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ABSTRACT

Fair division is the problem of allocating a set of items among a set
of agents in a fair and efficient way. It arises naturally in a wide
range of real-life settings. Competitive equilibrium (CE) is a central
solution concept in economics to study markets, and due to its
remarkable fairness and efficiency properties (e.g., envy-freeness,
proportionality, core stability, Pareto optimality), it is also one of
the most preferred mechanisms for fair division even though there
is no money involved.

The vast majority of work in fair division focuses on the case of
disposable goods, which all agents like or can throw away at no cost.
In this paper, we consider the case of mixed manna under linear
utilities where some items are positive goods liked by all agents,
some are bads (chores) that no one likes, and remaining some agents
like and others dislike. The recent work of Bogomolnaia et al. [13]
initiated the study of CE in mixed manna. They establish that a
CE always exists and maintains all the nice properties found in
the case of all goods. However, computing a CE of mixed manna
is genuinely harder than in the case of all goods due to the non-
convex and disconnected nature of the CE set. Our main result is a
polynomial-time algorithm for computing a CE of mixed manna
when the number of agents or items is constant.
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1 INTRODUCTION

Fair division studies the problem of allocating a set of items among
a set of agents in a fair and efficient way. This age-old problem
arises naturally in a wide range of real-life settings such as divi-
sion of: family inheritance [36], partnership dissolutions, divorce
settlements [15], spectrum allocation [26], seats in courses [9, 39],
and computing resources in peer-to-peer platforms [29]. The for-
mal study of fair division dates back to the cake cutting problem
introduced in the seminal work of Steinhaus [40]. Since then it has
been an active area of research in many disciplines.

Competitive equilibrium (CE) is one of the fundamental solution
concepts in Economics to study markets, where prices and alloca-
tion are such that demand of items meets their supply when each

“Research supported by the NSF CAREER Award 1942321.

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9-13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

420

Peter McGlaughlin

University of Illinois at Urbana Champaign

mcglghl2@illinois.edu

agent gets her most preferred and affordable bundle. A competitive
allocation not only achieves the standard notion of fairness called
envy-freeness, where every agent weakly prefers their allocation
over any other agents’ allocation, but it is also Pareto optimal, a
standard notion of economic efficiency. Due to these remarkable
fairness and efficiency guarantees, a CE is one of the preferred
solutions for fair division problems even though there may be no
money involved in the latter case. The most prominent example
is competitive equilibrium with equal incomes (CEEI) [42], which
creates a market by giving one virtual dollar to every agent.

The vast majority of work in both Economics and Computer Sci-
ence focuses on the case of disposable goods, i.e., items that agents
enjoy, or at least can throw away at no cost. However, many situa-
tions contain mixed manna where some items are positive goods
(e.g., cake), while others are undesirable bads (e.g., house chores
and job shifts). Potentially, agents might disagree on whether a spe-
cific item is a good or bad. Examples include: dividing tasks among
various team members, deciding teaching assignments between
faculty, managing pollution among firms, or splitting assets and
liabilities when dissolving a partnership.

Clearly, bads are nondisposable and must be allocated. At first
glance, it seems that the tools and techniques developed for the
case of all goods might apply, but the mixed manna case turns out
to be significantly more complex. The recent pioneering works of
Bogomolnaia et al. [13, 14] initiated the study of CE mixed manna.
The authors show the existence of CE and that it retains all the
desirable fairness and efficiency guarantees found in the case of all
goods. Thus, [13] argues that a CE remains the best mechanism for
fair division of a mixed manna.

However, CE of mixed manna possess some peculiar properties.
Namely, [13] establishes that generally multiple CE exist, and the set
of equilibria is non-convex and disconnected. In sharp contrast, in
the case of all goods, the unique equilibrium (in utilities) is captured
by a convex program. Designing fast algorithms for mixed manna,
is an important open question - the abstract of Bogomolnaia et
al. [13] mentions,’

. the implementation of competitive fairness under linear
preferences in interactive platforms like SPLIDDIT will be more
difficult when the manna contains bads that overwhelm the
goods.

1.1 Our Contribution

We offer an algorithm to compute all CE of mixed manna under
linear utilities that runs in polynomial time when either the number
of agents or the number of items is constant. We note that most
theoretical work in fair division studies linear utility functions, and
in practice popular online platforms like SPLIDDIT employ linear

ISpliddit [1] is a user friendly online platform for computing fair allocation in a variety
of problems, which have drawn tens of thousands of visitors in the last five years [31].
Spliddit uses linear utilities.
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utilities as it provides a simple, intuitive way for users to express
their preferences [13]. Further, most applications, at least in online
settings, involve only a few agents. For this reason, our requirement
that either the number of agents or the number of items remains
constant for polynomial time computation seems reasonable in
practice. To the best of our knowledge, our work provides the
first polynomial time algorithm to compute a CE under any set of
assumptions.

Interestingly, every fair division instance of mixed manna falls
into one of the three distinct types: positive, null, and negative (see
Section 2.1). In positive problems all agents benefit by receiving non-
negative utility, e.g., dividing assets and liabilities when the value
of assets outweighs the cost of the liabilities, while in negative
instances the value of bad items overwhelms the goods and all
agents share the burden of completing the undesirable tasks, e.g.,
splitting household chores. Null instance are knife edge cases where
each agent receives zero utility. We offer a simple linear program to
determine instance type. We note that positive and null instances
are both polynomial time solvable, while the complexity of negative
instances remains an intriguing open problem (see Section 3).

As both positive and null instances are polynomial time solvable,
we focus mostly on negative instances. Our approach uses a novel
cell decomposition technique, as in [22]. The main idea here is that
n hyperplanes separate R4 into O(n9) non-empty regions or ‘cells’.
We choose a set of hyperplanes that ensures each cell corresponds
to a unique set of optimal items for each agent, i.e., we know which
subset of items an agent might purchase within any given cell. We
determine if this configuration of optimal items for each agent
admits an equilibrium by checking certain conditions and solving
a max flow problem on specially designed network.

1.2 Related Work

The fair division literature is too vast to survey here, we refer the
reader to the excellent books [15, 34, 37] and restrict our attention
to only the most relevant work.

Competitive allocation of good manna is very well-understood.
The celebrated Eisenberg-Gale convex program captures equilib-
rium when utility functions are homothetic, concave and monotone,
which includes linear [24, 25]. The program maximizes the Nash
welfare on all feasible allocations, and implies existence, uniqueness
(in utilities), and polynomial time computation of a CE; there are
faster algorithms for some special cases [23, 35, 43, 44].

Most of the work in fair division is focused on allocating a ‘good’
manna with a few exceptions of ‘bad’ manna [8, 15, 37, 41]. Recent
pioneering papers of Bogomolnaia et al. [13, 14] are the first to
study the case of mixed manna. To the best of our knowledge, there
is no work exploring the computation of competitive allocation
of a mixed manna even under linear utilities. A recent work [16]
provides a polynomial time algorithm for computing a competitive
allocation for bad manna under linear utilities when the number of
agents (or bads) is constant. Our work generalizes the result of [16]
for mixed manna.

The fair allocation of indivisible items is also an intensely studied
problem for the case when all items are goods with a few recent
exceptions [4-7, 32, 38]. Since the standard notions of fairness such
as envy-freeness are not applicable, alternate notions have been
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defined for this case; see [10, 17, 18, 30, 33] for a subset of notable
work and references therein. The Nash welfare continues to serve
as a major focal point in this case as well, for which approxima-
tion algorithms have been obtained under several classes of utility
functions including linear [2, 3, 12, 19-21, 27].

2 PRELIMINARIES

Let M be a set of m items we wish to divide among the set N
containing n agents. Wlog, we assume there is a unit amount of
each item. An allocation x = (x1, ..., xp) assigns a bundle of items
x; = (Xi1,...,Xim) to each agent i € N, where x;; € [0,1] is
the amount of item j given to agent i. A feasible allocation fully
assigns each item between the agents, i.e., >}; x;j = 1, Vj € M. Let
u; : R™ — R denote agent i’s utility function. We assume all agents
have linear utility functions. That is, u;; € R describes the utility
agent i receives from item j, and i’s utility for bundle x; € R™,
is ui(x;) = X2 j uijxij. Note that, unlike the traditional setting of
all goods, some items j € M may be positive goods liked by all
agents u;; > 0, Vi € N, while other items j € M are universally
disliked bads (chores) u;; < 0, Vi € N. Further, two agents i and i’
might disagree on whether item j is a good or bad, i.e., u;; > 0 and
uj’j < 0, or vice versa.

The tuple 7 = (N, M, U) defines a fair division instance, where
U = {u1,...,un} gives the agents’ utility functions. We create
a competitive division instance 7’ = (N, M,U,e) by introduc-
ing virtual prices p = (p1,...,pm) for the items, and budgets
e = (eq, ..., ey) for the agents. Recall that the agents in the fair di-
vision instance 7 have no money. However, we require budgets and
prices in terms of virtual currency to define both the competitive
equilibrium solution concept, as well as our algorithm. We note that
both item prices and agents’ budgets may be negative, as discussed
shortly. Despite this fact, we say agent i ‘purchases’ or ‘spends’ on
item j if x;; > 0, i.e,, i receives some fraction of item j, and we say
an agent i ‘spends’ her budget on bundle x; if 3’ ; xijp; = e;.

We note that, in all instances, all agents’ budgets have the same
sign, i.e., either e; > 0, Vi € N, ore; < 0, i € N, which depends on
the type of problem instance (see Section 2.1). Settings where agents
possess different budgets represent situations where agents have
different entitlements to the manna, e.g., splitting assets and liabili-
ties when dissolving a partnership where one partner is more senior
than another. We refer to the special case where all agents have
the same budget as a Competitive Equilibrium of Equal Incomes
(CEEI).

Definition 2.1. Given virtual budgets e, the pair (x, p) define a
competitive equilibrium of a mixed manna if

o All agents spend their budgets: }’; xijp; = e;, Vi € N.

o All items are fully allocated: }; x;; = 1,Vj € M.

e Agents purchase optimal bundles of items at prices p: the
bundle x; solves

Jnax, ;uijxij (1)
s.t. injpj <ej
J
xij > 0,Vi, j.
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2.1 Results of Bogomolnaia et al. [13]

Bogomolnaia et al. [13] prove the existence of competitive equilibria
under fairly general assumptions on agents utility functions. We
provide a brief summary of their results below.

Definition 2.2. Given a fair division instance (N, M, U), define
the following two types of agents:

e Agent i is attracted to the manna if u;; > 0 for some item
jeM.Let N* ={i e N: 3jeM, ujj > 0} be the set of
attracted agents.

e Agent i is repulsed by the manna if u;; < 0, Vj € M. Let
N~ ={i e N: u;j <0, Vj € M} be the set of repulsed
agents.

In words, attracted agents view some item j € M as a good,
while repulsed agents view all items as undesirable chores. For any
repulsed agent i € N™, any allocation where x; = 0 maximizes her
utility. The above definitions allow us to define the type of compet-
itive division instance. Let X denote the set of feasible allocations,
and let U be set of agent utilities over all feasible allocations, i.e., if
u € U, then u = (ug(x1), . .., un(xy)) for some x € X. Define the
cone Iy = Riw x {0}N". Note that in Ty attracted agents benefit
without harming any repulsed agents. Also, let 'y = Rﬁl J: x{0}N”
be the relative interior of ;.

Definition 2.3. (Instance Type) Any given fair division instance
(N, M, U) falls into one of the following three types of competitive
division instance:

o If U NTy; # 0, then instance is positive.
o If U NI} = {0}, then instance is null.
o If U N T, = 0, then instance is negative.

In words, in a positive instance we can ensure all attracted agents
receive strictly positive utility without harming any repulsed agents
(who dislike all items). In a negative instance, no feasible allocation
gives all attracted agents non-negative utility. In null instances,
the only feasible allocations which give all agents non-negative
utility satisfy u;(x;) = 0, Vi € N. The type of instance determines
the form of the competitive equilibrium. Let X* denote the set of
Pareto optimal allocations, and define RN as the cone where all
agents receive strictly negative utilities.

THEOREM 2.4 ([13]). If agents’ utility functions are linear, then a
competitive equilibrium exists for all instance types. Specifically
o In a positive instance, there exists a unique (in utilities) CE
(x*,p*) by settinge; = 1,V¥i € N*, ande; = 0,Vi € N™.
The allocation x* maximizes the Nash social welfare over all
agentsi € N*
max l_l ui(x;i).
xeX ieN*
o In a null instance, the exists a unique (in utilities) CE (x*, p*)
by setting e; = 0, i € N, all prices pj = 0. In the allocation x*
all agents receive bundle such that u;(x}) = 0.
o In a negative instance, there exists at least one CE (x*, p*) by

setting e; = —1,Vi € N. Further, a CE allocation x* is a critical
point of the function
]—[ lui (), st x e UNRY.. @)
ieN
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Recalling the definitions of the various problem types offers an
intuitive interpretation of Theorem 2.4. In positive instances, we can
ensure all attracted agents receive strictly positive utility without
harming any repulsed agents. Therefore, a CE allows attracted
agents to compete to over the items, while repulsed agents take
a bundle they value at zero (which maximizes their utility). In a
negative instance, no feasible allocation assigns all attracted agents
non-negative utility. A CE asks that all agents share the burden
of completing the undesirable tasks in an efficient way. In null
instances, the best we can do without harming any agent is give
each agent zero utility, which is exactly the CE solution.

2.2 Fairness Notions

In this section, we present a number of standard fairness and effi-
ciency notions applicable to divisible items.

Definition 2.5. Envy-freeness: An allocation x is envy-free (EF)
if every agent i weakly prefers her bundle x;

Vie N, u;(x;) > ui(xj),Vj € N. (3)

EF defines the gold standard of fairness metrics. In the case of
additive valuations, EF also implies another notion of fairness.

Definition 2.6. Proportionality: An allocation x is proportional
(PROP) if every agent i € N receives a 1/n share of the items, where
n = |N| is the number of agents

4)

One can verify EF implies PROP by summing (3) over alli € N,
and using the definition of linear utilities, i.e., u;(M) = X ; uij.

Finally, we define the standard notion of economic efficiency,
Pareto Optimality (PO). Informally, allocation x is PO if no other
allocation xlf helps one agent ui(xlf) > u;(x;), without harming
another agent k, ”k(xl’c) < up(xp).

1
Vie N, ui(x;) = —ui(M).
n

Definition 2.7. Pareto Optimal The allocation x Pareto dom-
inates the allocation x” if u;(x;) > u;(x]) for some agent i € N,
while ug (xg) > ug (x]'c), Vk. The allocation x is Pareto optimal if no
allocation x’ Pareto dominates it.

EF and PROP represent standard notions of fairness in the set-
ting of divisible goods, while PO defines the standard notion of
economic efficiency, i.e., non-wastefulness of resources. [13] shows
that a competitive equilibrium of mixed manna provides all of these
guarantees simultaneously.

THEOREM 2.8. Every competitive equilibrium allocation is EF,
PROP, and PO.

Theorem 2.8 presents a compelling case for a competitive equi-
librium as the ‘most fair’ outcome in a fair division instance, since
it also satisfies multiple other fairness guarantees and they are non-
wasteful (PO). For these reasons we seek to find CE as the solution
to fair division of mixed manna.

2.3 Identifying Goods and Bads

Observe that examining the sign of u;; € R, for all agents i € N
determines the price of each item. If for some item j € M there



Research Paper

exists an agent i € N such that u;; > 0, then j is a good with
pj > 0, since agent i has infinite demand for item j at any negative
price. Similarly, if max; u;; < 0, then item j € M is a bad with
pj < 0, since there is no demand at any positive price. Further, if
max; u;j = 0 for any bad j, then all competitive equilibria set p; = 0,
and we may allocate j to any agent i € N such that u;; = 0. In view
of the above discussion, we refer to items with p; > 0 as goods, and
items with p; < 0 as bads. Obviously, this assumes a preprocessing
step to remove items j with max; u;; = 0, which have price p; = 0.
Let M* be the set of goods, and M~ be the set of bads.

The signs of prices for goods and bads leads to the following
natural economic interpretation. Suppose agent i accepts responsi-
bility to complete a fraction x;; > 0 of a universally disliked bad
(chore) j € M~. As the price of j is negative, she ‘spends’ a negative
amount of virtual currency, thereby reducing her total spending.
Equivalently, she receives a payment in virtual currency to perform
part of task no one wants to complete in order to ‘earn’ more money
to spend on goods she likes.

2.4 Finding Optimal Bundles

Given a vector of virtual prices p € R™, define agent i’s bang per
buck for good j as
bpb;; = Uij
Yoo
Similarly, for any agent i and any bad j € M define the i’s pain per
buck for bad j as
ppbi; = s
ij e 3

assuming we have removed all items where max; u;; = 0. Observe
that bpb;; (ppbij) give agent i’s utility (disutility) per unit spending
on item j. Intuitively, the optimal bundles for agent i at the given
prices p satisfy: i purchases only maximum bpb goods which give
the highest utility per unit spending, and i purchases only minimum
ppb items which give the lowest disutility per unit spending. These
facts are easily verified by applying KKT conditions to (1).

For a given set of prices p, define the maximum bang per buck
mbb; goods for agent i as mbb; = {j € M* : u;;/pj = maxy u;x /pi}-
Similarly, define the minimum pain per buck mpb; bads for i as
mpb; = {j € M™ : u;j/p;j = mingepr- Ui /pr }- In view of the above
discussion, agent i only purchases mpb; goods (if any), and mpb;
bads (if any). We summarize the cases where i purchases goods and
bads in the special case of a negative instance below.

PROPOSITION 2.9. Let (x,p) be an allocation and price pair in a
negative competitive division instance I with linear utilities.

o Ifmbb; = mpb;, then agent i potentially purchases both goods
and bads.

o If mbb; < mpb;, then agent i purchases only bads and no
goods.

o Ifmbb; > mpb;, then (x, p) is not a competitive equilibrium.

Proor. In a negative instance, agents have negative budgets
e; = —1,Vi € N.Therefore, all agents must purchase some bads, and
each unit of spending on goods must be offset by an equal amount of
spending on bads. If mbb; < mpb;, then all goods give lower utility
per unit spending the disutility incurred per unit spending on any
bad. Therefore, i purchases no goods since agents try to maximize
their utility. If mbb; > mpb;, then i gains utility by spending equal
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amounts on mbb; goods and mpb; bads. Thus, i has infinite demand
for both mbb; goods and mpb; bads. O

For our algorithm and analysis later, we only need to specifically
identify which bads and goods an agent purchases in a negative
instance. One can derive similar results for positive problems, where
budgets e; = 1, Vi € N, by swapping the roles of mbb; and mpb; in
Proposition 2.9. We note that the conditions of Proposition 2.9 are
necessary but not sufficient for an equilibrium.

2.5 Utility per Buck Graph

We only require the following construction for negative instances,
as defined in Section 2.1. As such, assume all agents only purchase
items according to Proposition 2.9. Given prices p, we define the
following bipartite graph G(p) = (V,E) that we refer to as the
utility per buck graph (UPB). We drop the price argument when the
meaning is clear. We create a vertex for each agent i € N on one
side and a vertex each item j € M on the other side. Next, we create
the following edges: (i, j), Vj € mpb;, Vi € N, and (i, j) for j € mbb;,
Vi € N such that mpb; = mbb;. Observe that we never create edges
(i, j) between goods j € mbb; when mbb; < mpb; as required by
Proposition 2.9. Therefore, in a negative instance, edges of the UPB
connect any agent i to the only bads and goods (if any) that she
might purchase in order to satisfy the optimal bundles condition.
For given prices p, we refer to the connected components of
UPB(p) as a component of the market. Notice that within a com-
ponent of the market, say Cy, all the agents only purchase the
items of Cy, by Proposition 2.9, and the items of Cy. are only pur-
chased by the agents of Cy.. Therefore, in a CE the sum of prices in a
component equals the sum of the agents budgets in the component.

3 ALGORITHM

In this section, we present our algorithm to compute a competitive
equilibrium of a mixed manna when agents have linear utility
functions. First, we preform a few preprocessing steps:

e Identify the set of bads M~ and the set of goods M™.
e Identify the attracted and repulsed agents, N* and N~ re-
spectively.
e If there exists an agent i € N such that u;; = 0 for some bad
J € M~ assign j to i and set p; = 0.
Observe the our preprocessing step means that p; < 0,Vj € M~,
and that u;j < 0, Vj € M™, Vi € N. By Definition 2.2, this means
that in all positive and null instances, see Definition 2.3, all repulsed
agents receive no allocation.
Recall, from Theorem 2.4, a CE depends on problem type: pos-
itive, null, or negative. We can determine the problem type by
solving the following linear program (LP):

max t (5)
s.t. Zuijx,'j >t Vie Nt
J
Z xij=1,VjeM
ieN*
xij 20, VieNt,jeM
xij=0,Vie N",je M.
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Note that the solution ¢ gives a lower bound on any attracted
agent’s utilities by the first set of constraints. The second set of
constraints simply requires that all items are fully allocated, and the
fourth set of constraints ensures all agents i € N~ receive utility
ui(x;) = 0 in both positive and null instance types. Note that this
assumes that we preformed a preprocessing step to remove all items
Jj such that max; u;; = 0, as discussed in Section 2.3. It follows that
repulsed agents must receive no items in positive or null instances,
see Section 2.1.

PROPOSITION 3.1. Let (t*,x*) be a solution to (5). The sign of t*
in the solution to (5) determines the competitive division type.

e Ift* > 0, then the instance is positive.
o Ift* =0, then the instance is null.
o ift* < 0, then the problem is negative.

Proor. Note that x* is feasible due to the second set of con-
straints, and ui(x;.k) =0, Vi € N7, by the fourth set of constraints.
Therefore, we only need to check whether some feasible allocation
gives all agents in N1 positive utility or not. We consider each
case, based on sign of t*, separately. First, suppose t* > 0. Then
u(x*) € Tyq = Rﬁ: x {0}V, ie., the problem is positive.

Next, consider the case of t* = 0. We aim to show U NI} = {0}.
For the sake of contradiction, suppose t* = 0 and Ix € X such
that u;(x;) > 0, Vi € Nt and uy(x;) > 0 for some k € N* while
up/(xgs) = 0 for some k/ € N*. We now go through a sequence
of steps to improve the allocation x for at least some agent that
ultimately gives all attracted agents positive utility, contradicting
that t* = 0 is the greatest lower bound on attracted agents utility
over all feasible allocations.

Step 1: Recall, by the definition of a good j € M*, 3i € N* such
that u;; > 0.If good j € M™ is partially assigned to agent k, i.e.,
Xgj > 0, and ugj <0, then allocate k’s fraction of j to agent i, i.e.,
xij < xij + xj and xi; < 0. Clearly, this improves i’s utility,
without deducing k’s utility.

Step 2: Consider any agent i € Nt with no zero allocation, x; # 0,
but u;(x;) = 0. Since u;j < 0, Vj € M™, and Step 1 ensures i holds
no j € M* that she values at u;j = 0, then i holds some fraction of
a good j € M* she likes and some fraction of a bad j’ € M~ she
dislikes. By assumption, uy(x;) = ¢ > 0 for some k € N*. Consider
giving some fraction of j’ to agent k

. c . c
Xk jr < Xfj+min (—,xijr), and Xij/ ¢ Xjj—min (—,xij/).
/ / 2lug | 2lug ]

After this transfer uy (x;) > ¢/2 > 0, and u;(x;) > 0.

Step 3: After Steps 1 and 2, either u;(x;) > 0, 0or x; = 0, Vi € N*. If
ui(x;) > 0, Vi € N*, then this contradicts that t* is the solution to
(5). Otherwise, 3i € N* with x; = 0. Since i € N*, 3j € M*, such
that u;; = ¢ > 0. Observe that j is fractionally assigned to some
k € N*, by Step 1. Consider reallocating some of j to agent i

. c . c
xkj(_xkj_mm(fkj’xkj)’ and xij<—m1n(ij,xkj).

After this transfer, both u;(x;), ur(xg) > 0. Repeating this over all
agents with x; = 0 ensures u;(x;) > 0, Vi € N*, contradicting
t* = 0 solves (5).
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Figure 1: Agents utilities and all CE of Example 1.

Finally, the case of t* < 0, the need to show no feasible alloca-
tions yield u;(x;) > 0, Vi € N. One can adapt the arguments for
the t* = 0 case for this purpose. O

Proposition 3.1 implies that both positive and null problems are
polynomial time solvable. Indeed, if the problem is positive, i.e., the
solution gives t* > 0 in (5), then Theorem 2.4 shows that maximiz-
ing Nash welfare over all attracted agents N* gives a competitive
equilibrium. Since log is a monotone increasing function, we may
equivalently maximize the objective )’ ;< n+ log(x;) over the same
constraints as (5). Therefore, any off the shelf convex optimization
solver yields a competitive equilibrium from the solution x* and
prices p* which correspond to dual variables of the first set of con-
straints. Similarly, if the problem is null, then x* from the solution
to (5) gives a feasible allocation such that all agents receive zero
utility. Thus, setting all budgets e; and prices p; equal to zero yields
the unique (in utilities) competitive equilibrium.

THEOREM 3.2. Let I be a fair division instance. If the problem is
positive or null, then one can compute the unique (in utilities) CE in
polynomial time. If the problem is negative, then one can compute all
CE in polynomial time if either the number of agents or the number
of items is constant.

3.1 Handling Negative Problems

Negative problems present a more interesting challenge for com-
puting an equilibrium. Theorem 2.4 establishes that equilibria are
critical points of (2) on U* N RN ie., Pareto optimal allocations

where all agents receives strictly negative utility. A simple example
illustrates the difficulty.

Example 1: (Negative Problem) Consider a fair division instance
with two agents A and B, and two items 1 and 2. The agents utility
functions are: ua(xp) = —xa1 — 2xa2, and ug(xg) = —3xp1 —
xpz. Observe both items are bads, so clearly no feasible allocation
gives both agents non-negative utility. Therefore, the problem is a
negative instance. Figure 1 plots the agents’ utilities over all feasible
allocations, shown as the green shaded region. The black curve
shows the Pareto frontier X*, and the three equilibria are shown
in as blue dots. Clearly, the set of equilibria are non-convex and
disconnected.
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This highlights the two major problems in computing a competi-
tive equilibrium in negative instances. First, one needs to determine
the Pareto frontier X*. [13, 14] offer a method to find X* when there
are either only two agents or only two items. However, no general
method is known outside of these two very restrictive special cases.
Second, unlike positive and null cases which have a unique (in
utilities) equilibrium, a general negative case admits multiple equi-
libria. Moreover, different equilibria provide different utilities for
the agents, introducing a new problem of equilibrium selection. One
can argue that finding all equilibria might be necessary to ensure
the fairest outcome. Consider Example 1, the three CE in Figure 1:
right, middle, and left; give the agents utilities (u4(x4), ug(xp)) of:
(-3/2,-3/4), (-1, -1), and (-2/3, —2); respectively. Thus, the left
(right) CE is most preferred by agent B (A). Each CE is envy-free,
proportional, and PO, but one could argue that the middle CE is
the most fair.

3.2 Algorithm for Negative Instances

We now present our algorithm to compute all competitive equilibria
of a negative instance. Our approach relies on enumeration, and
thus, has exponential runtime in the worst case. However, we show
that if either the number of agents or the number of items remains
constant, then our algorithm runs in polynomial time. We note that
our algorithm relies on the characterization of optimal bundles in
Section 2.4, rather than attempting to find critical points of (2) on
U NRN.

We use the ‘cell decomposition’ technique, as in [22]. The central
concept is the fact that k hyperplanes in R? form at most O(k?)
non-empty regions, or cells. Suppose the number of items is fixed
m = |M|. We consider the space R™ with coordinates corresponding
to prices p1, . ..,pm- We create polynomially many hyperplanes
to partition R™ into polynomially many cells, since m is fixed.
Our choice of hyperplanes ensures that each cell corresponds to a
unique configuration of mbb; goods and mpb; bads for each agent
i € N. Since optimal bundles, Section 2.4, require agents purchase
only mbb; and mpb; items, we know what items any agent might
purchase in a given cell. Then, it remains to check the other two
conditions required for an equilibrium to hold: all agents spend
their budgets, and total spending on any item equals its price. We
show that solving a max flow problem on a certain network suffices.
By checking all (polynomially many) cells, we find all competitive
equilibria.

Before giving our cell decomposition to determine the set of
mbb; goods and mpb; bads for each agent i € N, we show how to
use this information to compute an equilibrium (if one exists).

3.3 Finding Prices in a Cell

Our approach to computing an equilibrium in a given cell computes
a max flow on a certain network. Before specifying the network,
we start with a crucial lemma.

LEmMMA 3.3. Given the set of mbb; goods and mpb; bads in a given
cell, one can determine all prices.

Proor. We use the utility per buck graph (UPB), defined in Sec-
tion 2.5. Recall that, within a component Cy, all agents of Cy spend
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Data: Negative competitive division instance (N, M, U, e)
Result: All CE
Determine cells using Section 3.5 if constantly many items, or
Section 3.6 if constantly many items;
CE = 0;
for each cell c do
Determine prices p in ¢ as in Section 3.3;
if prices are consistent then
Form economic network in Section 3.4;
Solve max flow f in the network;
if f = Xjeu- Ipj| then
Set x;j = f,'j/pj, Vje Mt
Set xij = fji/lpjl, Vi € M~;
CE = CE U (x, p);
end

end

end
Algorithm 1: Compute all CE of negative instance.

A ——_

N

4%

\@

Figure 2: The UPB graph on the left, and its tree representa-
tion on the right.

their budgets only on items of Cy, and all items of Cy. are only pur-
chased by the agents of Cr.. Note that in a negative instance e; = —1,
Vi € N, and therefore each component contains at least one bad
J € M~ withp; < 0.Let ng = [INNCy| be the number of agents in Cy..
Any CE of a negative instance satisfies —ng = 3;cc, €i = Xjec, Pj-
We want to rewrite the price of all items in terms of some repre-
sentative bad jo € Cx N M—, then using —ng = 3¢, pj, we can
determine the price of all items in the component. Refer to Figure
2 in the following discussion.

In each component Cy, pick a representative bad jo € C N M~
Since Cy. is a connected component, there exists a path connecting
bad jo and all other items j, € Cy in the UPB graph. This path alter-
nates between items j, and agents iq: (jo, i0),(i0, j1)s - - - » (ig—15J¢)-
Each edge on this path is either mbb, or mpb, for the agent ig4, ie.,
Uqj,/Pja = Uajas: /Pjas» Decause we use the UPB graph.

For each component Cy, form a tree t with root jo € Cp, N M~
by following the shortest alternating path between items jy and
Jje € Cy in the UPB, including the agent i, that connects items j,
and jg+1 along mpb; or mbb; edges. See Figure 2 for an illustration.

Observe that the leaves of the tree t correspond to items. For
any leaf { € t, we may write the price of j, in terms of the
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representative good jo by following the tree up to the root, i.e.,
Pe = Pj ]—Ii:l Uiy ji [Uip_1jxy = PjoCe- Therefore, we have that
YjeCy Pi = Pjo Ljecy ¢j- Finally, since in a CE we have —np =
2jecy Pj» it follows that we can determine pj,, and therefore all
pj € Cr.

Notice that the above procedure does not explicitly guarantee
that prices are consistent with a cell configuration. That is, we
need to check the definitions of mbb; and mpb; hold, e.g., u;j/pj =
Uik /P, Vi, k € mbb;, Vi € N, and u;j/pj > ujr/px, j € mbb;,
Vk ¢ mbb;. We check mpb; for these prices similarly. Note that a
cell also specifies whether mbb; < mpb;, or mbb; = mpb; (the final
case mbb; > mbp; does not admit an equilibrium by Proposition
2.9). We check the appropriate condition similar to the above. We
discard all cells with invalid prices. Obviously, this step runs in
strongly polynomial time. O

Observe that this approach works with minimal changes when
agents have different budgets, simply use }’;¢c, e; instead of -ng.

3.4 Max Flow to Check for CE

With valid prices in hand, we check if there exists an allocation
where all agents spend their budgets and all items are fully sold by
solving a max flow problem on a specially designed network. We
create one vertex for each agent i € N, and one vertex for each item
J € M. We refer to a vertex by the agent or item it represents. The
vertices are arranged left to right as: source s, then all bads, then all
agents, then all goods (if any), and finally the sink ¢, refer to Figure
3. In the max flow, we use spending q;; = x;jp;, Vi, j, instead of
working the allocation x. Note that ‘spending’ on bads is negative
gij <0,¥j € M™,Vie M*. Let (a,b) denote a directed edge from
a to b and create the following edges:

e (s,j) with capacity —p; > 0, Vj € M™. The flow on this edge
fsj will represent the total spending on bad j by the agents,
Le, fsj = Xilqijl = Ipjl X xij.

e (j, i) with capacity oo, Vj € mpb;, Vi € N. The flow fj; will
represent the amount i spends on bad j, i.e., fj;i = |qij| =
xijlpjl-

e (i, ) with capacity oo, Vj € mbb;, Vi € N such that mbb; =
mpb;. The flow f;; will represent the amount i spends on
good j, i.e., fjj = qij = Xijpj-

e (j, 1) with capacity p;, Vj € M*. The flow fj; will represent
the total spending on good j, i.e., fij = X; qij.

e (i,t) with capacity 1, Vi € N. The flow fi; represents the
total spending of agent i, i.e., fir = | X; qij-

We refer to the above construction as the economic network for the
cell. See Figure 3 for an illustration in an example with only one
good with p; = 2 and one bad with p; = —4. The edge’s capacity
is shown above the edge, and the amount of flow on the edge is
shown in below.

LEMMA 3.4. A CE exists in a cell if and only if the max flow on the
economic network equals sumje - |pj|. Further, if a CE exists in this
cell, then the max flow f gives the CE allocation.

Proor. Recall from Section 2.4 that the utility per buck graph
(UPB) consists of ¢ connected components {C }izl' Within each
component Cy, the agents of Cy. only purchase the items of Cy, and
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agents

Figure 3: The network and max flow for Example 1.

the items of Cy. are only purchased by the agents of Ci. Further,
purchases are only made on mpb; and mbb; edges (assuming mbb; =
mpb; by Proposition 2.9) for each agent i € N. Since we only add
edges to the economic network under the same conditions, then the
economic network consists of the same connected components as
the UPB. Further, it suffices to check CE conditions hold within each
component separately, i.e., agents in Cy. spend their budgets and the
items of Cy. are fully sold. To avoid introducing additional notation,
we assume there is only component, although the argument easily
generalizes to the case of multiple components.

Recall in a negative instance, all agents budgets e; = —1. As-
suming the economic network is connected, then in a CE the
sum of the agents budgets equals the sum of the item prices, i.e.,
-n =36 = Xipj or Yjem- Ipjl = n+ Xjepm+. Observe from
Figure 3 that max flow f is bounded above by 3’ ;e - |pj| where it
saturates all edges leading out of the source (s, j), Vj € M~. Simi-
larly, f is bounded above by 3;cn leil + Xjenm+ pj = n+ Xjem+ pj
where it saturates all edges leading into the sink (i, t), Vi € N, and
(j,t), Vj € M*, Vi € N such that mbb; = mpb;. Notice that our
prices satisfy X ;jepr- |pj| = n+ Xjepm+ pj- Further, the only edges
out of j € M~ lead to agents i € N such that j € mpb;. Similarly,
the only edges into j € M* come from i € N such that i € mbb;
and mbb; = mpb;. By interpreting the flow f;; from bad j to agent
i asi’s spending on j, i.e., —fj; = qij = xijpj, and fi; as agent i’s
spending on good j, i.e., fij = qij = xjjpj, we obtain the follow-
ing. By flow conservation, if the max flow f = };cp- |pjl, then
all items are fully purchased on mpb; and mbb; edges. Also, total
flow into agent i comes from bads j € mpb;, and the total flow
out goes to the sink ¢ and goods j € mbb;. Therefore, if the max
flow equals 3 jep- [pjl = n + Xjem+ pj, then fiy = 1, Vi € N.
Then, flow conservation requires that for each agent i we have:
Yjem-1qijl = Xjem- fij = fir + Zjem+ = 1+ Xjem+ gij» or
ei = —1=1%;qij = XjXijpj- o

Note that our approach easily generalizes to situations where
agents have different budgets by simply changing the capacity on
each edge (i, t) to be ¢;. In view of Lemmas 3.3 and 3.4, we only
need to determine all configurations of mbb; goods and mpb; bads
in order to determine all equilibria of a negative instance.
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3.5 Constant Number of Items

We seek a set of hyperplanes that uniquely determine the set of
mbb; and mpb; items for each agent. Recall that our preprocessing
step identifies the set of goods j € M* with p; > 0, and the set of
bads j € M~ with p; < 0. We begin by creating the hyperplanes
pj =0, Vj € M. Each hyperplane divides R™ into half-spaces with
signs >, =, and <, which correspond to p; > 0, p; = 0,and p; < 0
respectively. Given all such hyperplanes, we refer to all non-empty
regions as cells. Since p; > 0, Vj € M, and p; < 0,Vj € M, we
say a cell is valid if the prices of goods (bads) are positive (negative).
In the following, we only consider valid cells.

Next, we look for set of mbb; goods and mpb; bads within each
valid cell. For this, we introduce hyperplanes u;jpj — u;jp;j = 0,
for all pairs of items j,j’ € M, and all i € N. If both items are
goods j, j’ € M*, then in the > region of a hyperplane we have
uij/pj > uij /pj, i.e., good j gives higher bang per buck than good
j’ for agent i. Similarly, in the = region both goods give the same
bang per buck, while in the < region j” has better bang per buck
than j. Proposition 3.5 summarizes similar results for cases when
j»j’ € M, and when j € M*,and j’ € M~.

PROPOSITION 3.5. Within any valid cell, the signs of hyperplanes
ujjpj — ujypj = 0 determine the following relations for each agent
i€N:

o Ifj,j’ € M* wherepj,py > 0, then the sign >, =, < of the
hyperplane means bpb;; > bpb;j, bpbij = bpb;j, bpb;j <
bpb;j respectively.

o Ifj,j’ € M~ where pj,pjr,ujj, ujj < 0, then sign >, =, < of
the hyperplane means ppb;j > ppbij, ppbij = ppbij, ppbij <
ppbij respectively.

e Ifj € M*, and j’ € M, then sign >, =, < of the hyperplane
means bpb;j < ppbijr, bpbij = ppbij, bpbij > ppbij respec-
tively.

It follows from Proposition 3.5 that the signs of the hyperplanes
in each cell create a partial ordering on goods j € M in terms
of bpb;; and a partial ordering on the bads j € M~ in terms of
ppb; for each agent i. Thus we define mbb; goods as the set with
highest bpb;;, and the mpb; bads as the set with lowest ppb; in
each cell. Further, the hyperplanes which compare j € M* and
j € M~ allow us to determine whether mbb; < mpb;, mbb; =
mpb;, or mbb; > mpb;. Thus, by Proposition 2.9, we can determine
which set of bads and goods (if any) an agent purchases in a cell.
Notice that each cell gives a unique configuration of mbb; goods,
mpb; bads, and the sign of mbb; < mpb;, or vice versa. Therefore,
using the max flow approach of Section 3.4 we can compute the
equilibrium in any given cell (if one exists). Observe that we created
(';) hyperplanes for each agent, and therefore O(nm?) in total.
These hyperplanes divide R™ into at most O((nm?)™) non-empty
cells which is polynomially since the number of items is constant.

3.6 Constant Number of Agents

We use the same basic reasoning as before, this time exploiting
the constant number of agents n = |N|. Recall that we need to
create a set of hyperplanes that uniquely identify the set of mbb;
goods and mpb; bads for each agent. For a given set of prices p, the
mbb; condition states that i purchases good j € M* if and only if
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ujj/pj = @i = maxy u;x/pg, and the mpb; condition states that i
purchases bad j € M~ ifand only if u;j/pj = a; = ming u;x /p. For
each agent i € N, we create a variable A; to serve as the reciprocal
of i’s mbb; or mpb;, ie., 1/A; = a;. Note that &; > 0, and so 1; > 0.

Observe that u;j/p; = 1/A; for any good j € mbb;, and u;j/p; <
1/A; otherwise. Equivalently, u;jA; = pj, Vj € mbb;, and ujjA; < pj
otherwise. Similarly, we have u;;A; = p; for all bads j € mpb;, and
u;jA; < pj otherwise since u;;,p; < 0.

We consider the space R" with coordinates 14, . .., A,. First we
add the hyperplanes A; = 0, so that we only need to consider
situations where A; > 0. We say a cell is valid if A; > 0, Vi € N.
Next, we create the hyperplanes u;jA; — ujjAy = 0 for each pair of
agents i,i’ € N, Vj € M. Within a cell, this gives a partial ordering
on the terms u;jA; for each good j € M*. For each good j € M¥,
let bpb;f ={i € N : ujjA; = maxy uy ;A } be the equivalence class
of agents with the highest u;;1; values. Observe that, if j € M*,
then in the > region we have u;;A; > uyjAy, or since ujjA; < pj,
1/Ai > uyj/pj, ie., i’ does not purchase good j. Since all items
are fully assigned in a feasible allocation, we must have j € mbb;,
Vie bpb;f, and mbb; > bpb;; for all other i € N.

Similarly, for each bad j € M, the hyperplanes give a par-
tial ordering on the terms u;;A;. Let ppb;.k ={i € N: ujjli =
maxy ug;jAg} (since uj; < 0 and A; > 0) be the equivalence class of
agents with the highest u;;4; values for each bad j € M™. In the >
region of any hyperplane, u;jA; > uy jAy, or since u;jA; < p; and
pj <0, we see that uj/p; > 1/, ie, i’ does not purchase bad j.
Thus, j € mpb;, Vi € ppb;, and mpb; < ppb;f for all other i € N.

From the above discussion, the signs of the hyperplanes u;;A; —
ujrjAy within a cell give a unique configuration of mpb; bads, and
mbb; goods for each agent i € N. Therefore, we can determine if
the cell admits a CE by computing the max flow on the network of
Section 3.4. Observe that we created (%) hyperplanes for each item,
and therefore O(mn?) in total. These hyperplanes divide R" into at
most O((mn®)™) non-empty cells which is polynomially since the
number of agents n is constant.

4 DISCUSSION

We presented an algorithm to compute all CE of mixed manna
under linear utilities that runs in polynomial time so long as either
the number of agents or the number of items is constant. To the best
of our knowledge, this first polynomial time algorithm under any
set of assumptions. Our work also gives a simple LP to determine
problem type, a method to determine the prices in each market
component, and a new, specially designed network whose max flow
proves that a CE exists for a given configuration of mbb; and mpb;
items for each agent.

We see two interesting avenues for future work. First, our ap-
proach might generalize to more general classes of utility func-
tions. Specifically, separable piecewise linear concave (SPLC) utility
functions seems a natural candidate, see [22, 28] and references
therein for more details. SPLC utilities are ‘sufficiently close’ to lin-
ear so that most of the basic structure of the algorithm and analysis
should carry over. Second, despite the fact that both positive and
null instances admit polynomial time algorithms, the complexity of
computing a CE in a negative problem remains a major unresolved
issue.
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