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Pseudo-Rigid-Body Dynamic
Models for Design of Compliant
Members
Movement in compliant mechanisms is achieved, at least in part, via deformable flexible
members, rather than using articulating joints. These flexible members are traditionally
modeled using finite element analysis (FEA)-based models. In this article, an alternative
strategy for modeling compliant cantilever beams is developed with the objectives of reduc-
ing computational expense and providing accuracy with respect to design optimization
solutions. The method involves approximating the response of a flexible beam with an
n-link/m-joint pseudo-rigid-body dynamic model (PRBDM). Traditionally, static pseudo-
rigid-body models (PRBMs) have shown an approximation of compliant elements using
two or three revolute joints (2R/3R-PRBM). In this study, a more general nR-PRBDM
model is developed. The first n resonant frequencies of the PRBDM are matched to exact
or FEA solutions to approximate the response of the compliant system and compared
with existing PRBMs. PRBDMs can be used for co-design studies of flexible structural
members and are capable of modeling large deflections of compliant elements. We demon-
strate PRBDMs that show dynamically accurate response for a random geometry cantilever
beam by matching the steady-state and frequency response, with dynamical response accu-
racies up to 10% using a 5R-PRBDM. [DOI: 10.1115/1.4045602]
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1 Introduction
Many complex engineering systems are composed of multiple

mechanical members to attain the desired functionality and perfor-
mance. Recently, it has been shown that elastic compliance in indi-
vidual members within a system can be exploited to reduce system
complexity [1]. This can be achieved in part by utilizing compliance
to create multifunctional components, which can help reduce the
required number of discrete components. In addition, compliant
mechanisms can help reduce overall volume, improve mechanical
precision, and reduce wear.
Modeling such systems is a challenging task. There are several

methods of varying fidelity to model the compliant members;
some of the well-known methods include: finite element analysis
(FEA)-based models, lumped-parameter models, and pseudo rigid
body models (PRBMs) [1]. Each of these methods has been
shown to have individual strengths and weaknesses. Since many
compliant structures undergo large deflection, techniques that
approximate the performance of the compliant structure well for
large deflection are desirable. PRBMs approximate the performance
of a compliant member by modeling them as a series of rigid bodies
linked to each other using torsional spring joints. PRBMs have been
shown to model properties such as bistability/tristability [2,3],
dynamic behaviors [4,5], and pose workspace [6].
Pseudo-rigid-body dynamic models (PRBDMs) are a variation of

PRBMs, where the dynamic response of the model is matched to the
expected response from the complaint system. The matching of
system response can be performed using several metrics. Some of
the existing approaches have utilized the deflection of a compliant
member (e.g., a cantilever beam) under constant structural loads.
Most initial studies explored the spring stiffness and the position
of a single revolute joint (1R-PRBM) to approximate the dynamics
[1]. The 1R-PRBM uses a characteristic pivot along the beam, used

to approximate the response of any compliant member. Subsequent
studies have explored more accurate approximation of the compli-
ant members that undergo larger deflection levels using two revo-
lute joint (2R) [7] and 3R-PRBM models [8]. These models
focused on mapping the deflection of a compliant member accu-
rately. Most PRBMs are load-dependent, where the spring stiffness
and joint position depend on the value and type of load applied.
Subsequent efforts have been made to make PRBMs independent
of loads [9], but these models do not account accurately for
dynamic response. This is undesirable for a general model approx-
imation. A survey of multiple PRBMs is provided in Ref. [10].
A comparison of the lumped-parameter model against the FEA

results for compliant members was performed previously, and it
was discovered that the lumped model was more accurate in
approximating deflection, whereas the FEA model was more effec-
tive at modeling resonant frequencies [11]. This trade-off is further
investigated in this study, and results demonstrate that the PRBDMs
have a more accurate dynamical response. Specifically, accuracy
improvement is shown with respect to both frequency response
and beam tip deflection.
One type of co-design is a class of dynamic system design prob-

lems and solution methods of growing importance that aims to
produce system-optimal designs by considering both physical and
control system design decisions in an integrated manner [12–14].
To confusion with how the term “co-design” is used in other con-
texts, in this article the more specific term control co-design
(CCD) is used to refer to integrated physical and control system
design. Successful application of CCD methods requires the crea-
tion of low- to medium-fidelity models that predict the effect of
changes both to physical and control system design decisions.
Medium-fidelity models that do not depend on computationally
expensive steps (e.g., re-meshing) are very desirable for CCD appli-
cations, such as compliant mechanisms and intelligent structures.
In this study, a method of modeling a non-uniform compliant

cantilever beam using nR-link PRBDMs is introduced. The objec-
tive of the realized PRBDM is to have a similar dynamical response
as the original beam. The dynamical response of a system is consid-
ered similar if the steady-state and frequency response of a system is
similar [15]. The PRBDM parameters are obtained by minimizing
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the difference in natural resonance frequency (i.e., aim to achieve
identical frequency response). Quantitative comparison of
mapping strategies is based on candidate beams whose specifica-
tions are generated randomly, and where the first n eigenvalues
are approximated using various methods. These approximated
eigenvalues are compared against “truth” values obtained for test
beams using an FEA-based eigen analysis with a high-resolution
mesh. The natural frequency for this study is obtained using
COMSOL [16] eigenvalue analysis, and the eigenvalue of the
PRBDM equation is matched using an optimization scheme to
find the system parameters that minimize the difference in the
eigenvalues of the two systems. Alternate methods to obtain the res-
onant frequencies include the use of analytical [17] and machine
learning methods. A PRBDM comparison to analytical solutions
for a uniform beam is provided in the Supplemental Materials on
the ASME Digital Collection.
After obtaining truth values for dynamic response, the PRDBM

model parameters are optimized for two objective functions—one
for matching natural resonance frequency and the other for match-
ing deflection under structural loads (steady-state response)—using
a multi-objective optimizer. The obtained results then are used to
find a good metric to use to obtain dynamically accurate PRBDMs.
The study concludes with a strategy to obtain PRBDMs that can

approximate dynamical response of a compliant beam, with the
accuracy of the model dependent upon the number of links
chosen by the user. Models that use fewer links are dynamically
less accurate, but are much more computationally efficient. Such
PRBDMs will support engineers in making effective trade-offs
between system accuracy and computation effort, making them
good candidates for CCD studies. Such studies would involve the
solution of a CCD optimization problem, while increasing the
number of links (and therefore model fidelity and computational
expense). Investigating the effectiveness of various PRBDM
mapping strategies directly in the context of CCD is a topic of
ongoing work and is outside the scope of this article that focuses
on introduction of an initial comparison of new PRBDM mapping
strategies for more general compliant beams.
These models will be used for CCD of dynamical systems that

utilize compliant members to reduce physical system complexity
[5]. Strain-actuated solar arrays [18,19], multifunctional structures
for attitude control [20], aeroelastic airfoil design [21], and wind
turbine design are some example applications where high-strain
compliant members could be used to increase system reliability
and performance and reduce system cost and wear, and the
models presented this article could support effective CCD optimiza-
tion of these systems. Most of the systems above can be modeled as
compliant cantilever beams. Hence, the PRBDM development in
this article focuses primarily on cantilever beams. The benefits of
a PRBDM over conventional FEA-based models is that during
the process of CCD optimization, a new model will not need to
be re-meshed, which is the most significant bottleneck for large
problems of this class. The most important requirement for such
PRBDMs for CCD optimization is to have the same dynamical
response as an FEA-based model, such that the optimization solu-
tions of both FEA (expensive) and PRBDM (inexpensive) strategies
are consistent.
This paper is organized into four main sections. In Sec. 2, the

PRBDM and key system performance metrics that will be used to
find the design parameters are introduced. Section 3 then describes
the methods used to find the best spring stiffness and joint lengths to
fit the PRBDM to a “truth” model. Additionally, methods such as
scaling and other techniques used to reduce the complexity of the
problem are described. Next, the PRDBM model is optimized
using an eigenvalue-matching objective, and obtained models are
presented. Finally, a multi-objective optimization is performed to
find the design parameters for the PRBDM. The optimization is per-
formed according to two objectives: (1) eigenvalue mapping and (2)
matching beam tip deflection under structural load. This yields a
PRBDM that can be compared with existing PRBMs [22,23].
These obtained models are then compared for their accuracy

based on the dynamical response of “truth” models (FEA solutions
in the main case studies, analytical solutions for the uniform beam
in the Supplemental Materials on the ASME Digital Collection).
The obtained Pareto front is discussed for a candidate beam with
spatially varying properties.

2 Problem Formulation
PRBDM method accuracy depends on obtaining appropriate

values for spring stiffness, the number of joints, and the distance
between joints. For design purposes, these model parameters must
be estimated based on independent physical design variables, such
as geometric parameters. The dynamical equations for an
nR-PRBDM are then formulated. The cantilever beam, which is
constrained to move in a 2D plane, can be approximated as an
n-revolute joint rigid multi-body arm, as depicted in Fig. 1.
This study quantitatively compares several mapping strategies to
determine the choice of spring stiffness and node distance to
best match the eigenvalues, based on geometric design parame-
ters. Here, it is assumed that the panels have a maximum limit
of 1 m for length and width, while the thickness was limited to
a minimum of 10 mm. This process is summarized in Fig. 2.
The top row of boxes are inputs to the method, the bottom left
boxes indicate the prepossessing and scaling employed to
improve the computational performance, the bottom center box
is the optimization explained in Sec. 2.3, and bottom right is
the PRBDM obtained.

2.1 Generating Random Candidates. The mapping strate-
gies are tested by applying them to a cantilever beam with spatially
varying properties based on randomly generated geometric design
parameters. The candidate beams are generated by first declaring
the number of sections in the panel, denoted as an integer p. The
generation steps include:

(1) Choose p random numbers between 0 and 1, order these in
ascending order, and append 0 and 1 to this list. These will
serve as the X (longitudinal) coordinates for the polygon rep-
resenting distributed beam geometry (similar to the
piecewise-linear design description used in Ref. [18]).

(2) Next choose p+ 2 additional random real numbers between 0
and 1; these will serve as the Y (lateral) coordinates for the
polygon.

(3) Define a polygon where its starting point is the origin, its
endpoint is the point (0,1), and the start and end points are
connected by a piecewise linear curve defined by vertices
with positions specified by the ordered list of X and Y values.

(4) Reflecting the curve about the X-axis generates the closed
polygon representing the planform geometry of a candidate
beam.

(5) Extruding this polygon to thickness t (in the Z-direction, out
of the page) yields the complete description of a randomly
generated test beam.

Fig. 1 Illustration of 4-link/3R PRBDM
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All beams used in the tests here each have a uniform thickness in
the X–Y plane. One of the candidate panels is shown in Fig. 3.
Changes in width influence spatially varying beam stiffness and
inertia. This paper uses the same random beam that was used for
a previous study, as well as many values of the PRBDM that
were solved in Ref. [19].

2.2 Pseudo-Rigid-Body Dynamic Model. The dynamical
model for an (n+ 1)-link/nR arm in general can be represented by
Eq. (1). Assuming the beam is in a gravity-free environment, the
contribution of G(θ, ψ) is defined in Eq. (2).

M(θ, ψ)θ̈ + C(θ, θ̇, ψ)θ̇ +G(θ, ψ) = τ (1)

G(θ, ψ) =Kθ =

K11 · · · K1n

..

. . .
. ..

.

Kn1 · · · Knn

⎡
⎢⎣

⎤
⎥⎦θ (2)

In the above equations, θ and θ̇ are the local relative angular posi-
tions and velocities for each link. The quantities q and q̇ correspond
to the angular orientation and velocity of each link with respect to
the global/world frame. The vector τ indicates the torque applied
at each joint, and ψ is the vector of design parameters for all
links. Figure 1 shows an example of a 4 link/3R-PRBDM. Here,
θn is the relative angle of the nth link with respect to the (n− 1)th
link. The relationship between θ and q is shown in Eq. (3). The
first link is always aligned to the world X-axis, as quantified in

Eq. (4), resulting in a non-singular stiffness matrix K.

θ j = q j − q j−1, ∀ j ∈ [1, 2, . . . , n] (3)

q0 = 0 (4)

The matrix C(θ, θ̇, ψ) in Eq. (1) represents the Coriolis effect of
the system. In addition, an artificial quasi-empirical (Cqe) damping
term is added to the Coriolis term to render the model more tractable
for simulation, similar to Ref. [11]. Ongoing work is addressing the
inclusion of designed distributed damping (e.g., viscoelastic treat-
ments) for PRBDMs of compliant beams [24]. Here, damping is
included only for numerical simulation enhancement. The modified
Cm(θ, θ̇, ψ) with damping is defined in Eq. (5):

Cm(θ, θ̇, ψ) = C(θ, θ̇, ψ) + Cqe(θ, θ̇, ψ) (5a)

Cqe(θ, θ̇, ψ) = 2M(θ, ψ)ξλ (5b)

Cqe(θ, θ̇, ψ) = 2

ξ1 0 0

0 . .
.

0

0 0 ξn

⎡
⎢⎣

⎤
⎥⎦(M(θ, ψ)K)1/2 (5c)

where ξ1, . . . , ξn are the damping factors for each joint, and λ are the
eigenvalues of the PRBDM. The eigenvalues (λ) of the PRDBM
model can be calculated using Eq. (6):

λ2 = (M(θ, θ̇, ψ))−1K (6)

The effective torques on each joint due to an external force (Fext)
can be calculated using Eq. (7):

τ = JT(θ, ψ)Fext (7)

where JT is transpose of the Jacobian for the PRBDM from the tip
to the base. The steady-state tip deflection of the nR-PRBDM due
to an external force on the beam can be calculated by solving
Eq. (8) for θ [25]. We obtain Eq. (8) by imposing steady-state con-
ditions (θ̇ = 0 and θ̈ = 0) on Eq. (1):

G(θ, ψ) =Kθ = JT(θ, ψ)Fext (8)

The beam tip deflection of the PRDBM can be estimated by
solving Eq. (9):

θ = K−1JT (θ, ψ)Fext (9a)

Fig. 2 Method proposed, to find model parameters for an nR-PRBDM

Fig. 3 Visualization of a randomly generated beam, symmetric
about the horizontal axis. Planform geometry shown; vibrations
and deflections occur out-of-plane.
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PPRBDM = F(θ) (9b)

Here, PPRBDM is the position vector of the cantilever beam tip under
some known structural load, and F(θ) is the forward kinematics
model for the PRDBM.

2.3 Mapping Strategies. In this study, two different mapping
strategies are studied and compared for a cantilever beam. The
objective of these strategies is to find the PRBDM parameters
(spring stiffness and link length values) for a given geometric
beam design such that the resonance frequencies (eigenfrequencies)
and steady tip deflection for the PRBDMmatches that of the contin-
uous compliant beam.
This section introduces scaling strategies and other constraints

that will be used for both mapping strategies. These support solution
of the corresponding model parameter optimization problem with
greater computational efficiency.

2.3.1 Mapping Preliminaries. Numerical optimization is used
to minimize the mapping objectives for an (n+ 1)-link/
nR-PRBDM based on truth values. The optimizer chooses the dis-
tance between the nodes Lj and each joint stiffness Kj, j= 1, …, n,
where n is the number of joints.
A core challenge in this modeling problem is that the joint stiff-

nesses and eigenvalues depend on position via mass matrix depen-
dence on the pose. As a strategy to manage this variation in
eigenvalues, we calculate for each design the eigenvalues across a
range of poses. We generate this set of poses by sweeping across
a range of joint position values θi from small angles (ϵ) to π/2, as
depicted in Eq. (10):

θ̂i = Ai,〈·〉 (10)

where θ̂i is the vector of all joint angles for pose i, and Ai,j is anm × n
matrix where the ith row corresponds to θ̂i. Specifically,

Ai,〈·〉 = [ξ + iϵ, . . . , ξ + iϵ] (11)

where ξ is small scalar offset value to prevent singularM (discussed
below) and ϵ is the small fixed angular value. Here, ϵ is chosen such
that at the mth pose, the end link world angle qn is close to (but not
exceeding) π/2. Specifically, in the implementation here, ϵ= π/2n.
Other definitions of ϵ are possible.
The model given in Eq. (1) was not tested for any cases where

θ= 0, as this would result in a singular mass matrix (M) [26]. The
pose for the PRBDM for the two boundary cases of A0,〈·〉 and Am,

〈·〉 is shown in Fig. 4.

In the most general case, the stiffness of each joint is a continuous
function of pose θ. To approximate this relationship in a discrete
way, we define m different stiffness values for each joint. This
results in n×m joint stiffness values required to specify a design.
In this study, a reduced-dimension stiffness representation is

employed where a single stiffness correction parameter is found
that allows us to define a single-independent stiffness parameter
for each joint, which then maps to m unique stiffness values for
each joint for each pose. The rationale for this approach is that
the stiffness variation on pose is modeled as a material property.
More specifically, the stiffness matrix in Eq. (2) is assumed to be

a diagonal matrix, as shown in Eq. (12):

K =

K11 0 · · · 0

0 K22
. .
. ..

.

..

. . .
. . .

.
0

0 · · · 0 Knn

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦ (12)

To define an initial design for optimization, a unique K is assumed
for each unique pose i of the same form as Eq. (12). This yields m
stiffness matrices; the elements of these m matrices are defined
according to Eq. (13):

K̂i =

K11(i) 0 · · · 0

0 K22(i)
. .
. ..

.

..

. . .
. . .

.
0

0 · · · 0 Knn(i)

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦ (13)

K̂i quantifies the stiffness for pose i, where the spring stiffness for
each joint j and pose i, Kjj(i), is approximated using a linear
scaling to reduce the design representation dimension, according
to Eq. (14):

Kjj(i) = ki ×

����
EIj
m̂j

√
(14)

where ki is defined as a scaling parameter, also referred as stiffness
correction factor, that is used as the independent stiffness design
variable approximates how joint stiffness depends on pose. E is
the material modulus of elasticity, Ij is the area moment of inertia
(Iyy) for link j, and m̂j is the mass of link j. This linear mapping strat-
egy uses m independent design variable values for ki, along with
link mechanical properties, to generate n×m unique stiffness vari-
ables needed to define K̂i, i = 1, . . . , m. Equation (12) is based on
the assumption that the stiffness correction factor is a characteristic
of the material and should not depend on the properties unique to
each section. The corresponding optimization problem for model
parameter mapping is

min
Lj ,ki

∑m
i=1

ferror(θi, θ̇i, ψ) (15a)

subject to:
∑n
j=0

Lj = 1 (15b)

Lj ≥ 0.02, (15c)

Lj ≤ (1 − 0.02) (15d)

where Lj is the length of the jth link (these values are independent of
the pose) and ferror(·) is the error metric either based on eigenfre-
quency or deflection error (defined in detail below).

2.3.2 Eigenfrequency-Based Mapping. The eigenfrequencies
for the randomly generated beams are obtained using COMSOL
eigenvalue analysis. The eigenvalues and the mass participation

Fig. 4 A 3R PRBDM at two different poses. The gray pose is the
position with θ= ξ+ ζϵ×ones(1, 3), and the black pose corre-
sponds to θ= ξ×ones(1, 3).
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factors are saved. The eigenvalues that have the highest mass partic-
ipation in the deflection direction are filtered and arranged in
ascending order. The optimizer reduces the difference between
the sorted eigenvalues from PRBDM (Eq. (6)) and FEA-based
systems by minimizing the ℓ2 norm between the sorted eigenvalue
vectors, as defined in Eq. (16):

λerror(θi, θ̇i, ψ) =
‖λFEA − λPRBDM(θi, θ̇i, ψ)‖2

‖λFEA‖2
(16)

Here, it is assumed that θ̇i = 0. The objective is normalized to aid to
comparison to the deflection error metric. The optimization problem
formulation for eigenvalue matching is defined in Eq. (15), where
ferror is defined according to Eq. (17).

ferror(θi, θ̇i, ψ) = λerror(θi, 0, ψ) (17)

2.3.3 Deflection-Based Mapping. The second objective for
finding the spring stiffness and the optimal link lengths is also for-
mulated as an optimization problem. The stationary deflection
solver from COMSOL is used to estimate the deflection of the
beam under different forces PFEA. This then allows us to define a
second objective function based on a comparison between the
PRDBM tip deflection Eq. (9) and the FEA model. It must be
noted, however, that solving Eq. (9a) cannot be performed analyt-
ically, due to the dependence of the Jacobian on θ. The deflection
error metric uses the ℓ2 norm of the difference in the tip position
between the two models:

ferror(θi, θ̇i, ψ) = δerror(θi, θ̇i, ψ) (18)

δerror(θi, θ̇i, ψ) =
‖PFEA − PPRBDM(Fext)‖2

‖PFEA‖2
(19)

The objective is normalized to the FEM “truth” value, thereby
making it easier to compare. This objective function can then be
used with the optimization problem given in Eq. (15).
The eigenvalue mapping objective is solved using the MATLAB

2

function fmincon with MultiStart to improve the probability
of finding globally-optimal PRBDM parameter values. Subse-
quently, a multi-objective paretosearch is performed using
the two normalized objectives, Eqs. (15) and (19).

2.4 Model Parameter Calculation. The compliant beam
model parameter vector ψ is a vector of length (5+m) × n. Equation
(20) details the components of ψ:

ψ = [γ, k, m̂, Iyy, Xcom, Ycom]
T (20)

where γ is a vector (length n) of normalized link length values:

γi = Li/Ltotal, Ltotal =
∑
i

Li = 1 (21)

k is a vector (length m) of stiffness correction factors for each pose,
m̂ is a vector (length n) containing the mass of each link (assuming
constant cross-section prismatic geometry), Iyy is the vector of rota-
tional mass moments of inertia for each link, and Xcom and Ycom are
the center-of-mass locations in the n− 1th joint frame. Due to the
symmetry assumption used here, all values for the vector Ycom are
zero (at least with respect to numerical tolerances).
Once the number of joints has been chosen for the PRBDM to

approximate the compliant member, independent components of
ψ can be specified:

ψ ind = [γ, k]T (22)

These are the (n+m) independent model parameter optimization
variables based on the above PRBDM approximation and linear

stiffness correction strategy. The remaining model parameters in
ψ are calculated from ψind. Once ψind is specified, the optimization
problem given in Eq. (15) is solved using a multi-start approach
with a gradient-based optimization algorithm. The set of start
points are generated using a custom strategy, defined in Eq. (23):

L = random(1,100, n − 1) (23a)

γ = L, 1 −
∑

L
[ ]T/

100 (23b)

k = random(m) (23c)

where L= [L1,…, Ln−1] is the vector of link lengths, random(·) is a
uniform pseudo-random number generator without replacement, γ
is a normalized length vector based on the random length vector,
and k is a randomly generated set of stiffness correction factors
(length m). The numerical scaling defined in Eq. (14) eases
numerical solution difficulty due to differing orders of magnitude
in the unscaled parameter space. In Eq. (23a), the random function
chooses n− 1 unique random integers between 1 and 100. To
sample a random uniform distribution under the simplex condition
(Eq. (15b)), the method described in Ref. [28] is used, as seen in
Eq. (23b).
Once the values of γ and k are known, the values of

m̂, Ixx, Iyy, Xcom, and Ycom can be estimated using the first- and
second-area moments of the polygon sections. During the optimiza-
tion, for each new link length design γ, the physical properties for
each link are calculated, and an updated ψ is obtained. The physical
properties for each section are shown in Fig. 5 for a sample design.

3 Test Problems
In this section, the randomly generated cantilever beam is

modeled using the PRBDM defined above. The material for the
beam is Steel ANSI 4340, available in COMSOL [16]. The
PRBDM model for 4-link and 5-link cases is used as candidate
models to match the first 4 (and 5) modes. The optimal stiffness cor-
rection factor ki and joint separation Lj are obtained by solving the
optimization problem in Eq. (15) using the algorithm settings
shown in Table 1.
A random beam is generated using the procedure stated in Sec. 2,

for p= 10. The randomly generated beam used for the studies
presented here is shown in Fig. 3. COMSOL was used to estimate
the first 40 natural frequencies for the beam along with the mass
participation factors (MPFs) for each mode. A high-resolution
mesh is used to estimate the resonant frequencies, as shown in
Fig. 6, according to the parameters presented in Table 2. The
coarse mesh supports computationally efficient estimation of the
resonant frequencies. The resonant frequencies are then filtered
according to the MPF to obtain the modes that exhibit bending
along the desired axis. The vector of five eigenvalues obtained for
the panel from Fig. 3, using the mesh shown in Fig. 6, is presented
in Eq. (24).

λ panel = 48.342, 359.4, 1013.5, 5711.4, 7816[ ]T (24)

The multi-objective optimization algorithm is solved for the same
beam using 4-link (3R), 5-link (4R), and 6-link (5R) PRBDMs. The
ϵ (Eq. (11)) for the Pareto-front search was set to 0.01 radians, much
smaller than the single objective, allowing for a more detailed solu-
tion for more configurations of the PRBDM. The optimization
solver parameters listed in Table 1 were used.

4 Results and Discussion
In this section, first the results for the single objective optimiza-

tion study are discussed and then the multi-objective results are pre-
sented. The first case performs mappings for randomly generated
beams. The PRBDM matching code, which is available at2The MATLAB code for these test problems is available in Ref. [27].
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Ref. [27], was solved for 50,000 different model beams; the beam
discussed here is beam number 17,572.3 The beam was modeled
using a 4R-PRBDM and a 5R-PRBDM for a different number of
eigenvalues.

4.1 Single Objective Optimization—Eigenvalue Mapping.
The random beam was solved for both the 4R-PRBDM and the
5R-PRBDM cases. Both cases were solved to map the first three
eigenfrequencies as well as the maximum number of eigenfrequen-
cies that the models allow. The results for the random beam are thus
divided into two sections, one for the 4R-PRBDM and the latter for
the 5R-PRBDM.

4.1.1 4R-PRBDM Approximation. The optimization problem
to solve for the spatial joint distribution and spring stiffnesses
was initialized using 1024 unique initial points and solved using
the MultiStart algorithm in MATLAB. One of the initial beam
designs is illustrated in Fig. 5. The ϵ value chosen for this study
was 0.1 and ξ is 0.05 for Eq. (10).
The optimizer solves for both the link lengths and SCFs simul-

taneously to best match the eigenvalues. For the 4R-PRBDM, the
optimizer converged to the solution shown in Fig. 7. The obtained
PRBDM has eigenvalues which differ by 0.033% of the eigenval-
ues obtained using COMSOL. A second case, which maps three
eigenfrequencies using a 4R-PRBDM, was also tested. The
three eigenvalues were mapped to an accuracy to 0.015%. A
summary of optimized independent model parameters is provided
in Table 3.
The length fraction for both cases of the 4R-PRBDM (γ1) is indic-

ative of a “characteristic pivot” for this non-uniform and higher-
dimensional (4R-PRBDM) case. The right-hand side y-axis shows
the percent difference between the SCF for the given joint angles
to the mean SCF. The mean SCF is defined by Eq. (25). The

Fig. 5 Plot of randomly generated beam, with physical properties for each section (link)

Fig. 6 Mesh for random panel used for FEM analysis

Table 2 Mesh generation parameters [16]

Maximum element size 0.03 m
Minimum element size 0.001 m
Maximum element growth rate 1.5
Curvature factor 0.3
Resolutions of narrow regions 0.9

Table 1 Optimization solver settings

Algorithm

fmincon,
MultiStart

[29–31]
ParetoSearch

[32–34]

Constraint tolerance 1 × 10−6 1 × 10−9

Step tolerance 1 × 10−6 1 × 10−6

Max iterations 10000 4000 × (5+ m)× n
Optimality tolerance 1 × 10−6 –
Max function evaluations 5000 12,000 × (5+ m)× n
ϵ (Eq. (11)) 0.01 0.01

3The remaining data will be available upon final publication via an archival data
repository.
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variation of the spring stiffness is small, but shows a close to a
linear trend.

SCFmean =
1
m

∑m
i=0

ki (25)

Pi =
ki − SCFmean

SCFmean
100 (26)

The SCF for each deflection case is shown in Fig. 8. A linear
trend is observed for the correction factor with respect to the
angle of deflection between each link. When the SCF is applied
according to Eq. (14), the spring stiffness is obtained for different
deflection angles.

4.1.2 5R-PRBDM Approximation. For the 5R-PRBDM, the
optimizer converged to the solution shown in Fig. 9. The obtained
PRBDM has eigenvalues which differ by 0.0283% of the eigenfre-
quencies obtained using COMSOL. This is a better map than a
4R-PRBDM, although the 5R-PRBDM maps five eigenfrequencies
instead of 4. For a more direct comparison between the 4R-PRBDM
and 5R-PRBDM, three eigenfrequencies are mapped using a
5R-PRBDM, the accuracy of the model is within 0.01%. The
SCF for each deflection case is shown in Fig. 10. Although a
similar linear trend is observed for the correction factor with
respect to the angle of deflection between each link, as with the
4R case, the variation is significantly smaller. A summary of opti-
mized independent model parameters is presented in Table 4.

4.2 Multi-objective Optimization. In this section, the optimi-
zation of the models is performed using both objectives, eigenvalues
and tip deflection, as defined inEqs. (16) and (9), respectively. This is
done for the 3R, 4R, and 5R PRBDM cases. The optimization
problem yields a Pareto-front that is presented in Fig. 11.

Fig. 7 Plot of a randomly generated beam with model parame-
ters optimized for eigenvalue matching (4R-PRBDM)

Table 3 Results for 4R-PRBDM, random beam

Frequencies mapped SCFmean Joint distance (m) Loss (%)

4 5.3145 0.2778
0.2354
0.0308
0.2250
0.2309

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

0.0327

3 2.1469 0.2773
0.0939
0.3549
0.1477
0.1262

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

0.0151

Fig. 8 Plot of the spring stiffness correction factor (SCF) versus
deflection angle (in degrees), for the 4R-PRBDM random beam
case. The right-hand axis corresponds to the relative change
from mean values (Eq. (26)).

Fig. 9 Plot of a randomly generated beam with model parame-
ters optimized for eigenvalue matching (5R-PRBDM)

Fig. 10 Plot of spring stiffness correction factor (SCF) versus
deflection angle (in degrees), for the 5R-PRBDM random beam
case
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Figure 11 shows the mapping accuracy of the optimal designs.
The 5R-PRBDM has lower error than the 4R-PRBDM, and the
4R-PRBDM has significantly lower error than the 3R-PRBDM,
as expected. The curve obtained for both the 3R-PRBDM and
4R-PRBDM models shows that optimizing the independent
design parameters (ψind) only using one objective leads to large
errors in the deflection metric. The 5R-PRDBM model has low
errors across the Pareto front, but it can also be seen that the
5R-PRBDM solutions perform much better for the tip deflection
even when only optimized for eigenvalue mapping. Hence,
having a larger number of joints/links increases the accuracy of
the PRBDM for all objectives, without explicitly optimizing for
them.
For the 4R-PRBDM Pareto front, the right triangle (▹) marker

shows one anchor point of the Pareto front using the
4R-PRBDM, the design that maps the design parameters consider-
ing only the eigenvalue objective (Eq. (16)). The left triangle
marker (◃) shows the other anchor point of the 4R-PRBDM,
where the mapping is according to the tip deflection objective
only (Eq. (19)). To obtain an accurate PRBDM without increasing
the number of joints/links, a combination of the two objective
functions will be necessary to obtain a model that has the same
dynamic response as the FEA-based model. Since a dynamical
model will need to map both steady-state behavior and frequency
response behavior, the most dynamically accurate 4R-PRBDM

(star marker, q) is the one closest to the origin. The closeness to
the origin is with respect to the ℓ2 norm of both objectives, as rep-
resented in Eq. (27).

ferror(θi, θ̇i, ψ ) =
������������������������
δ2error + λ2error(θi, 0, ψ)

√
(27)

It should be noted here that if the purpose of a PRBDM is to solve
a CCD problem efficiently and accurately, that these two error
metrics are proxy objective functions for CCD solution accuracy.
The number of links, as well as the complexity of model parameter
identification, are proxy objectives for CCD solution expense. More
accurate evaluation of these PRBDM models in the context of
benefit for CCD will require studies that quantify CCD solution
properties (accuracy and expense) using a range of CCD test prob-
lems directly. This is a topic of ongoing work and is outside the
scope of this article (which focuses on the fundamentals of the
mapping strategies).
The panel obtained from this optimization is illustrated in Fig. 12.

For comparison, the optimal design realized for the 5R-PRBDM
using the same objective Eq. (27) gives the solution denoted by
the square marker (▪), and by the upright triangle (△) for the
3R-PRBDM in Fig. 11. Although the solution for the
5R-PRBDM seems to be farther from the origin than the solution
for the 4R-PRBDM, it must be noted that the aspect ratio for the
two axes is not similar, and therefore, the loss for the two are
10.2% and 13%, respectively. These comparisons and correspond-
ing SCFmean and joint separation are presented in Table 5.

Table 4 Results for 5R-PRBDM, random beam

Frequencies mapped SCFmean Joint distance (m) Loss (%)

5 10.5298 0.1429
0.4505
0.0288
0.2089
0.0493
0.1196

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

0.0283

3 2.6642 0.1919
0.1100
0.4646
0.0922
0.1027
0.0387

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

0.0101

Fig. 11 Pareto front obtained from multi-objective optimization of PRBDM parameters

Fig. 12 Plot of randomly generated beam with model parame-
ters optimized for dynamical response (4R-PRBDM)
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5 Conclusion and Future Work
In this article, a strategy to approximate the dynamic behavior of

compliant members using a reduced-order model was presented.
These PRBDMs are particularly useful for design optimization, as
the computational expense can be reduced significantly while main-
taining reasonable accuracy. Quantification of this trade-off with
respect to design solution accuracy is a topic for future work.
Two test cases are presented, but the method has been validated
for a large variety of beam designs. These results and the associated
code are available at Ref. [27]. Some preliminary correlation of the
spring stiffness is seen with the deflection angles, and the stiffness
scaling was sufficient for a linear correlation between the stiffness
correction factor and deflection angles. Some evidence of character-
istic pivot distances has also been observed for both the uniform
beam and the random beam cases. The correlation of the joint dis-
tances with the beam shape needs further investigation to under-
stand this relationship more deeply.
More extensive studies that optimize the reduced-order PRBDMs

for an enumerated distribution of joint separation could help gener-
ate empirically driven analytic rules to determine link lengths and
spring stiffness factors. If validated, this would eliminate the need
to solve an optimization problem based on truth data, speeding up
the implementation of effective PRBDMs for design studies. An
efficient method for estimating the resonant frequencies could be
obtained using a machine learning framework. Additionally, a rein-
forcement learning method could be used to train a neural network
to provide the joint separation and spring stiffness for PRBDMs
across a range of designs.
To obtain a full-fidelity, dynamically accurate PRBDM, the

damping forces represented by Cqe (Eq. (5)) should be obtained
to match the energy dissipation rate of the PRBDM to real-world
examples.
In this article, model parameters were solved to minimize dyna-

mical response error, measured by the difference in beam tip deflec-
tion and natural frequency. A model based on minimizing
dynamical response error would not necessarily yield the same
optimal design as that of the truth model for a system. Subsequent
studies would explore finding model parameters based on optimal
design results from a truth model and define design metrics that
yield the same results using PRBDMs. Developing a model based
on design metrics would help evaluate the potential of PRBDMs
to serve as computationally efficient models for optimal CCD.
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