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Abstract. Interaction is the cornerstone of how people perform tasks
and gain insight in visual analytics. However, people’s inherent cogni-
tive biases impact their behavior and decision making including during
their interactive process in visual analytics visual analytic process. Un-
derstanding how bias impacts the visual analytic process, how it can be
measured, and how its negative effects can be mitigated is a complex
problem space. Nonetheless, recent work has begun to approach this
problem by proposing theoretical computational metrics that are ap-
plied to user interaction sequences to measure bias in real-time. In this
paper, we implement and apply these computational metrics in the con-
text of anchoring bias. First, We present the results of a formative study
that examining how the metrics can capture anchoring bias in real-time
during a visual analytic task. Next, We present lessons learned in the
form of considerations for applying the metrics in a visual analytic tool.
Our findings suggest that these computational metrics are a promising
approach for characterizing bias in users’ interactive behaviors.

Keywords: Cognitive bias · Anchoring bias · Visual analytics.

1 Introduction

Human-in-the-loop approaches to data analysis combine complementary strengths
of humans and computers. In visual data analysis, people leverage cognitive and
perceptual systems to think about data by analyzing the views created. However,
cognitive science tells us that people are inherently biased [31]. At times, biases
act as mental shortcuts and help people analyze data quickly [15]. Yet there are
situations where biases may lead to suboptimal analysis processes or decisions.
Anchoring bias, for example, describes the tendency for people to rely too
heavily on initial information when making a decision [12]. In the analytic pro-
cess, this tendency leads people to preferentially weight some information and
neglect other information, often leading to poorly informed decisions.

The impact of bias on decision making can be further compounded in mixed-
initiative visual analytic approaches. In mixed-initiative visual analytics, systems
leverage adaptive computational models that learn from and adjust to user feed-
back [19]. In these systems, models incorporate latent knowledge about the data
or the domain from users through interactions. However, what if mixed-initiative
systems learn biased behaviors or even amplify the users’ biases [13]?
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In cognitive science, bias is typically measured by analyzing decisions people
make during controlled laboratory experiments (e.g., [12, 24, 32]). It is under-
stood that bias can influence perceptual judgments, memory recall, and delib-
erative choice making, each of which are involved in visual analytics [25]. In
the context of data visualization and visual analytics, researchers have begun to
characterize bias from analysis of perceptual judgments [6, 7, 35] or interaction
data [3], where a user’s behavior with an interactive tool is treated as a proxy
for their cognitive state. All of these works, however, rely on post-hoc analysis
of user data. While informative to the ways visualization design can influence
the severity of bias, waiting until a task is completed does not allow for online
intervention by systems should a user’s bias be leading toward an error.

Enabling mixed-initiative systems to adapt to or mitigate cognitive biases
requires an understanding of bias in real-time, during the analysis process [16].
Recently, Wall et al. [36] introduced theoretical metrics to quantify bias from
user interactions in real-time during the process of visual data analysis [36].
The metrics focus on characterizing human bias rather than other forms of bias
that may be present in the analysis process (i.e., bias in analytic models, data
sampling, etc.). The metrics track user interactions with the visualization, data,
and analytic models in the system to create a quantitative representation of
analytic provenance. The Their theoretical formulation of the metrics in [36],
however, relies on assumptions untested on actual user data, leaving many open
questions regarding how to implement and apply the theory in a visual analytic
tool.

In this paper, we explore how to bring the theoretical metrics into practice;
specifically: how to incorporate the interactive bias metrics into a visual
analytic tool. To do so, we implemented the metrics in a tool and conducted
a formative study to examine how bias can be observed in users’ interactions
through the lens of the bias metrics. while simultaneously refining our under-
standing of how to apply the interactive bias metrics in a real scenario. Our goal
is to leverage a well-known and highly studied form of bias (anchoring [12,14]) to
influence participants’ analysis processes in a controlled way, to study the met-
rics under predictably biased behavior patterns. Our analysis suggests anchoring
bias can be observed in users’ interactive behavior through the lens of the bias
metrics. The primary contributions of this paper include (1) guidelines for ap-
plying the bias metrics in visual analytic systems (Section 6), and (2) results of
a formative study showing how the metrics can be used to capture anchoring
bias (Section 5).

2 Related Work

Bias in Cognitive Sciences. Bias is a concept that has been widely studied
in cognitive science. Cognitive bias refers to subconscious errors or inefficien-
cies resulting from the use of heuristics for decision making [20, 21, 31]. There
are dozens of these types of errors that commonly impact decision making, and
specifically data analysis and sensemaking [18]. A prominent example is confir-
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mation bias, the tendency to search for and rely on evidence that confirms an
existing belief [24,38]. In this paper, we focus on anchoring bias, defined earlier.

Framing describes the manner in which a choice is presented to people, includ-
ing the language used, the context provided, and the nature of the information
displayed [32, 33]. For example, a positive framing of a medical treatment risk
would present probability of lives saved; a negative framing presents the same
information in terms of lives lost. Framing has been found to strongly shape
decision making [30]. The way that information or task goals are introduced
to people has a strong impact on how they will conduct their analysis. Thus
in the our formative study, described later, we leverage task framing to induce
anchoring bias in participants. Doing so allows us to evaluate how anchoring
bias manifests in user interaction patterns for a visual data exploration and
classification task.

Bias in Visual Analytics. The topic of bias in visual analytics has recently
garnered increasing attention. Gotz et al. [16] addressed the issue of selection
bias in examining healthcare data. They propose a way to quantify how subsets
of data may be unintentionally biased due to correlated attributes in the filtered
dataset. Because many attributes in high-dimensional datasets are often corre-
lated (e.g., height and weight in certain datasets), analysts may be unaware of
the ways they have unintentionally biased the selection of data they are exam-
ining. Hence, Gotz et al. proposed an approach to quantify and visualize unseen
selection bias. Dimara et al. [7] examined the attraction effect in information vi-
sualization, the phenomenon where a person’s decision between two alternatives
is altered by the introduction of an irrelevant third option. They observed that
this bias is present in the use of data visualizations [7] and can be mitigated
by altering the framing of the task [6]. The attraction effect describes the phe-
nomenon where a person’s decision between two alternatives is altered by the
introduction of an irrelevant third option. By introducing decoy options to visu-
alizations, including tables and scatterplots, the attraction effect was observed
in the visualization domain. They further showed how this effect can be miti-
gated by altering the interaction design for the task [6]. Other recent work has
begun to organize and formalize the types of bias relevant in the visualization
and visual analytic domains [5, 8, 34,37].

Perhaps most similar to our work is Cho et al. [3] who replicated effects of
anchoring bias in a visual analytic tool. In their study, participants were tasked
with predicting protest events by analyzing Twitter data. They elicited anchor-
ing bias in participants through priming, then measured reliance on particular
views in a multi-view system through post-experiment metrics like total pro-
portion of time in each view. We similarly aim to show over-reliance on some
visual information sources, but we will instead quantify the behavioral effects of
anchoring bias through Wall et al.’s bias metrics [36].
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Metric Description Example Behavior

Data Point Coverage
(DPC)

measures how much of the dataset
the user has interacted with

user interacted with only 3
of 100 players

Data Point
Distribution (DPD)

measures how evenly the user is
focusing their interactions across
the dataset

user interacted with some
data points dozens of
times while ignoring others

Attribute Coverage
(AC)

measures the range of an
attribute’s values explored by the
user’s interactions

user interacted with only
players over 84 inches tall,
when height ranges from
67 to 88 inches

Attribute
Distribution (AD)

measures the difference in the
distribution of the user’s
interactions to the distribution of a
particular attribute in the dataset

user interacted with a
uniform sample of data
while distribution of the
attribute follows a normal
curve

Attribute Weight
Coverage (AWC)

measures the range of weights for a
particular attribute explored by
the user’s interactions

user sets weight values
between 0–0.2, ignoring
weight values less than 0
and 0.2–1.0

Attribute Weight
Distribution (AWD)

measures the difference in the
distribution of the user-defined
weights for an attribute to a
baseline of unbiased information
weighting

user weights follow an
exponential distribution,
with higher probability for
low weight values than
high attribute weights

Table 1: Metrics used in this study. Each metric computes a specific behavior
which can be analyzed to detect bias.

3 Bias Metrics

In this section, we review Wall et al.’s [36] bias metrics, which is the emphasis
of the analysis for the present study. The bias metrics utilize user interaction
in a visual analytic tool as input. User interaction is the means by which users
express their intent to the system [26, 28]. User interaction has been shown to
have the power to support steering analytic models [1, 10, 11, 22], inferring a
user’s personality traits [2], reasoning about their analytic methods and strate-
gies [9], and understanding the generation of insights [17]. Thus, interaction can
be thought of as a proxy, although lossy and approximate, for capturing a user’s
cognitive state. While the design of interactive behaviors in visual analytic tools
may not precisely capture a user’s state of mind, it can nonetheless provide
coarse information about a user’s sensemaking process.

We operationally define bias as patterns of interaction that reflect a system-
atic deviation from unbiased behavior consistent with a cognitive bias. The six
bias metrics are computed on logged interaction sequences with visualization
tools in real-time to determine levels of bias with respect to different facets of
the data. Each metric computation results in a value between 0 and 1, where
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0 represents low bias and 1 represents high bias. Over time, we obtain a se-
quence of [0,1] metric values for each facet representing the user’s level of bias
throughout their analytic process. Rather than analyzing the accuracy or ap-
propriateness of a decision after the decision is made, the metrics provide an
interaction-by-interaction bias real-time measurement. of bias based on user in-
teractions. The metrics can ultimately be used by analysts and visualization
designers for creating real-time bias mitigation interventions.

The metrics compute bias with respect to data points, attributes, and attribute
weights within the dataset and visual analytic model. For example, if a user
is examining a dataset of basketball players, the bias metrics are designed to
quantify a user’s focus on specific players (data points), stats about players
like height or free-throw percentage (attributes), and the way that the user
places relative importance of those specs stats in analytic models (attribute
weights). Attribute weights fall in the range [−1, 1] and are used to quantify
the relative importance of each data attribute [22]. The attribute and attribute
weight metrics are computed separately for each attribute in the dataset.

For each concept of data points, attributes, and attribute weights, there are
metrics representing coverage and distribution. Coverage quantifies the propor-
tion of elements that have been interacted with. Distribution, on the other hand,
compares the user’s (potentially repeated) interactions to the underlying distri-
bution of the data. For example, if the user performs many interactions with
only a handful of basketball players, the data point coverage bias value will be
closer to 1. This indicates an incomplete sampling of the data points. Similarly,
if the user focuses mainly on centers, the distribution of their interactions may
significantly differ from the distribution of the player positions in the full dataset;
the computed attribute distribution bias will be higher, indicating a sampling of
the set very dissimilar to the actual properties.

The six metrics are summarized in Table 1 summarizes the bias metrics. Each
metric compares the user’s sequence of interactions to a baseline of “unbiased”
behavior. Our current baseline for unbiased behavior makes a simple assumption
that all data points, attributes, or attribute weights will be interacted with
in a uniform pattern. Hence, in the current formulation, we utilize a uniform
distribution as the baseline for the data point and attribute weight metrics.
We utilize the true underlying distribution of the attributes of the data in the
attribute distribution metrics, assuming unbiased interactions will closely match
the underlying distributions. For the precise formulation of the metrics, see [36].

The initial formulation of the metrics [36] was theoretical and hence relied
on untested assumptions (e.g., about which interactions to compute on). Hence,
In this work, we conduct a formative study to inform the implementation of the
metrics in real visual analytic systems and to demonstrate how the metrics can
be used to quantify instances of anchoring bias.
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4 Methodology

We conducted a formative study to explore the implementation of the bias met-
rics and the ways they capture anchoring bias in real-time through users’ interac-
tive behavior during visual data analysis. The purpose of this study is two-fold:
first, to serve as a formative approach to implementing and applying the bias
metrics, and second, to understand if the bias metrics can serve to character-
ize participants who are exhibiting anchoring bias toward different attributes
of the data. To test the hypothesis that the metrics can capture bias in real-
time, we implemented task framing manipulations to elicit predictably biased
behaviors from participants and examined the ability of the metrics to detect
patterns consistent with anchoring bias. Participants in the study were tasked
with categorizing a dataset of basketball players. Using the visual analytics tool
InterAxis [22], shown in Fig. 1, users were instructed to examine all of the avail-
able data to label 100 anonymized basketball players according to one of five
possible positions. We deliberately encouraged participants to anchor on dif-
ferent data attributes (see Table 2) by randomly assigning them to a framing
conditions, each of which described the five positions using different attributes.

InterAxis. Participants used a scatterplot-based visual analytics tool to cate-
gorize basketball players by their position (Fig. 1). Pilot studies led us to modify
the InterAxis interface from its presentation in [22] and [36] for the present study.
Changes include: the y-axis custom axis options were removed; data point colors
were changed to reflect participants’ labels; options for saving the plot settings
were removed; and experiment control options (e.g., position labels, Continue
button) were added. The data from the pilot was only for testing and feedback
on our protocol and not included in the results.

The primary view in InterAxis is a scatterplot, where each of 100 basketball
players is represented by a circle (Fig. 1A). Hovering on a circle reveals details
about that player (Fig. 1B). Data points can be dragged from the scatterplot
into the bins on either side of the x-axis (Fig. 1C). The system, in response, will
compute a custom axis using a linear dimension reduction technique. The result
is a set of attribute weights that represents the differences between the points in
the bin on the high end of the axis and the bin on the low end of the axis. The
attribute weights are visualized as bars along the axis (Fig. 1D). The bars can
also be interacted with by click and drag to directly manipulate the weights that
make up the custom axis. Participants can read a description of each position
by clicking on the colored circles below the detail panel (Fig. 1E). With one of
the positions selected, the user can then label players as the selected position by
clicking on the points in the scatterplot.

We selected InterAxis due to the system’s highly interactive nature—to en-
courage users to explore and interact with the data, because the bias metrics
ultimately rely on user interactions. InterAxis allows users to browse data points
and attributes, in addition to using an analytic model consisting of weighted at-
tributes to project the data. This allows us to use the full set of bias metrics.
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Fig. 1: A modified version of the system InterAxis [22], the interface used by
participants to complete the task of categorizing basketball players.

Position Size Condition Role Condition

Center (C) Typically the largest
players on the team

Responsible for protecting the basket,
resulting in lots of blocks

Power Forward
(PF)

Typically of
medium-large size and
stature

Typically spends most time near the
basket, resulting in lots of rebounds

Small Forward
(SF)

Typically of medium size
and stature

Typically a strong defender with lots
of steals

Shooting Guard
(SG)

Typically of
small-medium size and
stature

Typically attempts many shots,
especially long-ranged shots (i.e.,
3-pointers)

Point Guard (PG) Usually the smallest and
quickest players

Skilled at passing and dribbling;
primarily responsible for distributing
the ball to other players resulting in
many assists

Table 2: Position descriptions used in the two framing conditions. Size Condition
participants were expected to rely more heavily on size-related attributes (i.e.,
height and weight). Role Condition participants were expected to rely more
heavily on the role-related attributes called out in the descriptions.

Analytic Task & Framing Conditions. Studies of anchoring bias within the
cognitive science community rely on highly controlled experiments to isolate a
cognitive phenomenon. However, in visual data analysis, cognitive processes are
often much more complex than can be captured from such experiments. Pirolli
and Card describe the sensemaking process as a series of iterative tasks involving
searching for information, schematizing, presentation, and so on [27]. Hence we
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sought a task with enough complexity to simulate decision making within a
realistic analysis scenario while maintaining tractable experimental conditions.

There are many tasks associated with performing data analysis in a visual
analytic tool, such as ranking, clustering, or categorizing data [11, 29]. What
bias looks like can be quite different across these tasks; hence, for this study we
narrowed our scope to focus on categorization-based analysis. We found through
pilot studies that categorizing basketball players was a sufficiently challenging
task that led users to interact with the visual analytics tool for approximately
30 minutes. This provided a balance of task complexity and study tractability.

We asked participants Participants were instructed to categorize a set of 100
basketball players by their positions by analyzing all of their stats using the
InterAxis visual analytic tool [22] in Fig. 1. We used a dataset of professional
(NBA) basketball player1 statistics with whose names and team affiliations were
removed. After filtering out less active players (whose statistical attributes were
too small to be informative), we randomly selected 20 players for each of five po-
sitions: Center (C), Power Forward (PF), Small Forward (SF), Shooting Guard
(SG), and Point Guard (PG) for a total of 100 players. Each player had data
for the following stats: 3-Pointers Attempted, 3-Pointers Made, Assists, Blocks,
Field Goals Attempted, Field Goals Made, Free Throws Attempted, Free Throws
Made, Minutes, Personal Fouls, Points, Offensive Rebounds, Steals, Total Re-
bounds, Turnovers, Games Played, Height (Inches), and Weight (Pounds).

Participants were assigned to one of two conditions. The two conditions dif-
fered in the descriptions provided for the five positions (C, PF, SF, SG, and
PG). In the Size condition, the descriptions are based on physical attributes
(Height and Weight) of players. In the Role condition, positions were described
with respect to their typical role on the court and performance statistics. These
descriptions were based on analysis of the distributions of attributes for each
position as well as descriptions of the positions recognized by NBA2. Table 2
shows the text used to describe the positions in each condition, which was avail-
able throughout the task (Fig. 1E). Similar to other experiments utilizing task
framing, we described the positions from two different perspectives (sets of at-
tributes) between the two conditions. Participants in each condition should then
anchor on the attributes used in the framing to which they were assigned. par-
ticipants with ways of describing basketball positions from the perspective of
different attributes of the data. We emphasize that, while the player position
descriptions were framed differently, descriptions of player positions differed in
the language used, participants in both conditions were instructed to utilize all
of the data to make their decisions.

Generally, anchoring bias describes an over-reliance on some information,
often to the neglect of other relevant information about a decision. We oper-
ationally define interaction-based biases as increased interaction with limited
subsets of data, attributes, or attribute weights over a more evenly or uniformly

1 http://stats.nba.com/
2 http://www.nba.com/canada/Basketball_U_Players_and_Posi-Canada_Generic_

Article-18037.html

http://stats.nba.com/
http://www.nba.com/canada/Basketball_U_Players_and_Posi-Canada_Generic_Article-18037.html
http://www.nba.com/canada/Basketball_U_Players_and_Posi-Canada_Generic_Article-18037.html
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distributed pattern of interactions. Anchoring specifically, then, will be observed
if there is biased interactions with information to which the participant has been
cued and is relying on more than other information to make analytic decisions.

Verifying the Effects of Task Framing. To see how the bias metrics quan-
tify anchoring bias, we first analyzed how framing impacted user behaviors. We
compared the frequencies of attributes selected for the axes in the scatterplot
between the two framing conditions. We predicted that participants in the Size
framing condition would select the Height or Weight attributes on the axes more
than participants in the Role framing condition. Likewise, we predicted that par-
ticipants in the Role framing condition would select the other attributes used in
the position descriptions (Blocks, Rebounds, Steals, 3-Pointers, or Assists; see
Table 2) on the axes more than participants in the Size framing condition.

Fig. 2 shows the results of this analysis. Each boxplot shows the number of
times the given attribute was selected on the axis for participants in the Role
condition (left) and the Size condition (right). Larger separation of mean and
quartile values suggests that the framing condition impacted the frequency of in-
teraction with a given attribute, while significantly highly overlapping boxplots
suggest little or no difference for that attribute between the framing conditions.
The boxplots reveal that some attribute axis selections show clear differences
supporting our predictions (outlined in blue)—e.g., Height, Blocks, Offensive Re-
bounds, Steals, and 3-Pointers Attempted), while others exhibit little difference
between conditions (e.g., Weight, Total Rebounds, 3-Pointers Made, and As-
sists). Participants in the Size condition interacted more frequently with Height
than the Role condition participants. And participants in the Role condition in-
teracted more frequently with performance-related attributes (Blocks, Offensive
Rebounds, Steals, 3-Pointers Attempted) than participants in the Size condition.
These results suggest that the participants from the two conditions anchored on
the attributes described in the respective framing conditions, as predicted. These
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Role Size
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Role Size

O-Rebounds
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T-Rebounds
Role Size
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3-Pointers(A)
Role Size

3-Pointers(M)
Role Size

Assists
Role Size

0

2

4

6

8

10

12

# 
Ax

is
 S

el
ec

ti
on

s

Fig. 2: Boxplots of number of attribute interactions via axis manipulation in
InterAxis. The median is indicated by the thick middle line, the inner quartiles
within the box, and the outer quartiles the whisker bars. The green dots indicate
the sum of observations for each participant (rather than outliers). The blue
boxes indicate attributes for which a substantial difference can be seen between
the two conditions.
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results confirm that the Role and Size conditions influenced the overall catego-
rization behaviors in ways consistent with our intended manipulations.

Participants. Ten participants (4 female, mean age 25.5± 2.7 years) were re-
cruited from a large university. All but one participant Nine participants had ex-
perience playing basketball, and six participants watched at least a few (NCAA,
NBA, WNBA) games per season (self-reported). The one participant who never
played basketball watches it regularly. All participants were moderately familiar
with information visualization, based on Likert ratings provided in a background
survey. Participants were randomly assigned to either the Size or Role condition.

Procedure. Participants began with informed consent, completed a demo-
graphic questionnaire, and were shown a 5-minute video describing the task and
demonstrating use of the InterAxis tool to complete the task. The demonstration
used different position descriptions than the study. Participants then completed
the main task, using InterAxis to categorize 100 basketball players into one of five
positions. There were no time limits for completing the task. After completing
the task, participants were administered completed a post-study questionnaire
about their experience and were compensated with a $10 Starbucks gift card.

A moderator observed participants’ interactions during the task. Participants
were encouraged to ask questions as needed regarding the interface, the underly-
ing algorithmic transformations, or the meaning of an attribute. The moderator
did not reveal information about the underlying distribution of positions in the
dataset or additional attributes that might be used to help categorize players.

Timestamped logs of the users’ interactions were automatically recorded, in-
cluding interactions with data points (labeling, hovering to reveal details, and
dragging to axis bins), interactions with axes (selecting a new attribute for an
axis, dragging to adjust attribute weights, and recomputing attribute weights
based on interactions with the bins), and interactions with position descriptions
(clicking to reveal a description and double clicking to de-select a position de-
scription). The interaction logs serve as the input data for the bias metrics.

5 Analysis and Results

We analyzed the user study data with the high-level goal of understanding how to
use the bias metrics to quantify and characterize anchoring bias. The bias metrics
provide us with the ability to characterize a user’s analytic process in real-time by
quantifying aspects of their interaction patterns in which they may be exhibiting
bias. In particular, we analyzed the bias metrics from the granularity of (1) the
sequences of [0, 1] metric values over time, and (2) where in the distribution of
the data user interactions deviated from expected behavior. From the perspective
of the bias metrics, participants subject to anchoring bias could be observed to
have (1) higher [0, 1] bias metric values for the anchored attributes and/or (2)
instances during the analytic process where they interact more heavily with part
of the distribution of the anchored attribute.

To analyze if the metrics can capture bias, we used the collected interaction
logs to simulate the real-time computation of the bias metrics after each user’s
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session to avoid influencing the analysis process3. We note that the bias met-
rics created 74 unique time series per participant (Data Point Coverage + Data
Point Distribution + 18 attributes x {Attribute Coverage, Attribute Distribu-
tion, Attribute Weight Coverage, Attribute Weight Distribution}). In the scope
of this work, we narrow the focus of our discussion to only attributes that were
referenced in the framing of position descriptions (Table 2). We discuss a few
selected examples of findings from the computed bias metrics. Visualizations of
all metrics can be found in the supplemental materials.4

Participants’ accuracy for categorizing players averaged 53% (SD = 18%)
over the mean duration 33.6 minutes (SD = 14 min). Some interactions were fil-
tered out to reduce noise in the bias metric computations. According to Newell’s
time scale of human action [23], deliberate cognitive actions are on the order of
100ms+. Hence, Because hovering in the interface shows a data point’s details,
particularly short hovers were likely not intentional interactions. Thus, hovers
with duration less than 100 ms were removed as likely “incidental” interactions
performed unintentionally while navigating the cursor to a different part of the
interface. Participants performed an average of 1647 interactions (SD = 710),
which filtered down to an average of 791 non-incidental interactions (SD = 300).
For additional discussion on which interactions are included in the bias metric
computations, see the Discussion section.

Metrics over Interaction Sequences. After every interaction, each bias
metric computation results in a value between [0,1] quantifying the level of bias
at that time. Computed over time, the bias metrics produce a sequence of [0, 1]
values quantifying the level of bias throughout the analysis process, which can
be visualized as a time series. One way to test the ways in which bias metrics
capture anchoring is to look for differences in these sequences between the two
conditions. We hypothesized that the attributes explicitly described in each
condition (Height and Weight for the Size condition; Blocks, Rebounds, Steals,
3-Pointers, and Assists for the Role condition) will have higher metric values
in the associated condition than in the other. For example, we expected the
time series of Attribute Distribution values for Assists to be higher for Role
condition participants than the values for Size condition participants. To address
this question evaluate this hypothesis, we visualized the time series for each of
the 74 metrics.

Fig. 3 shows the Attribute Coverage (AC) metric for (A) the Height attribute
and for (B) the Weight attribute. The blue line represents the AC metric time
series averaged over all Role condition participants. The orange line represents
the AC metric time series averaged over all Size condition participants. Fig. 3
shows that Size condition participants tended to have higher peaks (metric values
closer to 1) and longer peaks (over greater spans of time) in the AC bias metric

3 Note that while the ultimate goal of the metrics is online interpretation and mixed-
initiative adaptation, the present work collected full interaction sequences of metrics
for post-hoc analysis, to ensure the metrics can capture bias and to elucidate how
to effectively put the metrics into practice.

4 https://github.com/gtvalab/bias-framing

https://github.com/gtvalab/bias-framing
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Attribute Coverage (Height)

Attribute Coverage (Weight)

A
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Framing Condition

Fig. 3: A visualization of the average Attribute Coverage (AC) metric for the at-
tributes (A) Height and (B) Weight. Size condition participants (orange) tended
to have higher AC bias for both Height and Weight than Role condition partic-
ipants (blue), consistent with our predictions.

for the Height and Weight attributes than Role condition participants, consistent
with the framing condition predictions.

We confirm this trend by comparing bias values averaged over the full interac-
tion sequence for participants in each condition. Size condition participants had
an average value of MSize = 0.2211 (SD = 0.066) for the Height AC metric com-
pared to MRole = 0.0952 (SD = 0.016). Similarly, for the Weight AC metric, the
Size condition participants had an average value of MSize = 0.2120 (SD = 0.098)
compared to the Role condition participants MRole = 0.0849 (SD = 0.042).

This evidence supports our hypothesis; however, not all metrics show a dis-
cernible difference in [0, 1] values between the two conditions. One potential
explanation for inconsistent effects is the level of granularity in the analysis.
The bias metric values indicate the degree of bias; however, they do not indicate
the source of the bias. For example, a user focusing on particularly tall players
might have the same metric value as a user focusing mostly on short players.
That is, simply knowing the metric value informs us of a bias; however, the num-
ber itself does not differentiate the source within the data distributions. Next,
we address this by examining the underlying coverage or distribution.

Coverage and Distribution of Bias Metric Values. To compute the metric
values, an intermediate step is to break down the user’s interactions with data



A Formative Study of Interactive Bias Metrics 13

Attribute Weight Distribution - Assists (P1, Role)

Attribute Distribution - Assists (P1, Role)

Data Point Distribution (P1, Role)

D
at

a 
Po

in
t

Q
ua

nt
ile

Q
ua

nt
ile

Time (Interaction #)

C

PF

SF

SG

PG

Value

Value

Value

A

B

C

1

2

21

1

2

Fig. 4: Visualizations of three of the bias metrics for a Role condition participant:
(A) the DPD metric, (B) the AD metric for Assists, and (C) the AWD metric for
Assists. While labeling PGs (blue boxes), (A) the participant showed more bias
toward PGs than while labeling other positions (SF; green). (B) The participant
also showed greater bias toward the high end of the distribution for Assists while
labeling PGs than other positions (C; purple), and (C) weighted Assists more
heavily while labeling PGs than while labeling other positions (PF; red).

points, attributes, and attribute weights into quantiles and distributions to see
how they deviate from unbiased interactive behavior. One way to show the fram-
ing effects on user interaction patterns is to compare the metrics broken down
into components of coverage and distribution rather than just summative [0, 1]
values. In this analysis we visualized the breakdown of coverage and distribution
metrics using a heatmap. Note that because the bias metrics are computed inde-
pendently for each participant, the color scale used to shade the cells is likewise
normalized for each participant. The scales are defined in each plot.

Fig. 4 illustrates shows what the metrics Data Point Distribution (DPD), At-
tribute Distribution (AD) for Assists, and Attribute Weight Distribution (AWD)
for Assists look like for one Role condition participant. All of the metrics share
a common x-axis of time, captured as the interaction number. The colored bars
beneath the time represents the type of position being labeled during that time
period (blue = Point Guard, orange = Shooting Guard, green = Small Forward,
red = Power Forward, and purple = Center). The shading in a particular (x, y)
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position represents the count of interactions that fall within the given bin at the
given point in time; darker shades represent a greater number of interactions.

In Fig. 4(A), the y-axis shows a row for each data point to illustrate DPD.
This type of plot can visually indicate the user’s bias toward (interaction with)
particular players based on their interactive behavior during different time peri-
ods. For example, the DPD metric shows more bias toward players who are Point
Guards (PGs) while attempting to label PGs (Fig. 4(A,2)) than while attempting
to label Small Forwards (Fig. 4(A,1)), consistent with correct categorizations.

In Fig. 4(B), the y-axis illustrates the distribution of attribute values (AD)
broken down into four quantiles. The AD metric for Average Assists shows a
stronger bias toward players with a high number of Average Assists while la-
beling PGs (Fig. 4(B,1)) than while labeling Centers (Fig. 4(B,2)), consistent
with Role framing. In Fig. 4(C), the y-axis illustrates the breakdown of at-
tribute weight ranges (AWD) into four quantiles. The AWD metric for Average
Assists indicates a bias toward higher weighting of the attribute while labeling
PGs (Fig. 4(C,1)) than while labeling Power Forwards (Fig. 4(C,2)). The Role
condition PG description is intended to influence participants to anchor on the
Average Assists attribute. Hence, Figures 4(B) and 4(C) visually capture a
user’s anchoring bias toward an attribute.

Fig. 5(A) visually compares Attribute Weight Coverage (AWC) for Height
between two users from different conditions. The position descriptions used in
the Size condition were designed to anchor participants on Height and Weight
attributes. The Size condition participant (top) showed greater coverage of the
range of attribute weights (as shown by the black bars in all four quartiles) and
spent more time with a high, positive weight applied to the Height attribute.
Comparatively, the Role condition participant (bottom) covered less of the range
of possible attribute weights and spent the vast majority of their analysis with
a low weight applied to the Height attribute. We can quantify this difference
using the L metric from recurrence quantification analysis [4]. L gives the aver-
age length of diagonal segments in a recurrence analysis. Applied to the metric
state, larger L values reflect staying in a state longer while smaller L values re-
flect switching more frequently between quartiles. For the Size participant (top),
L = 14.9 indicating more switching, and L = 229.8 for the Role participant (bot-
tom), reflecting a very long time in a single quartile which is seen in Fig. 5(A).
Heatmaps for all metrics and all participants are in the supplemental material.

Similarly, Fig. 5(B) shows how Attribute Distribution for Average Total Re-
bounds compares for one Size condition participant (top) and one Role condition
participant (bottom). Role condition participants were told that Power Forwards
(PF) typically have a high number of Rebounds. While labeling PFs, both the
Role condition participant (4) and the Size condition participant (1) showed in-
teractions with greater focus toward the upper parts of the distribution (Q3 and
Q4). Similarly, both the Role condition participant (3) and the Size condition
participant (2) interacted with lower parts of the distribution (Q1 and Q2) while
labeling other positions. While the Size condition participants were not explicitly
told about the importance of Rebounds for PFs, there is a correlation between
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Fig. 5: (A) Visualization of the AWC metric for Height. The Size condition par-
ticipant (top) showed greater coverage of the range of Height attribute weights
than the Role condition participant (bottom). (B) Visualization of the AD metric
for Total Rebounds. Participants focused more on upper parts of the Rebounds
distribution while labeling PFs (red boxes) than other positions.

the size (Weight) of PFs and Rebounds (r = 0.414, p = 0.069), which could
explain the similar patterns across the two conditions. Looking at the distribu-
tion patterns, we see both participants spent some time in all quartiles for the
AD metrics. For the participant in the Size condition (top), L = 21.2, and for
the Role condition participant (bottom), L = 16.8. The participants had simi-
lar L magnitudes, but the relatively larger value for Size condition participant
indicates less switching between quartiles.

In summary, the task framing impacted which attributes people rely on in
their interactive analysis process. These visualizations collectively demonstrate
the promise that the real-time interaction-based bias metrics can detect anchor-
ing bias toward particular attributes of the data.

6 Applying the Bias Metrics

This study constitutes the first application of Wall et al.’s bias metrics, and
explores how to analyze them to capture a specific type of cognitive bias. Con-
sequently, we identified a number of challenges to consider and extracted sev-
eral lessons learned in moving from theory to implementation in measuring bias
through interactions. Additional sources of variability in user activities arise in
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the real-world analysis process that challenge theoretical assumptions. Imple-
mentation choices made early in the design process may need to adjust or adapt
on the fly to accommodate unforeseen activities by the experimental partici-
pants. In this section, we present guidelines and considerations for integrating
and applying the bias metrics, including a discussion on interaction design for
the bias metrics, which interactions should be included in the bias metric com-
putations, and how to interpret the metrics.

Designing for Measurement v. Usability. Designing a visualization system
often involves understanding potential user needs, including things like ease-of-
use, learnability, or analytic capabilities. These goals each necessitate particular
design decisions. Incorporating interaction-based bias metrics in an interface
likewise entails its own design requirements which may conflict with other goals.
While incorporating bias computation and visualization in an interface has the
potential to promote better analysis behaviors, it ultimately relies on interpreting
user interactions as a meaningful capture of the analytic process. The design
must facilitate sufficient, meaningful, recordable interactions. In other words,
the analysis process must be explicit in the interaction design of the interface.

For example, in the modification of the InterAxis [22] system for the evalua-
tion discussed in the user study methodology section, we debated the interaction
design for labeling basketball players’ positions. A lasso tool could be an effi-
cient way to label players in bulk; however, providing such a tool would make the
interpretation of the aggregate interaction difficult from the perspective of the
bias metrics. Further, participants would be less likely to interact with specific
data points, read their individual attributes, and make a decision.

Given that the bias metrics rely on abundant interaction data, we instead
decided to use single click to label data points and hover to reveal details about
individual data points. This decision came at the expense of a potentially less
frustrating user experience, as echoed by participants after the study. Such trade-
offs must be considered when integrating bias metrics into practical tool design.
When the risk of biased analysis is low or the potential consequences are low,
designers and developers may opt to focus on designing for usability. An impor-
tant question to consider for future research is if the interaction design of an
interface does not organically produce sufficient interaction data to measure, to
what extent is it acceptable to violate user experience to achieve it?

Which Interactions to Compute On. Incidental Interactions: The bias
metrics rely on recording and computing on sequences of user interactions. Just
as we must ensure that a system’s interactions are designed to explicitly capture
as much of the decision making process as possible, we also need a way of knowing
if some of the interactions were unintentional. For example, a user may want
to hover on a particular data point in the scatterplot to get details; however,
due to the particular axis configuration or zoom level, the scatterplot may be
overplotted. Thus, in attempting to perform a single deliberate interaction, the
user might accidentally hover on several other data points along the way. These
“incidental” interactions do not reflect the user’s intent in any way and should
thus ideally be discarded from the bias computations to remove noise. As an
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initial proxy for filtering out noisy incidental interactions, we ignored all hovers
less than 100 ms. Some amount of noise is to be expected when leveraging user
interaction as a proxy for a user’s cognitive state. However, the fidelity of models
can be improved by taking care to ensure, even with rough approximations, that
the interactions computed on reflect a meaningful capture of user intent.

Interaction Windowing: Wall et al.’s [36] prior work presents a formulation
of metrics for characterizing bias based on prior user interactions; however, it
does not inform us when to compute the metrics or how many prior interactions
should be computed on. In this study, we experimented with three different
techniques for scoping the metric computations.

Our first approach was to compute the bias metrics after every interaction
and use the full interaction history for every computation. Next, we tried a
rolling window of the previous n interactions around each current interaction.
The window size n then introduced another variable whose value can lead to
potentially very different results. We experimented with window sizes ranging
from 25 to 100 previous interactions. Lastly, we tried using key decision points,
where the bias metrics could be computed using all of the interactions that
occurred since the last decision point. We computed two variations of this: (1)
using each data point label as a decision point, and (2) using the activation of
a position (Fig. 1E) as a decision point. Generalizing this windowing technique,
however, requires that decision points be known, which may not be the case
depending on the task and interface.

Each of these windowing techniques gives a slightly different perspective on
the user’s bias. For example, using the full interaction history can shed light
on long-standing biases throughout the user’s analytic process, while using a
rolling window can capture more short-lived biases. Alternatively, using only
the interactions between key decision points can be used to characterize bias in
a user’s interactions associated with individual decisions. As we did not know
what strategies people might use, we captured short-lived biases using a rolling
window, size n = 50, computed after each interaction.

Interpreting the Bias Metrics. The bias metrics are formulated such that a
value b ∈ [0, 1] is produced, where 0 indicates no bias and 1 indicates high bias
(e.g., as shown in Fig. 3). While an objective characterization of bias, the value
b itself is not actionable from a user’s perspective. That is, the bias value alone
does not provide sufficient detail to a user to facilitate effective reflection and
correction of their behavior. For example, a user might have a high bias value
for the Height AD metric. This could be due to the user focusing unevenly on
short players, on tall players, or on any part of the distribution.

To draw actionable conclusions from the bias metric values, it is important to
provide additional information to the user, specifically about where in the data
or the distribution the user’s interactions depart from the objective expectation.
In the evaluation results, we showed one potential solution, which visualizes the
coverage and distribution of interactions across data points, attributes, and at-
tribute weights as heatmaps (Figures 4- 5). Combining both the [0,1] bias values
along with the coverage and distribution that comprises the bias value compu-
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tation might be ideal in some situations. For example, the [0,1] bias values could
be used by automated techniques to select the most concerning dimension(s)
in the user’s behavior. Then, using the coverage and distribution information,
systems can visualize the source of bias as the imbalance between the unbiased
baseline behavior and the user’s interactions to encourage user reflection.

7 Limitations and Future Work

Study Limitations. One limitation of the current study was the lack of con-
sideration for visual saliency as a confounding explanation for some interactive
behavior. Because users could change axis configurations, zoom, and pan on
the scatterplot, different emerging clusters of points or outliers might draw the
user’s attention. In future work, we would like to explore redefining the unbi-
ased baselines for the metrics that account for visual saliency. Other factors
can also impact users’ interactive behaviors, including incidental interactions,
task-switching, environmental distractions, and so on. It is of general interest to
improve unbiased baseline models to account for such factors.

We have focused our analysis on an exploration of within-subjects patterns in
the data, toward our goal of within-user, online use of the metrics. The present
data includes, on average, 74 metrics X 791 interactions per participant, in addi-
tion to overall metrics like task accuracy. While ten participants is large enough
for our present formative analysis, it is too few for strong between-subjects sta-
tistical power. Because these metrics are new, we are simultaneously developing
the analyses for the metrics while testing their validity and applicability. Ulti-
mately, our goal is to determine an effective analysis pipeline to facilitate larger
data collection efforts for both within and between subjects analyses.

Generalizing Tasks and Interfaces. In this study, participants were tasked
with categorizing basketball players by position in a visual analytic tool. Our
goal was to study the metrics’ ability to quantify a psychological concept (bias)
in the context of a real-world problem (using a visual analytic system for cate-
gorization). However, the study focused on a single constrained subtask of data
analysis. In reality, data analysis can be much messier with analysts examining
alternative hypotheses and switching between potentially very different subtasks
in diverse analytic interfaces. In future work, we would like to examine how bias
materializes in other types of interfaces and analytic subtasks (e.g., ranking,
clustering, etc.) as well as how these subtasks combine into more complete sense-
making. We would also like to enable handling multiple data sources, which will
challenge the current definitions of the metrics. For example, handling text doc-
uments may be challenging because clicking to open the document constitutes
one interaction but the time spent reading the document without any explicit
interface interactions could be significant. We should identify meaningful ways
to incorporate time on task into the metric computations.

Temporal Interaction Weighting. In the previous section, we discussed the
impact of different windowing techniques for computing the bias metrics. One
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potential improvement on these variations would be to come up with a temporal
weighting scheme, where all interactions are used to compute the bias metrics,
and the interactions are weighted by recency. The most recent interactions would
be weighted more highly than interactions that were performed early in the user’s
analysis process. A rigorous evaluation of windowing and interaction weighting
schemes could inform the way that we account for how current analytic processes
are informed by previous ones.

8 Conclusion

The visualization and visual analytics communities are becoming increasingly
aware that biases, from the way data is collected, modeled, or analyzed, may
negatively impact the process of visual data analysis. Specifically for interac-
tive data exploration, a user’s cognitive biases may play a role in shaping the
analysis process and ultimately the analytic outcome. In this paper, we focused
on implementing and applying real-time bias metrics by studying how anchor-
ing bias materializes in user interactions. We presented the results of a formative
study where participants were assigned to one of two conditions for a categoriza-
tion task using a visual analytic system. We captured interaction logs from their
analyses and used Wall et al.’s bias metrics to characterize the interactions. Com-
paring the two conditions, we found that user interactions interpreted through
bias metrics captured strategies and behaviors reflecting the manipulated an-
choring bias. These encouraging results open the potential for discovering biased
behavior in real-time during the analytic process, which can have broad-reaching
impact on the design and implementation of visual analytic systems.
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