear programming methods
based on local search for the optimal control problems [17].
Local search methods are well-studied for convex problems,
and they normally come with optimality guarantees [14].
However, when the problem is non-convex, these methods
may converge to a saddle point or a local minimum [18].
Local search algorithms are effective: (i) when they are
initialized at a point close enough to the optimal solution,
or (ii) when there is no spurious local optimum and it is
possible to escape saddle points [19]–[22]. They have also
been applied to instances of ODC to obtain approximate
solutions [23], [24], but a question arises as to whether local
search is effective for ODC.

In this paper, we prove that the chances of success for
the global convergence of local search methods applied to
a general ODC problem are theoretically slim. Specifically,
we prove that the feasible set of the ODC problem in the
static case, which includes all structured static controllers
that stabilize the system, can be not only non-convex but also
disconnected where the number of connected components
grows exponentially in the order of the system. Since any
point in the feasible set is the unique globally optimal
solution of ODC for some quadratic objective functional, this
result implies that there is no reformulation of the problem
with a smooth change of variables that could convexify the
problem. Therefore, one would need to resort to compu-
tationally expensive convex hull approaches. Moreover, if
one seeks to solve a hard instance of the ODC problem
through local search, the algorithm needs to be initialized an
exponential number of times unless some prior information
about the location of the solution is available in order to start
in the correct connected component. This result contrasts
with the recent findings in [17], arguing that local search
could be useful for optimal control problems because it
is guaranteed to work for the optimal centralized control
problem. Although the number of connected components is
shown to be exponential in this work, we also demonstrate
that one single connected component is possible for favorably
structured systems.

This work is related to several papers in the literature.
The set of stabilizing controllers has been studied from many
angles. The work [25] parametrizes the set of stable state-
feedback controllers under no structural constraints. The



paper [26] studies the connectivity of stable linear systems
and concludes that single-input single-output systems of
order n have at most n + 1 connected components, while
stable multi-input multi-output systems have only one con-
nected component. The work [27] investigates what types
of sparse patterns can sustain stable dynamics, using graph
theory. To the authors’ best knowledge, the connectivity
of decentralized stabilizing controllers has not been studied
before.

The remainder of this paper is organized as follows.
Notations and problem formulations are given in Section II.
We derive elementary connectivity properties of the set of
stabilizing controllers and bound the number of connected
components for scalar stabilizing controllers in Section III.
Section IV examines a subclass of decentralized control
problems where the number of connected components is
exponential. We also show that highly damped systems admit
a connected set of decentralized controllers. Concluding
remarks are drawn in Section V.

II. PROBLEM FORMULATION

Consider the linear time-invariant system

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

where A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n are real
matrices of compatible sizes. The vector x(t) is the state of
the system and y(t) is the output. We focus on the static case,
where the control input u(t) is to be determined via a static
output-feedback law u(t) = Ky(t) with the gain K ∈ Rm×p
such that some performance is optimized. Since the analysis
to be conducted next is on the feasible set, the initial state
(being deterministic or stochastic) and the objective function
(being quadratic or another function of the system’s signals)
are not important. With no loss of generality, consider the
case with the given initial state x(0) = x0 and the quadratic
performance measure

J(K,x0)=

∫ ∞
0

[
xT (t)Qx(t) + 2xT (t)Du(t) + uT (t)Ru(t)

]
dt

(1)

where the matrix L =

[
Q D
DT R

]
is positive semi-definite

and R is positive definite. We use L � 0 and R � 0 to
denote positive semi-definiteness and positive definiteness,
respectively. The closed-loop system is

ẋ(t) = (A+BKC)x(t).

The objective is to study the set of structured stabilizing
controllers

K = {K : A+BKC is stable/Hurwitz,K ∈ S},

where S ⊆ Rm×p is a linear subspace of matrices, often
specified by fixing certain entries of the matrix to zero. De-
centralized and distributed controllers could be specified by
the set S with a prescribed sparsity pattern. The connectivity
properties of K will be studied under Euclidean topology.

III. CONNECTIVITY PROPERTIES IN SPECIAL CASES

In this section, we prove global geometric properties of
the stabilizing set K for certain choices of B,C and S using
elementary arguments. The main result of this paper in its
full generality will be stated in the next section.

Recall that one can characterize the stability of matrices
in different ways. Lyapunov’s characterization [28, §4.1]
states that a matrix M is stable if and only if there is a
solution P � 0 to the equation MP + PMT + I = 0.
Another approach is based on the Routh-Hurwitz criterion
[29, §11.17], which states that a matrix is stable if the
coefficients of its characteristic polynomial satisfy a set of
polynomial inequalities. Using these basic techniques, we
first study the case with no structural constraints and full
state measurements.

Lemma 1: Assume that S = Rm×p and C = I . The set
K is connected, but generally non-convex.

Proof: Observe that K is the continuous image of the
set

H = {(R,P ) : AP +BR+ PAT +RTBT = −I, P � 0}

through the map (R,P )→ RP−1. Moreover,H is connected
since it is the intersection of a linear space and a convex cone.
The map is well-defined as P is positive definite; it is also
surjective from the Lyapunov’s characterization: whenever
A+BK is stable, there is a P � 0 such that (A+BK)P +
P (A+BK)T = −I and the tuple (R,P ) can be mapped to
the desired K under the formula KP = R.

To show that K is not always convex, consider the second-
order system

A =

[
0 1
−a0 −a1

]
, B =

[
0 b0
1 b1

]
,K =

[
k11 k12
k21 k22

]
where A and the first column of B are in the canonical form
to ensure controllability. The closed-loop matrix is equal to

A+BK =

[
b0k21 1 + b0k22

−a0 + k11 + b1k21 −a1 + k12 + b1k22

]
.

To analyze the stability, we use the Routh-Hurwitz criterion
and write

K = {K : tr(A+BK) < 0,det(A+BK) > 0}. (2)

Notice that K is not convex in general since its intersection
with the lower dimensional subspace k21 = 0 is given by{

K =

[
k11 k12
k21 k22

]
:
−a1 + k12 + b1k22 < 0,

(1 + b0k22)(−a0 + k11) < 0

}
,

which turns out to be the union of two disjoint polyhedrons
if b0 6= 0 (due to the product in the second condition).

An implication of Lemma 1 is that the feasible set of
the linear-quadratic optimal centralized control problem is
connected, which justifies the success of the local search
algorithm proven in [17] for centralized controllers. Another
insightful, but impractical, scenario is the case with B =
C = I and a mostly arbitrary S. This will be studied below.



Lemma 2: Assume that B = C = I and that S contains
−I . Then, the set K is connected.

Proof: Since S is a linear subspace, we have −λI ∈ S
for every λ ∈ R. Given two arbitrary matrices K1,K2 ∈
K, consider the following connected path from A + K1 to
A+K2:

A+K1
increase λ→ A+K1 − λI
K1→K2→ A+K2 − λI
decrease λ→ A+K2,

where
• λ ≥ 0 is first increased to a large value;
• we move from A + K1 − λI to A + K2 − λI via an

arbitrary continuous path between K1 and K2 in S;
• λ is decreased eventually.

The parameter λ can always be chosen so large that all
matrices on the path from A + K1 − λI to A + K2 − λI
could be regarded as a small (on the order of K2 − K1)
perturbation of the large matrix A +K1 − λI so that their
stability condition is the same as that for A+K1−λI . The
proof is completed by noting that the designed path for the
closed-loop matrix is associated with a path between K1 and
K2 such that the path is continuous, involves only controllers
in S, and passes through only stabilizing matrices.

If the measurement matrix C is not the identity matrix,
the set may become disconnected even if K = k ∈ R is a
scalar. This will be shown in an example below. For clarity,
we will use the vector notations B = b and C = cT in this
case, where b, c ∈ Rn.

Example 1: Suppose that A ∈ R3×3, (A, b) is control-
lable, and c 6= 0. Then, the set K can have at most two
connected components. To prove this statement, with no loss
of generality assume that the system is in the controllable
canonical form, i.e.,

A =

 0 1 0
0 0 1
−a0 −a1 −a2

 , b =
00
1

 , cT =
[
c0 c1 c2

]
.

Using the Routh-Hurwitz method, the stability condition
reduces to the set of inequalities

a0 − kc0 > 0,

a1 − kc1 > 0,

a2 − kc2 > 0,

(a0 − kc0) < (a2 − kc2)(a1 − kc1).

Consider the quadratic function f(k) = (a2−kc2)(a1−kc1).
This function can have at most two branches that lie above
the line a0−kc0. The intersection of these branches with the
interval defined by the first three linear inequalities leads to
at most 2 connected components. An example with exactly
two components can be produced by the parameters

(a0, a1, a2) = (−5,−1, 1), (c0, c1, c2) = (0.85, 0.2, 0.2).

Figure 1 verifies the above result by plotting the maximum
real part of the closed-loop eigenvalues versus k.

Fig. 1. As discussed in Example 1, the set of stabilizing controllers can
have two connected components in a third-order system. Observe that there
are two intervals for k that produce eigenvalues in the left-half complex
plane.

It can be inferred from Example 1 that the coordinates of
the set of stabilizing controllers are “one-sided”. This is not
surprising since when A+BKC is stable, we have tr(A+
BKC) < 0. We elaborate on this result below.

Lemma 3: Consider the case m = p = 1. Suppose that
(A, b) is controllable and c 6= 0. Then, the scalar set K
cannot extend to infinity on both sides.

Proof: As before, with no loss of generality consider
the canonical form

A =

[
0 I
−a0 · · · −an−1

]
, b =

[
0
1

]
, cT = [c0, . . . , cn−1].

The matrix A+ bkcT has the characteristic polynomial

(a0−c0k)+(a1−c1k)x+. . . ,+(an−1−cn−1k)xn−1+xn = 0.

It follows from the Routh-Hurwitz criterion that the coef-
ficients of this polynomial must be positive. Since c 6= 0,
there is some entry ci0 6= 0 and, as a result, k is prevented
from extending to infinity on one side by the inequality
ai0 − ci0k > 0.

In what follows, we will bound the number of connected
components for scalar controllers.

Theorem 1: Consider the case m = p = 1. The scalar set
K can have at most n connected components.

Proof: If there is no stabilizing controller in S, then
K = ∅; otherwise one can first stabilize A with some
controller k0 and then analyze the set of shifted controllers
k−k0. As a result, without loss of generality one can assume
that A is stable. We call a controller k critical when it is on
the boundary of the closure of the set stabilizing controllers,
meaning that it produces some closed-loop eigenvalues on
the imaginary axis. We need to solve the equation

0 =det(jwI −A− kbcT )
=det(jwI −A) det(1− kcT (jwI −A)−1b) (3)

(the symbol j denotes the imaginary unit). Since A is stable,
the first term in the second line of (3) is not zero and
therefore the second term must be zero. Taking its real and



imaginary part yields that

1− k × Re{cT (jwI −A)−1b} = 0, (4)

Im{cT (jwI −A)−1b} = 0. (5)

Equation (5) is of the form Im
{
f(jw)
g(jw)

}
= 0 with g(jw) 6= 0;

equivalently, one can write Im{f(jw)g(jw)} = 0 where
f(jw) is a polynomial of degree n − 1 and g(jw) =
det(jwI−A) is a polynomial of degree n . A polynomial of
degree 2n−1 in w can have at most 2n−1 real solutions. For
each solution, there is at most one critical scalar k that solves
(4). Those 2n − 1 critical scalars divide the real line into
at most 2n intervals of interlacing stable-unstable regions,
leading to at most n stable components.

Theorem 1 states that the number of connected compo-
nents would grow with the dimension of the system even in
the special case m = p = 1. The intuition behind the proof
of Theorem 1 is that one can calculate how many times the
Nyquist plot crosses the real line. For an n-th order system,
Argument Principle suggests that the Nyquist Plot can wind
at most n cycles and intersect with the real line at most 2n
times.

IV. EXPONENTIAL SUBCLASS

One of the main results of this paper will be stated below.
Theorem 2: There is no polynomial function with respect

to the order of the system that can serve as an upper-
bound on the number of connected components of the set
of decentralized stabilizing controllers.

To prove the above theorem, it suffices to discover a
subclass of decentralized control problems whose set of
stabilizing controllers has an exponential number of con-
nected components. Our proof is based on a lemma that
characterizes the stability of tri-diagonal matrices whose
diagonal elements are mostly purely imaginary complex
numbers. Define the inertia In(G) of an n× n matrix G as
the triplet In(G) = (π(G), ν(G), δ(G)), where π(G), ν(G),
and δ(G) are the number of eigenvalues of G with positive,
negative, and zero real parts, respectively.

Lemma 4 (From [30]): Given the tri-diagonal matrix

G =



f1 + jg1 f2 0 · · · · · · 0

−h2 jg2 f3
. . .

...

0 −h3 jg3 f4
. . .

...
...

. . . . . . . . . . . . 0
...

. . . −hn−1 jgn−1 fn
0 · · · · · · 0 −hn jgn


,

where fi, gi and hi are real for i = 1, ..., n, f1 6= 0, and
fihi 6= 0 for i = 2, . . . , n. Then,

In(G) = In(D),

where

D = diag(f1, f1f2h2, f1f2f3h2h3, . . . , f1 · · · fnh2 · · ·hn).

A corollary of the above lemma for the stability of real
tri-diagonal matrices is given below.

Corollary 1: Given the tri-diagonal real matrix A of the
form

A =



f1 f2 0 · · · · · · 0

−h2 0 f3 0
...

0 −h3 0 f4
. . .

...
...

. . . . . . . . . . . . 0
...

. . . −hn−1 0 fn
0 · · · · · · 0 −hn 0


, (6)

it holds that

• If f1 < 0 and fihi > 0 for i = 2, . . . , n, then A is
stable.

• If fihi < 0 for some i = 2, . . . , n, then A is unstable.
Remark 1: The sparse stable matrices theory [27] states

that the graph associated with the sparsity pattern of the ma-
trix in (6) is a chain and has nested Hamiltonian sub-graphs
that are sufficient to sustain stable dynamics. Moreover, the
space is also minimally stable because: (i) if f1 is set to
zero, then the trace of the matrix becomes zero and therefore
at least one eigenvalue should be unstable, (ii) if any non-
diagonal element is set to zero, then the matrix decomposes
into a block triangular form where the lower diagonal block
has a zero trace, leading to instability.

Due to the above remark, Corollary 1 gives necessary and
sufficient conditions for the stability of a class of matrices,
which can be used to analyze both connected components
and separating hypersurfaces. In what follows, we will first
show the possibility of 2n−1 connected components in the
case with a non-identify C and then develop a similar result
for C = I .

Theorem 3: Let A ∈ Rn×n be in the form of (6), and set
B ∈ Rn×(2n−2), C ∈ R(2n−2)×n and K ∈ R(2n−2)×(2n−2)

to

B =



0 · · · · · · 0 +1 0 · · · 0

−1
. . .

... 0
. . . . . .

...

0
. . . . . .

...
...

. . . . . . 0
...

. . . . . . 0
...

. . . +1
0 · · · 0 −1 0 · · · · · · 0


,

C =



1 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 1 0
0 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 1


,

K = diag(k2, . . . , kn, k2, . . . , kn).



Supposef1<0andfi=hifori=2,...,n.Then,theset
Khasatleast2n−1connectedcomponents.
Proof: Theclosed-loop matrixA+BKC canbe

expressedas














f1 f2+k2 0 ··· ··· 0

−h2−k2 0 f3+k3
...

...

0 −h3−k3
...

...
...

...
...

...
...

...
... 0

...
...

... 0 fn+kn
0 ··· ··· 0 −hn−kn 0















.

ItresultsfromCorollary1andRemark1thattheclosed-loop
stabilityisequivalenttotheconditions(hi+ki)(fi+ki)>0
fori=2,...,n,whichreducetoki<min(−hi,−fi)or
ki>max(−hi,−fi).Inparticular,ifanykitakesthevalue
−(fi+hi)/2,thematrixbecomesunstable.Therefore,the
regionofstabilizingK,parametrizein(k2,...,kn)∈R

n−1,
isseparatedbyn−1hyperplaneski=−(fi+hi)/2for
i=2,...,n,andtherearestableregionsonbothsidesof
eachofthosehyperplanes.Theoverallnumberofconnected
componentsbecomesatleast2n−1.
TheconclusionofTheorem3isdemonstratedinthetop

plotinFigure2forn=3.Notethatthe“one-sided”result
ofLemma3doesnotholdheresinceKisnotscalar.

Fig.2. WerandomlysampleK andchecktheclosed-loopstabilityfor
aninstanceofthesysteminTheorem3.Thecontrollerisparametrizedin
termsof(k2,k3)wheren=3,withfi=−1andhi=2fori=1,2,3.
Thetopfigureshowsthatthereare2n 1 =4 connectedcomponents,
whereeachcoordinatetakesvaluesin(−∞,−2)or(1,∞)tobestable.
Thebottomfigureshowstheconnectedcomponentswhenthenumber0.2
isaddedtoeachdiagonalentryofA(theprojectionofthesetKontothe
2-dimensionalspacecorrespondingto(k2,k3)isshowningreen).

Remark2:Notethateigenvaluesarecontinuousfunctions
oftheentriesofa matrixandthattheconnectedcom-
ponentsstudiedintheproofofTheorem3areseparated
byapositive margin.Therefore,one mayspeculatethat
asmallperturbationtoAwillnotchangethenumberof
connectedcomponents.Thisisnotthecaseingeneralsince
theeigenvaluesofA+BKCcanbecomearbitrarilyclose
totheimaginaryaxiswhen K islarge,asillustrated
inFigure3. However,somepartsfromeachconnected
componentareresistanttoperturbations.Forexample,theset
{K:(A+ I)+BKCstable}⊆{K:A+BKCstable}
with >0containsonlythosecontrollersthatmakethe
closed-loopeigenvaluesatleast awayfromtheimaginary
axis,and canbesetsosmallthatatleastonepointfrom
eachcomponentremainsstable.Inotherwords,anewA
obtainedbyadding tothediagonalofthematrixin(6)gives
anexponentialnumberofconnectedcomponentswherethe
numbercannotchangewithaverysmallperturbationofits
elements.ThisisillustratedinthebottomplotinFigure2.

Fig.3. ThisfigureshowsthatifthediagonalofAarereducedby0.2,
thenthesetKbecomesconnected(theprojectionofthesetKontothe
2-dimensionalspacecorrespondingto(k2,k3)isshowningreen).

ThesubclassofproblemsstudiedinTheorem3maybe
unsatisfactoryasitrequiresthatthefreeelementsofKrepeat
themselvesandthatC=I.Thenexttheoremaddressesthese
issues.

Theorem4:LetAbeintheform

A=















f1+ f2 0 ··· ··· 0

−h2 f3
...

...

0 −h3 f4
...

...
...

...
...

...
... 0

...
... −hn−1 fn

0 ··· ··· 0 −hn















, (7)

where >0,f1<0,and(−1)
i(fi−hi+1)>0fori=

2,...,n.ConsiderB∈Rn×n,C∈Rn×nandK∈Rn×n



to be

B =


0 1

−1
. . . . . .
. . . 0 1

−1 0

 , C = I,

K = diag(k1, k2, . . . , kn).

For a small enough ε, the set K has at least Fn connected
components, where F0 = 1, F1 = 1, Fi+2 = Fi+1 + Fi for
i = 0, 1, ... is the Fibonacci sequence, which grows in the
order of

(
1+
√
5

2

)n
.

Proof: First, assume that ε = 0 and consider the closed-
loop matrix A+BKC:

f1 f2 + k2 0 · · · · · · 0

−h2 − k1 0 f3 + k3
. . .

...

0 −h3 − k2
. . . . . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . 0 fn + kn
0 · · · · · · 0 −hn − kn−1 0


.

In light of Corollary 1 and Remark 1, the necessary and
sufficient conditions for the closed-loop stability are (hi +
ki−1)(fi + ki) > 0 for i = 2, ..., n. As a result, if h2 +
k1 > 0, then it holds that f2 + k2 > 0. Now, because h3 <
f2, the term h3 + k2 can be positive or negative. If it is
positive, then f3 + k3 must be positive, and we can move
on to study the sign of h4 + k3. As we proceed, it should
be noted that not all sign assignments for hi + ki−1 and
fi+ki are possible due to the assumptions on fi and hi. The
enumeration procedure is illustrated in Figure 4. Any path
from the root to the bottom level leaf passes through a set of
linear inequalities that together enclose an open polyhedron
of stable regions. These stable regions are separated by the
hyperplanes hi+1 + ki = 0 for i = 1, 2, . . . , n− 1 and fi +
ki = 0 for i = 2, 3, . . . , n.

Next, we count the number of branches. If hi+1 + ki > 0
(or equivalently fi+1 + ki+1 > 0) appears mi times and
hi+1 + ki < 0 (or equivalently fi+1 + ki+1 < 0) appears ni
times, assuming mi ≥ ni, the next level will have at most
(mi+ni)+max(mi, ni) = 2mi+ni branches. This number
is achievable if fi+1 < hi+2, which means keeping all the
children of the inequalities fi+1+ki+1 > 0 and pruning one
child from each of the inequality fi+1 + ki+1 < 0. Then,
mi+1 = mi, ni+1 = mi + ni, and ni+1 ≥ mi+1, reversing
the order of mi and ni. It can be verified that the total number
of connected regions mi + ni satisfies the iteration of the
Fibonacci sequence.

The above connected regions are separated by the hyper-
planes ki = −fi or ki = −hi+1 with no margin. However,
when ε > 0, the connected components will be separated.
More precisely, whenever ki = −fi or ki = −hi+1, the
matrix A+ BKC decomposes into a block triangular form
where the lower diagonal block has a positive trace, which

means that the matrix cannot be stable. When ε is small
enough, the original connected regions described by linear
inequalities do not shrink abruptly — in fact, at least one
point from every polyhedron remains stable. As a result,
these stable regions are the true connected components of
the stabilizing controller set.

To illustrate Theorem 4, consider the matrix

A =



−1 + ε 2 0
−2 ε 1 0
0 −1 ε 2 0

0 −2 ε 1 0
0 −1 ε 2 0

. . . . . . . . . . . . . . .


. (8)

The corresponding set K obtained by sampling random
matrices K and checking the closed-loop stability is provided
in Figure 5 for n = 3.

The previous results all suggest that the diagonal entries of
A being positive contribute to the complexity of the feasible
set K. We will next show that the diagonal of A being
negative is a desirable structure in the sense that if A is
highly dampened, then the feasible set is connected.

Theorem 5: Given arbitrary matrices A, B and C of
compatible dimensions and a linear subspace of matrices S,
the set

Kλ = {K : A− λI +BKC is stable ,K ∈ S}

is connected when λ > 0 is large enough.
Proof: Consider a number µ and let λ be a parameter

that increases from µ toward ∞. Since λ ≥ µ, we have
Kλ ⊇ Kµ, and therefore Kλ contains all components of Kµ

but could possibly connect them or add new components.
The addition of new components with the increase of λ
could occur only a finite number of times. The reason is that,
due to the Routh-Hurwitz criterion, Kλ can be described by
polynomial inequalities in the entries of A − λI + BKC,
and hence the boundary of Kλ described as the solutions
of some polynomial equalities has a maximum number of
connected components, which is finite given the order of
the system. Therefore, we first increase λ until no new
connected component appears, then select a controller from
each connected component, and cover all those controllers
(points) with a ball B ⊆ S . By making λ so large that all
controllers in B become stable, we glue all of the connected
components.

The interpretation of the result of Theorem 5 is that if the
open-loop matrix of the system can be written as A−λI for
a large λ, then the feasible set of ODC is connected. This
corresponds to highly damped systems.

Remark 3: It is noted in [31] that if we consider the
discounted cost∫ ∞

0

e−2λt(xTQx+ 2uTDx+ uTRu)dt,

or equivalently make a change of variables x̂(t) = e−λtx(t)
and û(t) = e−λtu(t), then the closed-loop dynamics become
equal to ˙̂x(t) = (A−λI +BKC)x̂(t). Therefore, it follows



◦

h2 + k1 > 0

f2 + k2 > 0

h3 + k2 > 0

f3 + k3 > 0

h4 + k3 > 0

f4 + k4 > 0

h4 + k3 < 0 (*)

h3 + k2 < 0

f3 + k3 < 0

h4 + k3 > 0

f4 + k4 > 0

h4 + k3 < 0

f4 + k4 < 0

h2 + k1 < 0

f2 + k2 < 0

h3 + k2 > 0 (*) h3 + k2 < 0

f3 + k3 < 0

h4 + k3 > 0

f4 + k4 > 0

h4 + k3 < 0

f4 + k4 < 0

Fig. 4. This tree shows the enumerating signs of the closed-loop matrix entries for n = 4. The branch marked with (∗) has contradictory inequalities.

Fig. 5. We randomly sample K and check the closed-loop stability for
an instance of the system in Theorem 4 with n = 3, the matrix A given
in (8), and K = diag(k1, k2, k3). The projection of the set K onto the
3-dimensional space corresponding to (k1, k2, k3) is shown in blue in the
top picture for ε = 0 and in the bottom picture for ε = 0.02.

from Theorem 5 that the feasible set of the ODC problem is
connected for discounted costs with a large forgetting factor.

Remark 4: It is known in the context of inverse optimal
control [31] that any static state-feedback gain K is the
unique minimizer of some quadratic performance measure
(1) for all initial states. One such measure is∫ ∞

0

(u(t)−Kx(t))T R (u(t)−Kx(t)) dt.

where R is a positive definite matrix, and Q and D can
be computed accordingly. As a result, each point in any

connected component is an optimal solution to some ODC
problem. Since there are an exponential number of connected
components in certain cases, it is unlikely for a random
initialization to successfully locate the optimal component
unless some prior information is available or the system is
favorably structured. Local search algorithms, therefore, fail
for the general ODC problem.

V. CONCLUSION

In this paper, we studied global geometric properties of
the set of static stabilizing decentralized controllers. We
demonstrated through a subclass of problems that the NP-
hardness of optimal decentralized control could be attributed
to a large number of connected components. In particular, we
proved that the number of connected components for chain
subsystems would follow a Fibonacci sequence. We bound
the number of connected components in the scalar case. We
also showed that connectivity would not be an issue for
highly damped systems. Our results qualified the application
of local search algorithms to optimal decentralized control
problems and emphasized structural considerations. Future
work includes the analysis of the connectivity properties of
dynamic controllers and the identification of system/control
structural properties that guarantee the connectivity of the
feasible set.
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