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GLOBAL WELL-POSEDNESS AND SCATTERING
FOR THE FOCUSING, CUBIC SCHRODINGER
EQUATION IN DIMENSION d = 4

BY BenjamMIiN DODSON

ABSTRACT. — In this paper we prove global well-posedness and scattering for the focusing, cubic
Schrodinger equation in four dimensions below the ground state. Previous work proved this in five
dimensions and higher. To prove this we combine the double Duhamel method with the long time
Strichartz estimates.

REsuME. — Nous prouvons I’existence globale et la diffusion des ondes pour ’équation de Schro-
dinger cubique focalisante en dimension quatre. Des travaux antérieurs ont montré de tels résultats en
dimension supérieure ou égale a cing. Nous utilisons ici la méthode de Duhamel double et les estima-
tions de Strichartz en temps long.

1. Introduction

In this paper we study the nonlinear Schrédinger initial value problem
iy + Au = F(u) = —|ul|*u,

(1.1) 1 é

u(0,x) =ug € H (R%),

which belongs to a class of problems known as the focusing, nonlinear Schrédinger initial

value problems,

i, + Au = F(u) = —|ulPu,
(1.2) "1 e d
u(0,x) =ug € H (R%),

In general a solution to (1.2) conserves mass,

(13) M) = [ lutt. 0P dx = M@),

and energy,

(1.4) Eu(t)) = %/ |Vu(t, x)|*dx — ﬁ/ lu(t, x)|?T2dx = E(u(0)).
0012-9593/01/(C) 2019 Société Mathématique de France. Tous droits réservés doi:10.24033/asens.2385
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140 B. DODSON

When p = ﬁ, (1.2) is called energy-critical since a solution to (1.2) is invariant under the
scaling
(1.5) u(t, x) > AP u(R2e, Ax),

and (1.5) preserves the energy (1.4) when p = d4T2'

The global behavior of the defocusing, energy-critical problem (F (1) = |u| ﬁu) iS now
completely worked out for any d > 3.

THEOREM 1.1. — The defocusing initial value problem (1.2), F(u) = |u|ﬁu, is globally
well-posed for any ug € H'(R?), d > 3, and the solution scatters both forward and backward
in time.

DEFINITION 1.1 (Scattering). — A solution u to (1.2) with p = ﬁ is said to scatter

forward in time if there exists u, € H' such that

(1.6)

: itA . Y.
t}}llloo () — e “uill g1 gay = 0.

Likewise, u is said to scatter backward in time if there exists u— € H?1 such that

(1.7) Jim () = e u | 1ga) = 0.

Proof. — The proof of Theorem 1.1 involved contributions from numerous authors. [10]
proved Theorem 1.1 for small data for both the focusing and defocusing problem. [10] also
proved that (1.2) has a local solution for any initial data uy € H'(R?), where the time of]
existence depends on the size and profile of ug.

For large data, the seminal result was the work of [5] (also see [4]), proving Theorem 1.1
for radial data in dimensions d = 3,4, and also that for more regular u, this additional
smoothness is preserved. See [23] for another proof of this last fact. [42] then extended
Theorem 1.1 to radial data in higher dimensions. Both [5] and [42] used the induction on
energy method.

For nonradial data, th@first progress came when [13] extended Theorem 1.1 to general
uo € H'(R?). Subsequéntli [36] extended this result dimension d = 4, and [49] (also see
[48]) extended Theorein t@imensions d>>5. O

REMARK. — [314 and ¢3) h% since used the long time Strichartz estimates of [14] to
reprove Theorem{l. Ilifldifensions three and four, respectively.

However, Theorem 1.1 does not hold for arbitrary data in the focusing case. By the virial
identity (see for example [22])

d? 2d
(1.8) F/|x|2|u(t,x)|2dx :8[/|Vu(t,x)|2dx—/|u(t,x)|ﬁdx],

so if xug € L2(R?) and E(ug) < 0, [|x|?[u(t, x)|?dx is a function of ¢ that is concave
down and has two real roots, 71 < 0 < 7,. Then the positive definiteness of [ |x[*|u(z, x)|?dx
implies that the solution to (1.1) with such u¢ cannot exist outside of [t1, #2].
There also exist global solutions to (1.1) that do not scatter.
1

2 d=2
1+ 7505

(1.9) W(x) =
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4D FOCUSING ENERGY-CRITICAL NLS 141

lies in H'(R%) and solves the elliptic equation
(1.10) AW + |W|a=2 W = 0,

so W(x,t) = W(x) solves (1.1) but is clearly non scattering. Therefore, as in the mass-critical
problem we conjecture that scattering holds for initial data below the threshold given by (1.9).

CONJECTURE 1.1. — Letd > 3 andletu : I xR¢ — C be a solutionto (1.2), p = ﬁ. If

(1.11) luoll g1 ray < IVl g1 rery:
and
(1.12) E(ug) < E(W),
then
2(d+2)
(1.13) [ [0 axar < cuolz. o) < .
I
The quantity ||u|| 2w+2 is the key quantity to determining whether or not u scat-
(972 (RxRY)

ters forward in time or backward in time.

DEFINITION 1.2 (Scattering size). — The scattering size of a solution to (1.2) on a time
interval I is given by

2(d+2)
(1.14) Sl(u)=// lu(t,x)| 4-2 dxdt.
1 Jrd

THEOREM 1.2. — When p = ﬁ, (1.2) is well-posed on some open interval I(ugy). Addi-
tionally, u scatters forward in time if and only if Si, o) (u) < 0o for some t; € R. Likewise, u
scatters backward in time if and only if S(—oo 1,1 (1) < 00 for some t; € R.

Proof. — See [10] and [11]. O
Therefore a solution may either scatter or blow-up.

DEeFINITION 1.3 (Blow up). — A4 solution u to (1.2) blows up forward in time on I if there
exists t1 € I such that

(1.15) S[t1,sup(1)) (U) = 00.
u blows up backward in time if there exists t1 € I such that
(1.16) S(inf(1),1,1(u) = 00.

[25] proved Conjecture 1.1 for radial data in dimensions d = 3,4, 5. The proof uses the
concentration compactness argument.

THEOREM 1.3. — Assume that E(ug) < E(W), |luoll g1 < IWlgi,d =3.4,5, and ug is
radial. Then (1.2) is globally well-posed and scatters forward and backward in time.

Proof. — See [25]. O
[28] treated the nonradial case in dimensions d > 5.

THEOREM 1.4. — Assume that E(ug) < E(W), luollg1 < IWl g1, d = 5. Then (1.2) is
globally well-posed and scatters forward and backward in time.

ANNALES SCIENTIFIQUES DE I’ECOLE NORMALE SUPERIEURE



142 B. DODSON

Proof. — See [28]. O
REMARK. — The result of [28] was actually proved under the possibly weaker assumption

(117) el o0 1 sy < 19 W L2,
Now by the energy trapping lemma of [25], if E(ug) < E(W) and [lugll 41 < [|W| 1, then
(1.17) holds.

LemMA 1.5 (Energy trapping lemma). — If E(uo) < (1 — ) E(W) and ||[Vuoll2gay <
(1 =8IVW| L2 (ray for some § > O, then there exists 8(8.d) > 0 such that for all t € I, where
1 is the maximal interval of existence of u,

(1.18) VU@l 2 ey < (1= DIVIVI|L2ga)-

Proof. — This follows from the work of [1] and [40], which proved that if Cy; is the best
constant in the Sobolev embedding theorem:

(1.19) ||f||ngsz(Rd) = CalV £l ray:
That is, if
(1.20) el 2, ey = GV Iz @)

then u = C Wy, x,.1, for some constant C € C, p € R, x¢ € R?, and A € (0, 00), where

| X=X
(1.21) Wao.xoho = —a=z @ W),
)LOT 0
and W is given by (1.9).
So when d = 4, (1.10) implies that
(1.22) 0= (AW, W)+ (W, |W*W) = —/|VW|2dx+/|W|4dx.
Then by (1.20),
1
(1.23) Cp= ———,
W1l @
SO
i O,
(1.24) (1= OEW) = Euo) = 5 [ 1Vu()Pax(1 - 5= o
Now make a bootstrap argument. Let
(1.25) J={tel Jud)llg = VWlL2}

By the Sobolev embedding theorem and the fact that Cy is the best constant,

(1.26) lu@)llpa@sy < IWllLaws
for all ¢t € J. Also by the dominated convergence theorem and local well-posedness, J is
closed. Also by [[u(0)||z1 < (1 =8)[|[W| g1, J is not empty. Then by (1.20), (1.23), (1.24),

and conservation of energy

1 1
(1.27) (1-HEW)=( —5)ZIIW||2 z ZIVu@)]

2
HIRY = 4 LR

4° SERTE — TOME 52— 2019 — N° |



4D FOCUSING ENERGY-CRITICAL NLS 143

which in turn implies that forz € J, ||”(t)||§:11(R4) < (1—8)||W||21(R4). Local well-posedness
then implies J is also open in /, therefore J = 1. O

Scattering results for the focusing, mass-critical problem ([15], [33], [34], [44]) assume that
the initial data 1 has mass below the mass of a ground state. However, unlike the mass (1.3),
the H!(R?) norm is not conserved. Energy is conserved, but is not positive definite (1.4), so
E(u(t)) < E(W) does not by itself give a bound on the size of u(¢), hence the two conditions
in Theorem 1.3.

REMARK. — The author of this paper is personally unaware of any solutions u(z) to (1.2),
p = d4T2 that satisfy (1.17) but not the initial conditions of Theorem 1.3, and would be
interested in more information on the matter.

In this paper we prove global well-posedness and scattering for nonradial data in dimen-
sion four.

THEOREM 1.6. — Assume that E(ug) < E(W), |[uoll g1 < IW | g1, andd = 4. Then (1.2)
is globally well-posed and scatters forward and backward in time.

As in [25] and [28], the proof uses the concentration compactness method. The proof may
be separated into two theorems.

THEOREM 1.7. — If (1.1) is not globally well-posed and scattering for all data satisfying
||”0||H1(R4) < ||W||H1(R4) and E(ug) < E(W), then there exists a nonzero solution to (1.1)
that is almost periodic for the entire time of its existence. That is, u solves (1.1) on I, where I is
the maximal interval of its existence, and u is almost periodic for allt € 1.

DEFINITION 1.4 (Almost periodicity). — u(t) is said to be almost periodic for all t € I iff

there exists N(t) : I — (0,00) and x(t) : I — R* such that for allt € I, %u(x;,—’(cg)) lies in

a compact set K ¢ H'(R%).

THEOREM 1.8. — The only almost periodic solution to (1.1) on the maximal interval of its
existence I, with ||V”(’)||L§>°L§(1><R4) < ||\VW||12,isu = 0.

Theorem 1.7 is already well-known, so its proof will merely be sketched in section three.
The novel part of this paper is the proof of Theorem 1.8.
In fact, [28] proved the reduction

THEOREM 1.9. — To prove Theorem 1.8 it suffices to show that the only global, almost
[periodic solution to (1.1) on R with

(1.28) N@)>1, N =1,
isu=0.
Thus we shall prove that

THEOREM 1.10. — The only global, almost periodic solution to (1.1) on R with
(1.29) N@)=1, N =1,

isu=0.

ANNALES SCIENTIFIQUES DE I’ECOLE NORMALE SUPERIEURE



144 B. DODSON

[28] utilized the double Duhamel method to prove Theorem 1.10 for dimensions d > 5.
The double Duhamel method was introduced in [13] for the energy-critical, defocusing,
nonlinear Schrodinger equation (see also [31]). This method has proved to be extremely
useful throughout dispersive partial differential equations, for Schrodinger, ([13], [28], [31],
[41]), wave ([8], [7], [6], [20], [19], [30], [29]) and mKdV ([18]) problems.

The main new difficulty in dimension d = 4 is that the dispersive estimate is not doubly
integrable, unlike in dimensions d > 5. We prove Theorem 4.3, which implies u € LL3,
and thus F(u) € L®L!, however even with this fact the double integral of (2.18) diverges
logarithmically.

REMARK. — This is not merely a technical obstacle, since (1.9) gives an example of an
almost periodic solution that does not lie in L2.

Despite this difficulty, we are able to combine this logarithmically divergent result with
the long time Strichartz estimates to establish an interaction Morawetz estimate, proving
Theorem 1.10.

Outline of Proof. — In §2, some linear estimates and harmonic analysis results will be
discussed. These results will be used frequently throughout the rest of the paper. Only one of]
the results in this section (Theorem 2.6 when d > 4) is new.

In §3, the concentration compactness method will be discusgéd, sketching [25]’s (see [28]
for higher dimensions) proof of Theorem 1.7. We will also disguss@lmost periodic solutions
to (1.1) and sketch [28]’s proof of Theorem 1.9.

In §4 we prove the long time Strichartz estimate. In contfast tog] and [29], we will consider
the quantity

(1.30) /1 #t)zdt.

The long time Strichartz estimates allow us to easily exclude the case when
Jx N(1)™2dt < oo. Finally we will bound the L{°L3(R x R*) norm of a solution satis-
fying (1.29) and [ N(1)"?dt = oo.

In §5 we use the long time Strichartz estimates of section four to show that the soliton
blowup solution, that is N(¢) = 1, is u = 0. Finally, in §6 we will extend this argument to a
quasi soliton solution, (1.30) = oco. This completes the proof of Theorem 1.6. O

Acknowledgements. — During the time of researching this paper, the author was supported
by NSF postdoctoral fellowship DMS-1103914. The author also performed much of the
research while a guest of the Hausdorff Institute at the University of Bonn for the summer
trimester program in harmonic analysis and partial differential equations. The author is
now supported on NSF grant DMS-1500424. The author is grateful to Rowan Killip, Jason
Murphy, and Monica Visan for several helpful discussions regarding this problem.
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2. Linear Estimates and harmonic analysis

In this section we describe the tools from harmonic analysis that will be used in this paper.

DEFRINITION 2.1 (Fourier transform). — Suppose f € L'(R?). Let & f denote the
Fourier transform

@) F1© = @2 [ e pwax.
The inverse Fourier transform is given by
(2.2) (F ') = @m) ™" / e g(§)d.

Plancherel’s theorem proved that the Fourier transform and inverse Fourier transform
provide a unitary transformation between functions in L2 (R%) and functions in L?(Rd).
Because of this fact it is useful to decompose a function via a partition of unity in Fourier
space, or a Littlewood-Paley decomposition.

DEerINITION 2.2 (Littlewood-Paley decomposition). — Let ¢ € C(§’°(Rd) be a radial,
decreasing function, ¢(x) = 1 for |x| < 1, ¢(x) is supported on |x| < 2. Then for any j € Z
let

(2.3) Pif = (2m)~4/? / P27 TIE) — p 27T E)] f (B)dE,
(2.4) Peif = @y [ rigrizie fieds.

and

2.5) Pojf = @m) 2 / FVE — p 28| f (§)dE.

REMARK. — It is often convenient to write Py, which is given by the multiplier

.6 976 ~ 0l

P_n and P-y are defined in the obvious fashion. When summing over Littlewood-Paley
pieces, Dy y denotes Y i g0 N 2op<y 18 similarly defined.

REMARK. — To simplify notation it is convenient to write ug or uy instead of Pru
or Pyu.

THeOREM 2.1 (Littlewood-Paley theorem). — Forany 1 < p < oo,

2.7) IO 1P F1DY 21l L2 @ay ~paa I1f Lo ray-
J

Proof. — This is a well-known fact from harmonic analysis. See [37], [38], [45], or many
other sources. O

The proof of Theorem 2.1 utilizes the maximal function, which can be defined in any
dimension. This paper will only use the maximal function in one dimension.

ANNALES SCIENTIFIQUES DE I’ECOLE NORMALE SUPERIEURE



146 B. DODSON

DEFINITION 2.3 (Maximal function). — For a function f € LP(R), 1 < p < o0, let
1 x+T
(2.8) M(f)(x) = sup T |f(0)]dt.
T>0 x—T
THEOREM 2.2 (Maximal function theorem). — Forany 1 < p < oo,

(2.9) M )Lrwy Sp I1flLrw)-

Proof. — See [37], [38], or [45]. The proof there is described in any dimension. O

THEOREM 2.3 (Sobolev embedding theorem). — For 1 < p < ¢ < o0,
d(L_1
(2.10) 1) fllLaway S 24P P; fllLo @ay.
Proof. — See for example [47]. O

LEMMA 2.4 (Bernstein’s inequality). — Foranys € R, j € Z,1 < p < o0,
(2.11) 2js||ij||LP(Rd) ~pd IV Pj f Lo ®a)-
Proof. — See [46]. O

Theorem 2.1, Theorem 2.3, and Lemma 2.4 will be used throughout this paper, frequently
in combination.

The Fourier transform intertwines the multiplication and differentiation operators, so the
solution to the initial value problem

(2.12) (0, +A)u=F, u0,x)=up,
when F = 0 is given by
2.13) ¢"Bug = (2m) 4 / e (F f)(E)dE

The general strong solution to (2.12) is given by

t

(2.14) u(t) = 0% (10) — i / FIAE (D) d T
fo

Since |¢i!E7| = 1,

(2.15) ||eitAf||L2(Rd) = ”f”Lz(Rd)’

and in fact, for any L2-based Sobolev space,

(2.16) e £l gs ey = 1 | gsa)y-

By completing the square in the exponent of (2.13) and by stationary phase computations,

; 1 i _ilx—y2
@.17) () = e 4 [ pay,
which implies
(2.18) e’ £l peomay Sa t=2If g1 may-

4° SERTE — TOME 52— 2019 — N° |



4D FOCUSING ENERGY-CRITICAL NLS 147

REMARK. — More generally, if P is any Fourier multiplier, that is,

(2.19) PFG) = SN PE(T G,
then
(2.20) PF(x) = f (F ' P)x— y) f(3)dy.

Using both analysis on the Fourier side (2.13) (see [39]), and analysis on the spatial side
(2.17) (see [21], [24], and [50]), the sharp result has been proved,

THEOREM 2.5 (Strichartz estimates). — For d > 3, suppose (p1,4q1), (p2,q2) are admis-
sible pairs, that is p; > 2 and
2 1 1
(2.21) — =d(=——).
j 2 g
If u solves 2.12)on I, ty € I, and % =1- %, then

2.22 u <g llu( +WFll 2 o« .
(222) Il 18 ey S IOz vy + P g s

Proof. — See [39] for the seminal result, [21] and [50] for the non-endpoint results
(pj > 2), and [24] for the endpoint case. See [43] for a nice overview of this work. O

Following Theorem 2.5, it is convenient to use the Strichartz spaces of [43].

DEFINITION 2.4 (Strichartz space). — When d > 3 let

(2.23) [ull so(zxray = sup lllzr L9 (rxra)-
(p.q) admissible

Let N be the dual to S°. Also, for any s € R let

(224)  ullgssxrey = NIVITullsoxray — and 1 F |l ysrxray = VI Fllyozxray-
Then Theorem 2.5 implies

(2.25) lullsorxray < luo)ll2waey + I1F |l vo

The Strichartz estimates are quite important to the study,
value problem for a number of reasons. In this paper, as i d\[31], the Strichartz
estimates are the building blocks of the long time Strichdrt s the three dimen-
sional, energy-critical initial value problem, [31] made use of a maximal Strichartz estimate.
Since we are analyzing a four dimensional equation, we will extend this result to dimen-
sions d > 4.

ar Schrodinger initial

THEOREM 2.6 (Maximal Strichartz estimate). — Suppose t,ty € I, and

(2.26) v(t) = / t DA E(D)d .

0

Then for anyd > 3, q > dz—fz,

(4 —(d—
(2.27) I sup 2”2 P L ey 2y Sa 1F 22t (s
7
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148 B. DODSON

Proof. — This is proved by combining the dispersive estimate (2.18) with the Sobolev

embedding theorem (Theorem 2.3). If ¢ > 24 then d(4 — %) > 1,50

2.28) 2/(G=d=2) / . _PF 4
2 ' i—el>227 (¢ — 7)4G ) R

cpi |

>0 [t—t|~2k2—2/

IF @)L waydT Sq HMAF (@) lpLga)) @)
By the Sobolev embedding theorem and (2.16),

(2.29) 2/(G—@d=2) P IR F(u())d | Lg ey

lt—7|<272/

< 2% /| o IOl S HF Ol ) O
t—t|<2™

Therefore,
(d _(d—
(2.30) 2@ @2 Prv) | g wey S MAF @1 a)©),
so by Theorem 2.2 the proof is complete. O

3. Concentration compactness

In this section we briefly discuss the reduction to the almost periodic solution (1.29).

Sketch of the proof of Theorem 1.7. — Since this is merely a sketch, the interested reader
should consult [25] or [28] for a complete treatment of the concentration compactness
method. Define the increasing function

3.1) C(E) = sup{||u|l 2@+ Sl oo 71 ay < E}.
Ll’§_2 (RxRY) L$° Hy (RXR¥)

To prove Theorem 1.6 it suffices to prove C(E) < oo for E < [[VW| 2rs). The small
data results of [10] show that C(E) < FE for E small. Moreover, by a stability result
in d > 5 (see [28]) and a simple calculation in dimensions d = 3,4, C(E) is a continuous
function of E. Therefore, if Theorem 1.6 fails, then by the continuity of C(E), there exists
Ey < ||VW||12 such that C(Ex) = oo and C(E) < oo forall E < E.. Ey is called the
minimal energy. We wish to show that Ex = [VW| 12 gsy.

Now take a sequence u, () of solutions to (1.1) such that

(3.2) e () 13 oty B
and
(3.3) S10,00) (Un) = S(—00,01(ttn) = n.

Now by a straightforward application of Strichartz estimates, there exists § > 0 such that

(3.4) le"®un(0)ll s wxrsy =8> 0.

4° SERTE — TOME 52— 2019 — N° |



4D FOCUSING ENERGY-CRITICAL NLS 149

Then [26] proved that u,(z,) can be decomposed into asymptotically decoupling profiles,
such that for any J,

J .
(3.5) un (0) = Y gle™ Ap7 + ;.
Jj=1
where g,{ is an element of a group generated by scaling and translation symmetries, w; is
the error, and the group elements g; asymptotically decouple. (See Definition 1.4 for more
information on the group.) The asymptotic decoupling implies that if u/ (1) is a global
< 00, the

solution to (1.1) with initial data given by ¢i% 2¢/ and sup; [[u/ || 2w+2)
L, 972 (RxRY)

1,x
solution to (1.1) with initial data u, (0) is well approximated by

J
(3.6) D owl (@) + e Py

j=1
Then by the minimality of E. and (3.3), there exists one jj, £/° — 0 and
3.7 170 (0) | oo g1 (1 xmay = Exs
all other ¢/ = 0, and

(3.8) [ @) 2042 = 00,
L, 972 (IxR4)

t.x
where I is the maximal interval of existence of 170,

Repeating the argument for u/0(¢,) for any sequence ¢, € I shows that .ujO (tp) has a
subsequence that converges in H'/G, where G is the group of symmetries g;. This proves
Theorem 1.7. O

By the Arzela-Ascoli theorem, if u is an almost periodic solution to (1.1), then there exists
x(t): I — R% and N(t) : I — (0,00), such that for any n > 0 there exists C(1)) < oo such
that

(3.9) / Ve, x)2dx + / ER1A(. ) PdE
Ix—x()|> < |E>C N (@)

N(1)

+ /E ERIAG. O PdE < 1.

1
\<WN(I

REMARK. — N(¢) is not uniquely defined. For example, modifying C(n) by a constant,
one may also modify N(¢) by a constant. Thus (see [32] for a proof) one can choose N(¢)
such that

(3.10) IN'()] £ N@),
and
(3.11) /IN(I) dt §/If|u(t,x)| dxdt §/IN(Z) dr + 1.

ANNALES SCIENTIFIQUES DE I’ECOLE NORMALE SUPERIEURE



150 B. DODSON

Sketch of proof of Theorem 1.9. — Suppose u(t) is an almost periodic solution to (1.1).
[28] showed that one can take a limit of u(z,) in H!/G and obtain a solution to (1.1)
satisfying either

(3.12) N@t)>1, teR, N =1,

or than u blows up in finite time.

(3.9) and conservation of mass (1.3) show that finite time blowup cannot occur. Suppose
u blows up in finite time, say at 7 = 0, and by time reversal symmetry suppose u(¢) blows
up as ¢t N\, 0. Then by (3.10) and (3.11), N(¢) " ocoast \( 0. Let ¢ € C(§’°(Rd) be a radial
function, ¥ = 1 on |x| < 1, ¥ supported on |x| < 2. By (3.9) and Hoélder’s inequality, for
any R > 0,

(3.13) th\l;%/ W(%)2|u(t,x)|2dx = }{1}) Mg(t) = 0.
Moreover, integrating by parts,

d 1 [, 1
(.14) Mg < & / YV IVl )l 0)ldx < 2 Me@)' VU] 2 oy

Therefore, (3.13) combined with the fundamental theorem of calculus and (3.14) implies that
[ |u(t,x)|?dx = 0 for any r > 0. However, this implies u = 0, which contradicts u blowing
up in finite time. O

Thus Theorem 1.6 has been reduced to Theorem 1.10. Since the rest of the argument will
analyze some specific almost periodic solution u to (1.1) (which will turn out to be identically
zero), A < B will denote 4 < C(u)B.

4. Long Time Strichartz estimate

Thus it only remains to investigate when u is an almost periodic solution on R and
N(t) > 1 for all t € R. In general for critical nonlinear Schrodinger problems one would
like to prove that the minimal blowup solution has both finite mass (1.3) and finite energy
(1.4). Having done so, it only remains to use a nonlinear estimate (e.g., a conservation law or
Morawetz estimate) to prove that such an almost periodic solution must be identically zero.
The sketch of the proof of Theorem 1.9 is a good example of this, using conservation of mass
to prove u = 0 in the case of a finite time blowup solution.

Long time Strichartz estimates provide a useful substitute to proving finite conserved
quantities. Long time Strichartz estimates were introduced in [14] to study the mass-criticial
nonlinear Schrédinger equation in dimensions d > 3. There, the initial data a priori lay
in L2, but rather than proving that u also had finite energy, [14] utilized the long time
Strichartz estimates to bound the error of the frequency truncated interaction Morawetz
estimate.

Here we will do something similar. As was already observed, when d = 4, (1.9) barely
fails to lie in L2. Since (1.9) is clearly an almost periodic solution to (1.1), this precludes the
possibility of proving that an almost periodic solution lies in L2 by purely linear arguments.
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REMARK. — Of course, Theorem 1.6 implies that if u lies below the energy threshold
of W, u = 0, and therefore lies in L?. However, any proof of a result which depends upon
the size of u must contain a nonlinear argument, by definition of the term linear estimate. So
s such as Duhamel’s principle, Strichartz estimates, and the double Duhamel
arugmentzare enough to prove that u has finite mass.

d long-time Strichartz estimates to the defocusing, energy-critical
problem in dimensions d = 3 and d = 4 respectively. In each case
the crucial quantity considered was |, ﬁd t, since it scales like the interaction Morawetz

Strichartz estimates in d = 4 is relatively straightforward
f; ﬁdr is optimal in the sense that (1.9) lies in H/2 w and ||u(7)|| g1, scales
like ﬁt) This is why [31] is technically more complicateg

In this paper, since the usual interaction Morawetz e a ot positive definite in
the focusing case, and therefore will not be used, we will rely on long time Strichartz estimates
based on

4.1) K = fl N(1)™2ds.

Thus, many of the more technically difficult arguments, such as Theorem 2.6 of [31] will be
adapted to this paper.

THEOREM 4.1 (Long time Strichartz estimate). — Suppose I is an interval and K is given
by (4.1). Then for any j € Z,

42 QL lurlG ey + 271 sup 27K ue )o@z S (1 +2Y K)V2
k<j zJ

(1.5) and (1.9) imply that (4.2) cannot be improved to any K = [, N (t)~27¢dt for any
e > 0.

Proof. — By the Sobolev embedding theorem, Bernstein’s inequality, and Strichartz esti-
mates,

4j —4k | i(t—t0)A 2
(4.3) 2% ) ottt Pru(to)l72 007 xra)

k>j
< 2% Z r—2k ”ei(t_tO)APk“(t‘))”i%L;‘CuxRﬂ
k>j
S 27 NP ju(t0) 172 ay S 1400 151 sy S 1.
and
(4.4) DIV TR P (1)1 72 gy S VU7 gy S 1

k<j
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Let

(4.5) lullyaxrsy = sup2¥ (1 +2Y K)7"/2| sup 27 )l Loy I 22r)
J =]

+sup(l + 29 K) Q2K N O3 2 14 g )
k<j

The goal is to use (4.3), (4.4), and the smallness of u away from the scale N(¢) to prove an
estimate of the form

(4.6) lullyrxrsy S 1+ nllullyxre).
and then proceed by the usual small data arguments. To that end decompose
(4.7) F(u) = Fus;) + OuZ ju<;) + Ous uZ;) + Fu<;).

By (3.9) it is possible to choose ¢(n) > 0 such that

(4.3) ||”5c(n)N(t)||L;>°H1(RxR4) =1
By Bernstein’s inequality,
(4.9)

A3
”PSCN(t)(uZ])”L?Li(IXR‘l)

S Z | P<en@Uk, ||L§°(R4)||P5cN(t)uk2||L§(R4)||P5cN(t)Mk3 ”L%(R“) ”L%(I)
J<ki1<ka<k3

—2k
S ”PSCN(Z)MHZ?OHI(RXR“)” lscup‘2 2 ||uk(t)||L§g°(R4)||L%(1)
e

P27 (14 2% K) V2 |uly g vty

Also by Bernstein’s inequality,
(4 10) ” PZCN(I‘)M ”i?L}C(l XR4) S, (/I ”uZCN(l) (t) ||z)2C(R4) ”u(t) ”z;‘c (R4)dt) 1/2

0 e gy N0 £ R,
Therefore,
(4.11) ”uSZj”L%L)IC(IXR“) < cTlKY2 4 n”?(1 + 241'1{)1/22—21'||u||Y(,XR4).
By Theorem 2.6 (the maximal Strichartz estimate),

t
(4.12) Zup ||Pk/t el(t_t)AF(qu)dT||L§°(R4)”L%(I) S ||(u2j)3||L%L}((IXR4)
>j 0

SRV 4 21+ 29 K)Y227 |y g gy

Also by the Sobolev embedding theorem and Strichartz estimates,

(4.13)
t
(Z 22k||Pk / el(t_T)AF(”Zj)dt”IZA%Li(]XRﬂ)l/z S (Z 24k)1/2||(M2]')3||LI2L)IC(1><R4)
k<j o k<j

ST KV 4 2 (14 2Y K2 ully g ars-
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This takes care of F(ux ;). Next, by the Sobolev embedding theorem, the Littlewood-Paley
theorem, and interpolation,

(4.14)  |lu<; ”L‘?’X(IXR“) S Vug; ”L?L}(Z/S(IXR“)

k 2/3 i 1/3
SO 2 ||uk||§?L§(,XR4))“6||Vu||L/?oL§ ety S A2V

k<j
By the Sobolev embedding theorem, (4.11), and (4.14),

(4.15)
1G22 1473 gty S M2 3 ey 1825 s L2 ety
S 2Pl g 13 sy 15 g 1wt
S 2B KM 4 2272 (1 + 2% K) V2 |u |y ay) 3 (1 424 K)I/GH””;’/(ixR“)
o : 1/3 = '
S VPR 29 K) O ull ey + 270429 KVl gy

By the Sobolev embedding theorem, (4.15), and Strichartz estimates,
(4.16)

t
2k i (1 —
Isup2 7| P / S0 us)d w2
Z. 0

t
S22 / et(tit)A0(”§j“§j)df||L%L§(1xR4) S27 ||u§j”§j ”L%Li“([xk“)

1o .
SRR+ 2 KM Gy + 27 0P A2 K ully ey,

and

t
(417) (Z 22k||Pk/ el(t—t)A O(Méjuﬁj)dr||i,2L§(IxR4))1/2 /S 27 ||u221”51 ||L12Li/3(IXR4)
k<j fo

S TRV 29 KOl ey + 121+ 29 KDV [y gy

This takes care of O(uzZ ju=j)- Next, by the Sobolev embedding theorem and (3.9),

(4.18) ||(P§cN(t)”§j)2||L%L§(IxR4) S ||V”§j||L$L§.(1xR4)||u5cN(t)||L§°L§(IxR4)
S0 +2YK) 2 lully ey,

and by Bernstein’s inequality and the Sobolev embedding theorem
(4.19) ”(PECN(t)ufj)z”Ltsz,‘C(]xR‘l)

S Mool oy < O ey @) V2 5 K227
(4.18) and (4.19) imply

(4.20) ||V0(“25j”>1')||L%Li/3(1xk4) + ||V”3§j ||L§L§/3(IXR4)

SVl o 2 ey 192 2 1 ety S €T K222 4 (14 29 K) Y2y gty
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Again by Strichartz estimates (4.20) implies

t
@21 Q2% P / et“*f)A0(u2§ju)df||§,2L§(IxR4))1/2

k=i o
S K222 (14 29 KV sy

Also, by the Sobolev embedding theorem, Bernstein’s inequality, Strichartz estimates, and
(4.21),

t
Isup2 2P [ 008002 vl iz
>j to

(4.22) -2j ' pitt=na
STV | TIR00L 0 gy

0
SR 427 (4 2Y K) Y2 Jully g xre)-
Therefore, combining (4.3), (4.4), (4.12), (4.13), (4.16), (4.17), (4.21), and (4.22),
(4.23) lullyxrsy S e+ nllullyrxrs)-
Choosing n > 0 sufficiently small, the proof of Theorem 4.1 is complete. O
REMARK. — By Theorem 2.6 combined with the above analysis, we have also proved
(4.24) 227 sup 27 ug )l g oy 2y S (1 +2Y K)V2

k>j
This estimate will be utilized in section six.

The long time Strichartz estimates directly yield the fact that if u is an almost periodic,
rapid frequency cascade solution to (1.1) then u = 0. (1.9) does not fall into this category,
and in this case it is possible to prove u € L H ¢ for some € > 0 using only linear estimates.
u = 0 follows directly from interpolation and (3.9).

THEOREM 4.2. — If u is an almost periodic solution to (1.1) on R satisfying
e N(1)72dt = K < oo, thenu = 0.

Proof. — Again by (3.9), for any 1 > 0 there exists jo(n) such that
(4.25) ”Ps.iou([)”L[OOH}(Rszt) =n.
Let ko be the integer such that 2k0 < K—1/4 < 2ko+1 By Duhamel’s formula, for j < kg
andt € [-T,T],

t
(4.26) VP u(t) =VP5_,-u(—T)—iVPij e IAE(u(1))d .
T

For j < jo(n) and ko,
(4.27) ||VF(usj)||L$L§/3([_T,T]XR4) S 772||V”s.i ||L,2L§;([—T,T]><R4)-
Next, by the Sobolev embedding theorem
IV P<j O ju)<<ko) ”L%Li”([—T,T]xR‘*)
(4.28) <2y <<ko Izeo 2 ) VU< L2 14 (-7, 11xm) I VU < | L2012 )

SllVu<ilp2paccmsy:
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By Bernstein’s inequality and the Sobolev embedding theorem,
(4.29)

IV P 0(”.12'5-5ko“)”L%th“([—T,T]xR“)

5
S 2% Z 1Py el 224 -1, rpsry | Pratell Lo 2 (7, 7ymey 1l oo 14 (-7, 712
Jj<ki<kz<kg

SO 2 Mulsier ) C D 2 7 utll oo g or rimrty):

Jj<l<ko Jj<l<kg

Combining (3.9) with (4.27)-(4.29),

(4.30) ”fojF(ufko)”L%Li/s([fT,T]xR“) S }'}”ng ||.S'1([—T,T]XR4)

+ ) 2wl e errprey)C Do 2 g1 ety

Jj<l<kg J=l=ko

Next, by the Sobolev embedding theorem, Strichartz estimates, Bernstein’s inequality, (3.9),
and Theorem 4.1,

(4.31)
”va] [F(u) - F(usko)]”L%Li/s([—T,T]XR‘l)

2j 3
S 27 ([ (k) “L,ZL}C([—T,T]XR“)
j 2
+ 2/ ”ujf'ﬁko ||L?L)8C([7T,T]><R4) ” Uk HLIOOL?C([—T,T]XR‘l)

+ 27| Vu; ||L%L§([—T,T]XR4) llu<; ||L;>°H1([—T,T]xR4) l[24> ko ”L‘,X’L)%([—T,T]XR“)

< 22 g1/2 4 2f—k0( Z 0J=l IV, ||L%L§([_T,T]XR4))
j<l<ko

+2/7kop | Vu 2224 (-1, 71xR%)-

Combining (4.26), (4.30), and (4.31),

(4.32) lug; (t)Hs'l([_T,T]xR4) S ||VP§J'”(_T)||L)2C(R4) + nlluz; ”S‘l([—T,T]XR“)

+ O Y st O g1 ey O 27 VU e 2. rpersy) + 27 K2,
j<l<kg I=j

By (3.9),

(4.33) Ol oo i1 orrierey) S 1+ 2i=jo(m)
Jj=l

Since [ N(@)™2dt = K < oo, N(-T) /' +o0as T / 400, so forany j,

(4.34) inf |V P<ju (=Tl 3 ey = O
Leta; = |lu<; ||S1([—T,T]xR4)' Theorem 4.1 implies
(4.35) “ufko lljl([_T,T]xRél) S
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uniformly in 7', so by (4.32) and (4.34),

(4.36) aj <n Y. Vlag+ 22KV 420700,
Jj<l<ko
Let Bn = D m<j<ko 23m=Nq; Clearly By < am for any m. Then (4.36) implies

Bm < K1/223M/% Plugging ||u; 51 mxrty S 23114 for j < ko back into (4.32),
(4.37) i< (Ol g1 oty S K272,

In particular this implies

(4.38) ”“(’)”H;‘/“(M) S K.

Then by Bernstein’s inequality, interpolation, (3.9), and (4.38), for any n > 0,

4/5 1/5
(4.39) ||”(t)||L)2€(R4) S ||PSﬁN(;)”(t)”H;m(R‘t)”Psﬁz\l(;)”(r)nlﬂ(m)

C(n)
2/3.1/5
+ ”PzﬁmN(z)”(t)”Li(R“) S K+ NG)

N(t) /" 4+ooast /' oo, so there exists n(z) \, 0, possibly very slowly, such that (4.39)

implies

(4.40) lu@)ll L2 g4y = O

Then conservation of mass (1.3) implies u = 0. O
For the case [, N(1)72dt = oo, N(t) > 1, we begin by proving u € L?L3(R x R*).

This is the endpoint of [35]’s proposition 3.1. Observe that this bound breaks the scaling in

(1.5) since L3 scales like H2/3(R*). The proof utilizes Duhamel’s formula, but not the double

Duhamel argument. The long time Strichartz estimates are utilized to estimate error terms.

The reader may find it helpful to assume u, = 0 on a first reading of Theorem 4.3, since u,
will be treated as an error term.

THEOREM 4.3. — If u(t) is an almost periodic solution to (1.1) satisfying N(t) > 1 on R,
then

(4.41) (Dl oo 3 mxrty < 0°-

Proof. — Partition R into intervals /; such that on each interval

(4.42) N(t)™2dt = 2740,
I;
where (since N(t) > 1) jo(n) satisfies
(4.43) / |Vu(t, x)|*dx +/ lu(t, x)|*dx < 1.
[x—x(1)|>272/0 |x—x(£)|=272/0

(3.9) implies that such a jo(n) > 0 exists. Then decompose u = u; + ua, u; = P> jyu.
Theorem 4.1 and (3.9) imply that for each I;,

(4.44) ||”2||Sl(11><R4) <1, and ||”2||L;>°1'11(I,xk4) =,
so by interpolation,

1/2 1/2 1/2
(4.45) V242l 0873 ey S 02 1020172 ety S 1%
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Also, by Bernstein’s inequality and the Sobolev embedding theorem

(4.46) ””1”L°°L3(I,><R4) ~ ||u||L°°H2/3(11><R4) S 27003,

Now let /; ™ be a new partition of R such that each interval I; ® = [ay, b;] is the union of|
two adjacent intervals in the previous partition, /;. For any ¢ € [42L “szl by,

t
(4.47) u(t) = "Wy (q)) —i / DA F(u(t))d.
aj
Decompose
(4.48) F(u) = F(u1) + O(ujuz) + O(uru3) + F(uy).

By direct computation and the Sobolev embedding theorem,
“VF(MZ)||L2L4/3(I(I)XR4) ~ ||Vu2||L4L8/3(1(1) R%) “ u2||L?OL)2c(11(l)XR4))
(4.49) S ||M2||51(I;I>XR4) IluzllL?oHI(,;nXm)

IS 712||u2||31(1[<1)xR4)~
Now by (2.10) and (2.15),

t
@soy 0 [ O Pty S27 0

Also by the dispersive estimate (2.18),

t—272
@s1) | / I8 PGy (0)d e ey
aj

2
S N —dl<2’||M1||

LOOL3(I(1)XR4)[ 2—2j 12
Finally split O(u3u, + uju3) into two pieces. Let x € C$°(C), x(x) = 1 for |x| < 3 and
x(x) = 0on |x| > 4. Then by (4.50), (4.51), and the fact that |u;| < 4|u;| on the support
of x(32),
1

LPL3 IV xRrYy

t
@52 17 [ ) 0tdus + )l S 20y 0
aj

Meanwhile, on the support of (1 — X)(Z—f), luq| < §|u2|, so by (4.45) and (3.9),

Uz
”V(l - X(u_l))o(u%u2 + ulu%)dr”L%LiB(II(I)XR“)

(4.53) S IVl oo 2 0 rey + ||Vu2||L<’>0L§(Il(1>xR4))||u2||i?L§c(1XR4)

S 77||u2||$1(11(1)xR4)~

Now let

t t
4.54) u{P@) = —i/ ei(t_’)AF(ul)dt—i/ ei(’_’)Ax(?)O(u%uz—i—ulu%)dr
aj

aj

+ez(t aI)AP X ( x(al))u( )
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where x(a;) refers to the x(¢) in (3.9). Then by the dispersive estimate (2.18), Holder’s

inequality, and the fact that N(¢) > 1, which implies |/ 1(1)| > 2~4om+1,

(4.55)
”ei(t_al)APZj()X(x — x(al)

2—2jo

x(ar)

Yu(an || Leo ) <28]°||X( i

)u(a1)||L LR4) < < 2%,

Fort € [ay, #] replace a; with b; in (4.54). Therefore, by (4.50), (4.51), (4.52), and the
Fourier support of (4.55), for any j,

(4.56) 1P ()l Loy S 27 (1 + | ).

LELI IV xR%)

Then

t t
.57 ulP@) = —i/ IR F(uy)dr — i/ D81 = 1 (2)) 0Py + uud)de
a; Ui

a
i(t—a;)A t(t—a )A ( l)
" u(ay) — D8P, (ool Siorz @)
Then by Strichartz estimates, (3.9), (4.49), and (4.53),
(4.58) 1457 U1 0wty 1+ 12l g1 g0 ey < 71+ 20(50p 21151 1 e
which, using Theorem 4.1 in the last inequality, implies
1
(4.59) (5P 112”1 10 cay) 5.1+ 2151 1 ey S -
Also by (3.9), N(t) > 1, (4.56), (4.58), and Bernstein’s inequality,
1
| P< ot D113 3 sy
S Y POl | Peun Ol 2@ | Pt (02 sy

k1=<ka<ksz=<jo(n)

(4.60) S+ IIullleLs(,<nXR4))

x oy 2227V P un (0] 2. ey [V Pas (O] 2.y
ki1<ka<k3<jo(n)

3 3
S ||”||LooH1(RxR4)|| 1||L?OL)3((II(1>XR4) S ||“1||L?QL)3((II(1>>(R4)'

Therefore by (4.46), (4.54), and (4.60),

1 —j .
@6 Ol o 2.0 mty S 2P F Ol o g0y 27O,

Now for any partition / l(” ) of Rlet l("+l) = [al("H), bl("H)] be the union of two adjacent
intervals in / l("). By induction,

(4.62) / N(t)"2dt = 2~4in+1 = pnlp=4io,
I(n+1)
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sosince N(¢) > 1, |1 l("+1)| > 2~%n+1, By induction suppose that for each n there exists some
nn < 71 such that

Sp 15" o 3, sy S 270,
(4.63) ! .
Slllp [y ||$1(11(")XR4) S M-
(n+1) (n+1)
For 1 € [ p" D] et
t
u" @) = —i[ A F M) dr
a;n+l)
N T )2, (1) )y, (112
(4.64) —if(nﬂ)e‘(’_’) X)) O(y™) (uy”) + (uy")(wy ") )d e
a, ul
(n+1)
(1 — (n+l))A . X —x(al ) (n+1)
+€l 4 PZjn+1 (X( Z_jn+1/4 )M(Cll ))7
and
t
ul () = —i/ Ay YR
a;n+l)
T oA ug” 2, (1) )y (2
(4.65) il (1= x (DO ")* (up") + (uy )y ") )d e
a, Ml
(n+1)
i(t—a" T A (1) _ x—xle ") n+1)
+ ' (u(a,”"") = Psj, ., (X(W)”(al ).
(n+1) (n+1)
Fort € [a" ™), %20 replace " with b+ in (4.64) and (4.65). Then by (4.61)
and (4.63),
(4.66) 5111p [l ||L<I>OL§C(I](n+l)XR4) < p7dol3,

Next, by (3.9) and Holder’s inequality, there exists n, < 71, n, \y 0 asn " oo, such that

X — x(al(n+1))

(n+1)
(4.67) lheCay™ 7 = Peju (=73

@ N g1 gy < -
Then by (4.49), (4.53), (4.58), and (4.67),

1
(4.68) (sup 12" 170410 cgay) S M+ 0(0P 115 g1 70 )
so by induction, [[u{ o0 mxrey N Oasn /7 oo. Therefore ul™ (1) converges to u(r)

uniformly in H!(R*), so (4.66) implies a uniform bound on ||u ()| L3®RY): O

5. Modified Soliton

Next, prove that in an average sense, the L2 norm of an almost periodic solution satisfying
Joe N()"2dt = oo diverges logarithmically.
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LEMMA 5.1. — Suppose ¢ € CS°(R*), is a positive, radial, decreasing function,

Lif|x[ =1

(5.1) v(x) = 0 iflx| > 2.

Suppose [; N(t)~2dt = K. Then forany 1 < R < K'/3,
N —
62 [ [ s Po M= 0Vu 0 + ut.0dxdyde £ KA+ In(R),

REMARK. — By (1.9) this estimate is sharp for almost periodic solutions.

Proof. — The proof uses the double Duhamel method. This method was introduced in
[13] to study the defocusing, energy-critical Schrodinger initial value problem when d = 3.
There, as here, it was used in conjunction with a frequency localized interaction Morawetz
estimate. See also [31].

By simple linear algebra, if A+ B = A’ + B/,

(5.3) (A+ B, A"+ B') < |AP> + 14> + (B, B').
Suppose I = [t—, t+] and u solves the equation
(5.4) (id; + AMu = G(t) + F(¢r).
Then by (2.14), forany ¢ € I,
t t
ut) = Ay (1) —i / e CSIAG(s_)ds_ — i / e CSIAE (s )ds_

— r—

(5.5

t t
=TIy (1) — / S DAG (s )dsy — i / TSR (s )dsy.
4 ty

Then if X is some Hilbert space, such as L?(R*) or a weighted L?(R*) space, (5.3) implies
t
(5.6) [u@®lz < 1’ 2u@lz + 1P u@)|i + | f ! IRG (s )ds-|§
1—

o Loty .
+ [ e S HAG (s )dsy |3 + | [ / (e CSIAF(s_), e DA F (s ) yds_dsy|.
4 t—Jt

Let P, = P.g-1/4 and let P, = 1 — Py,. Also, for a fixed x € R* define the inner product

X —
(57) (fghs = [ W S0,
Let 14(7) be the indicator function of a set A C R. For fixed ¢ € [r_, 4] let

G(r) =P O(un®) (D) + 1, | g2 (D) PhF(up)(r) + l[t_ﬁ,;](T)PhF(“h)(f)
5.8 e .
G Tl e G @OPFR) @)+ 1y 1y (0) PrF (up) (),

N2’ N(1)2

and let
(5.9 F(r) = l[t_ R,

_#]
N@Z—N1)?2

(0) P F (up)(7) + 1 1) P F (up) ().

1 R2
LEs N2 T a2
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By Holder’s inequality, N(z) > 1, Strichartz estimates, (4.15), (4.20), Bernstein’s inequality,
and R < K1/5,

(5.10)
2
/ /W(N(t)(x y)) |:| i(t—t— )Auh([ )(y)|2 :|dydl
1x€R4

S R TR0 s gy + R / TR PLO) (V)72 4 g )

< R2K /2 < Ko/10

t
/ Pl t=s-)A P, O(uluz)(y)ds_
r

< R?|lup(1)1I7 + R?| P, O(uu®) |7

L3(R%) L2LY (xR ~
Identically,
(5.11)
(t)(x y)
/ sup / p (X Z V) iat08y, (1) ()2
I xeRr*

+|/ e =SDA P Ouu?) (y)dsy|?ldydt < RZKY? < KO0,
I+

Next, by the dispersive estimate (2.18) and Holder’s inequality,

(5.12)
/W(MN/ N(z) plt—s— )APhF(uh)(s )ds_| dy
xeR4
R* 1
s N(t)4([t_ B2 (1 - (=52 “F(uh)(s—)”L)lcdS_)z
< N(@)? \ )
Q. 2IRE [y ons 2 IF @) () L ayds—)" S (MAF wn)ll L1 o) ())*
J=0 ~2 N2

Once again, an identical calculation implies
(5.13)

N -
sup [y (M=) f 1058 Py F () (51 )ds 2y S (M F a1 oy (0

4
xER N(t)2

Recalling L? estimates for maximal functions (Theorem 2.2), (5.12) and (5.13) and (4.11),

(5.14) JUUF g7 S [ Tun Ol gt < K.

Finally, by Strichartz estimates and the Sobolev embedding theorem,

t
(515 1 [ IR )55 12
Ny *
! A
+1 e TR P (un) ()72 ey S vz
"~ (1)

ANNALES SCIENTIFIQUES DE I’ECOLE NORMALE SUPERIEURE



162 B. DODSON

Since [; ﬁtﬂd t = K, by (5.6) it only remains to estimate
(5.16)

t—% I+R722 X .
[Fsup [0 [ 8 By ) 500, €A P )5 ) ds-d .
1 t—— t+

xeR4 !

N()2 N()2

Since F(up) € L2LL it suffices to compute the kernel of !¢ =5-)8y (£22)ei(+=DA for g
fixed x. Since ¢ is also fixed, to simplify notation let x = 0, s = s —t and¢ = ¢t — s_. The
kernel of e''4v (%)e’S2 is given by

ilw=y2 W w—z?
et @ W(E)e’ s duw.

(5.17) K(S,l;y,Z)Zﬁ

sy+zt | (s+1)1/?
s+t (t5)172

Now let g(s,t,y,z) = . After making a change of variables in w,

1/2
/e_i|w_q(s,t,y,z)|21/,(ﬂ R %)dy.

.1 K(s,t; =
(5 8) | (S,l‘,y,z)| R (S+t)l/2

(s +1)?

When R - (istgl/;z < 1, Hélder’s inequality implies that |K(s,?; y,z)| < ﬁ For Ry =
1/2
. (gﬁ //2 > 1, stationary phase calculations imply that for y € C§°, y = 1 on |x| < I, for
any N,
(5.19)
ilw—al? w iwW—=9q) V. n w2 w
[ 1w = g du = [((EZD Y 1w - gu .
Ro lw—ql Ro

Taking N = 5 and integrating by parts,

1 1 1
(5.20) K(s.1:%.2)] < —/ Ly L
(t+9)2 Jiy>1 IyP® (t +5)?

Therefore,
(5.21)
/ ] o | o (TP (up)(5-). € TR Py F (up) (54)) s ds
NOZITS N0 TN ST w02
< / VRO I F Gl ds_ds
~ 2 2 _ 2 Ly Ly

N(lt)2<t_s_<N1fz>2 N(lt)2<s+_t<let)2 (54 = 5-)
S S o I )l gadss)

0<j <k<Iny(R2) =S+~ N2

x ( L NE@ )Ly geyds—) S R M F wn)l g ey ().

T N2
Therefore, (5.10), (5.11), (5.12), (5.13), (5.14), (5.15), and (5.21) imply
N@)(x —

(522) [sue [0 EED )Py £ (1 4+ R,

Now since [[|Vu(r, x)|* + |u(t, x)|*dx] < ||W||fq1 + [|W]

4
LY

623) [ [ oG 0.3 U0 + ) *ldxdyds S (R + DK
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Now notice that by the Sobolev embedding theorem and Theorem 4.1,

(5.24)

2 2 4/3 2/3
u7ll 372 6 (rxmay S WVUT 3721205 (' S IVl 27 4 gy 140 1 oo 4 cremsy S,

so by Holder’s inequality and N(z) > 1,

629 [ [[ e E = vu 08 + .o axay

RIO
2 2 4 1/3 10/3 g-1/3
5 ”ul||L?L}(2(IXR4)[”vu”L?oL)z((IXR“) + ”u”LlooLi(IXR“)](/I Wdt) 5 R K .
When R < K'/°,(5.2) holds and the proof of Lemma 5.1 is complete. O
Now consider the case when N(¢) = 1.

THEOREM 5.2 (No nonzero modified solitons). — Suppose u is an almost periodic solution
to (1.1) with N(t) = 1 on R and ”“”L;’OH%(RxR‘*) < ||VW||L%(R4). Thenu = 0.

Proof. — The first step is to prove that any almost periodic solution to (1.1) lying below
the ground state with N(¢) = 1 lies in L?(R*). To prove such a fact necessarily demands a
nonlinear estimate, in this case an interaction Morawetz estimate. This interaction Morawetz
estimate is in the same vein as the Morawetz estimate in [15] for the focusing, mass-critical
problem, and provides a logarithmic improvement over (5.2).

Let ¢ € C5°(R) be a radial function satisfying (5.1) and let J be a large number such that
el < K1 Then let

1l 2, X 2,
d(x—y) 7/; E/};41//(E—S)I// (E_S)deR

(5.26) 3
_ b 2 XY 2
= J/l 41/[ ( )Y (s)dsdR.

Notice that ¥ (s) = 0 for |s| > 2 implies ¢(x — y) is supported on |x — y| < 4e” and that
l¢||Loo is uniformly bounded. Next, estimate the derivatives of ¢.

LEMMA 5.3. — Fork =1,2,3,
11
5.27 % <——.
(527) V40 S J i
Proof of the lemma. — The proof follows by direct computation. Since ¥ (s) = 0 when
s| = 2,

J
2 (1 x , X 5, (F—9)
Vo= [ v 9w G- 0w K s
(5.28) - X x ) -
_Z S ot —ouls) RS <
=7 Lo [ G v G asr S o
Similar computations prove (5.27) for k = 2, 3. O
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Now let M(¢) be the interaction Morawetz potential
(5.29) M) = / e, )P (x — y)(x — y) - Im[aVu] ¢, x)dxdy.
By Holder’s inequality, the Sobolev embedding theorem, and Young’s inequality,

(5.30) Sup IMO]S 107 00 18 (1 ity IV 50 12 (xmty 1B = 9) (6 = Pl zaasy S et

Integrating by parts,
630 M0 =2 [ )P - DIVu0 P — .0 ldxdy
(5.32) - 2/Im[ﬁ8ju](t, V)b (x — y)Imiad;u] (e, x)dxdy
(53 +2 [ e, ) POk x = 9)x = ), [Re@yidgan (e, )
— Ll 0l dxdy
(5349 ~2 [ Tl )@ — )= )y mldjule, x)dxdy
(539) =3 [ PO 80— = )l 0P dxdy.

(5.33) and (5.34) involves integrating an energy and a mass term. A term of this type may
be estimated by (5.2) and (5.27).

(5.36) /1 (5.33) + (5.34)d1

1
<21 / / / (e, PV )P + . ) ldxdyds
J J1 Jix—y|<ae’ Jix—x(0)|=Cn)

1
+o / / / (e, ) IV 0P + e x)*dxdyds
J Jr Jix—y|<4e? Jix—x(0)|<C(n)

By (3.9) the energy of u is small outside of |x — x(¢)] = C(n), so

|
< ¢ sup/ u(t, y)[2dydt) + —// u(z, x)[2dxdt
J I yeR4 J|x—y|<4e’ S J1 Jix—x@)|<se’

1
<SnK + 7 [[ lu(t, x)|*dxdt.
I J|x—x(t)|<8e’

This action fixes the mass of the main part of u in place, in preparation for a bootstrap type
argument to prove u = 0.

Observe that if (5.37) provides a bound on [; /,

(5.37)

lu(t, x)|2dxdt then by (5.2),

x—x(t)|<4e’

1
(5.38) f/ u(t,x)|*dxdt < K =f dr.
1 |x,x(,)|5ej/z| | 1 N(@)?

Feeding (5.38) back into (5.37) then implies that the left hand side of (5.38) « K, which
by (3.9 and Bernstein’s inequality forces u = 0. Of course, such an argument necessitates
estimating (5.31), (5.32), and (5.35).
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To estimate (5.35), (5.27) implies

(5 39) [(5 35)dt < _/ﬂ |u(t x)|2 2|u(f,y)|2dxdyd[.
|x—yl<de’ |x — y|
S _/[/ | Prttscoy (2, )12 2|uh(t y)|2dxdydt
d |x—y|<4e’ |x |

(5.40) 1 / // I Pattzcon € 9P |2|uh(r,y)|2dxdydt
[x—y|<4e

w5 [ Pt Pdsdyan,
|x—y|<de’ |x =yl

Once again u is split into a high frequency piece lying in L2, and by (3.9) a piece with small
energy. Now by Bernstein’s inequality and Hardy’s inequality, since N(¢) = 1,

_///l ‘ J|PhU>C(,,)(t x)|2| |2|”h(f,y)|2dxdydt
x—y|<4de

(5.41) <5/ e 01 ey [ - |2|uh(t ) Pdy)di
1 1
S 701V i [ 3t = 7 207
7 e Vo = T

REMARK. — The calculation in (5.41) includes N(¢) in the second to last step, in prepa-
ration for the next section, which considers a variable N(z).

Next, by Holder’s inequality and Young’s inequality,

(5. 42)
anll | Pt et (6,90 ——lup (e, y)Pdxdyds
Ix —yl<4e’ lx =yl
sy X 1P Patzeg 4 ) Plunt, ) Py
2/ <de’ 2/ shyls2/H
: / | P<y Putt e (6 ) Phun(t, ) P vdyds
2 <de’ 2J <|x—y|<2/t
1 o
S5 / Qo2 N Pacj Prtt e (D117 2 sy (UP / lun (1, x)*dx)dt
1 F X y Jix—y|<de

1 S or
_ 2 : —2j~10j/3 . 2 2
+ J 2 2 ”PS—] Phufc(n)“L%Li(IXR“) ”uh ||L?OL§C(IXR4)

1<2/ <4e’/

o 2j 2 2
+ Jzoz 1 P<enttnl2 4 gty 140 17 0 15 1 ety
J=
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Now for any fixed ¢, by Bernstein’s inequality and rearranging the order of summation,
Y 2 Posj Pu(®) 7
J
SO 2Py Pecu ()l 2]l Py P<cnyu(®) 2
J —Jj<kizkz
SY. D 2HHTRENR Py Pouu(d)ll 2]l Py Pecapu (D 2)

J —Jj<ki<kz

S Y TRV P, Pecpu(d) 121V Piy Pecyu (@2 S 0.
k1<k>

(5.43)

Therefore, by (5.2),

1 .
Gan 5 [0 1Pt 2e 01 o0 / un(t, )Pdx)dr S K.
J

[x—=y|<de

By (4.41), Bernstein’s inequality, (5.2), the long time Strichartz estimates of Theorem 4.1,
Py = P, g—1/4, Holder’s inequality, and Young’s inequality,

1 o .
(545) 7 Z 2 2]2101/3”1)5*./' Phufc(”)”IZJ?Li(IXR“)”uh”i?"L;’é(IxR“)

1<2/ <4e’
<1 Y sk K
~J - ~J
1<2/ <4e’
Also since N(t) = 1 andu € L®L%,
5.46 ! 22| P 2 2 < K
( . ) 7 Z || 50(’7)uh”L%L§‘C(1xR4)”uh”Lt"oLi(IxR“) ~ 7

J=<0
Finally, by (4.41), Theorem 4.1, and the Sobolev embedding theorem,

(5.47) ||”12”L?L3(IXR4) ~ ||V”l||L2L4(1xR4)||ul||L°°L (IXR%) S L

so by Holder’s inequality in space and time

(5.48) / // (1 9) P —— s (1, ) Pdxdydr
|x—y|<de’ lx =yl

1/2 2J 2
S KPP Tl L3 rrey 17

2J 1/2
L°°L3(1><R4)~ K

Therefore, by (5.41), (5.44), (5.45), (5.46), and (5.48),

5.49 535dt<— 2K 4+ 2T K12,
(549) [ 391 < s ik e

Now take (5.32), which is removed with a Galilean transformation. Decompose
(5.50) b —y) = / 5 | VG 9Ge — s
; V=7 ) R R R :
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For each R, s, t there exists a £(R, s, t) such that
(5.51) / 1//2(% — 5)Im[eixERo5:0y Vel X E RS0y (1 x)d x

= /S(R,s,t)hp(% —s)u(t, x)|dx +/Im[ﬁVu](l,x)dx = 0.
Moreover, for any fixed s, ¢, the quantity
(5.52) / Y2 (5 =92 (5 = Vut.0) P (. ) = ImEvule,0m(avul . y)dxdy

is invariant under the Galilean transformation u > e **§®:5:0y  Therefore, for each R,
s, t it is possible to choose £(R,s,t) that removes the momentum squared term. Then,
integrating by parts,

/ Y2 (5 = OV ERu(,0) = fu(e. 0)[*)dx
553 = [IV0G =9 @Dt 0)Pdx = [0 = st P ut. 0 Pdx

4 [ PG = 9a0 (G~ 9)d
By (1.19), (1.20), and [lul| oo g1 = (1 =)W 1,
(5.54) lullLagsy < (1= WllLswe):
and by (1.23),
(5.55)
190G = 9Dt P = [y = )R Do, Pfue, ) Pl

X —ix- § X
> IV (5 =9 EE D)2 gy = (U DIV (G = Dl sy 14170
_ 9

X
+ 2SI G = 9l

X
195 = Dl s

o N | O

X iy
+ IV (5 = 9T FEDw) T, o).

Finally, if | % —s| <2 and |% — 5| <2, "] < 4,50
xX—=)

X X y 1
(5.56) [ 19 = 918w g =)y G = 9)Fds £ 5w .
Therefore, by (5.49),

e’ 1 _
(5.57) /1 F/fx/f(xRy)|u(z,x)|2|u(z,y)|2dxdydzaure

1 K 1
< // lu(t, x)|? Sl y)Pdxdydt S ——— + ?K + 2 K2,
1 J|x—y|<8e’ |x—y| J C(ﬂ)
Now by (5.1), for [x — y| < &,

(5.58) / YO = = )ds 2 1,
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SO

(559) [0 =0 —9as 2w D,
and

(5.60) }/1 %w( S y))dR>l//( ,,2y)
In fact for any ¢ > 0,

(5.61) L T T =t 8}

Therefore, combining the fundamental theorem of calculus with (5.30), (5.37), (5.49),
(5.57), and (5.60),

d _
(5.62) e*’ Z/d—M(t)dt 55// lu(t, x)|[*lu(t, y)|*dxdydt
1 at I J|x—y|<el/2

L —nzK—eZJKl/z—l// lu(t, x)|*dxdt.
J c(n)? J J1 Jix—x@)|<se’
Now by concentration compactness (see (3.9)), if u is a nonzero almost periodic solution
to(1.1), then |lu(¢)| .4 is uniformly bounded below forallt € 7, asis flx—x(t)lsc(n) lu(t, x)|*dx.
Therefore, for J large,

(5.63) lu(t, x)|*|u(t, y)|*dxdy

[x—y|<e

> / / (e ) Plult. y)|*dxdy > / (. x)Pdx.
lx—x@)|<te’/2 Jiy—x(t)|<Se’/2 lx—x()|<te’/2

Plugging this into (5.62),

(5.64) 5// lu(t, x)|2dxdt
I Jjx—x(t)|<tel/2

K 1 1
Setl + — +PK + e K2 4 = // lu(t, x)|*dxdr.
J c(n)? JJ1 Jix—x ()] <8e

Repeating this argument,

(5.65) &2 / / lu(t, x)>dxdt
1 Jix—x(0)|<je’/?

K 1 1
<e¥ 4+ o —— 4Pk 4KV — /f lu(t, x)|*dxdt.
J e(n)? J2 Jr |x—x(t)|<128e2/
Taking e/ = K10 by (5.2),

1
(5.66) /[ lu(t, x)?dxdt < n*K + )
lx—x()|<4e’/2 In(K) ¢(n)?
Since n > 0 is arbitrary (5.66) implies that there exists a sequence ¢, € R such that

Ro,n /" 00 and

(5.67) f [u(tn, x)|?dx — 0.
lx=x(t)|<Rp/
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Combining (3.9) with (5.67) implies that u = 0. O

6. Variable N(¢)

The arguments used in the case that N(¢) = 1 may be generalized to any N(¢) satisfying
[e N(©)72dt = 00, N(t) > 1.

Since it is possible to modify the C(#) in (3.9) by a constant, to complete the proof of]
Theorem 1.10 it is enough to consider the case where N(¢) > 1 and
(6.1) limsup N(¢) = oo.

t—>+o0

Otherwise, if N(¢#) ~ 1 for allt € R, or even for all ¢ € [0, 00) or (—o0, 0], we could modify
C(n) by a constant to return to the case N(¢) = 1.

For general N(t) we could naively take
(6.2) M(r) = / u(t, VPGV () (x = y))(x — ) Am[ud;u](t, x)dxdy.
Then since N(¢) is not constant, %M (t) would have the additional term

(x=YN@), |x —yl(x
6.3 t,y)?
I B e
By Holder’s inequality, ||u|| Lo L4 (I xR%) < 1, and Young’s inequality,
N'(1)
N@)>
When N(¢) = 1 this approach certainly worked since then (6.4) = 0, but naively taking N(¢)
would also work when N (¢) is monotone increasing when ¢ > 0 and monotone decreasing
when ¢ < 0, since then by the fundamental theorem of calculus
 N/(t 1 [*®d 1 1
( )dt = ——/ —(——)dt = -.

o N()° 4 Jo dt N(@)* 4
However, for general N(r), the most that (3.10) implies is that (6.4) < %,
is R*K, and therefore cannot be absorbed into the left hand side, which is bounded below
by some §K.

=7 N () it u] (1, x)doxdy.

(6.4) (6.3) < R*

(6.5)

whose integral

Instead, N(¢) is replaced with a N (¢) that satisfies the following conditions:

1. N(t) > 1.

2. IN'(0)] S N(@)3.

3.

1
<
(6.6) /1 N(t)zdt <K,
and

4,

(6.7) /I 'g’ (gi' dt < K.
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This N (¢) is defined inductively, using a procedure very similar to the smoothing algo-
rithm in [15]. The idea is that when N(¢) is increasing for a long period of time, then (6.5)
implies that N(¢) should be left alone, and one should simply take N () = N(z). On the
other hand, when N () is oscillating rapidly, let’s say N(t) = 1 + % cos(t) for example, then
simply taking N (f) = % is well worth the cost of modifying C(n) in (3.9) by a constant, as
was briefly discussed at the beginning of the section.

The algorithm terminates after n(||u|| LA (ka4)) steps. To simplify notation let N, (¢)

denote N, (¢).
DEFINITION 6.1 (Smoothing algorithm). — Let

(68) = ||uh(t)||z;(R4)

No(t)
Ny(2) satisfies conditions one, two, and three.

LEMMA 6.1. — Possibly after modifying No(t) by some function a(t), No(t) — a(t)No(2),

1
(6.9) e<a(t) < -,
€
1. No(t) = 1.
2. [N§(0)] < No(1)*,
and
3.
1
6.10 / ——dt < K.
(6-10) 1 No(1)?

Proof. — Ny(t) 2 1 follows directly from Theorem 4.3. (6.10) holds by (4.11).

To prove |N§ ()| < No(1)3, observe that for 79 € R, for any n > 0, Bernstein’s inequality
implies

(6.11) 1Pyt 8oy Dl oo L3 ey S 1N (1)~
Next, by the Sobolev embedding theorem and integrating by parts,
(6.12)

d
d_(/ |P5”71N(to)uh(t,x)|3dx)
t
= (/ |P§n_1N(t0)uh(t,x)|Re((iAP5,]_1N(,O)uh —+ ipsn_lN(tO)PhF(u))PfN(to)ﬁhdx)
S (/ IV P =1 Ny U (1. 0P| Pay=t gy U (2. %) | dx

+ / |P—p=t Nty U (8. )P Py=1 N o) Pr F () (2, X) | d )
S ||P§)7_1N(l‘0)uh ||Llof!c(RXR4)(||Vu||I%?OL%(RXR4) + ||u||2tooLi(RXR4)) 5 77_1]\[([0)'
Then for ¢ > 0 sufficiently small, for |t — #5] < cnN(to)~2, by (6.11) and (6.12),
(6.13) lun ()3 sy ~ N (i)™
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so for |tg — t1| < cnN(tg) 2,
(6.14) No(to) ~ No(11),
and thus |Nj(1)| < No(7)3, possibly after modifying No(¢) by a(¢) satisfying (6.9). O

Now inductively define N, (¢) to become progressively smoother than Ny (¢) until (6.7) is
satisfied. Partition / into subintervals Ji such that [ T No(t)?dt = c for some ¢ < 1. Call
these the small intervals. Then let

(6.15) No(Jx) =sup{2’/ : j €Z, 2/ <No(t) Vte J}
For ¢ sufficiently small, if J; and Ji4 are adjacent intervals then |NJ(7)| < Ng(7) implies
|Ji| ~ No(Jx)~2, and

No(k)  _ 1
No(Jk+1) A

If #; is the midpoint of some Ji, let N1 () = No(Jx), and otherwise let N (¢) be the linear
interpolation between these midpoints. Then Ny (1) ~ No(r) and [N (1)| < No(2)>, so

(6.16) or 2.

[N{(@)] 1 6
(6.17) / dt < dt ~ up(®)|3sdt < K.
1 Ni(1)3 1 ()2 Ol
DEFINITION 6.2. — We call the interval J upward sloping if N];[(‘;Zi)l) = % downward
L N . NiUg

sloping lf‘Nl(l-;ki)l) = 2, and flat lle(l-;ki)l) =(1

Now if J is a union of small intervals, J = JyU Jj11U---UJjy,,, J is called a valley if J; is
downward sloping, Jj i, is upward sloping, and Jy11, ..., Jj+m—1 are constant intervals. J is

called a peak if J = J; U Jjpq1 U---U Jyypm, Jp is upward sloping, Jj 1, is downward sloping,
and Jy 41, ..., Ji+m—1 are constant intervals.

REMARK. — N (¢) is monotone in between consecutive peaks and valleys. By construc-
tion, it is impossible to have two peaks without a valley in between, or two valleys without a
peak in between.

Now apply the smoothing algorithm. If
(6.18) J=JU---UJiym,

is a valley let Ny(t) = N1(t5) = N1(tj4m) forallt; <t < tjy,,. If 't does not lie in (t7,t;4,)
for some valley J = J;U -+-U Jj4p, let Na(t) = Ni(2).

Likewise construct Ny, +1(¢) using the above algorithm with N;(¢) replaced by Ny, (¢). By
the fundamental theorem of calculus, if N, (?) is monotone on an interval J,

[N (@)
J Nm (Z)S
Next observe from the smoothing algorithm thatif J = J; U---U J;4,, is a valley for Ny (z),

(6.16) implies No(t) = 2N;(¢) fort € Jj4q U---UJj4m—1. Also observe from the smoothing
algorithm that N)(¢) # 0 implies N1(t) = N(t), soif J is a valley for N,(¢), there must

(6.19)

dt < (inf N, (1))~
teJ
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exist some J; C J that was a valley for Ny (¢). Therefore, by (6.19) and the fact that peaks
and valleys must alternate,

(6.20) /Mdt < 2—4/ N Ol 44 o
1 N, +1([) - 1 Nm(l‘)5 ’
and therefore
li
6.21) / Nir @O, 2—4'"/ MOy, 4y,
+1( ) 1 N1 (t)
Also observe that by induction
(6.22) N1(t) < Nmy1(t) < 2" N1 (2).
Now let

623  M() = /f $((x — Y)Nun(0))(x — ), [t y)PImlidyal (1. x)dxdy.

et/ < 4

Since N, (¢) 2 1, by Holder’s inequality, and Young’s inequality, |M(1)| < NoF S €

Combining (6.3) with (5.31)-(5.35),

d
(6.24) —M(t) = 2/ P((x = YINm () [u(t. ) P[Vu (. )|? = |u(e, x)|*]dxdy

(6.25) =2 [[ 6 = 3Nttty enldy e y)dxy
(6.26) 2 [ @p(Cx = 1)) or = ) 0. ) P[Re(@; 7341000
— B ) dxdy
(6.27) —2 [ gl )@ (Cx PN O)) - ) ity v)dxdy
(6.28) 45 [ 1EDPYAG = PN )5 = )l 0 dxdy
(6.29) [ 9= N e 1N e P ey

Observe that by (3.10), Theorem 4.1, (5.26), (6.8), (6.21), Holder’s inequality, Young’s
inequality, and Ny, (t) 2 1,

(6.30)
I INL()]
(6.29)57 / / ute, P = 31 e, 0llue, o)l xdyds
|x yf/\;u(,) m(t)
Nl
< 7 el LG QT
N ()
+7 N2 100 |10
N e PR
S 7 st Sl <sz4>”V“”L>’°L%<1XR“>(/, Nty
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Amd €3J e3J 1/285'I
SoTamtag T 4 4 g12T
~ ;T 7

The other terms may be estimated in the same manner as their counterparts in the previous
section. As in (5.50))-(5.61,

S 4(x — y)Np,
(631) (624)+ (625 2 E/W(%)W(ZW)FW(Ly)|4dxdy
! 1
T Jumyiesgety Temyp 0

n (1)

(6.32) and (6.33) also involve a mass and an energy 1ntegral so by (5.2), (6.8), (6.22), and the
fact that e,j,, >> 1 (the relationship between J and m will be described in more detail later),

/ (6.26) + (6.27)dt
I
|
< — . Vu(t, x)|* + |u(t, dxdydt
(6.32) J//Ix N fx o N(ilu( WPUVu(t, x)1? + [u(t, x)|*ldxdy
1 / / / (e ) PVt )P + [u(e. x))dxdyd
=yl el Jx—x ()< §2

< sup/ " lu(t, y)|>dydt) + — // lu(t,x)|>dxdt
J 1y€R4 [x— y|< 4 [x— x(t)\<

Nm([)
<nK + — /[ lu(t, x)|dxdt.
lx—x()|< 38

Nm(t)

(6.33)

Now, following the analysis in (5.39)-(5.49),

. Z 2dxdyd
(6.34) /// o P |2|u<r,y)| xdyd

< —/// |Phu>c(7})N(t)(t x)| 2|uh(t,y)|2dxdydt
|x— y]< 46" | |

1
/ // | 1Pt WP Jun(t. y)Pdxdyar
lx—yl< & |x — I

1
" 7//[ J |ul(t’x)|2 S |ug (¢, y)|Pdxdyd:.
L =y =3 lx =yl

By Bernstein’s inequality and Hardy’s inequality,

! 1
7/ // , [Prttzemne ()17 Slun(t, y)*dxdydt
LI x—yl=qem |x— |

1
(6.35) <5 fl ||uzc<mN(,>(r)||L2(R4)(sup [ ) Py

xeR*

K
S Temr )y Nt = 7c<n)2
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Also by Holder’s inequality and Young’s inequality,

(6. 36)

s = sl )P dxdyds

x=yI=xw
S —/ Z / P Prit<cn ) (8, X) P lun (2, y) Pdxdydt
2/ <|x—y|<2/+1
'—N (t)
. / el Pa Prtt<eiion () Plup(e, v)Pdxdydi
o 2/ <|x—y|<2/+1
—N (@)
1 .
< — 272 || Ps_; H|1? / t,x)|*dx)dt
<S5 /1 E e prscome Oz [ e 0P )
— > 2Y|P<; Phus O 6 gy lur @112
==J <c(mN(@) L)G((R“) h L;(R“)
No(t) <2/ —Nm(l‘)
f 3 2P Ol g IO g ey
—N()(t)
As in (5.43),
(6.37) Y2 P Pecyniul}a < 7
J

so again by (5.2),
(6.38)

1 Iy

2P P12 ) s | jun(t, )Pdx)de S 1PK.

1 = x y Jx—y|<4de’

Next, since N () is variable, using (4.26) and (6.8) along with Hélder’s inequality,

(6 39)
7 / > 2P PuPcann O g gy 145 (ONF 3 sy 7
Moo <Y <¥ew
N 7/ Z 272]'/3(24]'/3”1') PhP<c(7))N(t)u(t)||L6(R4)) ”uh(t)”L% R4)
o7
Moo <2 <FEH
K
S| Cosup 2YBPu@)l g @e)’dDsup Yo 27 un N7 3 ) S -
I 2/>K—1/4 tel ;)
ZNo®

By (3.9), (6.10), and u € L®L,
(640

<0 1
Z / 22 1P<cmwunON s g 1un Ol 4 eyt S 5 | sz di Sny

2’ <Mo®
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Finally, by (5.47), (5.48), and the fact that N,,,(z) = 1,

1

(6.41) / // oy (6. )P —— uy ¢, x) Pdxdydr < e KV2.
I x—yl<ged lx =yl

Therefore,

6.42 6.34 dt< = 2K 4+ 2/ K12,

(6.42) [ 63w < 5 ()2 +PK te

REMARK. — By (5.27), (6.28) is also bounded by a term of this form.

Choose m so that 24" = ¢197/3_In this case, by (3.9), (6.22) and analysis similar to (5.63),
since e” is large and N(t) > No(t) ~ Ny (1),

Ny
(6.43) / [ v e it 0 axdyar

// lu(t, x)|*>dxdt.
I ()| €117 /12

= 8Nm )

Combining (6.43) with (6.30), (6.31), (6.33), (6.42), sup,c; |M(t)| < e*’, and the funda-
mental theorem of calculus,

5// L, 0 Pdxdt S —// |u(r xX)|dxdt
Ix X(t)|< SNm (1) x x(t)|<

B ) ALy ST L ‘”+£ |
J J J J c(n)?’

(6.44)

and therefore

<§2//| ol 111/12| u(t.x)|*dxdt
x—x(t)|<%

= 8Nm (1)
<—// _, lu(t.x)*dxdt
x— X(t)\<,\§m(,)
* 57 K 1
(6.45) Sk - g €T e K
+ (K + K+ =+ e +Jc(n)2)
<—/[ lu(t, x)|>dxdt
()< 3126 2
36J/11 36]/11 e60J/11 K 1
+ K 4+ 274mg S + + K2 Loetstm B .
n ;o 7 T c?

Choosing J and m such that 24" = ¢'9//3 and ¢!?/ = K,

(6.46) 82//| o o 1 u(t, x)|*dxdt
x—x()|<&

=8Nm@)

2 e 2713 21722, K1
u(t,x)|"dxdt + nK + K+ K + — .
//|x x(’)|<51215}nzé{11 lu(z, x)| n 7 J c(n)?

Now we are ready to complete the proof of Theorem 1.10.
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THEOREM 6.2. — Ifu is an almost periodic solution to (1.1) with fR N(t)"2dt = oo, then
u=0.

Proof. — Suppose u is a nonzero, almost periodic solution to (1.1). Let I be an interval
satisfying

(6.47) /1 N(t)"%dt = K.

(6.46) combined with Lemma 5.1 implies that

_ K 1
6.48 82// £, )| Pdxdt < —— K
(6.48) 1 Jix—x() <4212 futt, ) dxdt 5 In(K) c(n)? X

8Nm (1)

Since n > 0 is arbitrary and [, N (t)72dt = oo, choosing an increasing sequence of]
intervals / whose union makes up R, together with N,,(r) < 27 N(r) and 24" = ¢107/3,

and e'?/ = K, there exists a sequence , € R and a sequence R, /' oo such that
(6.49) N(t,,)Z/ lu(ty, x)|*dx — 0.
lx—x (1)< oLy
However, by (3.9) this implies that |[u(t,)[/ ;1 — 0, and thus by conservation of energy
u=0. O
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