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GLOBAL WELL-POSEDNESS AND SCATTERING

FOR THE FOCUSING, CUBIC SCHRÖDINGER

EQUATION IN DIMENSION d D 4

 B DODSON

A. – In this paper we prove global well-posedness and scattering for the focusing, cubic
Schrödinger equation in four dimensions below the ground state. Previous work proved this in five
dimensions and higher. To prove this we combine the double Duhamel method with the long time
Strichartz estimates.

R. – Nous prouvons l’existence globale et la diffusion des ondes pour l’équation de Schrö-
dinger cubique focalisante en dimension quatre. Des travaux antérieurs ont montré de tels résultats en
dimension supérieure ou égale à cinq. Nous utilisons ici la méthode de Duhamel double et les estima-
tions de Strichartz en temps long.

1. Introduction

In this paper we study the nonlinear Schrödinger initial value problem

(1.1)
iut C�u D F.u/ D �juj2u;

u.0; x/ D u0 2 PH 1.R4/;

which belongs to a class of problems known as the focusing, nonlinear Schrödinger initial
value problems,

(1.2)
iut C�u D F.u/ D �jujpu;

u.0; x/ D u0 2 PH 1.Rd /;

In general a solution to (1.2) conserves mass,

(1.3) M.u.t// D

Z

ju.t; x/j2dx D M.u.0//;

and energy,

(1.4) E.u.t// D
1

2

Z

jru.t; x/j2dx �
1

p C 2

Z

ju.t; x/jpC2dx D E.u.0//:
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4D FOCUSING ENERGY-CRITICAL NLS 141

lies in PH 1.Rd / and solves the elliptic equation

(1.10) �W C jW j
4

d�2W D 0;

soW.x; t/ D W.x/ solves (1.1) but is clearly non scattering. Therefore, as in the mass-critical
problem we conjecture that scattering holds for initial data below the threshold given by (1.9).

C 1.1. – Let d � 3 and let u W I � R
d ! C be a solution to (1.2), p D 4

d�2
. If

ku0k PH 1.Rd / < kW k PH 1.Rd /;(1.11)

and

E.u0/ < E.W /;(1.12)

then
Z

I

Z

ju.t; x/j
2.dC2/

d�2 dxdt � C.ku0k PH 1 ; E.u0// < 1:(1.13)

The quantity kuk
L

2.dC2/
d�2

t;x .R�Rd /

is the key quantity to determining whether or not u scat-

ters forward in time or backward in time.

D 1.2 (Scattering size). – The scattering size of a solution to (1.2) on a time

interval I is given by

(1.14) SI .u/ D

Z

I

Z

Rd

ju.t; x/j
2.dC2/

d�2 dxdt:

T 1.2. – When p D 4
d�2

, (1.2) is well-posed on some open interval I.u0/. Addi-

tionally, u scatters forward in time if and only if SŒt1;1/.u/ < 1 for some t1 2 R. Likewise, u

scatters backward in time if and only if S.�1;t1�.u/ < 1 for some t1 2 R.

Proof. – See [10] and [11].

Therefore a solution may either scatter or blow-up.

D 1.3 (Blow up). – A solution u to (1.2) blows up forward in time on I if there

exists t1 2 I such that

SŒt1;sup.I //.u/ D 1:(1.15)

u blows up backward in time if there exists t1 2 I such that

S.inf.I /;t1�.u/ D 1:(1.16)

[25] proved Conjecture 1.1 for radial data in dimensions d D 3; 4; 5. The proof uses the
concentration compactness argument.

T 1.3. – Assume that E.u0/ < E.W /, ku0k PH 1 < kW k PH 1 , d D 3; 4; 5, and u0 is

radial. Then (1.2) is globally well-posed and scatters forward and backward in time.

Proof. – See [25].

[28] treated the nonradial case in dimensions d � 5.

T 1.4. – Assume that E.u0/ < E.W /, ku0k PH 1 < kW k PH 1 , d � 5. Then (1.2) is

globally well-posed and scatters forward and backward in time.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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142 B. DODSON

Proof. – See [28].

R. – The result of [28] was actually proved under the possibly weaker assumption

(1.17) kukL1
t

PH 1
x .I�R4/ < krW kL2.R4/:

Now by the energy trapping lemma of [25], if E.u0/ < E.W / and ku0k PH 1 < kW k PH 1 , then
(1.17) holds.

L 1.5 (Energy trapping lemma). – If E.u0/ � .1 � ı/E.W / and kru0kL2.Rd / <

.1� ı/krW kL2.Rd / for some ı > 0, then there exists Nı.ı; d/ > 0 such that for all t 2 I , where

I is the maximal interval of existence of u,

(1.18) kru.t/kL2
x.Rd / � .1 � Nı/krW kL2.Rd /:

Proof. – This follows from the work of [1] and [40], which proved that if Cd is the best
constant in the Sobolev embedding theorem:

(1.19) kf k
L

2d
d�2
x .Rd /

� Cd krf kL2
x.Rd /:

That is, if

(1.20) kuk
L

2d
d�2
x .Rd /

D Cd krukL2
x.Rd /;

then u D CW�0;x0;�0
for some constant C 2 C, �0 2 R, x0 2 R

d , and �0 2 .0;1/, where

(1.21) W�0;x0;�0
D

1

�
d�2

2

0

ei�0W.
x � x0

�0

/;

and W is given by (1.9).
So when d D 4, (1.10) implies that

(1.22) 0 D h�W;W i C hW; jW j2W i D �

Z

jrW j2dx C

Z

jW j4dx:

Then by (1.20),

(1.23) C4 D
1

kW kL4
x.R4/

;

so

(1.24) .1 � ı/E.W / � E.u0/ D
1

2

Z

jru.t/j2dx.1 �
1

2

ku.t/k2

L4
x.R4/

kW k2

L4
x.R4/

/:

Now make a bootstrap argument. Let

(1.25) J D ft 2 I W ku.t/k PH 1 � krW kL2g:

By the Sobolev embedding theorem and the fact that C4 is the best constant,

(1.26) ku.t/kL4.R4/ � kW kL4.R4/

for all t 2 J . Also by the dominated convergence theorem and local well-posedness, J is
closed. Also by ku.0/k PH 1 � .1 � ı/kW k PH 1 , J is not empty. Then by (1.20), (1.23), (1.24),
and conservation of energy

(1.27) .1 � ı/E.W / D .1 � ı/
1

4
kW k2

PH 1.R4/
�
1

4
kru.t/k2

L2
x.R4/

;

4 e SÉRIE – TOME 52 – 2019 – No 1



É
pr

eu
ve

SM
F

D
ec

em
be

r 2
5,

20
18

4D FOCUSING ENERGY-CRITICAL NLS 143

which in turn implies that for t 2 J , ku.t/k2
PH 1.R4/

� .1�ı/kW k2
PH 1.R4/

. Local well-posedness

then implies J is also open in I , therefore J D I .

Scattering results for the focusing, mass-critical problem ([15], [33], [34], [44]) assume that
the initial data u0 has mass below the mass of a ground state. However, unlike the mass (1.3),
the PH 1.Rd / norm is not conserved. Energy is conserved, but is not positive definite (1.4), so
E.u.t// < E.W / does not by itself give a bound on the size of u.t/, hence the two conditions
in Theorem 1.3.

R. – The author of this paper is personally unaware of any solutions u.t/ to (1.2),
p D 4

d�2
that satisfy (1.17) but not the initial conditions of Theorem 1.3, and would be

interested in more information on the matter.

In this paper we prove global well-posedness and scattering for nonradial data in dimen-
sion four.

T 1.6. – Assume thatE.u0/ < E.W /, ku0k PH 1 < kW k PH 1 , and d D 4. Then (1.2)
is globally well-posed and scatters forward and backward in time.

As in [25] and [28], the proof uses the concentration compactness method. The proof may
be separated into two theorems.

T 1.7. – If (1.1) is not globally well-posed and scattering for all data satisfying

ku0k PH 1.R4/ < kW k PH 1.R4/ and E.u0/ < E.W /, then there exists a nonzero solution to (1.1)
that is almost periodic for the entire time of its existence. That is, u solves (1.1) on I , where I is

the maximal interval of its existence, and u is almost periodic for all t 2 I .

D 1.4 (Almost periodicity). – u.t/ is said to be almost periodic for all t 2 I if

there exists N.t/ W I ! .0;1/ and x.t/ W I ! R
4 such that for all t 2 I , 1

N.t/
u.x�x.t/

N.t/
/ lies in

a compact set K � PH 1.R4/.

T 1.8. – The only almost periodic solution to (1.1) on the maximal interval of its

existence I , with kru.t/kL1
t L2

x.I�R4/ < krW kL2 , is u � 0.

Theorem 1.7 is already well-known, so its proof will merely be sketched in section three.
The novel part of this paper is the proof of Theorem 1.8.

In fact, [28] proved the reduction

T 1.9. – To prove Theorem 1.8 it suffices to show that the only global, almost

periodic solution to (1.1) on R with

(1.28) N.t/ � 1; N.0/ D 1;

is u � 0.

Thus we shall prove that

T 1.10. – The only global, almost periodic solution to (1.1) on R with

(1.29) N.t/ � 1; N.0/ D 1;

is u � 0.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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4D FOCUSING ENERGY-CRITICAL NLS 145

2. Linear Estimates and harmonic analysis

In this section we describe the tools from harmonic analysis that will be used in this paper.

D 2.1 (Fourier transform). – Suppose f 2 L1.Rd /. Let F f denote the

Fourier transform

(2.1) F f .�/ D .2�/�d=2

Z

e�ix��f .x/dx:

The inverse Fourier transform is given by

(2.2) .F �1
g/.x/ D .2�/�d=2

Z

eix��g.�/d�:

Plancherel’s theorem proved that the Fourier transform and inverse Fourier transform
provide a unitary transformation between functions in L2

x.R
d / and functions in L2

�
.Rd /.

Because of this fact it is useful to decompose a function via a partition of unity in Fourier
space, or a Littlewood-Paley decomposition.

D 2.2 (Littlewood-Paley decomposition). – Let � 2 C1
0 .Rd / be a radial,

decreasing function, �.x/ D 1 for jxj � 1, �.x/ is supported on jxj � 2. Then for any j 2 Z

let

Pjf D .2�/�d=2

Z

eix�� Œ�.2�j �1�/ � �.2�j �/� Of .�/d�;(2.3)

P�jf D .2�/�d=2

Z

eix���.2�j �1�/ Of .�/d�;(2.4)

and

P�jf D .2�/�d=2

Z

eix�� Œ1 � �.2�j �/� Of .�/d�:(2.5)

R. – It is often convenient to write PN , which is given by the multiplier

(2.6) Œ�.
1

N
�/ � �.

1

2N
�/�:

P�N and P�N are defined in the obvious fashion. When summing over Littlewood-Paley
pieces,

P

M�N denotes
P

j �0IM D2j N .
P

M �N is similarly defined.

R. – To simplify notation it is convenient to write uk or uN instead of Pku

or PNu.

T 2.1 (Littlewood-Paley theorem). – For any 1 < p < 1,

(2.7) k.
X

j

jPjf j2/1=2kL
p
x .Rd / �p;d kf kLp.Rd /:

Proof. – This is a well-known fact from harmonic analysis. See [37], [38], [45], or many
other sources.

The proof of Theorem 2.1 utilizes the maximal function, which can be defined in any
dimension. This paper will only use the maximal function in one dimension.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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146 B. DODSON

D 2.3 (Maximal function). – For a function f 2 Lp.R/, 1 � p � 1, let

(2.8) M .f /.x/ D sup
T >0

1

T

Z xCT

x�T

jf .t/jdt:

T 2.2 (Maximal function theorem). – For any 1 < p � 1,

(2.9) k M .f /kLp.R/ .p kf kLp.R/:

Proof. – See [37], [38], or [45]. The proof there is described in any dimension.

T 2.3 (Sobolev embedding theorem). – For 1 � p � q � 1,

(2.10) kPjf kLq.Rd / . 2jd. 1
p � 1

q /kPjf kLp.Rd /:

Proof. – See for example [47].

L 2.4 (Bernstein’s inequality). – For any s 2 R, j 2 Z, 1 < p < 1,

(2.11) 2jskPjf kLp.Rd / �p;d kjrjsPjf kLp.Rd /:

Proof. – See [46].

Theorem 2.1, Theorem 2.3, and Lemma 2.4 will be used throughout this paper, frequently
in combination.

The Fourier transform intertwines the multiplication and differentiation operators, so the
solution to the initial value problem

(2.12) .i@t C�/u D F; u.0; x/ D u0;

when F D 0 is given by

(2.13) eit�u0 D .2�/�d=2

Z

e�it j�j2eix��.F f /.�/d�:

The general strong solution to (2.12) is given by

(2.14) u.t/ D ei.t�t0/�u.t0/ � i

Z t

t0

ei.t��/�F.�/d�:

Since jeit j�j2 j D 1,

(2.15) keit�f kL2.Rd / D kf kL2.Rd /;

and in fact, for any L2-based Sobolev space,

(2.16) keit�f k PH s
x.Rd / D kf k PH s.Rd /:

By completing the square in the exponent of (2.13) and by stationary phase computations,

(2.17) eit�f .x/ D
1

.4�t/d=2
e�id�=4

Z

e�i jx�yj2

4t f .y/dy;

which implies

(2.18) keit�f kL1
x .Rd / .d t

�d=2kf kL1.Rd /:

4 e SÉRIE – TOME 52 – 2019 – No 1
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148 B. DODSON

Proof. – This is proved by combining the dispersive estimate (2.18) with the Sobolev
embedding theorem (Theorem 2.3). If q > 2d

d�2
then d.1

2
� 1

q
/ > 1, so

(2.28) 2j. d
q �.d�2//

Z

jt�� j>2�2j

1

.t � �/d. 1
2 � 1

q /
kPjF.u.�//kL

q0

x .Rd /
d�

.
X

k�0

2�kd. 1
2 � 1

q /22j

Z

jt�� j�2k2�2j

kF.�/kL1
x.Rd /d� .q M .kF.�/kL1

x.Rd //.t/:

By the Sobolev embedding theorem and (2.16),

(2.29) 2j. d
q �.d�2//k

Z

jt�� j�2�2j

Pj e
i.t��/�F.u.�//d�kL

q
x.Rd /

. 22j

Z

jt�� j�2�2j

kF.�/kL1
x.Rd /d� . M .kF.�/kL1

x.Rd //.t/:

Therefore,

(2.30) 2j. d
q �.d�2//kPj v.t/kL

q
x.Rd / . M .kF.�/kL1

x.Rd //.t/;

so by Theorem 2.2 the proof is complete.

3. Concentration compactness

In this section we briefly discuss the reduction to the almost periodic solution (1.29).

Sketch of the proof of Theorem 1.7. – Since this is merely a sketch, the interested reader
should consult [25] or [28] for a complete treatment of the concentration compactness
method. Define the increasing function

(3.1) C.E/ D supfkuk
L

2.dC2/
d�2

t;x .R�Rd /

W kukL1
t

PH 1
x .R�Rd / � Eg:

To prove Theorem 1.6 it suffices to prove C.E/ < 1 for E < krW kL2.R4/. The small
data results of [10] show that C.E/ . E for E small. Moreover, by a stability result
in d � 5 (see [28]) and a simple calculation in dimensions d D 3; 4, C.E/ is a continuous
function of E. Therefore, if Theorem 1.6 fails, then by the continuity of C.E/, there exists
E� < krW kL2 such that C.E�/ D 1 and C.E/ < 1 for all E < E�. E� is called the
minimal energy. We wish to show that E� D krW kL2.R4/.

Now take a sequence un.t/ of solutions to (1.1) such that

(3.2) kun.t/kL1
t

PH 1
x .R�Rd / % E�;

and

(3.3) SŒ0;1/.un/ D S.�1;0�.un/ D n:

Now by a straightforward application of Strichartz estimates, there exists ı > 0 such that

(3.4) keit�un.0/kL6
t;x.R�R4/ � ı > 0:

4 e SÉRIE – TOME 52 – 2019 – No 1
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Then [26] proved that un.tn/ can be decomposed into asymptotically decoupling profiles,
such that for any J ,

(3.5) un.0/ D

J
X

j D1

gj
ne

it
j
n ��j C wJ

n ;

where gj
n is an element of a group generated by scaling and translation symmetries, wJ

n is
the error, and the group elements gj

n asymptotically decouple. (See Definition 1.4 for more
information on the group.) The asymptotic decoupling implies that if uj .t/ is a global

solution to (1.1) with initial data given by eit
j
n ��j and supj kuj k

L

2.dC2/
d�2

t;x .R�Rd /

< 1, the

solution to (1.1) with initial data un.0/ is well approximated by

(3.6)
J

X

j D1

uj .t/C eit�wJ
n :

Then by the minimality of E� and (3.3), there exists one j0, tj0
n ! 0 and

(3.7) kuj0.t/kL1
t

PH 1
x .I�Rd / D E�;

all other �j D 0, and

(3.8) kuj0.t/k
L

2.dC2/
d�2

t;x .I�Rd /

D 1;

where I is the maximal interval of existence of uj0 .

Repeating the argument for uj0.tn/ for any sequence tn 2 I shows that uj0.tn/ has a
subsequence that converges in PH 1=G, where G is the group of symmetries gj

n . This proves
Theorem 1.7.

By the Arzela-Ascoli theorem, if u is an almost periodic solution to (1.1), then there exists
x.t/ W I ! R

d and N.t/ W I ! .0;1/, such that for any � > 0 there exists C.�/ < 1 such
that

(3.9)
Z

jx�x.t/j> C.�/
N.t/

jru.t; x/j2dx C

Z

j�j>C.�/N.t/

j�j2j Ou.t; �/j2d�

C

Z

j�j< 1
C.�/

N.t/

j�j2j Ou.t; �/j2d� < �:

R. – N.t/ is not uniquely defined. For example, modifying C.�/ by a constant,
one may also modify N.t/ by a constant. Thus (see [32] for a proof) one can choose N.t/
such that

(3.10) jN 0.t/j . N.t/3;

and

(3.11)
Z

I

N.t/2dt .

Z

I

Z

ju.t; x/j
2.dC2/

d�2 dxdt .

Z

I

N.t/2dt C 1:
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Sketch of proof of Theorem 1.9. – Suppose u.t/ is an almost periodic solution to (1.1).
[28] showed that one can take a limit of u.tn/ in PH 1=G and obtain a solution to (1.1)
satisfying either

(3.12) N.t/ � 1; t 2 R; N.0/ D 1;

or than u blows up in finite time.

(3.9) and conservation of mass (1.3) show that finite time blowup cannot occur. Suppose
u blows up in finite time, say at T D 0, and by time reversal symmetry suppose u.t/ blows
up as t & 0. Then by (3.10) and (3.11), N.t/ % 1 as t & 0. Let  2 C1

0 .Rd / be a radial
function,  D 1 on jxj � 1,  supported on jxj � 2. By (3.9) and Hölder’s inequality, for
any R > 0,

(3.13) lim
t&0

Z

 .
x

R
/2ju.t; x/j2dx D lim

t&0
MR.t/ D 0:

Moreover, integrating by parts,

(3.14)
d

dt
MR.t/ �

1

R

Z

 0.
x

R
/ .

x

R
/jru.t; x/jju.t; x/jdx �

1

R
MR.t/

1=2kru.t/kL2
x.Rd /:

Therefore, (3.13) combined with the fundamental theorem of calculus and (3.14) implies that
R

ju.t; x/j2dx D 0 for any t > 0. However, this implies u � 0, which contradicts u blowing
up in finite time.

Thus Theorem 1.6 has been reduced to Theorem 1.10. Since the rest of the argument will
analyze some specific almost periodic solution u to (1.1) (which will turn out to be identically
zero), A . B will denote A � C.u/B.

4. Long Time Strichartz estimate

Thus it only remains to investigate when u is an almost periodic solution on R and
N.t/ � 1 for all t 2 R. In general for critical nonlinear Schrödinger problems one would
like to prove that the minimal blowup solution has both finite mass (1.3) and finite energy
(1.4). Having done so, it only remains to use a nonlinear estimate (e.g., a conservation law or
Morawetz estimate) to prove that such an almost periodic solution must be identically zero.
The sketch of the proof of Theorem 1.9 is a good example of this, using conservation of mass
to prove u � 0 in the case of a finite time blowup solution.

Long time Strichartz estimates provide a useful substitute to proving finite conserved
quantities. Long time Strichartz estimates were introduced in [14] to study the mass-criticial
nonlinear Schrödinger equation in dimensions d � 3. There, the initial data a priori lay
in L2, but rather than proving that u also had finite energy, [14] utilized the long time
Strichartz estimates to bound the error of the frequency truncated interaction Morawetz
estimate.

Here we will do something similar. As was already observed, when d D 4, (1.9) barely
fails to lie in L2. Since (1.9) is clearly an almost periodic solution to (1.1), this precludes the
possibility of proving that an almost periodic solution lies in L2 by purely linear arguments.
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Let

(4.5) kukY.I�R4/ D sup
j

22j .1C 24jK/�1=2k sup
k�j

2�2kkuj .t/kL1
x .R4/kL2

t .I /

C sup
j

.1C 24jK/�1=2.
X

k�j

22kkuk.t/k
2

L2
t L4

x.I�R4/
/1=2:

The goal is to use (4.3), (4.4), and the smallness of u away from the scale N.t/ to prove an
estimate of the form

(4.6) kukY.I�R4/ . 1C �kukY.I�R4/;

and then proceed by the usual small data arguments. To that end decompose

(4.7) F.u/ D F.u�j /CO.u2
�ju�j /CO.u�ju

2
�j /C F.u�j /:

By (3.9) it is possible to choose c.�/ > 0 such that

(4.8) ku�c.�/N.t/kL1
t

PH 1.R�R4/ � �:

By Bernstein’s inequality,

kP�cN.t/.u�j /k
3

L6
t L3

x.I�R4/

. k
X

j �k1�k2�k3

kP�cN.t/uk1
kL1

x .R4/kP�cN.t/uk2
kL2

x.R4/kP�cN.t/uk3
kL2

x.R4/kL2
t .I /

. kP�cN.t/uk2

L1
t

PH 1.R�R4/
k sup

k�j

2�2kkuk.t/kL1
x .R4/kL2

t .I /

. �22�2j .1C 24jK/1=2kukY.I�R4/:

(4.9)

Also by Bernstein’s inequality,

(4.10) kP�cN.t/uk3

L6
t L3

x.I�R4/
. .

Z

I

ku�cN.t/.t/k
2

L2
x.R4/

ku.t/k4

L4
x.R4/

dt/1=2

. kuk3

L1
t

PH 1.R�R4/
.

Z

I

c�2N.t/�2dt/1=2 . c�1K1=2:

Therefore,

(4.11) ku3
�j kL2

t L1
x.I�R4/ . c�1K1=2 C �2.1C 24jK/1=22�2j kukY.I�R4/:

By Theorem 2.6 (the maximal Strichartz estimate),

(4.12) k sup
k�j

kPk

Z t

t0

ei.t��/�F.u�j /d�kL1
x .R4/kL2

t .I / . k.u�j /
3kL2

t L1
x.I�R4/

. c�1K1=2 C �2.1C 24jK/1=22�2j kukY.I�R4/:

Also by the Sobolev embedding theorem and Strichartz estimates,

(4.13)

.
X

k�j

22kkPk

Z t

t0

ei.t��/�F.u�j /d�k2

L2
t L4

x.I�R4/
/1=2 . .

X

k�j

24k/1=2k.u�j /
3kL2

t L1
x.I�R4/

. c�122jK1=2 C �2.1C 24jK/1=2kukY.I�R4/:
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This takes care of F.u�j /. Next, by the Sobolev embedding theorem, the Littlewood-Paley
theorem, and interpolation,

(4.14) ku�j kL6
t;x.I�R4/ . kru�j k

L6
t L

12=5
x .I�R4/

. .
X

k�j

22kkukk2

L2
t L4

x.I�R4/
/1=6kruk

2=3

L1
t L2

x.I�R4/
. .1C 24jK/1=6kuk

1=3

Y.I�R4/
:

By the Sobolev embedding theorem, (4.11), and (4.14),

k.u2
�ju�j /kL2

t L
4=3
x .I�R4/

. ku�j k2

L6
t L3

x.I�R4/
ku�j kL6

t L12
x .I�R4/

. 2j=3ku�j k2

L6
t L3

x.I�R4/
ku�j kL6

t;x.I�R4/

. 2j=3.c�1K1=2 C �22�2j .1C 24jK/1=2kukY.I�R4//
2=3.1C 24jK/1=6kuk

1=3

Y.I�R4/

. 2j=3c�2=3K1=3.1C 24jK/1=6kuk
1=3

Y.I�R4/
C 2�j�4=3.1C 24jK/1=2kukY.I�R4/:

(4.15)

By the Sobolev embedding theorem, (4.15), and Strichartz estimates,

k sup
k�j

2�2kkPk

Z t

t0

ei.t��/�O.u2
�ju�j /d�kL1

x .R4/kL2
t .I /

. 2�j k

Z t

t0

ei.t��/�O.u2
�ju�j /d�kL2

t L4
x.I�R4/ . 2�j ku2

�ju�j k
L2

t L
4=3
x .I�R4/

. 2�2j=3c�2=3K1=3.1C 24jK/1=6kuk
1=3

Y.I�R4/
C 2�2j�4=3.1C 24jK/1=2kukY.I�R4/;

(4.16)

and

(4.17) .
X

k�j

22kkPk

Z t

t0

ei.t��/�O.u2
�ju�j /d�k2

L2
t L4

x.I�R4/
/1=2 . 2j ku2

�ju�j k
L2

t L
4=3
x .I�R4/

. c�2=324j=3K1=3.1C 24jK/1=6kuk
1=3

Y.I�R4/
C �4=3.1C 24jK/1=2kukY.I�R4/:

This takes care of O.u2
�ju�j /. Next, by the Sobolev embedding theorem and (3.9),

(4.18) k.P�cN.t/u�j /
2kL2

t L4
x.I�R4/ . kru�j kL2

t L4
x.I�R4/ku�cN.t/kL1

t L4
x.I�R4/

. �.1C 24jK/1=2kukY.I�R4/;

and by Bernstein’s inequality and the Sobolev embedding theorem

(4.19) k.P�cN.t/u�j /
2kL2

t L4
x.I�R4/

. 2j .

Z

ku>cN.t/k
2

L2
x.R4/

ku�j .t/k
2
L1

x .R4/
dt/1=2 . c�1K1=222j :

(4.18) and (4.19) imply

(4.20) krO.u2
�ju>j /kL2

t L
4=3
x .I�R4/

C kru3
�j k

L2
t L

4=3
x .I�R4/

. krukL1
t L2

x.I�R4/ku
2
�j kL2

t L4
x.I�R4/ . c�1K1=222j C �.1C 24jK/1=2kukY.I�R4/:
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Again by Strichartz estimates (4.20) implies

(4.21) .
X

k�j

22kkPk

Z t

t0

ei.t��/�O.u2
�ju/d�k2

L2
t L4

x.I�R4/
/1=2

. c�1K1=222j C �.1C 24jK/1=2kukY.I�R4/:

Also, by the Sobolev embedding theorem, Bernstein’s inequality, Strichartz estimates, and
(4.21),

k sup
k�j

2�2kkPk

Z t

t0

ei.t��/�O.u2
�ju/d�kL1

x .R4/kL2
t .I /

. 2�2j kr

Z t

t0

ei.t��/�O.u2
�ju/d�kL2

t L4
x.I�R4/

. c�1K1=2 C �2�2j .1C 24jK/1=2kukY.I�R4/:

(4.22)

Therefore, combining (4.3), (4.4), (4.12), (4.13), (4.16), (4.17), (4.21), and (4.22),

(4.23) kukY.I�R4/ . c.�/�1 C �kukY.I�R4/:

Choosing � > 0 sufficiently small, the proof of Theorem 4.1 is complete.

R. – By Theorem 2.6 combined with the above analysis, we have also proved

(4.24) 22j k sup
k�j

2�4k=3kuk.t/kL6
x.R4/kL2

t .I / . .1C 24jK/1=2:

This estimate will be utilized in section six.
The long time Strichartz estimates directly yield the fact that if u is an almost periodic,

rapid frequency cascade solution to (1.1) then u � 0. (1.9) does not fall into this category,
and in this case it is possible to prove u 2 L1

t
PH�� for some � > 0 using only linear estimates.

u � 0 follows directly from interpolation and (3.9).

T 4.2. – If u is an almost periodic solution to (1.1) on R satisfying
R

R
N.t/�2dt D K < 1, then u � 0.

Proof. – Again by (3.9), for any � > 0 there exists j0.�/ such that

(4.25) kP�j0
u.t/kL1

t
PH 1

x .R�R4/ � �:

Let k0 be the integer such that 2k0 � K�1=4 � 2k0C1. By Duhamel’s formula, for j � k0

and t 2 Œ�T; T �,

(4.26) rP�ju.t/ D rP�ju.�T / � irP�j

Z t

�T

ei.t��/�F.u.�//d�:

For j � j0.�/ and k0,

(4.27) krF.u�j /kL2
t L

4=3
x .Œ�T;T ��R4/

. �2kru�j kL2
t L4

x.Œ�T;T ��R4/:

Next, by the Sobolev embedding theorem

krP�jO.u
2
�juj ���k0

/k
L2

t L
4=3
x .Œ�T;T ��R4/

. 2j kuj ���k0
kL1

t L2
x.R�R4/kru�j kL2

t L4
x.Œ�T;T ��R4/kru�j kL1

t L2
x.R�R4/

. �kru�j kL2
t L4

x.I�R4/:

(4.28)
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By Bernstein’s inequality and the Sobolev embedding theorem,

krP�jO.u
2
j ���k0

u/k
L2

t L
4=3
x .Œ�T;T ��R4/

. 22j
X

j �k1�k2�k0

kPk1
ukL2

t L4
x.Œ�T;T ��R4/kPk2

ukL1
t L2

x.Œ�T;T ��R4/kukL1
t L4

x.Œ�T;T ��R4/

. .
X

j �l�k0

2j �lkulk PS1.Œ�T;T ��R4//.
X

j �l�k0

2j �lkulkL1
t

PH 1.Œ�T;T ��R4//:

(4.29)

Combining (3.9) with (4.27)-(4.29),

(4.30) krP�jF.u�k0
/k

L2
t L

4=3
x .Œ�T;T ��R4/

. �ku�j k PS1.Œ�T;T ��R4/

C .
X

j �l�k0

2j �lkulkL1
t

PH 1.Œ�T;T ��R4//.
X

j �l�k0

2j �lkulk PS1.Œ�T;T ��R4//:

Next, by the Sobolev embedding theorem, Strichartz estimates, Bernstein’s inequality, (3.9),
and Theorem 4.1,

krP�j ŒF .u/ � F.u�k0
/�k

L2
t L

4=3
x .Œ�T;T ��R4/

. 22j k.u�k0
/3kL2

t L1
x.Œ�T;T ��R4/

C 2j kuj ���k0
k2

L4
t L8

x.Œ�T;T ��R4/
ku>k0

kL1
t L2

x.Œ�T;T ��R4/

C 2j kru�j kL2
t L4

x.Œ�T;T ��R4/ku�j kL1
t

PH 1.Œ�T;T ��R4/ku>k0
kL1

t L2
x.Œ�T;T ��R4/

. 22jK1=2 C 2j �k0.
X

j �l�k0

2j �lkrulkL2
t L4

x.Œ�T;T ��R4//

C 2j �k0�kru�j kL2
t L4

x.Œ�T;T ��R4/:

(4.31)

Combining (4.26), (4.30), and (4.31),

(4.32) ku�j .t/k PS1.Œ�T;T ��R4/ . krP�ju.�T /kL2
x.R4/ C �ku�j k PS1.Œ�T;T ��R4/

C .
X

j �l�k0

2j �lku�l .t/k PS1.Œ�T;T ��R4//.
X

l�j

2j �lkrulkL1
t L2

x.Œ�T;T ��R4//C 22jK1=2:

By (3.9),

(4.33) .
X

j �l

kulkL1
t

PH 1.Œ�T;T ��R4// . �C 2j �j0.�/:

Since
R

R
N.t/�2dt D K < 1, N.�T / % C1 as T % C1, so for any j ,

(4.34) inf
T

krP�ju.�T /kL2
x.R4/ D 0:

Let aj D ku�j k PS1.Œ�T;T ��R4/. Theorem 4.1 implies

(4.35) ku�k0
k PS1.Œ�T;T ��R4/ . 1
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uniformly in T , so by (4.32) and (4.34),

(4.36) aj . �
X

j �l�k0

2j �lal C 22jK1=2 C 2j �j0 :

Let ˇm D
P

m�j �k0
2

3
4 .m�j /aj . Clearly ˇm � am for any m. Then (4.36) implies

ˇm . K1=223m=4. Plugging kuj k PS1.R�R4/ . 23j=4 for j � k0 back into (4.32),

(4.37) ku�j .t/k PS1.R�R4/ . K23j=2:

In particular this implies

(4.38) ku.t/k
H

�1=4
x .R4/

. K:

Then by Bernstein’s inequality, interpolation, (3.9), and (4.38), for any � > 0,

(4.39) ku.t/kL2
x.R4/ . kP� 1

C.�/
N.t/u.t/k

4=5

H
�1=4
x .R4/

kP� 1
C.�/

N.t/u.t/k
1=5

PH 1
x .R4/

C kP� 1
C.�/

N.t/u.t/kL2
x.R4/ . K2=3�1=5 C

C.�/

N.t/
:

N.t/ % C1 as t % 1, so there exists �.t/ & 0, possibly very slowly, such that (4.39)
implies

(4.40) ku.t/kL2
x.R4/ ! 0:

Then conservation of mass (1.3) implies u � 0.

For the case
R

R
N.t/�2dt D 1, N.t/ � 1, we begin by proving u 2 L1

t L
3
x.R � R

4/.
This is the endpoint of [35]’s proposition 3:1. Observe that this bound breaks the scaling in
(1.5) sinceL3

x scales like PH 2=3.R4/. The proof utilizes Duhamel’s formula, but not the double
Duhamel argument. The long time Strichartz estimates are utilized to estimate error terms.
The reader may find it helpful to assume u2 D 0 on a first reading of Theorem 4.3, since u2

will be treated as an error term.

T 4.3. – If u.t/ is an almost periodic solution to (1.1) satisfying N.t/ � 1 on R,

then

(4.41) ku.t/kL1
t L3

x.R�R4/ < 1:

Proof. – Partition R into intervals Il such that on each interval

(4.42)
Z

Il

N.t/�2dt D 2�4j0.�/;

where (since N.t/ � 1) j0.�/ satisfies

(4.43)
Z

jx�x.t/j�2�2j0

jru.t; x/j2dx C

Z

jx�x.t/j�2�2j0

ju.t; x/j4dx < �:

(3.9) implies that such a j0.�/ > 0 exists. Then decompose u D u1 C u2, u1 D P�j0
u.

Theorem 4.1 and (3.9) imply that for each Il ,

(4.44) ku2k PS1.Il �R4/ . 1; and ku2kL1
t

PH 1.Il �R4/ � �;

so by interpolation,

(4.45) kru2k
L4

t L
8=3
x .Il �R4/

. ku2k
1=2

PS1.Il �R4/
ku2k

1=2

L1
t

PH 1.Il �R4/
. �1=2:
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Also, by Bernstein’s inequality and the Sobolev embedding theorem

(4.46) ku1kL1
t L3

x.Il �R4/ . kukL1
t

PH 2=3.Il �R4/ . 2�j0=3:

Now let I .1/

l
be a new partition of R such that each interval I .1/

l
D Œal ; bl � is the union of

two adjacent intervals in the previous partition, Il . For any t 2 Œal Cbl

2
; bl �,

(4.47) u.t/ D ei.t�al /�u.al / � i

Z t

al

ei.t��/�F.u.�//d�:

Decompose

(4.48) F.u/ D F.u1/CO.u2
1u2/CO.u1u

2
2/C F.u2/:

By direct computation and the Sobolev embedding theorem,

krF.u2/kL2
t L

4=3
x .I

.1/

l
�R4/

. kru2k2

L4
t L

8=3
x .I

.1/

l
�R4/

kru2k
L1

t L2
x.I

.1/

l
�R4/

/

. ku2k PS1.I
.1/

l
�R4/

ku2k2

L1
t

PH 1.I
.1/

l
�R4/

. �2ku2k PS1.I
.1/

l
�R4/

:

(4.49)

Now by (2.10) and (2.15),

(4.50) kPj

Z t

t�2�2j

ei.t��/�F.u1.�//d�kL1
x .R4/ . 22j ku1k3

L1
t L3

x.I
.1/

l
�R4/

:

Also by the dispersive estimate (2.18),

(4.51) k

Z t�2�2j

al

ei.t��/�PjF.u1.�//d�kL1
x .R4/

. ku1k3

L1
t L3

x.I
.1/

l
�R4/

Z

t>2�2j

1

t2
dt . 22j ku1k3

L1
t L3

x.I
.1/

l
�R4/

:

Finally split O.u2
1u2 C u1u

2
2/ into two pieces. Let � 2 C1

0 .C/, �.x/ D 1 for jxj � 3 and
�.x/ D 0 on jxj > 4. Then by (4.50), (4.51), and the fact that ju2j � 4ju1j on the support
of �.u2

u1
/,

(4.52) kPj

Z t

al

ei.t��/��.
u2

u1

/O.u2
1u2 C u1u

2
2/d�kL1

x .R4/ . 22j ku1k3

L1
t L3

x.I
.1/

l
�R4/

:

Meanwhile, on the support of .1 � �/.u2

u1
/, ju1j � 1

3
ju2j, so by (4.45) and (3.9),

kr.1 � �.
u2

u1

//O.u2
1u2 C u1u

2
2/d�k

L2
t L

4=3
x .I

.1/

l
�R4/

. .kruk
L1

t L2
x.I

.1/

l
�R4/

C kru2k
L1

t L2
x.I

.1/

l
�R4/

/ku2k2

L4
t L8

x.I�R4/

. �ku2k PS1.I
.1/

l
�R4/

:

(4.53)

Now let

(4.54) u
.1/
1 .t/ D �i

Z t

al

ei.t��/�F.u1/d� � i

Z t

al

ei.t��/��.
u2

u1

/O.u2
1u2 C u1u

2
2/d�

C ei.t�al /�P�j0
�.
x � x.al /

2�2j0
/u.al /;
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where x.al / refers to the x.t/ in (3.9). Then by the dispersive estimate (2.18), Hölder’s
inequality, and the fact that N.t/ � 1, which implies jI

.1/

l
j � 2�4j0.�/C1,

(4.55)

kei.t�al /�P�j0
�.
x � x.al /

2�2j0
/u.al /kL1

x .R4/ . 28j0k�.
x � x.al /

2�2j0
/u.al /kL1

x.R4/ . 22j0 :

For t 2 Œal ;
al Cbl

2
� replace al with bl in (4.54). Therefore, by (4.50), (4.51), (4.52), and the

Fourier support of (4.55), for any j ,

(4.56) kPju
.1/
1 .t/kL1

x .R4/ . 22j .1C ku1k3

L1
t L3

x.I
.1/

l
�R4/

/:

Then

(4.57) u
.1/
2 .t/ D �i

Z t

al

ei.t��/�F.u2/d� � i

Z t

al

ei.t��/�.1 � �.
u2

u1

//O.u2
1u2 C u1u

2
2/d�

ei.t�al /�u.al / � ei.t�al /�P�j0
.�.

x � x.al /

2�j0=2
/u.al //:

Then by Strichartz estimates, (3.9), (4.49), and (4.53),

(4.58) ku
.1/
2 k PS1.I

.1/

l
�R4/

. �C �ku2k PS1.I
.1/

l
�R4/

� �C 2�.sup
l

ku2k PS1.Il �R4//;

which, using Theorem 4.1 in the last inequality, implies

(4.59) .sup
l

ku
.1/
2 k PS1.I

.1/

l
�R4/

/ . �C �.sup
l

ku2k PS1.Il �R4// . �:

Also by (3.9), N.t/ � 1, (4.56), (4.58), and Bernstein’s inequality,

kP�j0.�/u
.1/
1 .t/k3

L3
x.R4/

.
X

k1�k2�k3�j0.�/

kPk1
u1.t/kL1

x .R4/kPk2
u1.t/kL2

x.R4/kPk3
u1.t/kL2

x.R4/

. .1C ku1k3

L1
t L3

x.I
.1/

l
�R4/

/

�
X

k1�k2�k3�j0.�/

22k12�k22�k3krPk2
u1.t/kL2

x.R4/krPk3
u1.t/kL2

x.R4/

. �2kuk2

L1
t

PH 1
x .R�R4/

ku1k3

L1
t L3

x.I
.1/

l
�R4/

. �2ku1k3

L1
t L3

x.I
.1/

l
�R4/

:

(4.60)

Therefore by (4.46), (4.54), and (4.60),

(4.61) ku
.1/
1 .t/k

L1
t L3

x.I
.1/

l
�R4/

. 2�j0.�/=3 C �2=3ku1.t/kL1
t L3

x.I
.1/

l
�R4/

. 2�j0.�/=3:

Now for any partition I .n/

l
of R let I .nC1/

l
D Œa

.nC1/

l
; b

.nC1/

l
� be the union of two adjacent

intervals in I .n/

l
. By induction,

(4.62)
Z

I
.nC1/

l

N.t/�2dt D 2�4jnC1 D 2nC12�4j0 ;
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so sinceN.t/ � 1, jI
.nC1/

l
j � 2�4jnC1 . By induction suppose that for each n there exists some

�n � � such that

sup
l

ku
.n/
1 k

L1
t L3

x.I
.n/

l
�R4/

. 2�j0.�/=3;

sup
l

ku
.n/
2 k PS1.I

.n/

l
�R4/

. �n:
(4.63)

For t 2 Œ
a

.nC1/

l
Cb

.nC1/

l

2
; b

.nC1/

l
�, let

u
.nC1/
1 .t/ D �i

Z t

a
.nC1/

l

ei.t��/�F.u
.n/
1 /d�

� i

Z t

a
.nC1/

l

ei.t��/��.
u

.n/
2

u
.n/
1

/O..u
.n/
1 /2.u

.n/
2 /C .u

.n/
1 /.u

.n/
2 /2/d�

C ei.t�a
.nC1/

l
/�P�jnC1

.�.
x � x.a

.nC1/

l
/

2�jnC1=4
/u.a

.nC1/

l
//;

(4.64)

and

u
.nC1/
2 .t/ D �i

Z t

a
.nC1/

l

ei.t��/�F.u
.n/
2 /d�

� i

Z t

a
.nC1/

l

ei.t��/�.1 � �.
u

.n/
2

u
.n/
1

//O..u
.n/
1 /2.u

.n/
2 /C .u

.n/
1 /.u

.n/
2 /2/d�

C ei.t�a
.nC1/

l
/�.u.a

.nC1/

l
/ � P�jnC1

.�.
x � x.a

.nC1/

l
/

2�jnC1=2
/u.a

.nC1/

l
///:

(4.65)

For t 2 Œa
.nC1/

l
;

a
.nC1/

l
Cb

.nC1/

l

2
� replace a.nC1/

l
with b.nC1/

l
in (4.64) and (4.65). Then by (4.61)

and (4.63),

(4.66) sup
l

ku
.nC1/
1 k

L1
t L3

x.I
.nC1/

l
�R4/

. 2�j0=3:

Next, by (3.9) and Hölder’s inequality, there exists �n � �, �n & 0 as n % 1, such that

(4.67) ku.a
.nC1/

l
/ � P�jn

.�.
x � x.a

.nC1/

l
/

2�jnC1=2
/u.a

.nC1/

l
//k PH 1.R4/ � �n:

Then by (4.49), (4.53), (4.58), and (4.67),

(4.68) .sup
l

ku
.nC1/
2 k PS1.I

.nC1/

l
�R4/

/ . �n C �.sup
l

ku
.n/
2 k PS1.I

.n/

l
�R4/

/;

so by induction, ku
.n/
2 kL1

t
PH 1

x .R�R4/ & 0 as n % 1. Therefore u.n/
1 .t/ converges to u.t/

uniformly in PH 1.R4/, so (4.66) implies a uniform bound on ku.t/kL3
x.R4/.

5. Modified Soliton

Next, prove that in an average sense, theL2 norm of an almost periodic solution satisfying
R

R
N.t/�2dt D 1 diverges logarithmically.
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L 5.1. – Suppose  2 C1
0 .R4/, is a positive, radial, decreasing function,

(5.1)  .x/ D

(

1 if jxj � 1

0 if jxj � 2:

Suppose
R

I
N.t/�2dt D K. Then for any 1 � R � K1=5,

(5.2)
Z

I

“

ju.t; y/j2 .
N.t/.x � y/

R
/Œjru.t; x/j2 C ju.t; x/j4�dxdydt . K.1C ln.R//:

R. – By (1.9) this estimate is sharp for almost periodic solutions.

Proof. – The proof uses the double Duhamel method. This method was introduced in
[13] to study the defocusing, energy-critical Schrödinger initial value problem when d D 3.
There, as here, it was used in conjunction with a frequency localized interaction Morawetz
estimate. See also [31].

By simple linear algebra, if AC B D A0 C B 0,

(5.3) hAC B;A0 C B 0i . jAj2 C jA0j2 C hB;B 0i:

Suppose I D Œt�; tC� and u solves the equation

(5.4) .i@t C�/u D G.t/C F.t/:

Then by (2.14), for any t 2 I ,

u.t/ D ei.t�t�/�u.t�/ � i

Z t

t�

ei.t�s�/�G.s�/ds� � i

Z t

t�

ei.t�s�/�F.s�/ds�

D ei.t�tC/�u.tC/ � i

Z t

tC

ei.t�sC/�G.sC/dsC � i

Z t

tC

ei.t�sC/�F.sC/dsC:

(5.5)

Then if X is some Hilbert space, such as L2.R4/ or a weighted L2.R4/ space, (5.3) implies

(5.6) ku.t/k2
X . kei.t�t�/�u.t�/k

2
X C kei.t�tC/�u.tC/k

2
X C k

Z t

t�

ei.t�s�/�G.s�/ds�k2
X

C k

Z t

tC

ei.t�sC/�G.sC/dsCk2
X C j

Z t

t�

Z tC

t

hei.t�s�/�F.s�/; e
i.t�sC/�F.sC/iXds�dsCj:

Let Ph D P�K�1=4 and let Pl D 1 � Ph. Also, for a fixed x 2 R
4 define the inner product

(5.7) hf; gix D

Z

 .
x � y

R
/f .y/g.y/dy:

Let 1A.�/ be the indicator function of a set A � R. For fixed t 2 Œt�; tC� let

(5.8)
G.�/ D PhO.ulu

2/.�/C 1
Œt�;t� R2

N.t/2 �
.�/PhF.uh/.�/C 1Œt� 1

N.t/2 ;t�.�/PhF.uh/.�/

C 1
ŒtC R2

N.t/2 ;tC�
.�/PhF.uh/.�/C 1Œt;tC 1

N.t/2 �.�/PhF.uh/.�/;

and let

(5.9) F.�/ D 1
Œt� R2

N.t/2 ;t� 1

N.t/2 �
.�/PhF.uh/.�/C 1

ŒtC 1

N.t/2 ;tC R2

N.t/2 �
.�/PhF.uh/.�/:
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By Hölder’s inequality, N.t/ � 1, Strichartz estimates, (4.15), (4.20), Bernstein’s inequality,
and R � K1=5,

Z

I

sup
x2R4

Z

 .
N.t/.x � y/

R
/

"

jei.t�t�/�uh.t�/.y/j
2 C

ˇ

ˇ

ˇ

ˇ

Z t

t�

ei.t�s�/�PhO.ulu
2/.y/ds�

ˇ

ˇ

ˇ

ˇ

2
#

dydt

. R2kei.t�t�/�uh.t�/k
2

L2
t L4

x.I�R4/
CR2k

Z t

t�

ei.t�s�/�PhO.ulu
2/.y/ds�k2

L2
t L4

x.I�R4/

. R2kuh.t�/k
2

L2
x.R4/

CR2kPhO.ulu
2/k2

L2
t L

4=3
x .I�R4/

. R2K1=2 . K9=10:

(5.10)

Identically,
(5.11)

Z

I

sup
x2R4

Z

 .
N.t/.x � y/

R
/Œjei.t�tC/�uh.tC/.y/j

2

Cj

Z t

tC

ei.t�sC/�PhO.ulu
2/.y/dsCj2�dydt . R2K1=2 . K9=10:

Next, by the dispersive estimate (2.18) and Hölder’s inequality,

sup
x2R4

Z

 .
N.t/.x � y/

R
/j

Z t� R2

N.t/2

t�

ei.t�s�/�PhF.uh/.s�/ds�j2dy

.
R4

N.t/4
.

Z

t�s�> R2

N.t/2

1

.t � s�/2
kF.uh/.s�/kL1

x
ds�/

2

. .
X

j �0

N.t/2

22jR2

Z

jt�s�j�2j R2

N.t/2

kF.uh/.s�/kL1
x.R4/ds�/

2 . .M .kF.uh/kL1
x.R4//.t//

2:

(5.12)

Once again, an identical calculation implies
(5.13)

sup
x2R4

Z

 .
N.t/.x � y/

R
/j

Z tC

tC R2

N.t/2

ei.t�sC/�PhF.uh/.sC/dsCj2dy . .M .kF.uh/kL1
x.R4///.t/

2:

Recalling Lp estimates for maximal functions (Theorem 2.2), (5.12) and (5.13) and (4.11),

(5.14)
Z

I

.M .kF.uh/kL1
x.R4//.t//

2dt .

Z

I

kuh.t/k
6

L3
x.R4/

dt . K:

Finally, by Strichartz estimates and the Sobolev embedding theorem,

(5.15) k

Z t

tC 1

N.t/2

ei.t�sC/�PhF.uh/.sC/dsCk2

L2
x.R4/

C k

Z t

t� 1

N.t/2

ei.t�s�/�PhF.uh/.s�/ds�k2

L2
x.R4/

.
1

N.t/2
:
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Since
R

I
1

N.t/2 dt D K, by (5.6) it only remains to estimate
(5.16)

Z

I

sup
x2R4

Z t� 1

N.t/2

t� R2

N.t/2

Z tC R2

N.t/2

tC 1

N.t/2

hei.t�s�/�PhF.uh/.s�/; e
i.t�sC/�PhF.uh/.sC/ixds�dsCdt:

Since F.uh/ 2 L2
tL

1
x it suffices to compute the kernel of ei.t�s�/� .x�y

R
/ei.sC�t/� for a

fixed x. Since t is also fixed, to simplify notation let x D 0, s D sC � t and t D t � s�. The
kernel of eit� . y

R
/eis� is given by

(5.17) K.s; t Iy; z/ D
C

s2t2

Z

e�i jw�yj2

4t  .
w

R
/e�i jw�zj2

4s dw:

Now let q.s; t; y; z/ D syCzt
sCt

� .sCt/1=2

.ts/1=2 . After making a change of variables in w,

(5.18) jK.s; t Iy; z/j D
C

.s C t /2

Z

e�i jw�q.s;t;y;z/j2 .
w

R
�
.st/1=2

.s C t /1=2
/dy:

When R � .sCt/1=2

.st/1=2 � 1, Hölder’s inequality implies that jK.s; t Iy; z/j . 1
.tCs/2 . For R0 D

R � .sCt/1=2

.st/1=2 > 1, stationary phase calculations imply that for � 2 C1
0 , � D 1 on jxj � 1, for

any N ,
(5.19)
Z

e�i jw�qj2.1 � �/.w � q/ .
w

R0

/dw D

Z

..
i.w � q/ � r

jw � qj2
/N e�i jw�qj2/.1 � �/.w � q/ .

w

R0

/dw:

Taking N D 5 and integrating by parts,

(5.20) jK.s; t I x; z/j .
1

.t C s/2

Z

jyj>1

1

jyj5
dy .

1

.t C s/2
:

Therefore,

Z

1

N.t/2 <t�s�< R2

N.t/2

Z

1

N.t/2 <sC�t< R2

N.t/2

hei.t�s�/�PhF.uh/.s�/; e
i.t�sC/�PhF.uh/.sC/ixds�dsC

.

Z

1

N.t/2 <t�s�< R2

N.t/2

Z

1

N.t/2 <sC�t< R2

N.t/2

1

.sC � s�/2
kF.s�/kL1

x
kF.sC/kL1

x
ds�dsC

.
X

0�j �k�ln2.R2/

2�2k.

Z

t�sC� 2k

N.t/2

kF.uh/.sC/kL1
x.R4/dsC/

� .

Z

t�s�� 2j

N.t/2

kF.uh/.s�/kL1
x.R4/ds�/ . ln.R/M .kF.uh/kL1

x.R4/.t//
2:

(5.21)

Therefore, (5.10), (5.11), (5.12), (5.13), (5.14), (5.15), and (5.21) imply

(5.22)
Z

I

sup
x

Z

 .
N.t/.x � y/

R
/juh.t; y/j

2dydt . .1C ln.R//K:

Now since
R

Œjru.t; x/j2 C ju.t; x/j4dx� < kW k2
PH 1

C kW k4

L4
x

,

(5.23)
Z

I

“

 .
N.t/.x � y/

R
/juh.t; y/j

2Œjru.t; x/j2 C ju.t; x/j4�dxdydt . .ln.R/C 1/K:
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Now notice that by the Sobolev embedding theorem and Theorem 4.1,
(5.24)

ku2
l k

L
3=2
t L6

x.I�R4/
. kru2

l k
L

3=2
t L

12=5
x .I�R4/

. krulk
4=3

L2
t L4

x.I�R4/
kulk

2=3

L1
t L4

x.I�R4/
. 1;

so by Hölder’s inequality and N.t/ � 1,

(5.25)
Z

I

“

jul .t; y/j
2 .

N.t/.x � y/

R
/Œjru.t; x/j2 C ju.t; x/j4�dxdy

. kulk
2

L3
t L12

x .I�R4/
Œkruk2

L1
t L2

x.I�R4/
C kuk4

L1
t L4

x.I�R4/
�.

Z

I

R10

N.t/10
dt/1=3 . R10=3K1=3:

When R � K1=5, (5.2) holds and the proof of Lemma 5.1 is complete.

Now consider the case when N.t/ � 1.

T 5.2 (No nonzero modified solitons). – Supposeu is an almost periodic solution

to (1.1) with N.t/ � 1 on R and kukL1
t

PH 1
x .R�R4/ < krW kL2

x.R4/. Then u � 0.

Proof. – The first step is to prove that any almost periodic solution to (1.1) lying below
the ground state with N.t/ � 1 lies in L2.R4/. To prove such a fact necessarily demands a
nonlinear estimate, in this case an interaction Morawetz estimate. This interaction Morawetz
estimate is in the same vein as the Morawetz estimate in [15] for the focusing, mass-critical
problem, and provides a logarithmic improvement over (5.2).

Let  2 C1
0 .R/ be a radial function satisfying (5.1) and let J be a large number such that

eJ � K1=10. Then let

�.x � y/ D
1

J

Z eJ

1

1

R

Z

R4

 2.
x

R
� s/ 2.

y

R
� s/dsdR

D
1

J

Z eJ

1

1

R

Z

R4

 2.
x � y

R
� s/ 2.s/dsdR:

(5.26)

Notice that  .s/ D 0 for jsj � 2 implies �.x � y/ is supported on jx � yj � 4eJ and that
k�kL1 is uniformly bounded. Next, estimate the derivatives of �.

L 5.3. – For k D 1; 2; 3,

(5.27) jrk�.x/j .
1

J

1

jxjk
:

Proof of the lemma. – The proof follows by direct computation. Since  .s/ D 0 when
jsj � 2,

r�.x/ D
2

J

“ eJ

1

1

R2
 .
x

R
� s/ 0.

x

R
� s/ 2.s/

. x
R

� s/

j x
R

� sj
dsdR

D
2

J

Z eJ

jxj
4

Z

1

R2
 .
x

R
� s/ 0.

x

R
� s/ 2.s/

. x
R

� s/

j x
R

� sj
dsdR .

1

J

1

jxj
:

(5.28)

Similar computations prove (5.27) for k D 2; 3.
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Now let M.t/ be the interaction Morawetz potential

(5.29) M.t/ D

Z

ju.t; y/j2�.x � y/.x � y/ � ImŒ Nuru�.t; x/dxdy:

By Hölder’s inequality, the Sobolev embedding theorem, and Young’s inequality,

(5.30) sup
t2I

jM.t/j . kuk3

L1
t L4

x.I�R4/
krukL1

t L2
x.I�R4/k�.x � y/.x � y/kL4=3.R4/ . e4J :

Integrating by parts,

d

dt
M.t/ D 2

Z

ju.t; y/j2�.x � y/Œjru.t; x/j2 � ju.t; x/j4�dxdy(5.31)

� 2

Z

ImŒ Nu@ju�.t; y/�.x � y/ImŒ Nu@ju�.t; x/dxdy(5.32)

C 2

Z

ju.t; y/j2.@k�.x � y//.x � y/j ŒRe.@j Nu@ku/.t; x/(5.33)

�
1

4
ıjkju.t; x/j4�dxdy

� 2

Z

ImŒ Nu@ku�.t; y/.@k�.x � y//.x � y/j ImŒ Nu@ju�.t; x/dxdy(5.34)

�
1

2

Z

ju.t; y/j2.@j��.x � y/.x � y/j /ju.t; x/j
2dxdy:(5.35)

(5.33) and (5.34) involves integrating an energy and a mass term. A term of this type may
be estimated by (5.2) and (5.27).

(5.36)
Z

I

(5.33) C (5.34)dt

.
1

J

Z

I

Z

jx�yj�4eJ

Z

jx�x.t/j�C.�/

ju.t; y/j2Œjru.t; x/j2 C ju.t; x/j4�dxdydt

C
1

J

Z

I

Z

jx�yj�4eJ

Z

jx�x.t/j�C.�/

ju.t; y/j2Œjru.t; x/j2 C ju.t; x/j4�dxdydt

By (3.9) the energy of u is small outside of jx � x.t/j � C.�/, so

.
�

J
.

Z

I

sup
y2R4

Z

jx�yj�4eJ

ju.t; y/j2dydt/C
1

J

Z

I

Z

jx�x.t/j�8eJ

ju.t; x/j2dxdt

. �K C
1

J

Z

I

Z

jx�x.t/j�8eJ

ju.t; x/j2dxdt:

(5.37)

This action fixes the mass of the main part of u in place, in preparation for a bootstrap type
argument to prove u � 0.

Observe that if (5.37) provides a bound on
R

I

R

jx�x.t/j�4eJ ju.t; x/j2dxdt then by (5.2),

(5.38)
Z

I

Z

jx�x.t/j�eJ=2

ju.t; x/j2dxdt . K D

Z

I

1

N.t/2
dt:

Feeding (5.38) back into (5.37) then implies that the left hand side of (5.38) � K, which
by (3.9 and Bernstein’s inequality forces u � 0. Of course, such an argument necessitates
estimating (5.31), (5.32), and (5.35).
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To estimate (5.35), (5.27) implies

Z

I

(5.35) dt .
1

J

Z

I

“

jx�yj�4eJ

ju.t; x/j2
1

jx � yj2
ju.t; y/j2dxdydt:(5.39)

.
1

J

Z

I

“

jx�yj�4eJ

jPhu�c.�/.t; x/j
2 1

jx � yj2
juh.t; y/j

2dxdydt

C
1

J

Z

I

“

jx�yj�4eJ

jPhu�c.�/.t; x/j
2 1

jx � yj2
juh.t; y/j

2dxdydt(5.40)

C
1

J

Z

I

“

jx�yj�4eJ

jul .t; x/j
2 1

jx � yj2
jul .t; y/j

2dxdydt:

Once again u is split into a high frequency piece lying in L2, and by (3.9) a piece with small
energy. Now by Bernstein’s inequality and Hardy’s inequality, since N.t/ � 1,

1

J

Z

I

“

jx�yj�4eJ

jPhu�c.�/.t; x/j
2 1

jx � yj2
juh.t; y/j

2dxdydt

.
1

J

Z

I

ku�c.�/.t/k
2

L2
x.R4/

. sup
x2R4

Z

1

jx � yj2
juh.t; y/j

2dy/dt

.
1

J

1

c.�/2
kruk2

L1
t L2

x.I�R4/
�

Z

I

1

N.t/2
dt D

K

J

1

c.�/2
:

(5.41)

R. – The calculation in (5.41) includes N.t/ in the second to last step, in prepa-
ration for the next section, which considers a variable N.t/.

Next, by Hölder’s inequality and Young’s inequality,

1

J

Z

I

“

jx�yj�4eJ

jPhu�c.�/.t; x/j
2 1

jx � yj2
juh.t; y/j

2dxdydt

.
1

J

Z

I

X

2j �4eJ

2�2j

Z

2j �jx�yj�2j C1

jP>�jPhu�c.�/.t; x/j
2juh.t; y/j

2dxdydt

C
1

J

Z

I

X

2j �4eJ

2�2j

Z

2j �jx�yj�2j C1

jP��jPhu�c.�/.t; x/j
2juh.t; y/j

2dxdydt

.
1

J

Z

I

.
X

j

2�2j kP>�jPhu�c.�/.t/k
2

L2
x.R4/

/.sup
y

Z

jx�yj�4eJ

juh.t; x/j
2dx/dt

C
1

J

X

1�2j �4eJ

2�2j 210j=3kP��jPhu�c.�/k
2

L2
t L4

x.I�R4/
kuhk2

L1
t L3

x.I�R4/

C
1

J

X

j �0

22j kP�c.�/uhk2

L2
t L4

x.I�R4/
kuhk2

L1
t L4

x.I�R4/
:

(5.42)
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Now for any fixed t , by Bernstein’s inequality and rearranging the order of summation,
X

j

2�2j kP>�jP�c.�/u.t/k
2
L2

.
X

j

X

�j <k1�k2

2�2j kPk1
P�c.�/u.t/kL2kPk2

P�c.�/u.t/kL2

.
X

j

X

�j <k1�k2

2�2j �k1�k2.2k12k2kPk1
P�c.�/u.t/kL2kPk2

P�c.�/u.t/kL2/

.
X

k1�k2

2k1�k2krPk1
P�c.�/u.t/kL2krPk2

P�c.�/u.t/kL2 . �2:

(5.43)

Therefore, by (5.2),

(5.44)
1

J

Z

I

.
X

j

2�2j kP>�ju�c.�/.t/k
2

L2
x.R4/

/.sup
y

Z

jx�yj�4eJ

juh.t; x/j
2dx/dt . �2K:

By (4.41), Bernstein’s inequality, (5.2), the long time Strichartz estimates of Theorem 4.1,
Ph D P�K�1=4 , Hölder’s inequality, and Young’s inequality,

(5.45)
1

J

X

1�2j �4eJ

2�2j 210j=3kP��jPhu�c.�/k
2

L2
t L4

x.I�R4/
kuhk2

L1
t L3

x.I�R4/

.
1

J

X

1�2j �4eJ

2�2j=3K .
K

J
:

Also since N.t/ � 1 and u 2 L1
t L

4
x ,

(5.46)
1

J

X

j �0

22j kP�c.�/uhk2

L2
t L4

x.I�R4/
kuhk2

L1
t L4

x.I�R4/
.
K

J
:

Finally, by (4.41), Theorem 4.1, and the Sobolev embedding theorem,

(5.47) ku2
l kL2

t L3
x.I�R4/ . krulkL2

t L4
x.I�R4/kulkL1

t L3
x.I�R4/ . 1;

so by Hölder’s inequality in space and time

(5.48)
Z

I

“

jx�yj�4eJ

jul .t; y/j
2 1

jx � yj2
jul .t; x/j

2dxdydt

. K1=2e2J ku2
l kL2

t L3
x.I�R4/kuk2

L1
t L3

x.I�R4/
. e2JK1=2:

Therefore, by (5.41), (5.44), (5.45), (5.46), and (5.48),

(5.49)
Z

I

(5.35)dt .
K

J

1

c.�/2
C �2K C e2JK1=2:

Now take (5.32), which is removed with a Galilean transformation. Decompose

(5.50) �.x � y/ D
1

J

Z eJ

1

1

R

Z

 2.
x

R
� s/ 2.

y

R
� s/dsdR:
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For each R, s, t there exists a �.R; s; t/ such that

(5.51)
Z

 2.
x

R
� s/ImŒeix��.R;s;t/ureix��.R;s;t/u�.t; x/dx

D

Z

�.R; s; t/j .
x

R
� s/u.t; x/j2dx C

Z

ImŒ Nuru�.t; x/dx D 0:

Moreover, for any fixed s, t , the quantity

(5.52)
Z

 2.
x

R
� s/ 2.

y

R
� s/Œjru.t; x/j2ju.t; y/j2 � ImŒ Nuru�.t; x/ImŒ Nuru�.t; y/dxdy

is invariant under the Galilean transformation u 7! e�ix��.R;s;t/u. Therefore, for each R,
s, t it is possible to choose �.R; s; t/ that removes the momentum squared term. Then,
integrating by parts,

Z

 2.
x

R
� s/Œjr.e�ix��.R;s;t/u.t; x//j2 � ju.t; x/j4�dx

D

Z

jr. .
x

R
� s/e�ix��.R;s;t/u.t; x//j2dx � j .

x

R
� s/u.t; x/j2ju.t; x/j2dx

C

Z

ju.t; x/j2. .
x

R
� s/� .

x

R
� s//dx

(5.53)

By (1.19), (1.20), and kukL1
t

PH 1 � .1 � Nı/kW k PH 1 ,

(5.54) kukL4.R4/ � .1 � Nı/kW kL4.R4/;

and by (1.23),

Z

jr. .
x

R
� s/e�ix��.R;s;t/u.t; x//j2dx � j .

x

R
� s/e�ix��.R;s;t/u.t; x/j2ju.t; x/j2dx

� kr. .
x

R
� s/e�ix��.R;s;t/u/k2

L2.R4/
� .1C

Nı

2
/k .

x

R
� s/uk2

L4.R4/
kuk2

L4.R4/

C
Nı

2
k .

x

R
� s/uk4

L4
x.R4/

�
Nı

2
k .

x

R
� s/uk4

L4
x.R4/

C
Nı

2
kr. .

x

R
� s/e�ix��.R;s;t/u/k2

L2.R4/
:

(5.55)

Finally, if j x
R

� sj � 2 and j y
R

� sj � 2, j x�y
R

j � 4, so

(5.56)
Z

j .
x

R
� s/jj� .

x

R
� s/jj .

y

R
� s/j2ds .

1

R2
 .
x � y

4R
/:

Therefore, by (5.49),

(5.57)
Z eJ

1

1

R3

“

 .
x � y

R
/ju.t; x/j2ju.t; y/j2dxdydtdR

.

Z

I

Z

jx�yj�8eJ

ju.t; x/j2
1

jx � yj2
ju.t; y/j2dxdydt .

K

J

1

c.�/2
C �2K C e2JK1=2:

Now by (5.1), for jx � yj � R
2

,

(5.58)
Z

 .
x

R
� s/4 .

y

R
� s/2ds & 1;
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so

(5.59)
Z

 .
x

R
� s/4 .

y

R
� s/2ds &  .

4.x � y/

R
/;

and

(5.60)
1

J

Z eJ

1

1

R
 .
4.x � y/

R
/dR &  .

x � y

eJ=2
/:

In fact for any c > 0,

(5.61)
1

J

Z eJ

1

1

R
 .
4.x � y/

R
/dR &c  .

x � y

eJ.1�c/
/:

Therefore, combining the fundamental theorem of calculus with (5.30), (5.37), (5.49),
(5.57), and (5.60),

(5.62) e4J &

Z

I

d

dt
M.t/dt & Nı

Z

I

Z

jx�yj�eJ=2

ju.t; x/j4ju.t; y/j2dxdydt

�
K

J

1

c.�/2
� �2K � e2JK1=2 �

1

J

Z

I

Z

jx�x.t/j�8eJ

ju.t; x/j2dxdt:

Now by concentration compactness (see (3.9)), if u is a nonzero almost periodic solution
to (1.1), then ku.t/kL4 is uniformly bounded below for all t 2 I , as is

R

jx�x.t/j�C.�/
ju.t; x/j4dx.

Therefore, for J large,

(5.63)
Z

jx�yj�eJ=2

ju.t; x/j2ju.t; y/j4dxdy

�

Z

jx�x.t/j� 1
2 eJ=2

Z

jy�x.t/j� 1
2 eJ=2

ju.t; x/j2ju.t; y/j4dxdy &

Z

jx�x.t/j� 1
2 eJ=2

ju.t; x/j2dx:

Plugging this into (5.62),

(5.64) Nı

Z

I

Z

jx�x.t/j� 1
2 eJ=2

ju.t; x/j2dxdt

. e4J C
K

J

1

c.�/2
C �2K C e2JK1=2 C

1

J

Z

I

Z

jx�x.t/j�8eJ

ju.t; x/j2dxdt:

Repeating this argument,

(5.65) Nı2

Z

I

Z

jx�x.t/j� 1
2 eJ=2

ju.t; x/j2dxdt

. e8J C
K

J

1

c.�/2
C �2K C e4JK1=2 C

1

J 2

Z

I

Z

jx�x.t/j�128e2J

ju.t; x/j2dxdt:

Taking eJ D K1=10, by (5.2),

(5.66)
Z

I

Z

jx�x.t/j� 1
2 eJ=2

ju.t; x/j2dxdt . �2K C
K

ln.K/

1

c.�/2
:

Since � > 0 is arbitrary (5.66) implies that there exists a sequence tn 2 R such that
R0;n % 1 and

(5.67)
Z

jx�x.tn/j�R
1=4
0;n

ju.tn; x/j
2dx ! 0:
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Combining (3.9) with (5.67) implies that u � 0.

6. Variable N.t/

The arguments used in the case that N.t/ � 1 may be generalized to any N.t/ satisfying
R

R
N.t/�2dt D 1, N.t/ � 1.

Since it is possible to modify the C.�/ in (3.9) by a constant, to complete the proof of
Theorem 1.10 it is enough to consider the case where N.t/ � 1 and

(6.1) lim sup
t!˙1

N.t/ D 1:

Otherwise, if N.t/ � 1 for all t 2 R, or even for all t 2 Œ0;1/ or .�1; 0�, we could modify
C.�/ by a constant to return to the case N.t/ � 1.

For general N.t/ we could naively take

(6.2) M.t/ D

Z

ju.t; y/j2�.N.t/.x � y//.x � y/j ImŒ Nu@ju�.t; x/dxdy:

Then since N.t/ is not constant, d
dt
M.t/ would have the additional term

(6.3)
Z

ju.t; y/j2�.
.x � y/N.t/

R
/
jx � yj.x � y/j

R
N 0.t/ImŒ Nu@ju�.t; x/dxdy:

By Hölder’s inequality, kukL1
t L4

x.I�R4/ . 1, and Young’s inequality,

(6.4) (6.3) . R4 N
0.t/

N.t/5
:

WhenN.t/ � 1 this approach certainly worked since then (6.4) D 0, but naively takingN.t/
would also work when N.t/ is monotone increasing when t > 0 and monotone decreasing
when t < 0, since then by the fundamental theorem of calculus

(6.5)
Z 1

0

N 0.t/

N.t/5
dt D �

1

4

Z 1

0

d

dt
.

1

N.t/4
/dt D

1

4
:

However, for general N.t/, the most that (3.10) implies is that (6.4) . R4

N.t/2 , whose integral

is R4K, and therefore cannot be absorbed into the left hand side, which is bounded below
by some ıK.

Instead, N.t/ is replaced with a QN.t/ that satisfies the following conditions:

1. QN.t/ & 1.
2. j QN 0.t/j . QN.t/3.
3.

(6.6)
Z

I

1

QN.t/2
dt . K;

and
4.

(6.7)
Z

I

j QN 0.t/j

QN.t/5
dt � K:
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This QN.t/ is defined inductively, using a procedure very similar to the smoothing algo-
rithm in [15]. The idea is that when N.t/ is increasing for a long period of time, then (6.5)
implies that N.t/ should be left alone, and one should simply take QN.t/ D N.t/. On the
other hand, when N.t/ is oscillating rapidly, let’s say N.t/ D 1C 1

2
cos.t/ for example, then

simply taking QN.t/ D 3
2

is well worth the cost of modifying C.�/ in (3.9) by a constant, as
was briefly discussed at the beginning of the section.

The algorithm terminates after n.kukL1
t

PH 1.R�R4// steps. To simplify notation let Nm.t/

denote QNm.t/.

D 6.1 (Smoothing algorithm). – Let

(6.8)
1

N0.t/
D kuh.t/k

3

L3
x.R4/

:

N0.t/ satisfies conditions one, two, and three.

L 6.1. – Possibly after modifying N0.t/ by some function ˛.t/, N0.t/ 7! ˛.t/N0.t/,

(6.9) � < ˛.t/ <
1

�
;

1. N0.t/ & 1.

2. jN 0
0.t/j . N0.t/

3,

and

3.

(6.10)
Z

I

1

N0.t/2
dt . K:

Proof. – N0.t/ & 1 follows directly from Theorem 4.3. (6.10) holds by (4.11).

To prove jN 0
0.t/j . N0.t/

3, observe that for t0 2 R, for any � > 0, Bernstein’s inequality
implies

(6.11) kP>��1N.t0/u.t/kL1
t L3

x.R4/ . �1=3N.t0/
�1:

Next, by the Sobolev embedding theorem and integrating by parts,

d

dt
.

Z

jP���1N.t0/uh.t; x/j
3dx/

D .

Z

jP���1N.t0/uh.t; x/jRe..i�P���1N.t0/uh C iP���1N.t0/PhF.u//P�N.t0/ Nuhdx/

. .

Z

jrP���1N.t0/uh.t; x/j
2jP���1N.t0/uh.t; x/jdx

C

Z

jP���1N.t0/uh.t; x/j
2jP���1N.t0/PhF.u/.t; x/jdx/

. kP���1N.t0/uhkL1
t;x.R�R4/.kruk2

L1
t L2

x.R�R4/
C kuk4

L1
t L4

x.R�R4/
/ . ��1N.t0/:

(6.12)

Then for c > 0 sufficiently small, for jt � t0j � c�N.t0/
�2, by (6.11) and (6.12),

(6.13) kuh.t/kL3
x.R4/ � N.t0/

�1;
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so for jt0 � t1j � c�N.t0/
�2,

(6.14) N0.t0/ � N0.t1/;

and thus jN 0
0.t/j . N0.t/

3, possibly after modifying N0.t/ by ˛.t/ satisfying (6.9).

Now inductively define Nm.t/ to become progressively smoother than N0.t/ until (6.7) is
satisfied. Partition I into subintervals Jk such that

R

Jk
N0.t/

2dt D c for some c � 1. Call
these the small intervals. Then let

(6.15) N0.Jk/ D supf2j W j 2 Z; 2j � N0.t/ 8t 2 Jkg:

For c sufficiently small, if Jk and JkC1 are adjacent intervals then jN 0
0.t/j . N 3

0 .t/ implies
jJkj � N0.Jk/

�2, and

(6.16)
N0.Jk/

N0.JkC1/
D 1;

1

2
; or 2:

If tk is the midpoint of some Jk , let N1.tk/ D N0.Jk/, and otherwise let N1.t/ be the linear
interpolation between these midpoints. Then N1.t/ � N0.t/ and jN 0

1.t/j . N0.t/
3, so

(6.17)
Z

I

jN 0
1.t/j

N1.t/5
dt .

Z

I

1

N1.t/2
dt �

Z

I

kuh.t/k
6
L3dt . K:

D 6.2. – We call the interval Jk upward sloping if N1.Jk/
N1.JkC1/

D 1
2

, downward

sloping if N1.Jk/
N1.JkC1/

D 2, and flat if N1.Jk/
N1.JkC1/

D 1.

Now if J is a union of small intervals, J D Jl [JlC1 [� � �[JlCm, J is called a valley if Jl is

downward sloping, JlCm is upward sloping, and JlC1, . . . , JlCm�1 are constant intervals. J is

called a peak if J D Jl [ JlC1 [ � � � [ JlCm, Jl is upward sloping, JlCm is downward sloping,

and JlC1, . . . , JlCm�1 are constant intervals.

R. – N1.t/ is monotone in between consecutive peaks and valleys. By construc-
tion, it is impossible to have two peaks without a valley in between, or two valleys without a
peak in between.

Now apply the smoothing algorithm. If

(6.18) J D Jl [ � � � [ JlCm;

is a valley let N2.t/ D N1.tl / D N1.tlCm/ for all tl < t < tlCm. If t does not lie in .tl ; tlCm/

for some valley J D Jl [ � � � [ JlCm let N2.t/ D N1.t/.

Likewise construct NmC1.t/ using the above algorithm with N1.t/ replaced by Nm.t/. By
the fundamental theorem of calculus, if Nm.t/ is monotone on an interval J ,

(6.19)
Z

J

jN 0
m.t/j

Nm.t/5
dt . . inf

t2J
Nm.t//

�4:

Next observe from the smoothing algorithm that if J D Jl [ � � � [JlCm is a valley forN1.t/,
(6.16) impliesN2.t/ D 2N1.t/ for t 2 JlC1 [ � � � [JlCm�1. Also observe from the smoothing
algorithm that N 0

2.t/ ¤ 0 implies N1.t/ D N2.t/, so if J is a valley for N2.t/, there must
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exist some J1 � J that was a valley for N1.t/. Therefore, by (6.19) and the fact that peaks
and valleys must alternate,

(6.20)
Z

I

jN 0
mC1.t/j

N 5
mC1.t/

dt � 2�4

Z

I

jN 0
m.t/j

Nm.t/5
dt C 2;

and therefore

(6.21)
Z

I

jN 0
mC1.t/j

N 5
mC1.t/

dt � 2�4m

Z

I

jN 0
1.t/j

N 5
1 .t/

dt C 4:

Also observe that by induction

(6.22) N1.t/ � NmC1.t/ � 2mN1.t/:

Now let

(6.23) M.t/ D

“

�..x � y/Nm.t//.x � y/j ju.t; y/j2ImŒ Nu@ju�.t; x/dxdy:

Since Nm.t/ & 1, by Hölder’s inequality, and Young’s inequality, jM.t/j . e4J

Nm.t/4 . e4J .
Combining (6.3) with (5.31)-(5.35),

d

dt
M.t/ D 2

“

�..x � y/Nm.t//ju.t; y/j
2Œjru.t; x/j2 � ju.t; x/j4�dxdy(6.24)

� 2

“

�..x � y/Nm.t//ImŒ Nu@ju�.t; x/ImŒ Nu@ju�.t; y/dxdy(6.25)

C 2

“

.@k�..x � y/Nm.t///.x � y/j ju.t; y/j2ŒRe.@j Nu@ku/.t; x/(6.26)

�
ıjk

4
ju.t; x/j4�dxdy

� 2

“

ImŒ Nu@ku�.t; y/.@k�..x � y/Nm.t///.x � y/j ImŒ Nu@ju�.t; x/dxdy(6.27)

C
1

2

“

ju.t; y/j2@j�.�..x � y/Nm.t//.x � y/j /ju.t; x/j
2dxdy(6.28)

C

“

�0..x � y/Nm.t//.x � y/j jx � yjN 0
m.t/ju.t; y/j

2ImŒ Nu@ju�.t; x/dxdy:(6.29)

Observe that by (3.10), Theorem 4.1, (5.26), (6.8), (6.21), Hölder’s inequality, Young’s
inequality, and Nm.t/ & 1,

(6.29) .
1

J

Z

I

Z

jx�yj� 4eJ

Nm.t/

ju.t; y/j2jx � yj
jN 0

m.t/j

Nm.t/
jru.t; x/jju.t; x/jdxdydt

(6.30)

.
e3J

J

Z

I

jN 0
m.t/j

Nm.t/4
kuh.t/k

3

L3
x.R4/

kru.t/kL2
x.R4/dt

C
e5J

J

Z

I

jN 0
m.t/j

Nm.t/6
kul .t/k

3

L6
x.R4/

kru.t/kL2
x.R4/dt

.
e3J

J

Z

I

jN 0
m.t/j

Nm.t/5
dt C

e5J

J
kulk

3

L6
t;x.I�R4/

krukL1
t L2

x.I�R4/.

Z

I

1

Nm.t/6
dt/1=2
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. 2�4mC4K
e3J

J
C 4

e3J

J
CK1=2 e

5J

J
:

The other terms may be estimated in the same manner as their counterparts in the previous
section. As in (5.50))-(5.61,

(6.31) (6.24) C (6.25) &
Nı

2

Z

 .
4.x � y/Nm.t/

e11J=12
/ju.t; x/j2ju.t; y/j4dxdy

�
1

J

Z

jx�yj� 4eJ

Nm.t/

1

jx � yj2
ju.t; y/j2ju.t; x/j2dxdy:

(6.32) and (6.33) also involve a mass and an energy integral, so by (5.2), (6.8), (6.22), and the
fact that eJ

2m >> 1 (the relationship between J and m will be described in more detail later),
Z

I

(6.26) C (6.27)dt

.
1

J

Z

I

Z

jx�yj� 4eJ

Nm.t/

Z

jx�x.t/j� C.�/
N.t/

ju.t; y/j2Œjru.t; x/j2 C ju.t; x/j4�dxdydt

C
1

J

Z

I

Z

jx�yj� 4eJ

Nm.t/

Z

jx�x.t/j� C.�/
N.t/

ju.t; y/j2Œjru.t; x/j2 C ju.t; x/j4�dxdydt

(6.32)

.
�

J
.

Z

I

sup
y2R4

Z

jx�yj� 4eJ

Nm.t/

ju.t; y/j2dydt/C
1

J

Z

I

Z

jx�x.t/j� 8eJ

Nm.t/

ju.t; x/j2dxdt

. �K C
1

J

Z

I

Z

jx�x.t/j� 8eJ

Nm.t/

ju.t; x/j2dxdt:

(6.33)

Now, following the analysis in (5.39)-(5.49),

1

J

Z

I

“

jx�yj�4eJ

ju.t; x/j2
1

jx � yj2
ju.t; y/j2dxdydt(6.34)

.
1

J

Z

I

“

jx�yj� 4eJ

Nm.t/

jPhu�c.�/N.t/.t; x/j
2 1

jx � yj2
juh.t; y/j

2dxdydt

C
1

J

Z

I

“

jx�yj� 4eJ

Nm.t/

jPhu�c.�/N.t/.t; x/j
2 1

jx � yj2
juh.t; y/j

2dxdydt

C
1

J

Z

I

“

jx�yj� 4eJ

Nm.t/

jul .t; x/j
2 1

jx � yj2
jul .t; y/j

2dxdydt:

By Bernstein’s inequality and Hardy’s inequality,

1

J

Z

I

“

jx�yj� 4eJ

Nm.t/

jPhu�c.�/N.t/.t; x/j
2 1

jx � yj2
juh.t; y/j

2dxdydt

.
1

J

Z

I

ku�c.�/N.t/.t/k
2

L2
x.R4/

. sup
x2R4

Z

1

jx � yj2
juh.t; y/j

2dy/dt

.
1

J

1

c.�/2

Z

I

1

N.t/2
dt D

K

J

1

c.�/2
:

(6.35)
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Also by Hölder’s inequality and Young’s inequality,

1

J

Z

I

“

jx�yj� 4eJ

Nm.t/

jPhu�c.�/N.t/.t; x/j
2 1

jx � yj2
juh.t; y/j

2dxdydt

.
1

J

Z

I

X

2j � 4eJ

Nm.t/

2�2j

Z

2j �jx�yj�2j C1

jP>�jPhu�c.�/N.t/.t; x/j
2juh.t; y/j

2dxdydt

C
1

J

Z

I

X

2j � 4eJ

Nm.t/

2�2j

Z

2j �jx�yj�2j C1

jP��jPhu�c.�/N.t/.t; x/j
2juh.t; y/j

2dxdydt

.
1

J

Z

I

.
X

j

2�2j kP>�ju�c.�/N.t/.t/k
2

L2
x.R4/

/.sup
y

Z

jx�yj�4eJ

juh.t; x/j
2dx/dt

C
1

J

Z

I

X

1
N0.t/

�2j � 4eJ

Nm.t/

22j kP��jPhu�c.�/N.t/.t/k
2

L6
x.R4/

kuh.t/k
2

L3
x.R4/

C
1

J

Z

I

X

2j � 1
N0.t/

22j kP�c.�/N.t/uh.t/k
2

L4
x.R4/

kuh.t/k
2

L4
x.R4/

dt:

(6.36)

As in (5.43),

(6.37)
X

j

2�2j kP>�jP�c.�/N.t/u.t/k
2
L2 . �2;

so again by (5.2),
(6.38)

1

J

Z

I

.
X

j

2�2j kP>�jP�c.�/N.t/u.t/k
2

L2
x.R4/

/.sup
y

Z

jx�yj�4eJ

juh.t; x/j
2dx/dt . �2K:

Next, since N.t/ is variable, using (4.26) and (6.8) along with Hölder’s inequality,

1

J

Z

I

X

1
N0.t/

�2j � 4eJ

Nm.t/

22j kP��jPhP�c.�/N.t/u.t/k
2

L6
x.R4/

kuh.t/k
2

L3
x.I�R4/

dt

.
1

J

Z

I

X

1
N0.t/

�2j � 4eJ

Nm.t/

2�2j=3.24j=3kP��jPhP�c.�/N.t/u.t/kL6
x.R4//

2kuh.t/k
2

L3
x.R4/

dt

. .

Z

I

. sup
2j �K�1=4

24j=3kPju.t/kL6
x.R4//

2dt/.sup
t2I

X

2j � 1
N0.t/

2�2j=3kuh.t/k
2

L3
x.R4/

/ .
K

J
:

(6.39)

By (3.9), (6.10), and u 2 L1
t L

4
x ,

(6.40)
1

J

X

2j � 1
N0.t/

Z

I

22j kP�c.�/N.t/uh.t/k
2

L4
x.R4/

kuh.t/k
2

L4
x.R4/

dt .
�

J

Z

I

1

N0.t/2
dt . �

K

J
:
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Finally, by (5.47), (5.48), and the fact that Nm.t/ & 1,

(6.41)

Z

I

“

jx�yj� 4eJ

Nm.t/

jul .t; y/j
2 1

jx � yj2
jul .t; x/j

2dxdydt . e2JK1=2:

Therefore,

(6.42)
Z

I

(6.34)dt .
K

J

1

c.�/2
C �2K C e2JK1=2:

R. – By (5.27), (6.28) is also bounded by a term of this form.

Choosem so that 24m D e10J=3. In this case, by (3.9), (6.22) and analysis similar to (5.63),
since eJ is large and N.t/ & N0.t/ � N1.t/,

(6.43)
Nı

2

Z

I

“

 .
4.x � y/Nm.t/

e11J=12
/ju.t; y/j2ju.t; x/j4dxdydt

&
Nı

2

Z

I

Z

jx�x.t/j� e11J=12

8Nm.t/

ju.t; x/j2dxdt:

Combining (6.43) with (6.30), (6.31), (6.33), (6.42), supt2I jM.t/j . e4J , and the funda-
mental theorem of calculus,

Nı

Z

I

Z

jx�x.t/j� e11J=12

8Nm.t/

ju.t; x/j2dxdt .
1

J

Z

I

Z

jx�x.t/j� 8eJ

Nm.t/

ju.t; x/j2dxdt

C �K C 2�4mK
e3J

J
C
e3J

J
CK1=2 e

5J

J
C e4J C

K

J

1

c.�/2
;

(6.44)

and therefore

Nı2

Z

I

Z

jx�x.t/j� e11J=12

8Nm.t/

ju.t; x/j2dxdt

.
Nı

J

Z

I

Z

jx�x.t/j� 8eJ

Nm.t/

ju.t; x/j2dxdt

C Nı.�K C 2�4m e
3J

J
K C

e3J

J
CK1=2 e

5J

J
C e4J C

K

J

1

c.�/2
/

.
1

J 2

Z

I

Z

jx�x.t/j� 512e12J=11

Nm.t/

ju.t; x/j2dxdt

C �K C 2�4mK
e36J=11

J
C
e36J=11

J
CK1=2 e

60J=11

J
C e48J=11 C

K

J

1

c.�/2
:

(6.45)

Choosing J and m such that 24m D e10J=3 and e12J D K,

(6.46) Nı2

Z

I

Z

jx�x.t/j� e11J=12

8Nm.t/

ju.t; x/j2dxdt

.
1

J 2

Z

I

Z

jx�x.t/j� 512e12J=11

Nm.t/

ju.t; x/j2dxdt C �K C
e�2J=33

J
K CK21=22 C

K

J

1

c.�/2
:

Now we are ready to complete the proof of Theorem 1.10.
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T 6.2. – If u is an almost periodic solution to (1.1) with
R

R
N.t/�2dt D 1, then

u � 0.

Proof. – Suppose u is a nonzero, almost periodic solution to (1.1). Let I be an interval
satisfying

(6.47)
Z

I

N.t/�2dt D K:

(6.46) combined with Lemma 5.1 implies that

(6.48) Nı2

Z

I

Z

jx�x.t/j� e11J=12

8Nm.t/

ju.t; x/j2dxdt .
K

ln.K/

1

c.�/2
C �K:

Since � > 0 is arbitrary and
R

R
N.t/�2dt D 1, choosing an increasing sequence of

intervals I whose union makes up R, together with Nm.t/ . 2mN.t/ and 24m D e10J=3,
and e12J D K, there exists a sequence tn 2 R and a sequence Rn % 1 such that

(6.49) N.tn/
2

Z

jx�x.t/j� Rn
N.tn/

ju.tn; x/j
2dx ! 0:

However, by (3.9) this implies that ku.tn/k PH 1 ! 0, and thus by conservation of energy
u � 0.
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