

(https://www.abstractsonline.com/pp8/#!/7883)

Session 556 - Central and Peripheral Myelinating Cells I

O Add to Itinerary

556.20 / B99 - Regulation of oligodendrocyte exploratory behavior and sampling of axons by neural activity

₩ October 22, 2019, 1:00 PM - 5:00 PM

♀ Hall A

Presenter at Poster

Tue, Oct. 22, 2019 4:00 PM -5:00 PM

Session Type

Poster

Grant Support

NSF CAREER 1845603

Grant Support

National Multiple Sclerosis Society 5274A1/T

Grant Support

National Multiple Sclerosis Society PP-1706-29071

Grant Support

Winona State University Foundation Special Projects Award 251.0327

Authors

J. R. GRONSETH¹, T. A. MALLON¹, M. R. MARTELL¹, B. B. DUXBURY¹, A. J. TREICHEL¹, J. T. HENKE¹, E. S. MENGES¹, H. N. NELSON¹, T. L. HOBBS², *J. H.

¹Dept. of Biol., ²Winona State Univ., Winona, MN

J.R. Gronseth: None. T.A. Mallon: None. M.R. Martell: None. B.B. Duxbury: None. A.J. Treichel: None. J.T. Henke: None. E.S. Menges: None. H.N. Nelson: None. J.H. Hines: None.

Abstract

Oligodendrocytes (OLs), the myelinating cell type of the CNS, interact with a plethora of diverse neuronal subtypes but only wrap a select subset with myelin sheaths. Prior to initiating axon wrapping, OLs dynamically extend and retract membrane processes in order to contact and sample numerous axons. Whether neural activity-dependent mechanisms regulate exploratory axon sampling, target axon recognition, and stabilization of OL-axon interactions prior to initial axon wrapping is unknown. To test this, we directly observed interactions between premyelinating OL processes and individually labeled target axons in larval zebrafish using time-lapse confocal microscopy. In control larvae anesthetized with the neuromuscular blocker pancuronium bromide, we observed dynamic axon sampling characterized by frequent formation and turnover of OL-axon interactions. In contrast, treatment with the neural activity blocker tricaine methanesulfonate (MS-222) caused reduced frequency of new interaction formation, increased interaction duration, and reduced frequency of interaction retraction. Time-lapse imaging revealed differential effects on OL-axon interactions at axon varicosities and thin, intervening segments. Specifically, the destabilizing effects of neural activity on OL-axon interactions were heightened at axon varicosities. MS-222 increased contact durations at varicosities but not at neighboring intervening segments. Neural activity manipulations also influenced the dynamics of axon varicosity formation, lifetime, and turnover, raising the possibility that changes to axon morphology or local properties could direct OLaxon interactions and subsequent myelination. Taken together, we conclude that neural activity negatively regulates the duration of OL-axon interactions prior to initial axon wrapping and myelination. These findings support a mechanism whereby neural activity plays opposing roles on OL-axon interactions before and after initial myelin ensheathment. Prior to ensheathment, neural activity destabilizes interactions, which may serve to facilitate increased overall sampling of potential wrapping sites. After successful ensheathment, neural activity stabilizes OL-axon adhesion in order to promote continued growth and maturation of the myelin sheath. Current and future studies aim to understand the reciprocal effects between OL processes and axon morphology, and the effects of synaptic vesicle release during initial OL-axon interactions.

Abstract Citation