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Abstract: Granular materials produce audio-frequency mechanical vibrations in
air and structures when manipulated. These vibrations correlate with both the na-
ture of the events and the intrinsic properties of the materials producing them. We
therefore propose learning to use audio-frequency vibrations from contact events
to estimate the flow and amount of granular materials during scooping and pouring
tasks. We evaluated multiple deep and shallow learning frameworks on a dataset
of 13,750 shaking and pouring samples across five different granular materials.
Our results indicate that audio is an informative sensor modality for accurately
estimating flow and amounts, with a mean RMSE of 2.8g across the five materials
for pouring. We also demonstrate how the learned networks can be used to pour a
desired amount of material.
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1 Introduction

Sound and structural vibration signals provide a rich source of information for manipulating objects.
Humans use this feedback to detect mechanical events and estimate the states of manipulated objects.
For example, one may use the sound of a bottle being filled with liquid to estimate how close the
bottle is to being full. Similarly, the sound from shaking a near-empty bottle of pills is distinct from
the sound of a full bottle, indicating the need to refill the prescription. Experiments have shown that
both humans and primates are able to classify distinct types of events (e.g., whether a dropped glass
bottle bounces or breaks [1]), as well as continuous properties of the events (e.g., the length of a
wooden dowel being struck [2]), using only auditory feedback [3, 4].

The ability to sense and process vibrations during manipulation tasks would allow robots to detect
and characterize anomalies during manipulation and adapt accordingly. Whereas we may be more
familiar with vibrations transmitted through air (i.e., sound), structural vibrations transmit through
solid materials and can be sensed through vibrotactile and audio sensors. The cost of collecting and
processing vibration feedback is comparatively low relative to other sensor modalities (e.g., vision).

In this paper, we investigate the use of vibration feedback during the manipulation of granular ma-
terials. Granular materials and tasks entailing their manipulation are ubiquitous in both households
and industrial environments [5]. We focus on the tasks of pouring and scooping desired amounts
of granular materials, exploring whether a robot can use vibration feedback to estimate how much
mass it has scooped or how much it has poured.

In the case of pouring a desired amount, we propose to learn models to estimate the amount of
material poured based on vibration data collected during the pour. Intuitively, the duration and
strength of the vibration should directly correlate with the amount poured. Also, since pouring is
an irreversible process, the amount being poured in any time step is always non-negative, a property
that we exploit to provide weak supervision for some of our models.

We evaluate our proposed framework using data from scooping, shaking, and pouring using a 7-
DOF Sawyer robot arm with a plastic scoop as the end-effector (shown in Figure 1). The scoop
has a Neewer P-007 contact microphone mounted on it for collecting audio-frequency vibrations
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Machine learning techniques for audio-frequency data vary widely based on application and pur-
pose. Many techniques have found converting raw audio to a spectrogram representation to be a
powerful tool [9, 10, 17, 18, 19]. Convolutional Neural Networks (CNNs) have been successfully
applied to spectrograms in speech recognition and other classification tasks [17, 20, 21]. Other
successful approaches to speech recognition from acoustic signals have used recurrent architectures
based on Long Short-Term Memory (LSTM) units, which store state in order to learn in the domain
of sequential events [22]. Gated Recurrent Units (GRUs) were introduced by Cho et al. [23] as a
simpler alternative to LSTM units for recurrent networks. They have been shown to perform well on
tasks involving learning from acoustic signals [24], even outperforming LSTMs on some tasks [25].

3 Estimation of Amount from Vibratory Feedback

In this section, we describe the different network architectures that we explored for the tasks of
estimating amounts and flows of granular materials from audio-frequency vibrations, as well as how
the granular material dataset was collected.

3.1 Granular Material Manipulation Vibrotactile Dataset

We collected a dataset of audio-frequency vibratory recordings from five different granular materials
during shaking and pouring manipulation tasks. To collect this dataset, we used a Rethink Robotics’
Sawyer 7-DOF robot arm and designed a 3D printed plastic scoop as its end effector, as shown in
Figure 1. The scoop has a 7 cm long, 5 cm wide, and 3 cm high basin and is equipped with a contact
microphone adhered to the back outside of its basin for collecting the vibrotactile signal.

We placed a tub containing a granular material in front of the robot. The entire weight of the tub
rests on two DYMO M25 scales. The scales each have a measurement resolution of 2 g. The robot
scooped random amounts of material from the tub, then alternated between shaking motions and
pouring motions, before scooping more material again after the scoop had been emptied. Before
each shaking motion and after each pouring motion, the scales measured the mass of the tub to
ascertain the mass in the scoop and mass that had been poured, respectively, providing the ground
truth mass or flow for each data sample.

The shaking motion was designed to perturb the contents of the scoop enough to make an audible
sound, while spilling as little of the scoop’s content as possible. Each shake began with the scoop
tilted back to retain material in its resting position: a pitch of -15 degrees (shown in the center image
of Figure 1). Then the robot’s joint torques were set to 40% of their maximum torque in an upward
and negative-pitch direction for 80 milliseconds before abruptly stopping the robot in its current
position. Since the motion was very brief, the majority of the sound occurred well within the first
300 milliseconds of each clip. We therefore truncated each audio clip to its first 500 milliseconds.

For each pouring motion, the pitch of the scoop began at the resting position and was then rotated to
a random angle between -13 and 60 degrees (shown in the right image of Figure 1) using a constant
angular velocity sampled uniformly between 12 and 75 deg/sec. Since the angle and velocity of each
pour were randomly sampled, the lengths of the audio recordings varied from 0.85 to 6.36 seconds.
All of the recordings were zero-padded to 6.4 seconds.

Datasets were collected in this manner with 2,750 shaking and pouring examples for each of five
different materials: roasted coffee beans, raw Basmati rice, raw cellentani pasta, peat top soil, and
plastic injection molding beads. These materials were chosen on the basis of their distinct properties,
including density, texture, homogeneity, cohesion, and structure, as well as on the basis of their
application diversity in both household and industrial settings. Refer to Appendix A for more details
about the dataset and Appendix B for more details about each material.

3.2 Mapping Vibration Signals to Amounts

We compared several different learning frameworks for estimating the amount of material in the
scoop, as well as the amount poured, based on the data from the contact microphone. The input to
each method was a spectrogram of the audio clip collected during either a shaking or pouring motion.
The spectrograms were computed for each audio clip, binning both the time and the frequency at
equal intervals from 0 to 6.4 seconds and 0 to 12,500 Hz, respectively. This produced a discretized
matrix of power levels within each frequency and time interval, resulting in a 60×80 matrix x for
each audio clip, with frequency along the first dimension and time along the second, as shown in
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was designed to mitigate some of the pitfalls of recurrent neural networks by adding differentiable
gates to the memory stored by the unit and regulating the propagation of loss gradients through the
time dimension. The currently most popular design of LSTM uses three such gates, i.e., an input,
an output, and a “forget” gate. The GRU unit was introduced as a simpler alternative to the standard
LSTM unit, having only an “update” and a “reset” gate [23]. Diagrams of both units are shown
in Figure 15 of Appendix D. Rather than using a gate on the output, the GRU directly outputs its
hidden state, reducing its design complexity and the number of parameters that need to be learned.
We thus compared the performance of networks based on both LSTM and GRU units.

The recurrent architectures were applied by progressively feeding each time slice of frequency power
levels to a layer of 512 recurrent units. The final output of this recurrent network was fed to an
additional fully-connected layer of 512 units with ReLU activation, followed by a linear layer to
produce φ(x). During training, dropout was applied to the LSTM output, as well as to the output of
the intermediate fully-connected layer used in regression. The architecture of the LSTM and GRU
networks were identical, the only variation being the type of recurrent units used in the recurrent
layer. See Figure 16 of in Appendix D for a visualization.

3.6 Summing Networks

The trained networks should ideally be able to predict the amount of material poured at each time
step, such that they can be used for continuous estimation during the pouring process. However, we
only provide the total final amount of material poured for the training data. Training the step-wise
predictions of the networks is therefore only weakly supervised.

In the case of pouring, we can leverage the principle that the amount of material in the scoop is
monotonically decreasing, i.e., the amount poured out during any time step must be nonnegative.
We use this insight to provide additional structure to the models, constraining them to estimate the
mass poured during each time step as a nonnegative value. We then estimate the total poured mass as
the cumulative sum of the mass estimate from all previous time steps. In this manner, the framework
cannot compensate for overestimates in the material poured by including negative mass flow at a
different point in time. We used this principle in both a fully-connected and a recurrent architecture
by training each model to estimate a nonnegative mass for each time slice.

The summed fully-connected network (which we call SumFC) applied two 512 unit fully-connected
layers, followed by a single unit layer, each with ReLU activations, to each time step of the spec-
trogram. Its mass estimate φ(x) was then the sum of the output of this network for each time step.
During training, dropout was applied to the output of each layer except the final output layer.

The summed GRU network (which we call SumGRU) followed the same premise as the summed
fully-connected network, merely replacing the first two hidden layers with a GRU layer. It consisted
of a 512 cell GRU layer followed by a single unit dense layer with ReLU activation, summed over
all time steps to yield φ(x).

In each architecture, since a ReLU activation constrains the output of the final layer to be non-
negative for each timestep, the contribution of each timestep to the total sum is non-negative. Visu-
alizations of both architectures are shown in Figure 16 of Appendix D.

4 Evaluation

For the evaluations, we trained each model until the error on a held-out validation set was minimized.
We then used the corresponding learned model for the evaluation on a separate held-out test set. Our
dataset included many examples of shakes and pours where the scoop was empty (quantified in
Table 1 of Appendix A). To ensure that our models were robust on examples that were less trivial,
we filtered our validation and test sets to only include examples where the scoop was measured by
the scales to be nonempty at the outset. We report the final test error as the average test error from 5
trials on random train-validation-test data splits, unless otherwise specified. Note that each material
has a different density and consequently a different distribution of poured masses. Hence, each
model is compared with other models on the same material. In addition to the evaluations presented
here, we show more results on our frameworks’ generalization in Appendix E and sample efficiency
in Appendix F.
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Figure 15: Comparison of (Top) LSTM and (Bottom) GRU memory cells. For both diagrams, X is
the input, Y is the output, and C is the memory vector. W refers to a learned matrix. ψ refers to an
input vector composed by concatenating X and Yt−1. � is the Hadamard product. σ is a sigmoid
with range [0, 1].
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