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Abstract

Unsupervised domain adaptation (UDA) aims at infer-
ring class labels for unlabeled target domain given a re-
lated labeled source dataset. Intuitively, the model trained
on labeled data will produce high uncertainty estimation
for unseen data. Under this assumption, models trained in
the source domain would produce high uncertainties when
tested on the target domain. In this work, we build on this
assumption and propose to adapt from source and target
domain via calibrating their predictive uncertainties. We
employ variational Bayes learning for uncertainty estima-
tion which is quantified as the predicted Rényi entropy on
the target domain. We discuss the theoretical properties of
our proposed framework and demonstrate its effectiveness
on three domain-adaptation tasks.

1. Introduction

The ability to model uncertainty is important in unsuper-
vised domain adaptation (UDA). For example, self-training-
based approaches [13, 27] often requires the model to reli-
ably estimate the uncertainty of its prediction on target do-
main in the pseudo-label selection phase. However, tradi-
tional deep neural networks (DNN) can easily assign high
confidence to a wrong prediction [4, 15], thus are not able
to reliably and quantitatively render the uncertainty given
data.

Bayesian Neural Networks (BNN) [17, 4, 1, 9] tackles
this problem by taking a Bayesian view of the training pro-
cess. Instead of obtaining a point estimate of weights, BNN
tries to model the distributions over weights. We leverage
BNN as a powerful tool to model uncertainties and the in-
vestigation on the uncertainties among different domains
provides us insights on addressing domain adaptation prob-
lem. An observation is that a BNN trained on source do-

main would produce much higher uncertainties when de-
ployed on target domain. Our uncertainty-based domain-
adaptation approach is built on the intuition that a model
gives similar uncertainty estimations on the two domains
learns to adapt from source to target well. Thus, we propose
to directly match the estimated uncertainty between source
and target domain during training.

Our contributions are listed as follows:

e We propose a novel framework for unsupervised do-
main adaptation by calibrating the predictive uncer-
tainty.

e We adopt variational Bayes neural network for uncer-
tainty estimation and discuss its relationship with en-
tropy regularization [6] and self-training [ 13].

e Preliminary results show that the proposed BNN-based
uncertainty calibration is effective and stable in train-
ing.

2. Related Work

Shannon entropy is commonly used to quantify the un-
certainty of a given distribution. Entropy-based UDA has
already been proposed in [23]. Unlike [23], we avoid using
adversarial learning which tends to be unstable and hard
to train. Also, entropy regularization is proposed in [6]
for semi-supervised learning and can be directly applied to
UDA. However, our framework is more general since the
uncertainty is not necessarily to be the Shannon entropy. In
fact, we formalize the uncertainty as Rényi entropy which
is a generalization of Shannon entropy. Many other meth-
ods in UDA can be modeled under this framework, for ex-
ample, self-train [13, 27] can be viewed as minimizing the
min-entropy which is a special case of Rényi entropy.

As pointed out by [5], directly optimizing the esti-
mated Shannon entropy given data requires the classi-
fier to be locally-Lipschitz [16]. Co-DA [I1] and DIRT-
T [21] propose to solve this problem by incorporate the
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locally-Lipschitz constraint via virtual adversarial training
(VAT) [16].

Another complimentary line of research employs self-
ensemble and shows promising results [2]. Indeed, BNN [4]
performs Bayesian ensembling by nature. This is part of the
reason why BNN provides a better uncertainty estimation.

3. Uncertainty in Deep Neural Networks

BNN models the uncertainty in DNNs by estimating a
posterior over the network parameters. Given the dataset
D = {2® yW}N . the output of BNN is denoted as
f(z|w) where z is input data and w is the weights (or pa-
rameters). For classification task, f is the predicted log-
its and the resulting probability vector is given by a soft-
max function: P(y|x,w) = softmax(f(z|w)). The pre-
dictive distribution over labels given input x is: P(y|z) =
Ep(wp)P(y|z,w). Thus, the predictive uncertainty can be

quantified as the Rényi entropy, H,(P(y|r)). Rényi en-
tropy [24] of order a (v > 0) is defined as
1
Ho(P) = 17— 1og(2k: Py). (1)

The limiting value of H, when o« — 1 is the Shannon
entropy, and o« — oo corresponds to the min-entropy,
Hoo (P) = ming — log(P;) = — log maxy, P.

As estimating the posterior P(w|D) is often in-
tractable [1, 9], the variational inference is proposed to
address this problem, where the posterior of weights is
approximated by Qg(w) =~ P(w|D) with parameter 6.
Specifically, Qg(w) is estimated by training the model
with objective of maximizing the evidence lower bound
(ELBO) [10, 4]:

—Dir(QollP(w)), (2)
I ()

ELBO = Eq,(uw)log P(y|z,w)

where P(w) is the prior, and the term (I) is the standard
cross-entropy loss evaluated at w. Gal et al. [3, 4] proposes
to view dropout together with weight decay as Bayesian ap-
proximation, where sampling from Qg is equivalent to per-
forming dropout and the (II) KL divergence term becomes
Lo regularization (or weight decay) on 6.

We adopt the method from [9], where aleatoric and epis-
temic uncertainty are jointly modeled. In [9], the logits are
assumed to be a Gaussian and the reparameterization trick
is utilized. The predicted logit is f(z) = pg(x) + oa(x)e
with e ~ N(0, I). With a slight abuse of notation, the fi-
nal predicted probability vector P(y|z) is approximated by
Monte Carlo sampling,

P(y|x; 0) Z softmax(f(™ (z)). 3)

m=1

Plugging the above equation into the MLE term in ELBO,
the BNN is trained via a cross-entropy (CE) loss plus weight
decay.

4. Domain Adaptation via Calibrating Uncer-
tainties

Denote source and target
{9 y)les and Dr = {2®}c respectively,
where x° ! indicate the samples and y* is the label
in source domain, and D = Dg U Dr. We propose to
calibrate the predictive uncertainty of target dataset with the
source domain uncertainties. Concretely, we minimize the
cross-entropy loss in the source domain with the constraint
of the predicted entropy (uncertainty) in the target domain:

dataset as Dg =

1
minLeg = —= Y _Hep(y", Plylz);0))
o |S‘ seS
st = S Ha(P(yla;0)) < C, @)
T

where Hog (-, -) is the cross-entropy and C' indicates the
strength of the applied constraint. Rewriting Eq. 4 as a La-
grangian with a multiplier 3,

=1s| ZHCE P(yla);0))+
seS
<|T > Ho(P(yl='");6)) - C>. (5)
teT

Since 5, C' > 0 an upper bound on F is obtained,

F <15 o Hes 0 Pul:0)+
seES

\T|ZH P(y|z'";6)) = L. 6)
teT

In theory, Eq. 5 can be optimized via dual gradient descent
and § is jointly updated along with 8. For simplicity, we
follow the work of [8] and fix § as a hyper-parameter in the
experiment and minimize the upper bound L,,.

Note that letting « — 1 in Eq. 6 is in fact the (Shan-
non) entropy regularization as described in [5, 6], except
that here we consider a variational BNN. As pointed out
in [6], directly optimizing Eq. 6 can be difficult and expec-
tation maximization (EM) algorithms are often used. Pro-
posed in [25, 6], deterministic annealing EM anneals the
predicted probabilities as soft-labels and minimizes the re-
sulting cross-entropy. In the extreme case, soft-labels be-
come one-hot vectors and the algorithm terms out to be self-
training with pseudo-labels [13]. In our Rényi entropy regu-
larization framework, self-training is essentially optimizing
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the min-entropy (ov — 00). Then the objective reads
1 . ,
Loo =157 2 oy, Plyle):6))+

seS
p

7 > Hep(@®, Pylz®;0)), (7

teT

with §(*) = onehot(arg MaXpe (1, k) P(yi|z®;0)) to be
pseudo-labels in target domain. Subscript k denotes the k-th
element in a given K -dim vector. The relationship between
L1 and L, can be immediately realized by noticing that the
Shannon entropy is an upper bound of the min-entropy:

Hy(P) = —> Pplog(P) > = > Pk IOg(m]?XPk)
k k
= — log(m]?x P.) =H.(P) =Her(g,P) (8)

We build our method on top of class-balanced self-
training (CBST) proposed in [27]. CBST seeks to generate
pseudo-labels from the most confident predictions that fol-
lows an ‘“easy-to-hard” scheme, since jointly learning the
model and optimizing pseudo-labels on all unlabeled data
is naturally difficult. The authors also propose to normalize
the class-wise confidence levels in pseudo-label generation
to balance the class distribution. For a detailed formulation,
we suggest readers referring Section 4.1 and 4.2 in [27].

5. Experiments

We first show results on three toy datasets MNIST [12],
USPS and SVHN [ 18], where we consider MNIST—USPS
and SVHN—MNIST. Then we present preliminary results
on a challenging benchmark: VisDA17 (classification) [19]
which contains 12 classes. We follow the standard protocol
in [19,22,20].

The accuracies on source and target domains for base
models are reported in Table 1. We use DTN [26] as our
base model for MNIST—USPS and SVHN—MNIST. To
implement its Bayesian variant (BDTN), we add another
classifier to predict the logarithm of variance.

Domain adaptation results are shown in Table 2. We can
see self-training with pseudo-labels (CBST-BNN-c0) are
more stable than directly minimizing the predicted Shan-
non entropy (CBST-BNN-1). Mean accuracies on VisDA17
dataset are reported in Table 3. Following the protocol
in [27], we train a standard ResNet101 [7] as the base model
and add a second classifier (denoted as BRes101) to predict
logarithm of variance on logits.

6. Conclusion

In this work, we propose to calibrate the predictive un-
certainty for unsupervised domain adaptation. The uncer-
tainty is quantified via Bayesian networks under a general

(a) MNIST

Model Source Acc  Target Acc
DTN 100.00 83.94
BDTN-M1 100.00 83.78
BDTN-MS5 100.00 86.83
BDTN-M10 100.00 86.28
BDTN-M20 100.00 86.78
BDTN-M100 100.00 87.06
(b) SVHN
Model Source Acc  Target Acc
DTN 97.42 7291
BDTN-M1 95.91 65.51
BDTN-M5 99.16 71.12
BDTN-M10 99.42 71.38
BDTN-M20 99.50 73.64
BDTN-M100 99.33 74.91

Table 1: Training base models on MNIST and SVHN.
BDTN is a modified Bayesian DTN [26], with different M
values.

(a) MNIST—USPS
Model Target Acc  Acc Gain
Source-DTN 83.94 -
Source-BDTN 84.78 -
CBST 93.20+0.59 9.26
CBST-BNN-1 89.31+2.02 4.53
CBST-BNN-co  93.85+0.16 9.07
(b) SVHN—MNIST
Model Target Acc  Acc Gain
Source-DTN 64.48 -
Source-BDTN 71.07
MMD [14] 61.1
GTA-Res152 [20] 71.1 -
CBST 81.82+4.87 17.34
CBST-BNN-1 89.23+4.64 18.16
CBST-BNN-oco 94.15+0.61 23.08

Table 2: Results on MNIST—USPS and SVHN—MNIST.
CBST [27] uses DTN as the base model for self-training.
CBST-BNN-oco uses BDTN as the base model and opti-
mizes L, while CBST-BNN-1 optimizes L;.

Model Target mean-Acc  Acc Gain
Source-Res101 48.02 -
Source-BRes101 46.03 -
CBST 76.81+3.41 28.79
CBST-BNN-co 80.59£1.39 34.56

Table 3: Preliminary results on VisDA17 [
benchmark.

] classification

Rényi entropy regularization framework. Results show the
uncertainty estimation by Bayesian networks is effective
and leads to stable performance in unsupervised domain
adaptation.
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