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Abstract

Scientific models describe natural phenomena at
different levels of abstraction. Abstract descrip-
tions can provide the basis for interventions on
the system and explanation of observed phenom-
ena at a level of granularity that is coarser than
the most fundamental account of the system.
Beckers and Halpern (2019), building on work of
Rubenstein et al. (2017), developed an account of
abstraction for causal models that is exact. Here
we extend this account to the more realistic case
where an abstract causal model offers only an ap-
proximation of the underlying system. We show
how the resulting account handles the discrep-
ancy that can arise between low- and high-level
causal models of the same system, and in the pro-
cess provide an account of how one causal model
approximates another, a topic of independent in-
terest. Finally, we extend the account of approxi-
mate abstractions to probabilistic causal models,
indicating how and where uncertainty can enter
into an approximate abstraction.

1 INTRODUCTION

Scientific models aim to provide a description of reality
that offers both an explanation of observed phenomena and
a basis for intervening on and manipulating the system to
bring about desired outcomes. Both of these aims lead to a
consideration of models that represent the causal relations
governing the system. They also imply the need for sci-
entific models that describe the system at a granularity or
level of description appropriate for the user and suitable for
interventions that are feasible. Such more abstract causal
models do not capture all the detailed interactions that oc-
cur at the most fundamental level of the system, nor do
they, in general, represent outcomes of the system com-
pletely accurately at the abstract level. Nevertheless, such
abstract causal models can (at least) approximately explain
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Figure 1: Climate example adapted from Chalupka et al.
(2016), in which a high-level causal model for the phe-
nomenon of El Nifio is constructed from low-level (high-
dimensional) wind W and sea surface temperature T mea-
surements. U is an unmeasured confounder and 7 is the
mapping between the models. See the text for details.

the phenomena, and can be informative about how the sys-
tem will respond to interventions that are specified only at
the abstract level.

This paper provides a formal account of such approximate
abstractions for causal models that builds on the definition
of an abstraction provided by Beckers and Halpern (2019)
(see Section 2), which in turn built on the work of Ruben-
stein et al. (2017). That notion of abstraction implicitly
assumed an underlying causal system that permitted an ex-
act description of the system at the abstract level. Here we
weaken that assumption to handle what we take to be the
more realistic case, namely, that abstract causal models will
capture the underlying system in only an approximate way.

As a simplified working example to illustrate our points we
use the case of the wind and sea surface temperature pat-
terns over the equatorial Pacific that give rise to the high-
level climate phenomena of El Nifio and La Nifia, as de-
scribed by Chalupka et al. (2016). They considered the
question of how the El Nifio climate phenomenon related
to the underlying wind and sea surface temperature patterns
that constitute it (see Fig. 1). At the low level they consid-
ered two high-dimensional vector-valued variables repre-



senting the wind speeds W and the sea surface tempera-
tures T, respectively, on a grid of geographical locations in
the equatorial Pacific. They assumed (with some justifica-
tion from climate science) that wind speed Wi is a cause of
sea surface temperature T thatis, T = f1, (W U ) for some
high-dimensional function f7,(.) and exogenous causes U.
They allowed the possibility that U may be a confounder of
W and T, so that there might be an additional causal rela-
tion W = gz, ((7 ). Leaving details about feedback and tem-
poral delay aside, they were interested in whether the same
system could be described at a higher level, using a low-
dimensional structural equation £ = f H(C U), where
there is a sur_lectlve mappmg 7 from R(T W) the set of
possible values of T' and W, to R(E,C). In the language
of this paper, they were searching for an abstract causal de-
scription of the system. They required that the high-level
model retain a causal interpretation, in the sense that if one
intervened on C, there would still be a well-defined causal
effect on £, no matter how the intervention on C was inter-
preted as an intervention on the underlying set of variables
w.

Chalupka et al. (2016) were able to learn such a high-level
model, and one of the states of E (the high-level descrip-
tion of the sea surface temperatures) indeed corresponded
to what would commonly be described as an El Nifio oc-
curring, conventionally defined by an average temperature
deviation in a rectangular region of the Pacific. However,
the high-level description was not perfect: it provided an
informative causal description of the underlying systems
and allowed for predictions that approximated the actual
outcomes. Here we make precise the nature of such an
approximation between a high-level and low-level causal
model of the same system. In the process, we define what
it means for one causal model to approximate another.

Although our running example is a vastly simplified cli-
mate model, the challenge of approximately modeling phe-
nomena at a more abstract level is part of almost every sci-
entific model. For example, it was Robert Boyle’s great in-
sight that, despite its inaccuracies for real gases in practice,
the ideal gas law still provides an approximate abstract de-
scription of the behavior of the molecules of a gas in a con-
tainer that is extraordinarily useful for understanding and
manipulating real systems. Approximate abstractions can
take a variety of forms in scientific practice, ranging from
idealizations and discretizations to other forms of simplifi-
cation and dimension reduction (as in the climate example).
Our account captures these in a unified formal framework.

The main contribution of this paper is to present a frame-
work that offers a foundation for analyzing abstraction and
approximation in causal models. We provide what we be-
lieve are sensible definitions of approximation and approx-
imate abstraction, and a conceptual discussion of these no-
tions. In addition, we provide some technical results re-

garding the difficulty of determining whether an approxi-
mate abstraction can be viewed as the composition of an
approximation and an exact abstraction.

2 PRELIMINARIES

Since we are interested in scientific models that support
explanations of phenomena and can inform interventions
on a system, we start by defining a deterministic causal
model with a set of possible interventions. We use exoge-
nous and endogenous variables to distinguish those influ-
ences that are external to the system and those that are in-
ternal. The definitions follow the framework developed by
Halpern (2016).

Definition 2.1: A signature S is a tuple (U/,V, R), where
U is a set of exogenous variables, V is a set of endogenous
variables, and R, a function that associates with every vari-
able Y € U UV a nonempty set R(Y') of possible val-
ues for Y (i.e., the set of values over which Y ranges).
If X = (X1,...,X,), R(X) denotes the crossproduct
R(X1) x -+ x R(X,).1

For simplicity in this paper, we assume that signatures are
finite, that is, ¢/ and V are finite, and the range of each
variable Y € U U V is finite.

Definition 2.2: A basic causal model M is a pair (S, F),
where S is a signature and JF defines a function that asso-
ciates with each endogenous variable X a structural equa-
tion Fx giving the value of X in terms of the values of
other endogenous and exogenous variables. Formally, the
equation Fx maps R(U UV — {X}) to R(X), so Fx de-
termines the value of X, given the values of all the other
variables int/ U V. 11

Note that there are no functions associated with exoge-
nous variables, since their values are determined outside
the model. We call a setting @ of values of exogenous vari-
ables a context.!

The value of X may not depend on the values of all other
variables. Y depends on X in context U if there is some set-
ting of the endogenous variables other than X and Y such
that if the exogenous variables have value , then varying
the value of X in that context results in a variation in the
value of Y'; that is, there is a setting Z’ of the endogenous
variables other than X and Y and values x and z’ of X
such that Fy (z, Z, @) # Fy (2, Z, 4).

In this paper, we restrict attention to recursive (or acyclic)
models, that is, models where there is a partial order < on

"'We remark that the notion of context used here, which goes
back to (Halpern and Pearl 2005), is similar to that of Boutilier
et al. (1996), in that both are assignments of values to variables.
However, here it is used in particular to denote an assignment of
values to all the exogenous variables.



variables such that if Y depends on X, then X < Y2TIn
a recursive model, given a context u, the values of all the
remaining variables are determined (we can just solve for
the value of the endogenous variables in the order given by
<) We often write the equation for an endogenous variable
as X = f(Y); this denotes that the value of X depends
only on the values of the variables in }7, and the connection
is given by f. Our climate example is recursive, since T =

fL(wW,0).

An intervention has the form X < T, where X is a set
of endogenous variables. Intuitively, this means that the
values of the variables in X are set to Z. The structural
equations define what happens in the presence of external
interventions. Setting the value of some variables X toZin
a causal model M = (S, F) results in a new causal model,
denoted M ¢ i which is identical to M, except that F is

replaced by F = <7 for each variable Y ¢ X, FX SEs
Fy (i.e., the equation for Y is unchanged), while for each
X' in X, the equation Fy for is replaced by X' = 1z’
(where 2’ is the value in Z corresponding to ).

Halpern and Pearl (2005) and Halpern (2016) implicitly as-
sumed that all interventions can be performed in a model.
For reasons that will become clear when defining abstrac-
tion, we follow Rubenstein et al. (2017) and Beckers and
Halpern (2019) in adding the notion of “allowed interven-
tions” to a causal model. This allows us to capture situa-
tions where not all interventions are of interest to the mod-
eler and/or some interventions may not be feasible. We
can then define a causal model M as a tuple (S,F,7),
where (S, F) is a basic causal model and Z is a set of al-
lowed interventions. We sometimes write a causal model

= (S,F,T) as (M',T), where M’ is the basic causal
model (S, F), if we want to emphasize the role of the al-
lowed interventions.

Given a signature S = (U,V,R), a primitive event is
a formula of the form X = x, for X € VYV and =z €
R(X). A causal formula (over S) is one of the form
[Y1 < y1,...,Y%s < yr]p, where @ is a Boolean combi-
nation of primitive events, Y7, ..., Y} are distinct variables
inV, and y; € R(Y;). Such a formula is abbreviated as
[Y < #]p. The special case where k = 0 is abbreviated
as . Intuitively, [Y1 < y1,...,Yr < yi]p says that ¢
would hold if Y; were set to y;, fori =1,..., k.

A causal formula 1 is true or false in a causal model, given
a context. As usual, we write (M, ) |= ¢ if the causal
formula ¢ is true in causal model M given context «. The
= relation is defined inductively. (M, %) E X = z if the
variable X has value x in the unique (since we are dealing
with recursive models) solution to the equations in M in
context  (i.e., the unique vector of values that simultane-

“Halpern (2016) calls this strongly recursive, in order to dis-
tinguish it from models in which the partial order depends on the
context. This distinction has no impact on our results.

ously satisfies all equations in M with the variables in U/
set to ). The truth of conjunctions and negations is de-
fined in the standard way. Finally, (M, %) E [Y < gl if

(My_j 1) = ¢

To simplify notation, we sometimes write M (i) to denote
the unique element of R(V) such that (M, 4) = V = @.
Similarly, given an intervention Y g, M(
denotes the unique element of R(V) such tha

Y« 4)(v = 7).

These definitions allow us to describe the climate system
both in terms of a low-level causal model M}, and a high-
level model My

—

Y
(M, u)

~

U
t

My, = (UL, Vr,Re), Fr,Ir)

= (({T} AW, T}, Re), {9z, fr}, T1) and
My = (U, Vu,Ru), Fu,Zy)

= ({U},{C.E}, Ru), {9, fu}. Iu).

Chalupka et al. (2016) treated U as not only exogenous,
but also unobserved, and therefore made no claim about
its dimensionality in the high-level model. We do not ex-
plicitly spell out Rz, and Ry here; the description of the
climate model indicates that Rz (C) x Rr(E) is much
smaller than Rz (W) x Ry (T): many different low-level
(vector-valued) states may correspond to one high-level
low-dimensional state. Finally, for our climate example we
have not yet said anything about interventions, so Zy, and
Ty are currently placeholders.

We are now in a position to specify a relation between the
high and low-level models My and M7y,.

2.1 Abstraction

Beckers and Halpern (2019) gave a sequence of succes-
sively more restrictive definitions of abstraction for causal
model. The first and least restrictive definition is the notion
of exact transformation due to Rubenstein et al. (2017).
Examples given by Beckers and Halpern show that the no-
tion of exact transformation is arguably too flexible. Thus,
in this paper the notion of abstraction we consider is that of
T-abstractions, introduced by Beckers and Halpern, which
can be viewed as a restriction of exact transformations® and
avoids some of their problems. However, nothing hinges on
this choice: all definitions can just as well be interpreted
using the less restrictive notions of abstractions.

The key to defining all the notions of abstraction from

3Exact 7-transformations relate probabilistic causal models,
while T-abstractions relate (deterministic) causal models. Beck-
ers and Halpern (2019) show that we can compare the two by
proving that every T-abstraction is what they call a uniform -
transformation: specifically, if My is a T-abstraction of M7, then
for every probability Pry,, there exists a probability Prz such that
(My,Prp) is an exact 7-transformation of (Mg, Prg).



a low-level to a high-level causal model considered
by Beckers and Halpern is the abstraction function
7:Rr(V) = Ru(Vy) that maps endogenous states of
M, to endogenous states of M. This is a generaliza-
tion of the surjective mapping 7 from R(T', W) to R(E, C)
discussed in the introduction. In the formal definition, we
need two additional functions: 7, : Rp(Ur) — Ry Upy),
which maps exogenous states of M, to exogenous states
of My, and w; : Z; — Zy, which maps low-level in-
terventions to high-level interventions.  Beckers and
Halpern (2019) show that, given their definition of abstrac-
tion, 734 and w, can be derived from 7. We briefly review
the relevant definitions here; we refer the reader to their
paper for more details and motivation.

Definition 2.3: Given a set V of endogenous variables,
X CV,and ¥ € R(X), let

Rst(V,Z) = {# € R(V) : Z is the restriction of 7' to X }.

Given 7 RL(VL) — RH(VH) define w, (X &) =
Y « it Y C Vy, 7 € Ru(Y), and 7(Rst(Vy, 7)) =
Rst(Vy, ) (where, as usual, given T C Ry (Vy), define
T(T) = {7(0) : ¥ € T}). Itis easy to see that, given
X and 7, there can be at most one such Y and y. If such a
Y and § do not exist, we take w, (X < ) to be undefined.
Let Z7 be the set of interventions for which w; is defined,
and let T, = w,(Z7). I

Note that if 7 is surjective, then it easily follows that
wy(0) = 0, and for all 77, € R (Vy), w,(Vy, + ¥1) =
VH < T(ﬁL).

With this definition, the need for the intervention sets Zj,
and Zy becomes clear: in general, not all low-level in-
terventions will neatly map to a high-level intervention,
since the abstraction function 7 may aggregate variables to-
gether; some low-level interventions will constitute only a
partial intervention on a high-level variable. The “allowed
intervention” sets ensure that the set of interventions can be
suitably restricted to retain only those that can actually be
abstracted. Similarly, there may be cases where the high-
level model does not support all interventions because they
may not be well-defined. For example, what does it mean
in the ideal gas law to change temperature, while keeping
pressure and volume constant? It is not even clear that such
an intervention is meaningful.

Of course, a minimal requirement for any causal model to
be a T-abstraction of some other model is that the signa-
tures of both models need to be compatible with 7. Beckers
and Halpern (2019) add two further minimal requirements.
We capture all of them by requiring the two causal models
to be T-consistent:

Definition 2.4: If 7 Rr(Ve) — Ru(Vm), then
(My,Zy) and (My,,Z;) are T-consistent if T is surjective,
Ty = w-(Zr), and |R(UL)| > |Ru(Ux)|. 1

Definition 2.5 (M, Zy) is a T-abstraction of (My,, Zy,) if
(My,Zy) and (M, Z;,) are T-consistent and there exists a
surjective 7, such that for all @, € Ry (Uy) and X < Z €
Ir, T(ML(l_I:L,X — f)) = MH(TZ/{(’L_L'L),UJT(X — f)) |

Abstraction means that for each possible low-level context-
intervention pair, the two ways of moving up “diagonally”
to a high-level endogenous state always lead to the same
result. The first way is to start by applying My, to get a
low-level state, and then moving up to a high-level state
by applying 7, whereas the second way is to first move to
a high-level context and intervention (by applying 73, and
w;), and then to obtain a high-level state by applying M.

A common and useful form of abstraction occurs when the
low-level variables are clustered, so that the clusters form
the high-level variables. Roughly speaking, the intuition is
that in the high-level model, one variable captures the ef-
fect of a number of variables in the low-level model. This
makes sense only if the low-level variables that are being
clustered together “work the same way” as far as the al-
lowed interventions go. The following definition makes
this special case of abstraction precise.

Definition2.6 : If Vg = {Y1,...,Y,}, then 7
Rr(VL) = Ru(Vu) is constructive if there exists a par-
tition P = {217...,Z7L+1} of Vi, where Zl, .. .,Zn
are nonempty, and mappings 7; : R(Z;) — R(Y;) for
t=1,...,nsuchthat 7 = (7y,...,7,); thatis, 7(v7) =
T1(Z1) - - Tn(Z,), where Z; is the projection of ¢, onto
the variables in Zi, and - is the concatenation operator on
sequences. If My is a T-abstraction of M, then we say it
is constructive if T is constructive and 7y, = 77 . I

In this definition, we can think of each Zi as describing a
set of microvariables that are mapped to a single macrovari-
able Y;. The variables in Zn+1 (which might be empty) are
ones that are marginalized away.

The climate example almost exactly fits the notion of con-
structive abstraction: the variables in the high-level model,
C and FE, each correspond to a vector-valued low-level
variable, W and T, but W and T' could have been replaced
by disjoint sets of variables. Consequently, 7 maps states
from the same low-level variable to the same high-level
variable (see Fig. 2, left). Although interventions are prac-
tically not feasible in the climate case, hypothetically they
are perfectly well-defined: an intervention on C can be in-
stantiated at the low level by several different interventions
on W (see Fig. 2, right). Finally, given an intervention on
W, we have that

My (@, W « @) = (T = 1) iff

My (my (@), w, (W + W)) = (E

= ().

The correspondence between M, and My is exact. In fact,
the high-level model My constructed by Chalupka et al.
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Figure 2: The climate model exemplifies constructive ab-
straction. Left: T and 7;; map low-level variables to their
high-level counterparts. Right: w, maps low-level inter-
ventions to the high-level intervention. Several different
low-level interventions on W may correspond to the same
intervention on C'.

(2016) did not satisfy this biconditional precisely, but had
to approximate it. We maintain that, in general, high-level
models in science are only approximate abstractions.

3 APPROXIMATE ABSTRACTION

In order to define what it means for one causal model to be
an approximation of another, we need a way of measuring
the “distance” between causal models. We take a distance
function to simply be a function that associates with a pair
(My, My) a distance, that is, a non-negative real number.
We show how various distance functions on causal models
can be defined, starting from a metric dy on the state space
R(V) of a causal model. (Recall that a metric on a space X
isafunctiond : X x X — IR" such that (a) d(z, z") = 0 iff
x =21, (b)d(x,y) = d(y,z), and (c) d(z,y) + d(y,2) >
d(x, z).) Such a metric dy, is typically straightforward to
define. Given two states s; and s, we can compare the
value of each endogenous variable X in s; and s,. The
difference in the values determines the distance between s
and so.

The choice of distance function is application-dependent.
Different researchers looking at the same data may be in-
terested in different aspects of the data. For example, sup-
pose that the model is defined in terms of 5 variables,
X1,...,X5. X3 might be gender and X4 might be height.
Suppose that we restrict to distance functions that takes
the distance between (z1,...,25) and (z},...,2f) to be
of the form /w1 (z1 — 27)% + - -+ 4+ ws (w5 — 2})2, where
wy, ..., ws are weights that represent the importance (to
the researcher) of each of these five features. One re-
searcher might not be interested in gender (so doesn’t care
if her predictions about gender are incorrect), and thus
might take w3 = 0; another researcher might care about
gender and not about height, so she might take ws = 1
and wy = 0. While, as we shall see, the choice of distance
function makes a crucial difference in evaluating the “good-
ness” of an approximate abstraction, in light of the above,

we leave the choice of distance function unspecified.

In the remainder of the paper, we assume that the state
space R (V) of endogenous variables for each causal model
comes with a metric dy,. We provide a number of ways of
lifting the metric dy on states to a distance function d on
models, and then use the distance function to define both
approximation and approximate abstraction.

Our intuition for the distance function is based on how
causal models are typically used. Specifically, we are in-
terested in how two models compare with regard to the
predictions they make about the effects of an intervention.
Our intuition is similar in spirit to that behind the notion of
structural intervention distance considered by Peters and
Biihlmann (2015), although the technical definitions are
quite different. (We discuss the exact relationship between
our approach and theirs in the next section, in the context
of probabilistic models.)

We start with the simplest setting where this intuition can
be made precise, one where the models M; and M, differ
only with regards to their equations. We say that two mod-
els are similar in this case. If two models are similar, then,
among other things, we can assume that they have the same
metric dy. In this setting, we can compare the effect of each
allowed intervention X < & in the two models. That is, for
each context @, we can compare the states M (@, X « %)
and M, (@, X < ) that arise after performing the inter-
vention X <« 7 in context @ in each model. We get the
desired distance function by taking the worst-case distance
between all such states.

Definition 3.1: Define a distance function d,,,, on pairs of
similar models by taking

dmam(MlaMQ) = N N
maxe g gerun{dv(Mi(@, X &), My(@, X 7).

The causal model M is a d,,,q-o approximation of My if
dmam(MlaMQ) S . I

Thus, M is a dyq,-« approximation of M, if the predic-
tions of M, are always within « of the predictions of M.

We apply similar ideas to defining approximate abstraction.
But now we no longer have a distance function defined on
causal models with the same signature. Rather, the distance
function d, is defined on pairs (M, My ) consisting of a
low-level and high-level causal model (which, in general,
have different signatures), related by a a surjective mapping
7. The idea behind d, is that we start with a low-level
intervention X <« Z, consider its effects in M, lift this up
to M using 7, and compare this to the effects of w, ()? —

Definition 3.2 Fix a surjective map 7 : R(Vy) = R(Vg).
Define the distance function d, on pairs of 7-consistent
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Figure 3: Approximate abstraction in the climate example.
We measure (for the worst-case choice of low-level inter-
vention W < 7 and context ) the distance between the
values of the variable E obtained by (a) first applying M7,
to @ and W <« 1 and then abstracting by applying 7 vs.
(b) abstracting the intervention and context (by applying
w, and 74, respectively) and then applying M.

models (M}, My ) by taking

dT(ML7 MH) = minTu surjective maXXFfGIL,ﬁLERL(UL)
(dyy (T(ML (UL, X < @), My (tu(iL),w- (X + T)))).

My is a T-a approximate abstraction of My if
dT(ML,MH) S . I

We take the minimum over all functions 73, because the
function that lifts the low-level contexts up to the high-level
contexts does not play a major role. We thus simply focus
on the best choice of 77,.

To get an intuition for an approximate abstraction, consider
the climate example again. For a low-level intervention
W < & and a low-level context i, there are two ways
of lifting their effect to My (see Fig. 3). The first is to
start by applying My, to the context-intervention pair to
determine a low-level state ¢, and then apply 7 to obtain
the high-level state E = e = (). (Recall that M}, can
be viewed as a function from context-intervention pairs to
states in Rz, (Vy).) The second is to first lift the interven-
tion W <« 1 to Ty, that is, an intervention on C, and
the context to Uy by applying w, and 7,. Then we apply
My (dg,C + c), which again gives a high-level endoge-
nous state ¢/. We are identifying the degree to which Mg
approximates M by considering the worst-case distance
between the two ways of lifting the context-intervention
pairs, for an optimal choice of 7.

The following straightforward results show that our notion
of approximate abstraction is a sensible generalization of
both the notion of an exact abstraction and the notion of
approximation between similar models.

Proposition 3.3: My is a T-0-approximate abstraction of
My, iff My is a T-abstraction of M7,.

Proposition 3.4: If My and M are similar, then Ms is a
Id-a-approximate abstraction of My (where 1d is the iden-
tity function on R(V)) iff Ms is a d,q.-Q-approximation
OfMl.

4 APPROXIMATE ABSTRACTION FOR
PROBABILISTIC CAUSAL MODELS

A probabilistic causal model M = (S, F,Z,Pr) is just a
causal model together with a probability Pr on contexts .

In this section, we assume that all causal models are prob-
abilistic, and extend the notion of approximation to prob-
abilistic causal models. We again start by considering the
simplest setting, where we have probabilistic models that
differ only in their equations. We again call such models
similar. Now we have several reasonable distance func-
tions.

Definition 4.1: Define a distance function d,,, 4, on pairs of
similar probabilistic causal models by taking

dmux(Mh MQ) - max)—(»efez
aerw) Pr(@)dy (M (4, X + ), Mz (U, X < f))) .

The probabilistic causal model M; is a dy,q.-v approxi-
mation of My if dpar (M1, M2) < a. 1

In this definition, we have just replaced the max over con-
texts in Definition 3.1 by an expectation over contexts.

But we may not always just be interested in the expected
distance. We may, for example, be more concerned with
the likelihood of serious prediction differences, and not be
too concerned about small differences. This leads to the
following definition.

Definition 4.2: Define a distance function dg on pairs of
similar probabilistic causal models by taking

dg (M, M) = max g zer
Pr({@: dy(My(d, X + ), My(d, X + X)) > B}

The probabilistic causal model M is a dg-o approximation
of Mg if dﬁ(Ml, Mg) S Q. I

We can now extend these ideas to approximate abstraction.
We first extend the definition of 7-abstraction to the proba-
bilistic setting.

Note that we can view Pr as a probability measure on
R(V), by taking Pr(¢) = {« : M (&) = ¢}. An interven-
tion X < & also induces a probability Pr* <% on R(V) in
the obvious way:

Pr¥? (@) = Pr({@ : M(@, X + %) = 0}).

In the deterministic notion of abstraction, we require that
the two high-level states obtained by the two different ways
of lifting the effects of a low-level intervention to the high
level be equal. In the probabilistic notion, we require that
the two different probability distributions obtained by the
two ways of lifting an intervention be equal.



Definition 4.3: Mg is a T-abstraction of My, if My and
M, are T-consistent and for all interventions X < ¥ € 7y,
we have that 7(Pry ©%) = Priy (X0

We can now extend our definitions to the approximate sce-
nario just as we did for deterministic causal models.

Definition 4.4: Fix a surjective map 7 : R(Vy) — R(Vy).
Define the distance function d, on pairs of 7-consistent
probabilistic causal models by taking

d- (ML7 MH) = min{‘ru:‘ru(PrL):PrH} maxg, zer,
( @ ERL(UL) Pr_?(UL) B
dVH (T(ML(ITL, X« f)), MH(TL{(@L),WT(X — f))))

My is a T-a approximate abstraction of My if
d-(Mp,Mpy) <a.l

For the climate example this definition implies the follow-
ing: Suppose we introduce probabilities by specifying dis-
tributions over the contexts 4, and . The resulting prob-
abilistic causal model (M, Pry) is a 7-a approximate
abstraction of (M, Pry) if the expectation (in terms of
Prp) of the difference between the states e and ¢’ of the
high-level temperature variable E is less or equal to «,
where e and ¢’ are determined exactly in accordance with
the two pathways in Fig. 3, selecting the worst-case inter-
vention W < 7 and the best case Y-

Analogously to the deterministic case, we have the follow-
ing straightforward results.

Proposition 4.5: My is a 7-0-approximate abstraction of
My, iff My is a T-abstraction of M7,.

Proposition 4.6: If My and M are similar, then Ms is a
Id-a-approximate abstraction of M1 iff M is a dpqq--
approximation of Mj.

In Definition 4.4 we consider the worst-case low-level in-
tervention to define the distance. In many cases, however,
the whole point of an abstraction is to be able to exclude
rare low-level boundary cases (e.g., when the ideal gas law
is taken to refer only to equilibrium states). Moreover, of-
ten the actual manipulations that we can perform are known
to us only at the high-level, because the low-level imple-
mentation of the intervention is unobservable to us. For
example, in setting the room temperature to 70°F we do
not generally consider the instantiation of that intervention
which superheats one corner of the room and freezes the
rest such that the mean kinetic energy works out just right.
As Spirtes and Scheines (2004) show, in the absence of any
further information, such ambiguous manipulations can be
quite problematic. Fortunately, often our knowledge of
the mechanism of how a high-level intervention is imple-
mented does give us significant probabilistic information.
For example, we might know that the heater has a fan that

circulates the air, most likely resulting in relatively uniform
distributions of the kinetic energies of the particles.

We capture this information using what we call an inter-
vention distribution.

Definition 4.7 Given a  surjective  map
T:R(VL) = R(Vn). an  intervention  distribu-
tion Prz is a distribution on Z; X Zg such that
Pro(X « Z|Y « ) > 0iffw (X « &)=Y « 7.1

We think of Prz(X « # | ¥ « ) as telling us how
likely the high-level intervention Y < ¢ is to have been
implemented by the low-level intervention X <+ Z.

Definition 4.8: Given a surjective map 7 : R(Vy) —
R (V) and an intervention-distribution Prz, the distance
function d-* on pairs of T-consistent probabilistic causal
models is defined by taking

dfrz (ML; MH) = min{'ru:‘ru (Prp)=Pryg} max}?%gezH
(ZﬁLGRL(L{L) Prf(ﬁL) .

Z)@—fEIL PII()H(Y(—fl Y%g’) =

dyH (T(ML(ﬁL, X+ f)), MH(Tu(ﬁL),wT(X — f))))

Intuitively, for each high-level intervention Y « i, we
take the expected distance between the two ways of lift-
ing a low-level intervention to Y « 9. In computing the
expectation, there are two sources of uncertainty: the like-
lihood of a given context (this is determined by Pry) and
the likelihood on each low-level intervention that maps to
Y < 7 (this is given by Prz(- | Y < #)). Fig. 4 illustrates
the point for the climate example.

We can also define dj; and dg’PrI in a manner completely
analogous to Definition 4.2. We omit these definitions for
reasons of space, but the details should be clear.

It is worth comparing our approach to other approaches to
determining the distance between causal models. The more
standard way to compare two causal models is to com-
pare their causal graphs. The causal graph is a directed
acyclic graph (dag) that has nodes labeled by variables; (the
node labeled) X is an ancestor of (the node labeled) Y iff
X < Y. Dags have been compared using what is called the
structural Hamming distance (SHD) (Acid and de Campos
2003), where the SHD between G and H (which are as-
sumed to have an identical set of nodes) is the number of
pairs of nodes (i, j) on which G and H differ regarding the
edge between ¢ and j (either because one of one of them has
an edge and the other does not, or the edges are oriented in
different directions). As Peters and Biihlmann (2015) ob-
serve, the SHD misses out on some important information
in causal networks. In particular, it does not really com-
pare the effect of interventions. They want a notion of dis-
tance that takes this into account, as do we. However, they
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Figure 4: Probabilistic approximate abstraction for the cli-
mate example: An intervention on the high-level wind vari-
able C results, given the distribution over contexts « (omit-
ted for clarity), in the red distribution over the high-level
temperature variable £. The intervention C' <— ¢ can be
instantiated in the low-level wind map W in many ways,
according to the intervention distribution Prz. Mapping
the (manipulated) distribution over w using M, results in
a distribution over the low-level temperature map T that
combines uncertainty from Prz and Pry,. Abstracting this
distribution using 7 to E results in the black distribution
over EJ. My is a probabilistic T-a-approximate abstrac-
tion of M, if the distance between the expectations of these
distributions is less than «.

take into account the effect of interventions in a way much
closer in spirit to SHD. Roughly speaking, in our language,
given two similar causal models M; and Ms, they count
the number of pairs (X,Y") of endogenous variables such
that intervening on X leads to a different distribution over
Y in M; and M,. More formally, let Pri"* <" denote
the marginal of Pr™MX <% on the variable Y in model M.
(Since we want to compare probability distributions in two
different models, we add the model to the superscript.) The
SID between similar models M7 and M, is the number of

pairs (X,Y") such that there exists an x € R(X) such that
pMiXea 4 p Mo X
Iy # Pry .

Although SID does compare the predictions that two mod-
els make, it differs from our distance functions in several
important respects. First, it compares just the effect of in-
terventions on single variables, whereas we allow arbitrary
interventions. We believe that it is important to consider
arbitrary interventions, since sometimes variables act to-
gether, and it takes intervening on more than one variable
to really distinguish two models. Second, we are interested
in how far apart two distributions are, not just the fact that
they are different. Finally, we want a definition that applies
to models that are not similar, since this is what we need
for approximate abstraction.

S COMPOSING ABSTRACTION AND
APPROXIMATION

It can be useful to understand an approximate abstraction
as the result of composing an approximation and an ab-

straction, in some order. For example, we can explain the
ideal gas law in terms of thinking of frictionless elastic col-
lisions between particles (this is an approximation to the
truth) and then abstracting by replacing the kinetic energy
of the particles by their temperature (a measure of average
kinetic energy). In this section, we examine the extent to
which an approximate abstraction can be viewed this way.
We start with two easy results showing that if we compose
an approximation and an abstraction in some order, then we
do get an approximate abstraction.

Proposition 5.1: If (Mpy,Zy) is a T-abstraction of
(ML,Zr) and (M}, Ty) is a dpeq-c-approximation of
(My,Zy) then (My,Ty) is a T-o approximate abstrac-
tion of (Mp,Ip). *

In Proposition 5.1 we considered an abstraction followed
by an approximation. Things change if we do things in
the opposite order; that is, if we consider an approxima-
tion followed by an abstraction. For suppose that M7 is a
dimaz- approximation of My, and My is a T-abstraction
of M. Now it is not in general the case that My is a
d--a-approximate abstraction of M . The problem is that
when assessing how good an abstraction My is of M7,
we are comparing two high-level states (using dy,,, ). But
when comparing My, to M}, we use dy,. In general,
dy, (U, v}) and dy,, (7(¥L), 7(¥})) may be unrelated.

Proposition 5.2 : If (Mpy,Zy) is a T-abstraction of
(Mp,Zr) and (My,,Z1) is a dpas- approximation of
(M7,Ir), then (Mp,Zy) is a T-ko approximate abstrac-
tion of (M7 ,I}), where k is

MaX g, reTy i eReUrL) .
dVH (T(]V[i (’l_l:L 7)((—Cf?‘)),‘l’(]\/[[, (ﬁL ,X(—f)))
dy, (M}, (i, X @), ML (71, X))

While composing an approximation and an abstraction
gives us an approximate abstraction, the following two ex-
amples show that we cannot in general decompose an ap-
proximate abstraction into an abstraction composed with
an approximation or an approximation composed with an
abstraction. Theorem 5.6 below shows that if we restrict
ourselves to the constructive case then we can do the for-
mer. However, Example 5.4 shows that, even if we restrict
to the constructive case, we cannot do the latter.

Example 5.3: M}, has one exogenous variable U and en-
dogenous variables A, B, and C. My also has one exoge-
nous variable U and endogenous variables D and E. All
the endogenous variables have range {0,1}; U has range
{0}. Let7: R(Vr) = R(Vu) be1(a,b, c) = (adb, bdc),
where @ denotes addition mod 2. The equations for both
M7y, and Mpg take the form V' = U for all variables V.

*Proofs of all technical results from here onwards can be found
in the appendix.



T, consists of the empty intervention, and interventions
B+ 1,B+ 0,A<«+ 1, and A + 0. Ty consists of
only the empty intervention. Taking as dy,, the Euclidean
distance, we leave it to the reader to verify that M is a 7-
V2 approximate abstraction of M. However, there does
not exist any M that is similar to M, such that My is a
T-abstraction of M} . To see why, note that the only state
in My that arises from applying an intervention is (0, 0).
Therefore, the only states in M, that can arise from inter-
ventions are ones where a &b = 0 and b & ¢ = 0. This
means that under the intervention B < 0, we must have
A =0, and under B < 1, we must have A = 1. Therefore
B < A. It also means that under A <~ 1 we must have
B = 1 and under A < 0 we must have B = 0, so that
A < B. Thus, My cannot be recursive. i

Example 5.4: Let M, be the model where U, = {U},
VL = {X17X27X3}, R(Xz) = {O, 1} for ¢ = 1,2,3, the
equations are X; = U, Xy = X, and X3 = X, and
Z;, consists of all interventions such that X is intervened
on iff X3 is intervened on. Let My be the model where
Uy = UL = {U}, Vu = {Yl,YQ}, R(Yl) = {0,1} X
{0,1}, R(Y2) = {0,1}, the equations are Y7 = (U,U),
Yy = proj, (Y1), the first component of Y7, and Zy con-
sists of all interventions. Let P = {{X;, X3}, {X>}}, and
7 is such that 7(z1, z2,23) = ((x1,x3),22). Note that
T is constructive, that My and M, are 7-consistent, and
that Zr, = Z7. Therefore My is a constructive 7-o ap-
proximate abstraction of M, for some « (the value of «
depends on the choice of metric dy,, ). It is easy to see that
wT(Xl “— i,Xg — j) = (Yl — (Z,])) and w.,—(XQ —
]f) = (Y2 — k) Note that ML(O, (Xl — 1,X3 —
0)) = (1,1,0), Mr(0,(X; « 0,X3 + 1)) = (0,0,1),
ML(O,XQ — 0) = (0,0,0), and ML<O,X2 — 1) =
(0,1,1). For a causal model M}, that is similar to My
to be a T-abstraction of My, there must be some surjec-
tion 774 such that My (74(0),Y1 + (1,0)) = ((1,0),1),
My (m4(0), Y1 < (0,1)) = ((0,1),0), My (74(0), Ya <+
0) = ((0,0),0), and Mg (74(0),Y2 + 1) = ((0,1),1). It
follows that Y1 <, (o) Y2 and Y2 <, (o) Y1. Thus, there is
no (recursive) model M, that is a T-abstraction of M. Il

As the following result shows, we can test whether an ap-
proximate abstraction can be viewed as the result of com-
posing an abstraction and an approximation.

Theorem 5.5: If (My,Zy) is a T-a-approximate abstrac-
tion of (M, Zy,) then the problem of determining whether
there exists a model (M;,Zy) (resp., (M7 ,IL)) that is
similar to (My,Zy) and is an abstraction of (Mp,Z1,)
(resp., (My,Iyr)) is in nondeterministic time polynomial
in ‘IL‘ X |RL(Z/{L)|

There is one important special case where we are guaran-
teed to be able to find an appropriate intermediate low-level
model, and to do so in polynomial time: if the mapping 7
is constructive.

Theorem 5.6: If 7 : R (VL) — Ru(Vu) is construc-
tive, the causal models models (My,,Z1,) and (M}, Zy)
are T-consistent, and (My;, Ly ) is a T-a-approximate ab-
straction of (My,,Iy,), then we can find a model (M} ,1,)
that is similar to (My,,Zy1,), and such that (My,Zy) is a
T-abstraction of (M} ,Zy) in time polynomial in |Ip| x
IRy W)

As noted earlier, Example 5.4 shows that 7 being construc-
tive does not similarly guarantee the existence of My in
the first half of Theorem 5.5.

6 DISCUSSION AND CONCLUSIONS

By defining notions of abstraction, approximation, and ap-
proximate abstraction, we have presented a framework that
relates causal models that describe the same system at (pos-
sibly) different levels of granularity. While coarser models
offer a degree of simplification by omitting details, they
also in general entail a loss in accuracy with respect to
the fundamental description. Our framework shows how
to quantify this loss in accuracy by defining a distance met-
ric that captures the degree to which a more abstract causal
model approximates a more detailed causal model. High-
and low-level causal models of the same system can vary
on almost any dimension. They need not share the same
equations, the same variables, or the same interventions.
They may involve entirely distinct state spaces. Inevitably,
then, there is some degree of choice as to what one deems
relevant to the approximation.

Starting with deterministic causal models, we provided a
general method for quantifying the “goodness” of an ap-
proximate abstraction. As an interesting special case, our
approach allows for the comparison of causal models that
operate at the same level of detail. We then extended to
probabilistic causal models, and considered several differ-
ent choices for quantifying the distance between models.
Finally, we considered the extent to which we could de-
compose an approximate abstraction into an abstraction
and an approximation.

Given the ubiquitous use of causal models in the social
and natural sciences that are known not to capture all the
causally relevant details, the framework we presented of-
fers a principled way to assess the trade-off between ab-
straction and accuracy.
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Appendix: Proofs

In this appendix, we prove all the results not proved in the
main text. We repeat the statements of the results for the
reader’s convenience

Proposition 5.1:  If (My,Zy) is a T-abstraction of
(M, Zr) and (M}, Zy) is a dpeq-c-approximation of
(My,Zy) then (My,Ty) is a T-o approximate abstrac-
tion of (My,,Zp).

Proof: Fix X < % € I, and @, € Rp(Uy). Since
(My,Zy) is a T-abstraction of (M, Zy,), there is a map-
ping 74 : Uy, — Uy such that

—

(M (ip, X « &) = My (ru(iL), w. (X < &)).

Since (M, Zy) i8 @ dypaq-cv approximation of (My, Ty ),
we must have

< a.

Thus, (Mp/,Zy) is a 7-a approximate abstraction of
(Mp,Zp).1
Proposition 5.2: If (My,Zy) is a T-abstraction of
(Mp,Ir) and (Mp,,Zy) is a dpaz-c approximation of
(M} ,ZI1), then (My,Ty) is a T-ko approximate abstrac-
tion of (M}, I} ), where k is

maX)Z(—fEIL,I_L;LERL(uL) R
de (T(ML (ﬁL,X&i)),T(ML (ﬁL7X<—f)))
dv, (M} (G, X+7),Mr (7L, X 7))

Proof: Fix X «+ # € I, and i € Rr(UL). Since
(M, Tx) is a T-abstraction of (M, Zy), there is a map-
ping 7 : Uy, — Uy such that

(M (ip, X « &) = My (ru(iL), w. (X < &)).

Since M} is a dpqee- approximation of Mj, we
have that dy, (M} (i, X < &), My(ip,X <+
Z)) < «. By the definition of k, we have that
dyy, (1(M} (G, X + Z)),7(Mp(ir, X + ©)) < ka.
Thus, dy,, (Mg (ru(dr),w- (X + ), 7(Mp(ir, X +
%)) < ka. It follows that (Myg,Zy) is a T-ka approxi-
mate abstraction of (M7 ,Z7). 1

To make our results more general, we use the more gen-
eral interpretation of recursiveness as it appears in (Halpern
2016). Concretely, this means that the partial order < on
the endogenous variables may depend on the context. We
write <z for the partial order that exists for context . (See
footnote 2.)

Theorem 5.5: If (My,Zy) is a T-a-approximate abstrac-
tion of (My,,Z1,) and Uy, and I;, are finite, then the prob-
lem of determining whether there exists a model (M}, Ty )
(resp., (M7 ,Zy)) that is similar to (My,Zy) and is an
abstraction of (M, Iy,) (resp., (My,Zy) is in nondeter-
ministic time polynomial in |Zp,| x |R’ (UL)|-

Proof: We start with the problem of determining M7;.
Since Uy and U;, are finite, there are only finitely many
possible surjections from Uy, to Uy A surjection 74 is po-
tentially high-level compatible with T if

PCl. Forall X «+ 7, X' + @ € I, and all @, @ €
RrUL), if w (X « &) = w, (X' « &) and
(@) = m(@), then 7(My(ip, X <+ I)) =
(M (i, X'+ &)



PC2. For all 4y € Rpy(Upy), there exists a partial or-
der <y, on the variables in Vg such that for all
Uy, € Rp(Uy) with @y = 74(tyr), all pairs of inter-
ventions X « Fand X’ « & in T, and all variables
Y € Vg whose value differs in 7(M (i, X + Z))
and 7(My, (i, X' + i), there exists a variable Z
such that Z7 <3z, Y (ie., Z <z, YorZ =Y) and
different values in w, (X <« &) and w, (X' « &)
or Z is assigned a value in one of w, (X « &) and
wr (X’ &) and not in the other.

We claim that 7, is potentially high-level compatible with
7 iff there exists a (recursive) causal model (M}, Zp ) such
that, for all contexts @y, € R (U ) and interventions X«
T € Iy, we have

T(Mp(ip, X « &) = My (ru(in), we (X « ). (1)

It is easy to see that if PC1 or PC2 do not hold for 74, then
there can be no (recursive) causal model (M}, Zy) satis-
fying (1). For the converse, to build the model M }{, we
have to specify the equations for each variable in such a
way that <z, really is the partial order showing the de-
pendence on variables in context . Say that a high-
level state Uy € Ry (Vy) is constructible for Wy and
Y € Vy if 0y = 7(Mp(ip, X « Z)) for some inter-
vention X < % € T, and context i € R, (Ur,) such that
7u(@1) = @y and w, (X < Z) does not include an inter-
vention on Y. Each high-level state ¥y constructible for
@y and Y € Vg determines one output of FY, in context
@y in the obvious way. Specifically, if Fy, gets as argu-
ments @y and the values of the variables other than Y in
U, then it must output the value of Y in ¢/y. Note that it
follows from PC2 that for the values of FY, so defined, if
two inputs to £y, agree on the values of all variables Z such
that Z <z, Y, they will agree on the value of Y. We want
to extend all the equations Fy. such that this continues to
be true. This is straightforward.

Fix @y. We define Fy, when the context is @y for all
variables Y € Vg as follows. If Y has no predeces-
sors in the <z, order, then it gets the same value in all
the constructible states for context #y. We extend Fy, so
that Y gets that value no matter what the values of the en-
dogenous variables other than Y are in context wy. Sim-
ilarly, if Z;,..., Zy are the variables that precede Y in
the <z, order, and (Z1,...,Z;) = (21,...,2,) appears
in some constructible state for @y then, by PC2, Y has
the same value in all constructible states for @y where
(Zy,...,2Z) = (#1,...,2K). Weextend FY, so that Y has
that value for all inputs where (Z1, ..., Zx) = (21,- .., 2k)
and the context is #y. If there is no constructible state
where (Z1,...,2y) = (z1,...,2k), then we just pick a
fixed value y € Ry (Y") and take FY, to be y for all inputs
where (Z1,...,2Z;) = (21,...,2;) and the context is @g.

It is clear by construction that this definition has the desired
properties.

We conclude this part of the proof by observing that check-
ing that PC1 holds can be done in time polynomial in
|Zr| X |Rr(UL)], and for a fixed ordering <,,, PC2 can be
checked in time polynomial in |Z1,| X |Rr(Ur)|. Thus, we
can determine whether there exists a model (M}, Zy ) that
is an abstraction of (M, Z;,) and differs from (Mpy,Zx)
only in the equations by guessing 77, and a collection of
partial orders <, , one for each high-level context, and
confirming that PC1 and PC2 hold. Thus, this can be done
in nondeterministic time polynomial in |Zz| x |Rz(UL)].

The algorithm for determining (M7} ,Zy) is very similar in
spirit. A surjection 74 : R (Vr) — Ru(Vy) and a func-
tion f : R(UL) x I, — R(Vy) are potentially low-level
compatible with 7 if they satisfy:

PCl'. Forall X + # X' « & € I, and all @, @ €

RrUr), if wT()Z' — 7)) = wT()"(’/ « ) and
(@) = mu(@), then 7(f(ip, X <« &) =
T(f(ay,, X' « &)

PC2'. For all @, € Rp(Upr), there exists a partial order

g, on the variables in V, such that for all interven-
tions X <« Zand X’ « & in Zr1, and all variables
Y € V;, whose value differs in f(iiy, X < &) and
flag, X/ <z, Y and either Z gets different values in
X — 7 and X'"_g— Z' or Z is assigned a value in one
of X + Zand X’ « &’ and not in the other.

Essentially, f(ii,, X < &) is playing the same role in PC2’
as My (i, X < &) played in PC2.

We now claim that 77, : R.(V}) — Rug(Vyg) and f :
RUL) x I, — R(V}) are potentially low-level com-
patible with 7 iff there exists a (recursive) causal model
(M7} ,Z1) such that for all contexts @y, € Ry () and in-
terventions X < Z € Iy, we have M) (i, X « &)) =
f(iL, X « #)) and

(M, (i, X + &) = My (ru(iL), w- (X « &)).

The argument is almost identical to that given above for the
first part, so we omit it here.

Thus, to determine whether there exists an appropriate
model (M}, Zy), we simply need to guess f, 74, and <z,
for all @y, € Rp(Uy) and verify that PC1’ and PC2’ hold.
|

Theorem 5.6: If 7 : Rp(Vr) — Ru(Vy) is construc-
tive, the causal models models (My,,T1) and (M}, Ty)
are T-consistent, and (M;, Iy ) is a T-a-approximate ab-
straction of (Mp,,Z1,), then we can find a model (M}, Z;,)
that is similar to (My,,Zy), and such that (My,Zy) is a



T-abstraction of (M} ,Zy) in time polynomial in |Ip| x
RLUL)I-

Proof: Whereas in the proof of the second half in Theo-
rem 5.5 we had to guess 73, and f, here we can construct
them efficiently. Indeed, we can take 7;; to be an arbitrary
surjection from Uy, to Uy .

To define f, suppose that Vg = {Y1,...,Y,} and P, =
{Z1,...,Zn41} is the partition that makes 7 constructive
(as in Definition 2.6).

In constructing f (i@, X « ), we split the intervention
X « x into two parts: an intervention on variables in ZiU

.U Z and an intervention on variables in Zn+1 How
f works in the former case is determined by translating the
intervention to M. Interventions on variables in Zn+1
are treated specially. An intervention V' <— v on a variable
Ve Z_;L+1 just sets V' to v, and does not affect any other
variables. In more detail, we proceed as follows.

Note that 7 is also a surjection from RL(Z U...uU Zn)
to Ry (Vu), since the variables in Zn+1 are ignored by
7. Thus, there is a right inverse 7= : Ry(Vy) —
RL(Zl u... cupZn) (so that 7 o 7! is the identity func-
tion on Ry (Vg)). There are, in general, many such left
inverses, but given 7, we can find a left inverse in time
polynomial |R(Uz)|.

Fix a setting Z}; | ; for the variables in Zn+1. Given an inter-
Ventlon X z, let X be the subset of variables in X that
are 1n Z1 U...u Zn, and let X1 be the subset of variables
in X that are in Z, 1. Let # and Z1 be the restrictions of
Zto X and X1, respectively. Define

f(a’L,X’ — ) = ) )
(r™ (Mp (ru(dr),wr (X1 &), 25 1 [XTT = 211]),

where 2, | [X 11 = #IT)] is the tuple that results from 2, |
by setting the values of the variables in X T to 1T

We first check PC1’. Suppose that X « 7, X' + & €
Iy, ip, @, € RpUp), wr(X « ) = WT(X/ ),
and 1¢(%) = 74(@7). Then, using the same notation as
above and just writing “...” for the component of the state
describing the values of the variables in Zn+1, since these
values are ignored by 7, we have that

A(fi, X ed)
r(r~! MH(TM(’IIL),UJT(X:[ —7)),...)

= 7(r My (ru(@y),w- (X)) < (@))),..)
T(f(ud), X + &)).

To see that PC2’ holds, fix @, € Rr(Ur). Suppose that
Vg ={Y¥1,...,Y,}and P, = {Zl, ol Zn+l} is the par-
tition that makes 7 constructive (as in Definition 2.6). Since
My is a recursive causal model, there exists a partial order

=y (@) On the variables in Vg such that if Y; depends on
Y in context 74 (ir ), then Y <. (7,) Y;. Define <4, so
that X <z, X' iff for some i and j, X € Z;, X' € Z,,
and Y; <., (a,) Yi- (Note that this means that the variables
in Zn 41 are incomparable to all the rest.)

We now show that this choice of <, satisfies PC2". Sup-

pose that X « Zand X' « 2 in Zr,, and the value of
V e Vy differs in f(@, X < &) and f(dL, X'+ &').

IfV e Zn+1, then it must be the case that V is in X
or X’. On the other hand, if V € Z; for some i < n,
then the value of Y; differs in My (r(iiL), wr (X « &)
and My (7(@L), wr (X' < @)). Therefore, there exists a
variable Y; € Vp such that Y; < (z,) Y; and either Y}
gets different values in w, (X < Z) and w, (X' < @) or
Y; is assigned a value in one of w; (X + @) and w, (X'
Z’) and not in the other. By definition, this means that for
all variables W ¢ Zj, we have that W <3z, V. Further-
more, at least one of these variables IV either gets different
values in X < 7 and X’ < &, or is assigned a value in
one of X < #and X’ +— & and not in the other.

This concludes the proof. il
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