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Abstract

‘We propose a Dynamic Graph-Based Spatial-Temporal Attention (DG-STA) method
for hand gesture recognition. The key idea is to first construct a fully-connected graph
from a hand skeleton, where the node features and edges are then automatically learned
via a self-attention mechanism that performs in both spatial and temporal domains. We
further propose to leverage the spatial-temporal cues of joint positions to guarantee ro-
bust recognition in challenging conditions. In addition, a novel spatial-temporal mask is
applied to significantly cut down the computational cost by 99%. We carry out extensive
experiments on benchmarks (DHG-14/28 and SHREC’17) and prove the superior perfor-
mance of our method compared with the state-of-the-art methods. The source code can
be found at https://github.com/yuxiaochen1103/DG—-STA.

1907.08871v

arxiv

1 Introduction

Hand gesture recognition has been an active research area due to its wide range of applica-
tions such as human computer interaction, gaming and nonverbal communication analysis
including sign language recognition [20, 28, 37]. Previous work can be classified into two
categories based on the modality of their inputs: image-based [12, 19, 38] and skeleton-
based [5, 8, 9, 13, 21] methods. Image-based methods take RGB or RGB-D images as
inputs and rely on image-level features for recognition. On the other hand, skeleton-based
methods make predictions by a sequence of hand joints with 2D or 3D coordinates. They
are more robust to varying lighting conditions and occlusions given the accurate joint coor-
dinates. Thanks to the low-cost depth cameras (e.g., Microsoft Kinect or Intel RealSense)
and great progress made on hand pose estimation [22, 23, 24], accurate coordinates of hand
joints are easy to be obtained. Therefore, we follow the skeleton-based method in this work.

(© 2019. The copyright of this document resides with its authors.
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Figure 1: Illustration of our method. The nodes in the graph correspond to hand joints and the
dashed lines represent disconnected edges. The proposed DG-STA calculates edge weights
and learn node features in both spatial and temporal domains of the hand skeleton graph.

Conventional methods [8, 9, 25] of skeleton-based hand gesture recognition aim to de-
sign powerful feature descriptors to model the action of hands. However, these hand-crafted
features have limited generalization capability. Recent studies [5, 13, 21] have achieved sig-
nificant improvement using deep learning. They usually concatenate the joint coordinates
into a tensor which is fed into a neural network, and then hand features are directly learned
by the network during training. Nevertheless, the spatial structures and temporal dynamics
of hand skeletons are not explicitly exploited in these deep learning based approaches.

More recent studies [29, 39, 42] attempt to incorporate structures and dynamics of skele-
tons based on skeleton graphs. Specifically, given a sequence of skeletons, they define a
spatial-temporal graph where structures and dynamics of skeletons are embedded. The fea-
ture representation of the graph is then extracted for action recognition. However, a pre-
defined graph with fixed structure lacks the flexibility to capture the variance and dynamics
across different actions, yielding sub-optimal performance in practice.

To this end, we propose a Dynamic Graph-Based Spatial Temporal Attention (DG-STA)
model for hand gesture recognition. The key idea is to perform a self-attention mecha-
nism in both spatial and temporal domains to modify a unified graph dynamically in order
to model different actions. Figure 1 gives an overview of our approach. There are three
crucial designs that distinguish our approach from previous methods. First, instead of a
pre-defined graph with fixed structure, we propose to construct a unified graph where the
edges and nodes are dynamically optimized according to different actions. This makes it
is possible to achieve action-specific graphs with improved expressive power. Second, we
propose spatial-temporal position embedding which improves the temporal position embed-
ding [34]. It encodes the identity and temporal order information of each node in the graph.
Combining node features with their position embeddings can further improve the perfor-
mance of our approach. Third, to implement our DG-STA more efficiently, we present
a novel spatial-temporal mask operation which is directly applied to the matrix of scaled
dot-products among all nodes. It significantly improves the computational efficiency of our
model and allows easier input data arrangement.

To evaluate the effectiveness of our approach, we conduct comprehensive experiments on
two standard benchmarks: DHG-14/28 Dataset [8] and SHREC’17 Track Dataset [9]. The
results demonstrate that our method outperforms the state-of-the-art methods. In summary,
our main contributions are summarised as follows:
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e We propose Dynamic Graph-Based Spatial-Temporal Attention (DG-STA) for skeleton-
based hand gesture recognition. The structures and dynamics of hand skeletons can be
learned automatically and more efficiently by our approach.

e We propose spatial-temporal position embedding which encodes the identity and tem-
poral order information of nodes to boost the performance of our model, and a spatial-
temporal mask operation for efficient implementation of DG-STA.

e We conduct comprehensive experiments to validate our approach on two standard
benchmarks. The proposed DG-STA achieves the state-of-the-art performance.

2 Related Work

In this section, we review recent work on self-attention and recent developments in skeleton-
based action recognition, which motivated our approach.

Self-Attention. The self-attention mechanism is widely used in computer vision and
natural language processing tasks [3, 4, 6, 17, 31, 33, 36, 40]. Vaswani et al. [34] proposed to
apply the self-attention module to model temporal and semantic relationships among words
within a sentence for machine translation. Instead, we study applying the self-attention
mechanism to learn spatial-temporal information contained in hand skeletons represented by
graphs, which are largely different from sequences. Graph Attention Networks (GATs) [35]
employed self-attention to learn node embeddings of graphs. By contrast, our approach is
able to capture additional temporal information as well as node identities.

Skeleton-Based Hand Gesture Recognition. Skeleton-based hand gesture is a well-
studied but still challenging task. Traditional methods [8, 9, 18, 25] mainly focus on design-
ing powerful hand feature descriptors. Smedt et al. [8] proposed the Shape of Connected
Joints descriptor to represent the hand shape of hand skeleton. Recent studies [5, 13, 21]
apply deep neural networks for this task and achieve significant performance improvement.
Convolutional Neural Networks and Long Short-Term Memory are leveraged to learn the
spatial and temporal features from the sequence of hand joints for hand gesture classification
in [21]. One limitation of these learning-based methods is that they do not explicitly explore
the structures and dynamics of human hands.

Skeleton-Based Human Action Recognition. Recent studies in skeleton-base human
action recognition [27, 32, 41] started to incorporate structures and dynamics of human bod-
ies by building skeleton graphs [29, 39, 42]. This idea is first introduced by [11] which
employs Graph CNNs. Recently, Yan ef al. [39] built a skeleton graph based on the nat-
ural structure of human body, and extract its representation by Graph Convolution Net-
works [15] for action recognition. Nevertheless, it is difficult to define an optimal skeleton
graph which represents all action-specific structures and dynamics information. Instead, our
method can automatically learn multiple action-specific graphs with the multi-head attention
mechanism [34], which efficiently encode structures and dynamics of hand gestures.

3 Methodology

The overview of our approach is shown in Figure 1. First, a fully-connected skeleton graph
is constructed from the input sequence of hand skeletons as described in Section 3.1. In
Section 3.2, we devise DG-STA to learn the edge weights and node embeddings within
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the graph. The learned node features by DG-STA are then average-pooled into a vector
which captures the structures and dynamics of the input skeleton graph. We use it for hand
gesture classification. Section 3.3 presents the spatial-temporal position embedding which
is combined with node features to incorporate node identity and temporal order information
contained in the hand skeletons. Moreover, a spatial-temporal mask operation is introduced
in Section 3.4 which implements our proposed DG-STA more efficiently.

3.1 Skeleton Graph Initialization

Given a video of T frames, N hand joints are extracted from each frame to represent the
hand skeleton. Then a fully-connected skeleton graph G = (V,E) is constructed from this
sequence of hand skeletons. Let V = {v, |t =1,...,T,i=1,...,N} denote the node set
where v, ;) represents the i-th hand joint at the time step 7. The node features are represented
by F = {f(,’l-) t=1,...,T,i=1,...,N}, where f(,.;) indicates the feature vector of the node
V(s,i)- They are extracted from the 3D coordinates of nodes. Note that each node is connected
with all other nodes including itself. For clarity, we define three types of edges on the edge
set E as follows.

e A spatial edge v, ;) = v j) (i # j) connects two different nodes at the same time step.
o A temporal edge v(; ;) — v j)(f # k) connects two nodes at different time steps.

o A self-connected edge v(; ;) — v(;;) connects the node with itself.

3.2 Dynamic Graph Construction via Spatial-Temporal Attention

The proposed DG-STA consists of the spatial attention model Ag and temporal attention
model A7 which are employed to extract spatial and temporal information from the hand
skeleton graph respectively. Both Ag and At are based on multi-head attention [34]. Ag first
takes the initial node features F as the input and updates them to encode spatial information.
The updated node features are then fed to A7 to further learn temporal information. Finally,
the results are average-pooled to a vector which is used as the feature representation of the
skeleton graph for classification.

Specifically, given the input feature f, ;) of the node v(, ;) in the skeleton graph, the A-th
spatial attention head first applies three fully-connected layers to map f, ;) into the key, query
and value vectors respectively, which are formulated as:

Kh

(¢,i

)= Wit Qi =W, Vi =W, )

where Kf’”.), Q?t,i) and V/Zt,i) represent the key, query and value vectors of the node; W, Wfé

and W@ are the corresponding weight matrices of the three fully-connected layers of the /-th
spatial attention head.

The spatial attention head computes the weights of the spatial and self-connected edges
in two steps. First, it calculates the “scaled dot-product” [34] between the query vectors
and key vectors of the nodes within the same time step. Then it normalizes the results by a
Softmax function. These two steps are formulated as:

h h h
) (QiKiy) exp (“(z,wr,n)

e = T g7 0 Ko=) T Ty h ; ()
vd L1 €Xp (u(t7i)—>(t,n)>
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where d is the dimension of the key, query and value vectors; ué‘,j) = is the scaled dot-

)
product of the node v, ; and v j); (-,-) represents the inner product operation; a(”[_i) ()
is the attention weight between the node v, ; and v(; ;, which measures the importénce of
information from node v, ; to node v(, ;. Meanwhile, the weights for all temporal edges are
set to 0 in order to block the information passing in the temporal domain. As a result, each
spatial attention head produces a weighted skeleton graph which represents a specific type
of spatial structure of the hand.

The attention head calculates the spatial attention feature of the node v, ;) as the weighted
sum of the value vectors within the same time step, which is defined as:

= X (@i Vien) ®

where fh (1,i) denotes the spatial attention feature of the node v, ;). Intuitively, the computation
mechanism of the spatial attention features is essentially the process that each node in the
graph sends some information to the others within the same time step and then aggregates
the received information based on the learned edge weights.

The spatial attention model Ag finally concatenates the spatial attention features learned
by all spatial attention heads into f(t,i) which is employed as the spatial feature of the node

V(t,i):

~ _1 - _
f(;) = Concate [f(tyi),f%,’i), ~-~>fZ,i)] , 4@

where H is the number of spatial attention heads. The obtained node features encode mul-
tiple types of structural information represented by the weighted skeleton graphs which are
learned by different spatial attention heads.

The temporal attention model Ay takes the output node features from the spatial atten-
tion model as the input, and then applies the above multi-head attention mechanism in the
temporal domain. The node feature which is the output from the temporal attention model
encodes both spatial and temporal information carried by the input sequence of the hand
skeletons. We average-pool these node features to a vector as the feature representation of
the input sequence for hand gesture recognition.

3.3 Spatial-Temporal Position Embedding

The original node features F extracted from the coordinates of the input hand skeletons
do not contain spatial identity information describing which hand joint a node corresponds
to, and temporal information indicating which time step a node is at. To incorporate these
messages, we propose the spatial-temporal position embedding.

Specifically, our spatial-temporal position embedding is made up of the spatial position
embedding and the temporal position embedding. The spatial one consists of N vectors and
each represents a hand joint. Meanwhile, the temporal one is composed of N x T distinct
vectors and each of them corresponds to a node in the hand skeleton graph. The feature vector
of a specific node is added with the corresponding spatial and temporal position embedding
vectors before fed into the DG-STA. Therefore, we have:

i) =Ar (P@) +As (f(t,i) + pf,-)) ) ; (5)
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where f'(,7 ;) denotes the final output feature of node v, ;), pfi) is the spatial position embedding
of the i-th hand joint, and p(Tt i) denotes the temporal position embedding of the i-th hand joint
at 7-th time step. These embeddings are with the same dimension as f; ;), and their values

are set using the sine and cosine functions of different frequencies following [34].

3.4 Efficient Implementation

It is not straightforward to implement the proposed DG-STA because the input data have to
be arranged in a complex format. However, we find that the computation of attention weights
and features without domain constraints is straightforward, which can be implemented ef-
ficiently using matrix multiplication operations. Therefore, we propose a novel scheme to
facilitate the implementation of the DG-STA. The main idea is to first compute the matrix of
the scaled dot-products among all nodes and then apply the proposed spatial-temporal mask
operation to the matrix in order to let the model focus on the spatial or temporal domain.

Mg 1o} (1 —Mg)xn ® Mr o (1 -Mp)xn ®
LE | %
w Wy w Wy
(a) Spatial Mask Operation (b) Temporal Mask Operation
[ Element of value 1 I Element of value [] Element of value 0

I Weight of self-connected edge ~ [[] Weight of spatial edge ~ [] Weight of temporal edge
(® Element-wise product @ Element-wise add

Figure 2: Illustration of the proposed spatial and temporal mask operations.

An illustration of our mask operation is shown in Figure 2. For a specific attention head,
we compute a query matrix Q where each row represents the query vector of each node, and
a key matrix K where each row corresponds to the key vector of each node. The matrix of
the scaled dot-products W (i.e., the edge weights before normalization) can be obtained by:

W=Q&K', (6)

where ® is the matrix multiplication, and T denotes the matrix transpose operation. Then
the proposed spatial mask operation sets the value of each element in W which represents the
temporal edge to 1] (i.e., a number close to negative infinity) and keeps the values of other
elements unchanged. Therefore, the resulting matrix after the spatial mask operation Wy is
calculated:

Ws =0 (WOM;s+ (1-Ms) x1), @)

where © denotes the element-wise dot operation, Mg is the spatial mask where the ele-
ments are 1 if they represent the spatial or self-connect edges and 0 otherwise. We set 1 to
—9 x 10" in our implementation. The Softmax activation ¢ essentially normalizes weights
across spatial edges, because the exponential value of the 7 is close to 0. As a result, all
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weights of the temporal edges in Wy are set to 0. Equations (6) and (7) efficiently im-
plement the calculation of edge weights in the spatial domain formulated in Equation (2).
Moreover, the matrix Wy can be directly employed to implement the computation of node
features represented by Equation (3) by performing the matrix multiplication operation with
the matrix of value vectors.

We define the temporal mask operation following the same way as Equation (7). The
difference is that we use the temporal mask My instead of Mg to compute the matrix after
the temporal mask operation Wr. The elements of My are 1 if they represent the temporal
or self-connect edges and 0 otherwise. With the help of the proposed spatial-temporal mask
operation, we experimentally find that the computation time is reduced by 99%.

4 Experiments

In this section, we first describe our network structure in Section 4.1. In Section 4.2, we
introduce the datasets and settings employed in the experiments. Then we conduct abla-
tion studies in Section 4.3 to evaluate the effectiveness of each component proposed in our
method. Finally, we report our results and comparisons with the state of the art in Section 4.4.

4.1 Implementation Details

Our network structure is shown in Figure 3. We set the head number of the spatial and tem-
poral attention models to 8. The dimension d of the query, key and value vector is set to 32.
Layer Normalization [16] is utilized to normalize the intermediate outputs of our network.
The input 3D coordinate of a hand joint is projected into an initial node feature of 128 di-
mension. It is then added with the corresponding spatial position embedding and fed into the
spatial attention model, which produces a node feature of 256 dimension. This node feature
is projected into a vector of 128 dimension which is added with the corresponding temporal
position embedding. The temporal attention model takes it as the input and generates the
final node feature. Finally, we average-pool the features of all nodes into a vector and feed it
into a fully-connected layer for classification.

Spatial PosEmbedding Temporal PosEmbedding

W, T,3) (14/28)

FC Layer, 128
ReLU
LayerNorm 1D
Dropout, 0.2
Spatial Att
FC Layer, 128
ReLU
LayerNorm 1D
Dropout, 0.2
Temporal Att
FC Layer, 128
ReLU
LayerNorm 1D
AveragePool
Dropout, 0.2
SoftMax

FC Layer, 14/28

Figure 3: The network architecture of the proposed DG-STA.

4.2 Datasets and Settings

We evaluate our method on the DHG-14/28 Dataset [8] and the SHREC’ 17 Track Dataset [9].
Both datasets contain 2800 video sequences of 14 hand gestures which are performed in two
configurations: using one single finger or the whole hand. The videos of the two datasets are
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captured by the Intel Realsense camera. The 3D coordinates of 22 hand joints in real-world
space are provided per frame for network training and evaluation.

Network Training. The proposed DG-STA is implemented based on the PyTorch plat-
form. The Adam [14] optimizer with a learning rate of 0.001 is employed to train our model.
The batch size is set to 32 and the dropout rate [30] is set to 0.2. We uniformly sample 8
frames from each video as the input. For fair comparison, we perform data augmentation by
applying the same operations as proposed in [9, 21] including scaling, shifting, time inter-
polation and adding noise. We also subtract every skeleton sequence by the palm position of
the first frame following Smedt et al. [9] for alignment.

Evaluation Protocols. On the DHG-14/28 Dataset, models are evaluated by using the
leave-one-subject-out cross-validation strategy [8]. Specifically, we perform one experiment
for each subject in this dataset. In each experiment, one subject is selected for testing and the
remaining 19 subjects are used for training. The average accuracy of 14 gestures (without
the single-finger configuration) or 28 gestures (with the single-finger configuration) over the
20 cross-validation folds are reported. For the SHREC’ 17 Track Dataset, we use the same
data split as provided by [9] and report the accuracy of both 14 and 28 gestures.

4.3 Ablation Study

Our proposed approach consists of three major components, including the fully-connected
skeleton graph structure (FSG), the spatial-temporal attention model (STA) and the spatial-
temporal position embedding (STE). We validate the effectiveness of these components in
this section. The results are shown in Table 1.

Setting | FSG+STA | FSG+GAT+STE | SSG+STA+STE [ DG-STA |
14 Gestures (D) 84.3 90.8 89.8 91.9
28 Gestures (D) 77.3 87.8 86.6 88.0
14 Gestures (S) 88.9 92.7 91.5 94.4
28 Gestures (S) 80.1 86.2 81.7 90.7

Table 1: Ablation study of accuracy (%) on the DHG-14/28 Dataset (D) and SHREC’17
Track Dataset (S). Our full model (DG-STA) achieves the best performance.

Evaluation of Fully-Connected Graph Structure. We compare the proposed FSG with
the sparse skeleton graph structure (SSG) introduced by Yan ef al. [39], where spatial edges
are defined based on the natural connections of the hand joints and temporal edges connect
the same joints between consecutive frames. We can see that our model significantly out-
performs the one trained on SSG. This is because SSG may be sub-optimal for some hand
gestures, while FSG has little constrains on the model so that it is able to learn action-specific
graph structures.

Evaluation of Spatial-Temporal Attention. The proposed STA downgrades to Graph
Attention (GAT) [35] if only one attention model is applied to the whole graph without
distinguishing the spatial and temporal domains. We implement GAT by replacing the spatial
and temporal attention models in our network with one attention model, and train it under
the same setting of our model. We can observe that the STA-based model achieves better
performance than the GAT-based model, which demonstrates the effectiveness of STA.

Evaluation of Spatial-Temporal Position Embedding. We validate the effectiveness
of the proposed STE by training a variant of our method where STE is removed. We can see
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that our model outperforms the model without STE, which demonstrates the importance of
the identity and temporal order information encoded by STE.

4.4 Comparison with Previous Methods

We compare our method with the state-of-the-art methods on the DHG-14/28 Dataset [§]
and the SHREC’ 17 Track Dataset [9], respectively. The compared state-of-the-art methods
include traditional hand-crafted feature approaches [1, 2, 5, 7, 8, 10, 25, 26], deep learning
based approaches [9, 13, 21] and a graph-based method [39]. The results are shown in Ta-
bles 2 and 3. Note that for ST-GCN [39], we implement it following the distance partitioning
setting and use a three-layer ST-GCN with 128 channels for fair comparison. We collect the
results of other baseline methods from [13].

Method | 14 Gestures | 28 Gestures
SoCJ+HoHD+HoWR [8] 83.1 80.0
Chen et al. [5] 84.7 80.3
CNN+LSTM [21] 85.6 81.1
Res-TCN [13] 86.9 83.6
STA-Res-TCN [13] 89.2 85.0
ST-GCN [39] 91.2 87.1
[ DG-STA (Ours) | 919 | 880

Table 2: Comparisons of accuracy (%) on DHG-14/28 Dataset.

Results on DHG-14/28 Dataset. From Table 2, we can see that our method achieves the
state-of-the-arts performance under both 14-gesture and 28-gesture setting. Moreover, both
our method and ST-GCN [39] outperform other methods which do not explicitly exploit
structures and dynamics of hands, which demonstrates that these messages are important for
skeleton-based hand gesture recognition.

Method \ 14 Gestures | 28 Gestures
Oreifej et al. [26] 78.5 74.0
Devanne et al. [10] 79.4 62.0
Classify Sequence by Key Frames [9] 82.9 71.9
Ohn-Bar et al. [25] 83.9 76.5
SoCJ+Direction+Rotation [7] 86.9 84.2
SoCJ+HoHD+HoWR [8] 88.2 81.9
Caputo et al. [2] 89.5 -
Boulahia et al. [1] 90.5 80.5
Res-TCN [13] 91.1 87.3
STA-Res-TCN [13] 93.6 90.7
ST-GCN [39] 92.7 87.7
DG-STA (Ours) \ 94.4 90.7

Table 3: Comparisons of accuracy (%) on SHREC’17 Track Dataset.

Results on SHREC’17 Track Dataset. Different from the DHG-14/28 Dataset where
videos are cropped by human-labeled beginnings and ends of the gestures [8], the SHREC’ 17
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Track Dataset provides raw captured video sequences with noisy frames, and hence is more
challenging. We can see that our method achieves the state-of-the-arts performance under the
14-gesture setting, and obtains comparable performance with STA-Res-TCN [13] under the
28-gesture setting. In addition, we can observe that our method and ST-GCN [39] outperform
all other methods which do not explicitly exploit structures and dynamics of hands.

5 Conclusions

In this paper, we proposed a graph-based spatial-temporal attention method for skeleton-
based hand-gesture recognition. It utilizes two attention models in the spatial and temporal
domains of the fully-connected hand skeleton graph to learn edge weights and extract spatial
and temporal information for hand gesture recognition. Extensive experiments demonstrate
the effectiveness of our framework. Our proposed method provides a general framework
that can be further used for other tasks aiming to learn spatial and temporal information
from graph-based data, e.g., skeleton-based human action recognition.
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