
Optimizing Asynchronous Multi-Level
Checkpoint/Restart Configurations with Machine

Learning
Tonmoy Dey∗, Kento Sato†, Bogdan Nicolae‡, Jian Guo†,

Jens Domke†, Weikuan Yu∗, Franck Cappello‡, Kathryn Mohror§

∗Florida State University, USA
†RIKEN Center for Computational Science, Japan

‡Argonne National Laboratory, USA
§Lawrence Livermore National Laboratory, USA

Abstract—With the emergence of versatile storage systems,
multi-level checkpointing (MLC) has become a common ap-
proach to gain efficiency. However, multi-level checkpoint/restart
can cause enormous I/O traffic on HPC systems. To use multi-
level checkpointing efficiently, it is important to optimize check-
point/restart configurations. Current approaches, namely model-
ing and simulation, are either inaccurate or slow in determining
the optimal configuration for a large scale system. In this
paper, we show that machine learning models can be used in
combination with accurate simulation to determine the optimal
checkpoint configurations. We also demonstrate that more ad-
vanced techniques such as neural networks can further improve
the performance in optimizing checkpoint configurations.

Index Terms—Machine Learning, Neural Network, Multi-
Level Checkpointing (MLC)

I. INTRODUCTION

Current petascale systems in High-performance computing
(HPC) deal with enormous workloads. Such workloads require
a massive number of components simultaneously. Though
the HPC systems are built using highly reliable components,
with the sheer number of components, there is an increasing
frequency of component failures, resulting in degradation of
system and application reliability. To reliably run applications
on such large-scale systems, a common technique is check-
point/restart (CR)[17], in which the system writes a snapshot
of the application’s state at fixed intervals to persistent storage,
which is called a checkpoint. Application states can later be
restored to the last saved checkpoint in case of a failure.
Though CR is useful for large scale systems, its overhead can
be an enormous challenge on large-scale systems.

One of approaches to reduce the overhead of CR is to de-
termine the optimal checkpoint interval and checkpoint count.
Poorly determined checkpoint interval makes system resilience
worse. There are two approaches for obtaining the optimal
checkpoint interval and checkpoint count values for any given
configuration, namely the modeling approach [12] and the
simulation approach [16]. The modeling approach mainly
formulates an analytical solution to obtain optimal values,
whereas the simulation approach runs the application across

multiple failures to check different scenarios for obtaining the
optimal values.

In simple checkpoint models [17] with synchronous check-
pointing, where the checkpointing process mainly comprises
of compute, checkpoint, and recovery state in a serial manner
without other concurrent operations in the background. such
modeling is beneficial in formulating an analytical solution for
the optimal interval. However, with fast local storage becoming
commercially available, asynchronous multi-level checkpoint-
ing (Async-MLC)[16] has become a common approach for
efficient checkpointing. As shown in Figure 1, in Async-MLC,
compute, checkpoint and recovery occur asynchronously from
the application computation. This allows most of the check-
point operations to happen in the background without delaying
the critical compute operations in the application, thus mini-
mizing the checkpoint overhead. This is particularly attractive
when a parallel file system (PFS) is equipped with multi-level
storage devices, which allows the checkpointing operations to
happen on lower-level storage devices while the application
I/O continues with upper-level storage devices.

Although introduction of multi-level checkpointing has
greatly improved its performance over the simple model,
however without the optimal interval and checkpoint count
configuration, the performance of the system will still be de-
graded due to the checkpoint overhead. To obtain the optimal
configuration of checkpoint interval and checkpoint count in
MLC, the modeling approach is ineffective as it faces signif-
icant difficulty to formulate an analytical solution unless we
simplify the model and/or make strong assumptions. Another
approach is simulation. It is very effective in determining the
optimal checkpoint configuration, however, it is very slow as
it runs thousands of scenarios before obtaining the optimal
values and this makes the simulation approach impractical for
real world usage.

In this paper, we try to obtain the optimal checkpoint
configuration for a given HPC system using the effectiveness
and accuracy of the simulation approach while reducing the
time taken by simulation to obtain the optimal result. We
achieve this by combining machine learning methods with the

LOCAL

XOR

PFS

Storage hierarchy time

Node-local storage

Parallel File System

XOR Encoded Groups

Fig. 1: Multi Level Checkpointing

simulation approach where we apply our machine learning

models on existing simulated data to learn from the existing

data and obtain the optimal checkpoint configuration with

minimal error. The major contributions of this paper are:

• Development of multi-level checkpoint simulator to repli-

cate the behavior of real world large scale systems.

• Novel machine learning (ML) approach that achieve

convergence of traditional ML (Random forest) and state-

of-the-art ML (NN), i.e. daisy chaining.

• Novel pre-processing for neural network (NN) to opti-

mize CR i.e., parameter reduction. (Parameter correlation

analysis is universal to other optimization area in general.

Our work gives one instance in CR)

• Quantitative evaluation: Random Forest v.s. LightGBM

v.s. Baseline NN v.s. NN after daisy chaining v.s. NN

after parameter reduction with daisy chaining

With our approach and design optimizations, we show that

our models can predict the optimized parameter values when

trained with the simulation approach. We also show that using

more advanced deep neural network techniques can improve

the performance of neural network over the machine learning

models by up to 50%. which can further be used in future

research works to optimize the checkpoint restart configuration

of large scale systems.

II. BACKGROUND AND MOTIVATION

Checkpoint and restart is a commonly used technique for

large scale systems running for a long time. Checkpoint is

a snapshot of an application’s state taken periodically and

stored on to the available storage devices and it is used to

restart the application when a failure occurs. Though CR is

very important for large scale systems, however it is also

one of the major contributors to the slowdown because of

input output (I/O) workloads in HPC systems. To improve

the efficiency of such systems, it is very crucial to use the

optimal CR configuration[8]. Checkpoint interval is one of the

most important checkpoint parameter that can configured to

optimize the performance of large scale systems. Finding the

optimal interval is very important as shorter interval will lead

to frequent checkpoints where the system will spend more I/O

time for saving checkpoints whereas longer interval can lead

a less resilient system where a huge number of computation

may be lost during a failure. Even with state of the art CR

ML model

Optimal
Checkpoint

interval

Different C/R scenarios

Optimal
Checkpoint

count
Different C/R scenarios

Approximate
optimum

L1 Checkpoint Interval

E
ffi

ci
en

cy

ML Model

Decision
Tree T1

Decision
Tree T2

Decision
Tree Tn. . .

L1
 C

he
ck

po
in

t

C
ou

nt

ApproxApproApproxApproxApproxApproximate
optimuoptimuoptimuoptimuptimum mmmm

L1
nt Interval

L1 ChecCheCheL1 ChecL1 ChecL1 ChL1 Chec1 ChecL1 ChecChec1 Che1 Chec1 CChecCChh1 Cheec1 Chec1 CheccChCCCCChChChChecheckpoinkpopkpokpook okppopokpokkkpokpopokpokkpkppkpokpo

E
ffi

ci
e

ffi
ci

e
ffi

ci
e

fic
ieeeeci
eiii

ffi
ccc

ffi
c

ffi
cc

ffi
cciciffifififi

nc
y

ncncncncnnnnnnnn

L1
 C

he
ccccccccck

po
in

t

kpkkkkkpkpkkpkpkpkpkpkpkkk
C

ou
ntun
tt

uun
t

uun
tt

un
tt

un
t

un
tttnttnttun
tt

un
t

ununununuu

Fig. 2: Combining Simulation Approach with Machine Learn-

ing

techniques, poorly determined checkpoint intervals can make

the system less resilient.

For simple checkpoint models where execution states can

be categorized into compute, checkpoint and recovery state

without any overlapping, determining the optimal checkpoint

interval can be relatively simple. However, this approach to

checkpointing is inefficient due to its synchronous manner of

execution and with the emergence of fast local storage such

as non volatile memory (NVM), multi-level checkpointing

(MLC) has become a standard approach for efficient check-

pointing. In MLC, the system stores checkpoints on the local

node storage in addition to the parity node storage and the

PFS. Unlike the simple checkpoint model, the execution takes

place in an asynchronous manner (Async MLC) such that all

operations can continue while saving the checkpoint in the

background. For Async MLC, in addition to the checkpoint

interval it is also very important to determine the optimal

checkpoint count for each checkpoint levels.

There are mainly two approaches for optimizing the config-

uration of CR, namely modeling and simulation approaches.

However, with Async MLC, CR becomes more complicated

due to the additional levels of checkpointing and the compli-

cated scenarios that could arise from such design. It becomes

very challenging for the existing approaches to determine the

optimal configuration as the design of the system becomes

more complex. The modeling approach is not accurate for

such complicated CR scenarios and cannot provide accurate

results, and though the simulation approach is accurate, it

is very slow due to the large number of scenarios it has to

simulate to obtain the optimal configuration. In this paper,

we focus on maintaining the accuracy of the simulation

without sacrificing the performance of CR. We achieve this

by predicting the optimized checkpoint count and interval

for large scale systems using machine learning on the data

generated by the simulator as shown in Figure 2.

III. NON-BLOCKING CHECKPOINT/RESTART SIMULATOR

Our multi-level checkpointing simulator is designed to

replicate the behavior of real-world large scale systems for

managing checkpoints across different levels of the storage

hierarchy. The simulator supports three levels of checkpointing

schemes, LOCAL, PARITY, and PFS. The first level of check-

pointing is LOCAL in which the system saves the checkpoints

on the storage in the local node and no redundant data stored

across other nodes. In the PARITY scheme, the systems write

checkpoints to the local storage along with the storage of other

parity nodes. The redundant data are stored on the parity nodes

so that the system can recover a copy of the file, provided that

no node and its parity nodes fail simultaneously. Reliability

is further enhanced, some systems encode the checkpoint data

across the parity nodes so that the resiliency of the system can

be enhanced. One of the standard encoding schemes is XOR

encoding, where the redundant data are collectively written

to the parity nodes to withstand single node failures in a

group. However, it can only restart successfully if two or more

nodes from the same parity group do not fail at the same

time. Another one is Reed-Solomon encoding, which allows

the system to withstand failures as long as half the nodes in

the parity group do not fail simultaneously. Unlike the other

two schemes, in the PFS parity scheme the system saves and

restores the checkpoints from the PFS. The PFS scheme is

only required when there is a catastrophic failure where a

large number of nodes fail simultaneously requiring the entire

system to be restored from the PFS.

Our simulator stores the checkpoint data at different storage

level, each of which may have a different cost and level of

resilience. Each of the checkpointing storage is a level, for

which lowest level or level 1 checkpoints are the least resilient

with minimum overhead, while storing the checkpoints in PFS

is the most resilient with maximum overhead. In our simulator,

a level L failure is a failure that requires a checkpoint at level

L or higher for restarting while a level L recovery refers to the

process of restarting an application using a checkpoint saved

at level L. Since lower level failures such as process failures

occur more frequently as compared to the higher level failures

such as PFS failures, the system records one or more lower

level checkpoints for every higher level checkpoint.

The performance of the checkpointing system is dependent

on several characteristics of the system such as the overhead

of saving the checkpoint to different levels of storage and also

the cost of recovering from these storage levels. The overhead

of saving and recovering the checkpoint from different levels

of storage are not the only factors to take into account, the

performance is also dependent on how frequently these storage

levels fail as the failure of a checkpoint level causes the system

to lose compute time and delays the progress.

Considering all these characteristics of a system, our simula-

tor was developed. It simulates multiple failures using different

configurations to determine the optimal interval and check-

point count for the different levels. This simulator can provide

an overview of multi-level checkpoint systems for current and

future systems and motivate systems to optimize checkpoint

configuration that provide adequate overall reliability and

efficiency. The simulator can be used to optimize performance

of a given multi-level checkpointing implementation on a

specific HPC system. For a given configuration of a large scale

system, we simulate the performance of the system across

multiple failures. The simulator modulates the checkpoint

C/R NN model

Optimal
Checkpoint interval

Optimal
Checkpoint

count

Daisy Chain

Different C/R scenarios

Different C/R scenarios

Random Forest

Decision
Tree T1

Decision
Tree T2

Decision
Tree Tn. . .

Fig. 3: Daisy Chaining output from checkpoint count predic-

tion as an input to the neural network for checkpoint interval

prediction

count and interval and provides the optimized interval and

count or minimizing the overhead of a particular configuration,

accounting for delays due to checkpoints, failures, and restarts.

IV. MACHINE LEARNING FOR CHECKPOINT/RESTART

Checkpointing count and interval are two of the most

important checkpoint parameters for optimizing the CR config-

uration. For determining the optimized checkpoint interval, the

simulation approach is accurate but it can be slow as it explores

different CR parameters before determining the optimized

checkpoint interval and because of this, it is not a practical

approach for real world scenarios such as while submitting

a job. Our objective was to determine the optimized interval

faster than the simulation approach without losing much of its

accuracy. For our approach, we generated a limited amount

of data using the simulator which provides us with optimized

interval and count for the provided CR configurations and we

use that data to determine the optimized count and interval for

other CR configurations using the AI techniques described in

the following sections.

A. Machine Learning

After running simple machine learning models such as

linear and polynomial regression on the simulated data, we

observed that these models were not able to learn from the

data and provided inaccurate predictions for checkpoint count

and interval. However, running more complex machine learn-

ing models for predicting checkpoint count and checkpoint

interval showed that the optimized count can be predicted very

accurately without much modification to the algorithms. Using

different machine learning algorithms on the simulated data,

we got the best results for predicting the checkpoint count

using Random forest, Support Vector Clustering and Gaussian

Naive Bayes. While random forest algorithm performed best

among the different machine learning models for predicting

the checkpoint interval.

B. Neural Network

Since the random forest model could predict the optimized

checkpoint count for the two-level checkpoint model with

an accuracy greater than 99%, we did not design a neural

Fig. 4: Workflow for Optimizing Checkpoint Configuration

network for predicting checkpoint count. We designed a neural

network only for predicting the optimized checkpoint interval,

to obtain better performance than the machine learning models.

For designing our neural network, we started with a simple

neural network consisting of two hidden layers with 10 nodes

on each hidden layer and ReLU as the activation function.

The neural network showed an increase in error by a factor

of 2.5 in comparison to the machine learning models for

predicting the optimized interval. To improve the performance

without significantly increasing training time, we added an

extra hidden layer and increased the node on each hidden layer

to 25. Though adding a layer and more nodes improved the

performance, however, this baseline model still predicted the

optimized checkpoint interval with an error that was greater

than two times the error shown by the machine learning

models. To improve the performance of this baseline model,

we optimized its design using the techniques described in the

following sections.

1) Daisy Chaining: Our initial design, consist of two

independent models, the random forest model for predicting

the checkpoint count and the neural network for predicting

checkpoint interval. However, our analysis shows a strong cor-

relation between the checkpoint count and interval with inter-

val being inversely proportional to the checkpoint count. Since

our random forest model was able to predict the checkpoint

count very accurately, in order to improve the performance we

fed the output from checkpoint count prediction as an input

to the neural network as shown in Figure 3. The optimization

reduced the error by 40% over the baseline model.

2) Parameter Reduction: After further analysis we ob-

served some of the input parameters were inter dependent on

each other and were impacting the performance of the neural

network. On removing these input parameters, we observed

a further reduction in error by 40% over the daisy chained

model.

V. IMPLEMENTATION

The simulator has been developed to replicate the behavior

of real-world scenarios when using a multi-level checkpoint

for large scale systems. The simulator is provided with three

critical parameters for each level, checkpoint overhead, check-

point restart time, and failure rates. The checkpoint overhead

of each level corresponds to the delay incurred when a check-

point is stored at the desired level. Though the checkpoint

storing mechanism is asynchronous and the majority of it is

performed in the background, there still remains a fragment of

time during which other useful operations need to be halted to

perform the checkpointing. The checkpoint restart time refers

to the time taken to retrieve the checkpoint data from the last

stored checkpoint at the desired level, and failure rates provide

how frequently the checkpoint levels fail.

The checkpoint overhead, restart time, and failure rates are

used by the simulator as shown in Figure 4 to provide the

user with elapsed time and the efficiency of the system. The

efficiency corresponds to the amount of time that it would

for the system to complete the execution without checkpoint

to the increase in execution time due to checkpoint [17].

The elapsed time and efficiency are obtained by running the

simulator for 3000 different failure scenarios. These failure

scenarios are created based on the failure rate [12] provided

by the user and generates a time interval until the next failure

of one of the checkpoint levels. These time intervals are not

fixed and vary across different simulations. Once the time

interval to the subsequent failure is complete, the simulator

uses the checkpoint restart time of the failed checkpoint level

to determine the delay that will be incurred and add the delay

to the total elapsed time. However, when no such failure

occurs as there is still time until the next crash, the checkpoint

uses the overhead parameter value of the checkpoint level

where the current application status will be stored to determine

the delay for storing the data at that desired level and add

the delay to the elapsed time. At the end of all the failure

scenarios, the simulator determines the total elapsed time and

the efficiency of the system for that particular configuration,

which is determined by comparing the elapsed time of the

checkpoint system with delays to the elapsed time without

any checkpoint delays.

The above simulation run provides the elapsed time and

efficiency of a system with a specific configuration. The

simulator we have developed not only provides the elapsed

time and efficiency for a system but also performs simulation
across different settings of the checkpoint system to determine
the optimal checkpoint count for each level of the multi-level
checkpoint system. The optimized configurations are obtained
by modulating the checkpoint configuration values starting
with checkpoint interval. As shown in Figure 4, the simulator
initially performs optimization of the checkpoint interval by
comparing the current efficiency with the efficiency of the
previous configuration until the maxima are obtained. The
same procedure is also followed for both checkpoint count
of level 1 and level 2. After the peaks for all the configuration
parameters are captured by the simulator, the user is provided
with the optimized configuration for the given system based
on the overhead, restart time, and failure rates.

Once a significant amount of data is collected from the
simulator, the information is passed on to different machine
learning and neural network models to predict the optimized
checkpoint configuration for other systems with different over-
head, restart time, and failure rates. The models that were used
from the scikit-learn [13] module, a python module integrating
a wide range of state-of-the-art machine learning algorithms
for training and predicting the optimized checkpoint configu-
ration will be explained in the following section.

A. Random Forest
Random forest is a machine learning method used for

classification and regression that operates by building multiple
decision trees in randomly selected subspace of the feature
space at training time and predicting the output class based
on the combined decision of all the trees for classification or
mean prediction (regression) of the individual trees. Random
decision forests correct for decision trees’ habit of overfitting
to their training set [11]

B. Gaussian Naive Bayes
The naive Bayes classifier is a learning method that assumes

that features are independent given class. It is a simple proba-
bilistic classifiers that learns based on Bayes’ theorem with an
assumption of strong independence between the features. To
allow a systematic study of classification accuracy for several
classes of randomly generated problems it uses Monte Carlo
simulations. It works well for completely independent features
and functionally dependent features.[14]

C. Support Vector Clustering
It is a clustering method which uses the approach of support

vector machines. It uses Gaussian kernel to map the data
points in a high dimensional feature space, where we search
for the minimal enclosing sphere. When mapped back from
the enclosing sphere to data space, the search space can
separate into several components, each enclosing a separate
cluster of points. The width of the Gaussian kernel controls
the scale at which the data is probed while the soft margin
constant helps to cope with outliers and overlapping clusters.
The structure of a dataset is explored by varying the two
parameters, maintaining a minimal number of support vectors
to assure smooth cluster boundaries.[4]

MEAN ABSOLUTE ERROR: 116.63 seconds

Baseline Neural Network

MEAN ABSOLUTE ERROR: 68.56 seconds

Neural Network After Daisy Chain

Optimal interval by C/R simulator

Pr
ed

ic
te

d
in

te
rv

al
 b

y
N

eu
ra

l N
et

w
or

k

MEAN ABSOLUTE ERROR: 40.7 seconds
Optimal interval by C/R simulator

Pr
ed

ic
te

d
in

te
rv

al
 b

y
N

eu
ra

l N
et

w
or

k

Neural Network After Parameter Reduction

Fig. 5: Performance improvement with NN optimization

D. Neural Network

Neural networks are a wide class of flexible nonlinear
regression and discriminant models, data reduction models,
and nonlinear dynamical systems. They consist of an often
large number of neurons, i.e., simple linear or nonlinear
computing elements, interconnected in often complex ways
and often organized into layers [15]. In our implementation
the neural network used ReLU [1] as the activation function,
Adam optimizer as the solver with a batch size of 200 and
learning rate of 0.001.

VI. EVALUATION

For our evaluation, initially, we started with a two-level
checkpoint model and then further evaluated on a three-
level checkpoint model. The following sections describe the
evaluation method and observations from both the multi-level
checkpoint models.

A. Two-Level Checkpoint Model

Two independent data sets were generated for evaluation
using the two-level checkpoint simulator. The training data was
simulated by providing realistic overhead, latency, and restart
time obtained using characteristics of some of the Top500
systems. We used the base failure rate of 2e10-6 and 4e10-7

failures/sec for Level-1 (L1) and Level-2 (L2) respectively [12]
and explored the impact of these failure rates by increasing
them up to 50X the base value. To validate our models for
unique CR configurations, the test data set was simulated using
data mutually exclusive to the training data set but within the
parameter space of the training data set

Our random forest model could predict optimized check-
point count with 99.365% accuracy when compared to the
simulated result. For predicting the checkpoint interval with
its values ranging up to 9960 seconds, both machine learning
models could determine the optimized interval with a mean
absolute error of 49.5 seconds. As shown in Figure 5, our
baseline neural network predicted optimized interval with a
mean absolute error of 116.63 seconds. However, with our

MEAN ABSOLUTE ERROR: 49.05 seconds

Random Forest

MEAN ABSOLUTE ERROR: 49.5 seconds

LightGBM

Optimal interval by C/R simulator

Pr
ed

ic
te

d
in

te
rv

al
 b

y
N

eu
ra

l N
et

w
or

k

Optimized Neural Network

MEAN ABSOLUTE ERROR: 40.7 seconds

Fig. 6: Performance comparison between Machine Learning
and Neural Network model for two-level checkpoint model

optimizations described in Section 2.2, we see that daisy chain-
ing shows a 40% performance improvement over the baseline
design followed by a further 40% improvement with parameter
reduction over the daisy chained model. The optimized neural
network model performs 18% better than the machine learning
models with a mean absolute error 40.7 seconds as shown in
Figure 6. With majority of our dataset in the region 1000 -
8000 seconds, this converts to 0.5% - 4% mean error from
the simulated values of the optimized interval for two-level
checkpoint model.

B. Three-Level Checkpoint Model

For evaluating the three-level checkpoint model, we gen-
erated a dataset consisting of 112,000 different system con-
figurations with varying checkpoint overhead, restart time,
and failure rates for each level. We used the base checkpoint
overhead and restart time of 0.5, 4.5, and 1052 seconds for
Level-1 (L1), Level-2 (L2), and Level-3 (L3)checkpoints and
a base failure rate of 2e10-7, 1.8e10-6 and 4e10-7 failures/sec,
respectively [12] and similar to the two-level checkpoint
model, we evaluated the performance of different models by
modulating these parameters between their base value and
upper limit of 50X the base value. However, unlike the two-
level checkpoint model, only one large dataset was generated
using the parameter values ranging between their base value
and upper limit. This dataset was further randomly broken
into the training set and testing set for evaluation of the
performance.

The training set was used for training the machine learning,
and neural network model and validation for predicting the
checkpoint count accurately for each level was performed on
the test set. As shown in Figure 7 , the machine learning
models show very similar accuracy for both level-1 and level-
2 checkpoint count prediction with Support Vector Clustering
performing the best with an accuracy of 23.89% and 25.50%
for level-1 and level-2 count prediction. Random forest gives
an accuracy of 22.93% and 23.31% respectively, and Gaussian

22.93%

19.63%

23.89%23.31% 22.83%
25.50%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

RA NDOM FOREST GA USSIA N NA IV E BA Y ES SUPPORT V ECTOR CL USTERING

MACHINE LEARNING MODELS

Count_L1

Count_L2

Fig. 7: Machine Learning Models Performance for three-level
checkpoint model

29.35%

29.57%
29.64%

29.44% 29.44%

29.65%

29.99%

30.22%
30.12%

30.16%

30.39%

30.05%

28.80%

29.00%

29.20%

29.40%

29.60%

29.80%

30.00%

30.20%

30.40%

30.60%

Hidden Layer = 3
Hidden Layer Nodes = 25

Hidden Layer = 3
Hidden Layer Nodes = 50

Hidden Layer = 13
Hidden Layer Nodes = 50

Hidden Layer = 13
Hidden Layer Nodes = 100

Hidden Layer = 23
Hidden Layer Nodes = 100

Hidden Layer = 23
Hidden Layer Nodes = 500

AC
CU

RA
CY

Neural Network Models

Count_L1

Count_L2

Fig. 8: Neural Network Models Performance for three-level
checkpoint model

Naive Bayes performs the worst among the tested machine
learning models with an accuracy of 19.63% and 22.83% for
level-1 and level-2 prediction.

Following the machine learning model evaluation, the neural
network was trained and tested using the same set of data.
The baseline neural network with 3 hidden layers and 25
hidden layer nodes gave an accuracy of 29.35% for predicting
level-1 checkpoint count, while level-2 checkpoint count also
gave a similar result with an accuracy of 29.99%. To evaluate
checkpoint count prediction with a much more complex neural
network, the hidden layers were increased from 3 to 13
layers and then further increased to 23 layers, and this was
accompanied by an increase in the number of nodes in the
hidden layers. The increase in the number of hidden layers
and the hidden layer nodes does not improve the accuracy.
As shown in Figure 8, the accuracy remains within 1% of the
baseline neural network accuracy.

On comparing the prediction accuracy of the neural network
with the three machine learning models, we see a noticeable
improvement in checkpoint count prediction accuracy in the
neural network. As shown in Figure 9, the neural network
outperforms the machine learning models by a margin of
24% - 51% for Level-1 count prediction. For Level-2 count
prediction, it shows a performance improvement ranging from
from 19% - 33%.

VII. RELATED WORK

Multi-level checkpointing [5] [6] [2] has become a promis-
ing technique for dealing with fault-tolerance in large scale or

29.3348%

51.0520%

24.1105%

30.3900%
33.1202%

19.1765%

0.0000%

10.0000%

20.0000%

30.0000%

40.0000%

50.0000%

60.0000%

 Random Forest Gaussian Naïve Bayes Support Vector Clustering

Pe
ro

fr
m

an
ce

 Im
pr

ov
em

en
t

Neural Network Performance Improvement vs Machine Learning Models

 Count_L1

Count_L2

Fig. 9: Neural Network Models Performance Improvement vs
Machine Learning Models for three-level checkpoint model

even exascale systems. With the increase in demand for such
large scale systems [18] [10] [19], it has been studied thor-
oughly . The multi-level checkpoint-restart model providing
an effective way to control the checkpoint overhead. In this
paper, we focus on multi-level CR model and optimize the
checkpoint count for multiple levels.

SCR[12] is a library which uses Markov model to fit the
multi-level CR mechanism. There are some assumptions made
in this paper such as the failure rates at different checkpoint
levels are completely independent and also assumes that
the failure rates at different levels are known beforehand.
The other assumptions include that the checkpoint overhead
remains constant throughout the job as well as infinite pool
of spare nodes available at all time. Using the Markov model,
Sato Kento et al. [16] combines the benefits of non-blocking
and multi-level checkpointing. The work presents the design of
the system and models its performance to show that the system
can improve efficiency by 1.1 to 2.0 on future machines.
Additionally, applications using that checkpointing system
can achieve high efficiency when using a PFS with lower
bandwidth.

FTI [3] is another multi-level checkpointing proposed by
Bautista-Gomez et al. which uses local SSDs and a PFS. Since
PFS usage is costly when compared to local storage, the model
reduces PFS usage by encoding the data using Reed-Solomon
(RS) encoding [7] for highly resilient cached checkpoints.
However, increasing failure rates require checkpoints to a
PFS more frequently. However, increasing failure rates require
checkpoints to a PFS more frequently. Thus, checkpointing
to a PFS is crucial for future multi-checkpointing systems.
Sheng et al. [9] builds a mathematical model to fit the multi-
level CR mechanism with large scale applications for various
types of failures and theoretically optimize the entire execution
performance for each parallel application by selecting the best
checkpoint level combination and corresponding checkpoint
intervals. They evaluated their optimal solutions using both
simulation with millions of cores and real environment with
real-world MPI programs running on hundreds of cores and
showed that with optimal checkpoint intervals at each level,
the system outperforms other state-of-the-art solutions by up
to 50 percent.

VIII. CONCLUSION

In this paper, we present an idea to combine the simulation
approach with machine learning models to reduce the time
taken to determine the optimized parameter values of check-
point interval and checkpoint count for different configurations
of CR. With our approach and design optimizations, we show
that our models can predict the optimized parameter values
when trained with the simulation approach. We have also
demonstrated that using techniques such as neural networks
can improve the performance over the machine learning mod-
els with neural network sometime exceeding the performance
of a machine learning model by 50%. We plan to validate
the results on real systems in the future. From our study
and exploration, we can say that using much more advanced
techniques can further improve this performance and predict
optimized checkpoint configuration accurately.

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344 (LLNL-CONF-
802941). This material was based upon work supported by the
U.S. Department of Energy, Office of Science, under contract
DE-AC02-06CH11357. This research used resources of the
Argonne Leadership Computing Facility, which is a DOE
Office of Science User Facility supported under Contract DE-
AC02-06CH11357. This work is also supported in part by
the National Science Foundation awards 1561041, 1564647,
1763547, and 1822737. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES

[1] Abien Fred Agarap. Deep learning using rectified linear units (relu).
arXiv preprint arXiv:1803.08375, 2018.

[2] Guillaume Aupy, Yves Robert, Frédéric Vivien, and Dounia Zaidouni.
Checkpointing algorithms and fault prediction. Journal of Parallel and
Distributed Computing, 74(2):2048–2064, 2014.

[3] Leonardo Bautista-Gomez, Seiji Tsuboi, Dimitri Komatitsch, Franck
Cappello, Naoya Maruyama, and Satoshi Matsuoka. Fti: high per-
formance fault tolerance interface for hybrid systems. In SC’11:
Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–12. IEEE, 2011.

[4] Asa Ben-Hur, David Horn, Hava T Siegelmann, and Vladimir Vapnik.
Support vector clustering. Journal of machine learning research,
2(Dec):125–137, 2001.

[5] Marin Bougeret, Henri Casanova, Mikael Rabie, Yves Robert, and
Frédéric Vivien. Checkpointing strategies for parallel jobs. In Proceed-
ings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–11, 2011.

[6] Mohamed Slim Bouguerra, Ana Gainaru, Leonardo Bautista Gomez,
Franck Cappello, Satoshi Matsuoka, and Naoya Maruyam. Improving
the computing efficiency of hpc systems using a combination of proac-
tive and preventive checkpointing. In 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing, pages 501–512.
IEEE, 2013.

[7] Zizhong Chen and Jack Dongarra. A scalable checkpoint encoding
algorithm for diskless checkpointing. In 2008 11th IEEE High Assurance
Systems Engineering Symposium, pages 71–79. IEEE, 2008.

[8] S. Di, M. S. Bouguerra, L. Bautista-Gomez, and F. Cappello. Optimiza-
tion of multi-level checkpoint model for large scale hpc applications.
In 2014 IEEE 28th International Parallel and Distributed Processing
Symposium, pages 1181–1190, May 2014.

[9] Sheng Di, Mohamed Slim Bouguerra, Leonardo Bautista-Gomez, and
Franck Cappello. Optimization of multi-level checkpoint model for large
scale hpc applications. In 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, pages 1181–1190. IEEE, 2014.

[10] Kurt Ferreira. Keeping checkpoint/restart viable for exascale systems.
2011.

[11] Tin Kam Ho. Random decision forests. In Proceedings of 3rd inter-
national conference on document analysis and recognition, volume 1,
pages 278–282. IEEE, 1995.

[12] AT Moody, Greg Bronevetsky, KM Mohror, and Bronis R de Supinski.
Detailed modeling, design, and evaluation of a scalable multi-level
checkpointing system. Technical report, Lawrence Livermore National
Lab.(LLNL), Livermore, CA (United States), 2010.

[13] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pretten-
hofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning
in python. Journal of machine learning research, 12(Oct):2825–2830,

2011.
[14] Irina Rish et al. An empirical study of the naive bayes classifier. In

IJCAI 2001 workshop on empirical methods in artificial intelligence,
volume 3, pages 41–46, 2001.

[15] Warren S Sarle. Neural networks and statistical models. 1994.
[16] Kento Sato, Naoya Maruyama, Kathryn Mohror, Adam Moody, Todd

Gamblin, Bronis R de Supinski, and Satoshi Matsuoka. Design and
modeling of a non-blocking checkpointing system. In Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, page 19. IEEE Computer Society Press, 2012.

[17] Nitin H Vaidya. On checkpoint latency. Citeseer, 1995.
[18] Long Wang, Karthik Pattabiraman, Zbigniew Kalbarczyk, Ravis-

hankar K Iyer, Lawrence Votta, Christopher Vick, and Alan Wood.
Modeling coordinated checkpointing for large-scale supercomputers. In
2005 International Conference on Dependable Systems and Networks
(DSN’05), pages 812–821. IEEE, 2005.

[19] Gengbin Zheng, Xiang Ni, and Laxmikant V Kalé. A scalable double in-
memory checkpoint and restart scheme towards exascale. In IEEE/IFIP
International Conference on Dependable Systems and Networks Work-
shops (DSN 2012), pages 1–6. IEEE, 2012.

