
PERSEUS: Characterizing Performance and Cost

of Multi-Tenant Serving for CNN Models

Matthew LeMay

Worcester Polytechnic Institute

mlemay@wpi.edu

Shijian Li

Worcester Polytechnic Institute

sli8@wpi.edu

Tian Guo

Worcester Polytechnic Institute

tian@wpi.edu

Abstract— Deep learning models are increasingly used for
end-user applications, supporting both novel features such as
facial recognition, and traditional features, e.g. web search.
To accommodate high inference throughput, it is common to
host a single pre-trained Convolutional Neural Network (CNN)
in dedicated cloud-based servers with hardware accelerators
such as Graphics Processing Units (GPUs). However, GPUs
can be orders of magnitude more expensive than traditional
Central Processing Unit (CPU) servers. These resources could
also be under-utilized facing dynamic workloads, which may
result in inflated serving costs. One potential way to alleviate
this problem is by allowing hosted models to share the under-
lying resources, which we refer to as multi-tenant inference
serving. One of the key challenges is maximizing the resource
efficiency for multi-tenant serving given hardware with diverse
characteristics, models with unique response time Service Level
Agreement (SLA), and dynamic inference workloads. In this
paper, we present PERSEUS, a measurement framework that
provides the basis for understanding the performance and
cost trade-offs of multi-tenant model serving. We implemented
PERSEUS in Python atop a popular cloud inference server
called Nvidia TensorRT Inference Server. Leveraging PERSEUS,
we evaluated the inference throughput and cost for serving
various models and demonstrated that multi-tenant model
serving led to up to 12% cost reduction.

Keywords-DNN inference, multi-tenancy, performance

I. INTRODUCTION

Infrastructure-as-a-Service (IaaS), has emerged as a pop-

ular option for training and deploying deep learning models,

due to their pay-as-you-go pricing models and wide selection

of hardware. The increasing usage of Convolutional Neural

Network (CNN) models in computer vision applications re-

quires efficient utilization of cloud resources. Consequently,

understanding the cost and performance trade-offs of serving

CNN model inference requests with various cloud hardware

has garnered interest from researchers [1, 2].

However, the typical method of serving a CNN model

with dedicated resources may lead to underutilized re-

sources, especially when inference workloads vary. Such in-

efficiency often leads to higher monetary costs; the problem

becomes more prominent when inference serving systems

use expensive hardware accelerators such as Graphics Pro-

cessing Units (GPUs) for higher throughput. One potential

way to improve resource efficiency is supporting multi-

tenant inference serving, in which models with different re-

source requirements share the underlying hardware. As such,

it is also possible to decrease serving costs by multiplexing

CNN models on previously underutilized servers.

In this paper, we first show that multi-tenant model

serving can achieve higher resource utilization and lead to

promising cost savings, without violating performance guar-

antees for serving CNN models. Leveraging our measure-

ment infrastructure called PERSEUS, we quantified the end-

user perceived latency and throughput, as well as serving

cost of running two representative CNN models on Google

Cloud Platform’s Compute Engine. PERSEUS highlights the

impacts on performance associated with multi-tenant model

serving and examines the performance and cost tradeoffs of

inference serving with different hardware configurations.

Previous literature explored the potential of using

Functions-as-a-Service to achieve better resource utilization

and scalability [1, 3–8]. Other works have explored the use

of predictive scaling [9], Quality of Service (QoS) aware

scheduling [10–12], GPU primitive sharing [13], and edge-

based techniques [14–17] to improve serving efficiency.

Our work complements prior research by providing the

basis for understanding the performance implications and

for improving resource utilization of cloud-based inference

servings. We make the following key contributions.

• Our study demonstrates the need for multi-tenant model

serving, and shows up to 12% cost savings when

appropriately mixing inference workloads.

• We designed and implemented a suite of tools, col-

lectively referred to as PERSEUS [18], that facilitates

further evaluation of performance and cost trade-offs

for new model serving scenarios, such as running new

CNN models on different GPUs.

• We identify a number of aspects, including inefficient

framework supports for CPU inference and for model

caching, that hinder the observed inference perfor-

mance. Our findings shed light on and pave the way for

complementary research such as resource provisioning

and load balancing for model serving.

The remainder of this paper is structured as follows:

Section II introduces the key concepts underpinning CNN

66

2020 IEEE International Conference on Cloud Engineering (IC2E)

978-1-7281-1099-8/20/$31.00 ©2020 IEEE
DOI 10.1109/IC2E48712.2020.00014

model serving systems and discusses related work. Sec-

tion III presents the problem statement followed by the

design of PERSEUS and our measurement methodology

for characterizing multi-tenant model serving, as presented

in Section IV. Finally, we summarize the findings of our

research and potential directions in Section V.

II. BACKGROUND AND RELATED WORK

There are numerous existing frameworks [1, 8, 19–24] and

services [25–27] for supporting inference serving in cloud

environments. We briefly describe these inference systems

and common deployment practices. Then we discuss the

hardware in which inference serving platforms leverage and

holistic techniques for evaluating inference serving systems.

A. Inference Serving Frameworks

Inference serving frameworks have evolved to support a

wide array of use cases, libraries, and platforms. TensorFlow

Serving [21] is one of the initial open-source inference serv-

ing systems that leverages GPUs. TensorFlow Serving also

supports multi-model deployments and provides an endpoint

for prediction, but requires models to be trained using Ten-

sorFlow explicitly. Other frameworks such as PredictionIO

and RedisAI [23, 24] allow the serving of models trained

using different frameworks. Further, frameworks such as

Nvidia’s TensorRT Inference Server [22] provide hardware-

specific inference optimizations, e.g., for Nvidia’s GPUs.

Several frameworks have evolved to incorporate addi-

tional features aiming to improve performance of infer-

ence serving. Clipper [19] adds additional functionality to

ensure SLAs and to achieve better prediction accuracy.

MArk [1] and Barista [8] leverage Functions-as-a-Service

(FaaS) to handle and scale transient workloads in order to

maintain SLAs. INFaaS [20] shares models and hardware

across applications by optimizing model deployment and

autoscaling mechanisms. However, INFaaS focuses on a

single VM configuration of either CPU and GPU, and

uses GPU memory constraints to scale each model serving

independently. This can lead to resource under-utilization

especially when models serve dynamic inference requests.

In contrast, we explore the inference cost savings of sharing

resources without constraints through evaluating resource

footprints of different model-hardware configurations.

B. Inference Serving Hardware

The abundance of commodity CPU servers in the cloud

makes them ideal candidates for serving inference re-

quests [28–30], while the emergence of hardware accel-

erators provide new opportunities and challenges. Among

the plethora of accelerators, GPUs have become the most

popular type and are closely associated with deep learning.

Manufacturers have been making highly specialized GPUs

for different deep learning tasks, such as Nvidia P4 GPU

for inference jobs. In this paper, we chose to focus on

GPU inference for three reasons. First, GPUs are widely

used in deep learning, particularly in the cloud environment.

Second, GPUs exhibit intricate advantages and shortcomings

compared to CPUs. For example, GPUs are ideal for highly

parallel computation such as matrix multiplication which

dominates CNN inference, while their performance are fun-

damentally constrained by limited GPU memory and slower

memory transfer between CPU and GPU. Third, cloud-based

GPUs are much more expensive, leading to large room for

improvements of monetary cost.

C. Inference Serving Deployments

Deploying a CNN model to a pre-provisioned server

requires developers to adhere to a given framework’s work-

flow. Namely, pre-trained models, with their weights and la-

bels, must be exported into a format supported by the serving

framework. Inference servers commonly expose endpoints

such as REST, gRPC, or client API interface, which can

be used to query a model [1, 7, 8, 19–27]. In systems that

support autoscaling [1, 7, 8, 19, 20], middleware manages

provisioning and acts as a single endpoint which routes

requests to individual model serving. Several major cloud

providers offer managed inference serving frameworks such

as Amazon’s SageMaker, for deploying a single model in

an isolated environment [25–27]. These services abstract

the deployment process and provide high-level tools for

autoscaling individual models. Amazon’s Elastic Inference

introduced the ability to acquire and attach a portion of

a GPU’s resource to a SageMaker instance [31], further

reducing over-provisioning.

D. Inference Serving Performance Characterization

There are a plethora of choices when deploying inference

serving systems; therefore, it is important to determine a

model’s characteristics for a given framework in a specific

system. The first-order goal of inference serving is latency.

Adhering to latency SLAs is one of the key challenges of

inference serving, especially for applications that require

real-time performance. Consequently, latency determines the

viability of performing inference with a given configura-

tion. SLA compliance is commonly measured by verifying

that high percentile (e.g., 95th or 99th) of the end-to-end

response time of recent requests is below a predefined

threshold [1, 9]. The second-order goals of inference serving

are throughput and cost. Deployments can require handling

a large number of requests in a short time frame [29],

thus accurately evaluating the inference throughput can

help determine performance bottlenecks under heavy loads.

Throughput is commonly measured by estimating the peak

or steady-state request rate of the system [19, 32].

67

Benchmark
client

Benchmark
client

Inference server

TensorRT
Inference Server

cAdvisor

Node exporter

Prometheus

AlertManager

Grafana……

Monitor server

REST REST

Perseus

Figure 1: Architecture of our measurement framework PERSEUS.

III. PROBLEM STATEMENT AND MEASUREMENT

METHODOLOGY

A. Problem Statement

In this paper, we investigate the performance and cost

trade-offs of multi-tenant model serving compared to single-

tenant serving as well as CPU serving. Such understandings

can improve the resource efficiency of serving CNN models

using cloud servers of various capacities. To do so, we

designed and implemented a measurement framework called

PERSEUS which we then leveraged to quantify the model

serving performance of various configurations. The con-

figurations we explored include serving inference requests

with CPU-only vs. with GPU hardware accelerator, as well

as dedicated vs. shared GPU resources. Our measurements

pinpoint several potential performance bottlenecks when

serving CNN inference requests and demonstrate the cost

savings prospect of GPU-based multi-tenant model serving.

B. PERSEUS Architecture

We propose a new measurement framework called

PERSEUS for the purpose of gathering accurate perfor-

mance data relevant to the server and models being served.

PERSEUS considers the domain-specific intricacies of infer-

ence serving and application-specific constraints of working

with an existing framework such as Nvidia’s TensorRT

Inference Server [22]. Figure 1 shows the design and im-

plementation of PERSEUS [18, 33]. All components are

encapsulated in Docker containers to ensure reproducibility

and can be referenced in our project GitHub repo [18].

C. Measurement Methodology

1) Experimental Testbed: We used n1-standard-8 in-

stances on Google Compute Engine, with 8 Intel Broadwell

vCPUs and 30GB of RAM, as the platform for each client

and server. Each instance ran a minimal installation of

Ubuntu 18.04.3 LTS using Linux 5.0.0-1021-gcp as the 64-

bit kernel. We used Docker version 19.03.4 and Containerd

version 1.2.10 hosting Nvidia’s TensorRT Inference Server

version 1.6.0. cAdvisor version 0.33.0 and Node exporter

version 0.18.1 were used to collect the server’s resource

and performance information. We use version 1.6.0 Nvidia’s

TensorRT Inference Framework Python Client SDK to per-

form inference requests using Python 3.6.8 on each client.

The monitoring stack was composed of Prometheus version

2.11.1 and Grafana version 6.3.3. We chose to evaluate the

GPU inference performance using Nvidia’s P4 and T4 GPUs

due to their wide adoption, low price-point, and designation

as data center inference products [34]. Both the hardware

specifications and server unit costs are described here [33].

2) Model Selection: We used two popular CNN models,

Inception-V3 [35] and ResNet50 [36], as the basis for

evaluating the performance characteristics of inference. The

models, which perform image classification tasks, require

an image as input and produce a string as output. These

two models were implemented in different frameworks:

Inception-V3 uses TensorFlow [37] and ResNet50 uses

Caffe2 [38]. This allowed for the use of original unmodified,

pre-trained models and guarantees isolated model runtimes.

It also demonstrated the framework-agnostic approach of

PERSEUS.

3) Workloads: In our experiment we opted for a dataset

of 6908 images, which was a randomly selected subset of the

Open Images V3 Validation Dataset [39]. The images were

preprocessed before inference to eliminate the overhead

of loading and processing images at runtime. Inception-

V3 requires 299 by 299 pixels RGB images and ResNet50

224 by 224 pixels RGB images. The dataset’s size provides

the advantage of reducing the effects of abnormalities on

results while maintaining a short runtime. Our framework

delegates batching to the server where the server could treat

each request as a single request from a client. The batch

size determines the latency and throughput of the server.

Therefore, we used the same batch size across all hardware

configurations to provide a fair comparison.

4) Metrics: We evaluated the efficacy of the cost and

performance tradeoff of multi-tenant model serving using

PERSEUS framework, models, and workloads. We conducted

several experiments to show the effect of hosting an ad-

ditional model on startup time, latency, and throughput.

Our key goal is to understand whether overhead introduced

during multi-tenancy significantly impacts performance of

inference. Peak or steady-state throughput λ measures the

maximum rate of inference requests over a time span.

The latency of requests t denotes the end-to-end response

time for an inference request, where the 95th percentile

latency is the latency for 95% of requests. Cost per one

million inference requests c provides a standardized metric

which promotes price comparisons across server hardware

by accounting for the relative performance of a device [19].

More broadly, the measurement statistics are utilized to

estimate the performance metrics for each stage of inference

serving in regard to the hardware used. The startup time

of various hardware platforms measures the time required

to begin loading a model for inference on pre-provisioned

server instances. The dedicated model performance is calcu-

lated by measuring the maximum computation capacity of a

server under peak throughput λ, thus determining the stable

operating range of a model on a given configuration. Finally,

68

Model

Main MemoryDisk GPU Memory

Load Transfer

CPU GPU

Model Model

Execute Execute

Figure 2: Measurement illustration for CPU vs. GPU inferences.

Time to Execute on Device (ms)

n1-standard-8 CPU Nvidia P4 GPU Nvidia T4 GPU

ResNet50 Hit 159.1 ± 3.4 18.5 ± 0.6 18.2 ± 0.1

Miss 1401.4 ± 89.9 18418.4 ± 498.5 21264.4 ± 310.6

Inception-V3 Hit 75.1 ± 1.2 217.7 ± 1.8 325.9 ± 7.3

Miss 3806.7 ± 222.5 18704.8 ± 343.4 21693.3 ± 763.7

Table I: Average time (t) to perform inference for CPU versus
GPU hardware. A hit means the model was already present in main
memory (when executing on the CPU) or in GPU memory (when
executing on the GPU). A miss requires either loading models from
the disk into the main memory or from the disk to GPU memory.

the multi-model performance is determined by measuring

the resulting latency and throughput of each model served.

The overhead and tradeoff of hosting multiple models is

conveyed through the shift in peak workload performances

and each model’s performance relative to its counterparts.

IV. PERFORMANCE AND COST CHARACTERIZATION

Utilizing PERSEUS, we evaluated on various serving op-

tions for deep learning inference. In practice, CNN models

have been widely deployed and served with CPU only [28–

30]. In this section, we first evaluate and study the tradeoffs

of inference using CPUs versus GPUs. We then characterize

the benefit of multi-tenant model serving with GPUs by

comparing against dedicated GPU inference.

A. CPU vs. GPU inference

We first quantify the inference performance of two popu-

lar Convolutional Neural Networks with comparable model

sizes, number of parameters, and inference accuracy (i.e., In-

ceptionV3 and ResNet50) to demonstrate the importance and

challenges of determining the appropriate serving hardware

given the workload i.e. CNN models. Table I summarizes

the inference time (batch size of 1) when executed on the

CPU or a discrete GPU. When executed on the CPU, we

define a hit to mean that the model was already present in

main memory (i.e., RAM) and a miss to mean that the model

first needed to be loaded from disk. When executed on one

of the two GPUs, we define a hit to mean that the model

was already present in GPU memory and a miss to mean

that the model needed to be loaded from disk into main

memory and then transferred to GPU memory. Our mea-

surement was conducted using Google Cloud, following the

setup in Figure 2 and leverages our PERSEUS measurement

infrastructure (Figure 1).

We make three key observations. First, static model char-

acteristics, such as model file size, are not a good indicator

c ($) t95 (sec) λ (reqs/sec)

ResNet50 16.836 2.473 4.724

Inception-V3 4.029 0.765 19.720

Table II: Inference performance and cost with n1-standard-8.
We used a batch size of 8 and measured the cost c, 95th percentile
latency and peak throughput λ when serving 1 million requests.

Figure 3: The effects of throughput on inference cost showing the
polynomial increase in cost across all hardware configurations.

of runtime requirements and performance. Second, it is not

always faster to execute the model on a GPU, even with

GPUs optimized for inference such as NVIDIA’s P4 and

T4 GPUs. For example, in the case of Inception-V3 (hit),

it is more than three times faster to execute using an Intel

CPU than the T4 GPU. However, we measured the peak

throughput of both GPUs to be 12 times higher than that of

the CPU with a batch size of 8. Third, even though the on-

disk sizes of these two models are roughly the same, it takes

twice as long to load Inception-V3 into CPU memory but

nearly the same amount of time to transfer each model from

CPU to GPU memory. Our measurements both demonstrate

the intricate trade-offs between caching in CPU memory

versus GPU memory and motivate the need to mask the

data transfer latency to the GPU memory.

Table II shows the performance evaluation of CPU-based

inference using same hyper-parameters as the GPU inference

(i.e. a single model instance with a batch size of 8). Under

steady-state conditions, the cost of performing one million

inference requests at peak throughput on an 8-core CPU is

significantly higher than GPU based inference under peak

throughput conditions shown in Table III. The much worse

performance of ResNet50 when serving batched requests

is largely due to inference framework’s limited support

for CPU inference. Specifically we observe that Caffe2

accumulated and processed batched requests on a single

core. This suggests the need to carefully choose inference

frameworks that are optimized for the underlying hard-

ware [28, 40, 41]. Therefore, while CPU-based inference

may be able to swiftly adapt to transient load spikes, it is

not a cost and performance effective solution for handling

workloads demanding higher throughput.

69

One P4 GPU Two P4 GPUs One T4 GPU Two T4 GPUs

c ($) t95 (sec) λ (reqs/sec) c ($) t95 (sec) λ (reqs/sec) c ($) t95 (sec) λ (reqs/sec) c ($) t95 (sec) λ (reqs/sec)

ResNet50 0.938 0.076 203.810 0.773 0.059 398.150 1.012 0.077 256.088 0.898 0.048 494.608

Inception-V3 1.235 0.102 154.801 1.008 0.080 305.199 1.249 0.061 207.44 1.129 0.059 393.311

Table III: Inference performance and cost with P4 and T4 GPUs. Serving with two P4 GPUs can be 18.4% cheaper for 1 million
requests due to CPU cost amortization and linear throughput scalability. Increasing the number of T4 GPUs from 1 to 2, decreases the
cost and latency of inference and increase the peak throughput across both models, results in 37.7% cost saving.

Summary: Serving with a cold cache is always better on

CPU servers due to the high data transfer latency between

CPU memory and GPU memory. Inference model miss

incurs a time cost overhead ranging between 67X to 1168X

compared to model hit on GPUs. While on CPUs, the over-

head of model miss is at most 51X. However, some models

are better suited for GPU serving with warm cache. For

example, ResNet50 model on hit is up to 14X faster on GPU

than on CPU, which does not hold true for InceptionV3.

B. CNN inference on GPU

1) Characterization of Dedicated Model Inference on

GPUs: We profiled each model on available hardware

configurations to establish the baseline performance for GPU

based inference. Table III shows the dedicated model infer-

ence serving results using different GPU types and counts.

Across both GPU types, the cost per inference and latency

decrease when the number of GPUs increases. Accordingly,

two GPU instances achieved higher overall throughput com-

pared to the single GPU instances. On average, by adding

an additional GPU, the price per inference request decreased

by 14.43% for ResNet50 and 14.00% for Inception-V3.

Surprisingly, for both CNNs, increases in peak throughput λ

generated by T4 GPUs yielded a higher cost. Furthermore,

running on a single P4 GPU Inception-V3 achieved a peak

GPU utilization of 92% compared to ResNet50’s utilization

of 88%. More importantly, on the GPU memory, utiliza-

tion of Inception-V3 was 97.20% compared to 21.58% for

ResNet50. In scenarios where maximum utilization can be

achieved, the Dual P4 GPU configuration achieves the best

cost-performance outcome.

Our data shows that under peak loads, GPU resources are

under-utilized, i.e. cannot be fully leveraged, in multi-tenant

inference. This suggests that performing multi-tenant infer-

ence on P4 GPU will lead to over-utilized GPU memory,

due to the large size of each model in the card’s memory. As

shown in Figure 3, in conditions where the peak throughput

is not met, the cost increases polynomially as the throughput

decreases. The results show that in scenarios of under-

utilization, optimizing the hardware cost requires accurately

estimating a model’s throughput. This in turn calls for un-

derstanding and modeling the characteristics of CNN models

on how under-utilization can be effectively mitigated when

serving another model to utilize the remaining resources.

While our experiment results suggest that testing a server

instance with four GPUs may produce additional cost sav-

Figure 4: Comparison of peak inference throughput for single vs.
multi-tenant model serving. The first and third bars of each group
represent the single dedicate model serving throughput, while the
second and fourth bars describe the multi-tenant counterparts.

ings, we encountered issues when testing this configuration.

When the four P4 or T4 GPUs were configured, the system

became unstable. Subsequently, the data collected for the

peak workload λ and latency t did not prove reliable. Our

tests determined that the peak throughput for ResNet50 on

four P4 GPUs achieved between 110% and 130% above

the peak throughput of the equivalent two GPU servers.

Ignoring the variability, the price per request at the max-

imum throughput did not justify the price of the server. In

our experiments, the CPU, RAM, and GPU utilizations did

not pose as the bottleneck. Additionally, the experimental

findings of a Google Cloud Platform Blog article [42], which

showed the average throughput of the network to be 10 GB/s,

supports the assertion that our workloads of 0.5-1.0 GB/s

did not result in a network bottleneck. The bottleneck was

experimentally determined to be server’s gRPC endpoint.

Summary: For our selected workload on dedicated GPU

server for inference, it is better to have more than one GPU

card to share the workload, in terms of cost per request,

when the request rate is higher than 100 requests/sec.

Furthermore, even with a single GPU card, the GPU memory

utilization for some models is underutilized, which could

potentially be improved by serving multiple models on the

same server.

2) Multi-Tenant Model Serving: To quantify the benefit of

multi-tenant model serving, we evaluated the peak through-

put, 95th percentile latency, and serving costs when the two

CNN models share the underlying resources. Figure 4 com-

pares the achieved peak inference throughputs of ResNet50-

dominated (and Inception-V3-dominated) requests sharing

70

Figure 5: Inference serving throughputs of multi-tenant model
serving with different workload mix ratios.

underlying GPU(s) with Inception-V3 (and ResNet50) to

those of serving these two CNNs on the corresponding

dedicated GPU(s), respectively. We observe that a multi-

tenant model serving with such extreme workload mixes

(e.g., 1:20 ratio) can achieve comparable throughput to a

dedicated single model serving with one GPU. However, in

the case of two GPUs, the aggregate throughput of multi-

tenant model serving slightly lagged behind.

To understand the interplay between different multi-tenant

inference workloads, we repeated the above measurements

by adjusting the ratio of model requests. Figure 5 shows

the achieved throughputs of ResNet50 and Inception-V3. The

results show that it is a non-linear relationship as the requests

for two models change. Thus, the overhead of hosting an ad-

ditional model is less than the performance gain of exploiting

under-utilized resources. This means hosting two models that

cannot be both fully loaded onto a GPU’s memory does not

make multi-tenant inference impractical. The performance

gain occurs when the throughput is consistently achieved

and both models are experiencing non-trivial workloads

(i.e. between 25% and 75% of their peak throughput).

Furthermore, we observe that the cost per inference and

latency decrease when the number of GPUs increases, for

both GPU types.

To quantify the relative cost saving of multi-tenant model

serving with different workload mix ratios, we define a

metric called effective unit cost. For a given server that costs

a dollars per hour, if its capacity for serving ResNet50 is x

requests per hour and for serving Inception-V3 is y requests

per hour, then we can derive the server-model unit cost as
a
x

and a
y

. The effective unit cost is defined as b = ax′

x
+

ay′

y

where x’ and y’ are the number of requests the server can

dedicatedly serve ResNet50 and Inception-V3, respectively.

Intuitively, a is the actual cost using multi-tenant model

serving, and b describes how much one needs to pay for

serving an aggregate request rate of x′ + y′. Therefore, the

cost saving of multi-tenant model serving can be calculated

as
(b−a)

a
.

One P4 GPU Two P4 GPUs One T4 GPU Two T4 GPUs

a ($/hour) 0.688 1.108 0.933 1.598

b ($/hour) 0.753 1.241 1.026 1.754

Savings (%) 9.45% 12.00% 9.96% 9.76%

Table IV: Comparison of the lowest effective unit cost of multi-
tenant model serving to server unit cost.

Table IV shows the results of performing the aforemen-

tioned calculations. When the request rates for both models

converge to the same request rate, the effective unit cost

is higher than that of a server hosting a single model.

We show that across all hardware GPU configurations, it

is on average 9.5% cheaper to serve the two models in

this configuration. The steady-state latency for ResNet50

and Inception-V3 increased by 55% and 26% respectively.

The results revealed that the best cost-performance ratio is

achieved when both models are serving at the same request

rate. In addition, serving multiple models can effectively

achieve higher utilization of resources when a single model

server experiences under-utilization.

Summary: Multi-tenant model serving can reduce the

effective unit cost by up to 12% with two P4 GPUs. The

maximum cost reduction for each hardware configuration

was achieved when serving ResNet50 and Inception-V3 at

roughly the same throughput. Our observations further sug-

gest the benefits of intelligent provisioning and scheduling

of inference requests using a multi-tenant approach.

V. CONCLUSION AND FUTURE WORK

As pre-trained deep learning models have been increas-

ingly utilized for new application features and integrated into

existing applications, it necessitates the research of resource-

efficient inference serving. In this paper, we demonstrated

the benefits of multi-tenant model serving, a promising way

to improve server resource utilization and reduce monetary

cost. We quantified its achieved performance and cost by

comparing to other common serving configurations, using

our measurement framework PERSEUS on Google Cloud.

PERSEUS can also be easily leveraged to characterize the

serving capacity for new CNN models and new hardware

combinations. Through investigating and understanding the

model serving performance, we further identified a number

of performance bottlenecks, including inefficient framework

supports for CPU inference and CNN model caching, that

hindered the observed inference performance. Our study

forms the basis for complementary research such as pro-

visioning the inference servers and dispatching inference

requests, which we plan to pursue as the next step.

ACKNOWLEDGMENT

The authors would like to thank National Science Foun-

dation grants #1755659 and #1815619, and Google Cloud

Platform Research credits.

71

REFERENCES

[1] C. Zhang et al., “Mark: Exploiting cloud services for cost-effective,
slo-aware machine learning inference serving,” in 2019 USENIX

Annual Technical Conference (USENIX ATC 19), 2019.
[2] A. Samanta et al., “No DNN left behind: Improving inference in the

cloud with Multi-Tenancy,” arXiv:1901.06887, Jan. 2019.
[3] A. Jain, “Splitserve: Efficiently splitting complex workloads over iaas

and faas,” 2019.
[4] V. Ishakian et al., “Serving deep learning models in a serverless plat-

form,” in 2018 IEEE International Conference on Cloud Engineering

(IC2E). IEEE, 2018, pp. 257–262.
[5] Z. Tu et al., “Pay-per-request deployment of neural network models

using serverless architectures,” in Proceedings of the 2018 Conference

of the North American Chapter of the Association for Computational

Linguistics: Demonstrations, 2018, pp. 6–10.
[6] J. R. Gunasekaran et al., “Spock: Exploiting serverless functions for

slo and cost aware resource procurement in public cloud,” in 2019

IEEE 12th International Conference on Cloud Computing (CLOUD).
IEEE, 2019, pp. 199–208.

[7] A. Dakkak et al., “Trims: Transparent and isolated model sharing for
low latency deep learning inference in function-as-a-service,” in 2019

IEEE 12th International Conference on Cloud Computing (CLOUD).
IEEE, 2019, pp. 372–382.

[8] A. Bhattacharjee, A. D. Chhokra, Z. Kang, H. Sun, A. Gokhale,
and G. Karsai, “Barista: Efficient and scalable serverless serv-
ing system for deep learning prediction services,” arXiv preprint

arXiv:1904.01576, 2019.
[9] A. Gujarati et al., “Swayam: distributed autoscaling to meet slas

of machine learning inference services with resource efficiency,” in
Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference.
ACM, 2017, pp. 109–120.

[10] H. Qin et al., “Swift machine learning model serving scheduling:
a region based reinforcement learning approach,” in Proceedings

of the International Conference for High Performance Computing,

Networking, Storage and Analysis. ACM, 2019, p. 13.
[11] X. Tang et al., “Nanily: A qos-aware scheduling for dnn inference

workload in clouds,” in 2019 IEEE 21st International Conference

on High Performance Computing and Communications; IEEE 17th

International Conference on Smart City; IEEE 5th International

Conference on Data Science and Systems (HPCC/SmartCity/DSS).
IEEE, 2019, pp. 2395–2402.

[12] P. Jain et al., “Dynamic space-time scheduling for gpu inference,”
arXiv preprint arXiv:1901.00041, 2018.

[13] P. Yu et al., “Salus: Fine-grained gpu sharing primitives for deep
learning applications,” arXiv preprint arXiv:1902.04610, 2019.

[14] S. S. Ogden et al., “MODI: Mobile deep inference made efficient
by edge computing,” in USENIX Workshop on Hot Topics in Edge

Computing (HotEdge 18), 2018.
[15] G. Li et al., “Auto-tuning neural network quantization framework for

collaborative inference between the cloud and edge,” in International

Conference on Artificial Neural Networks. Springer, 2018, pp. 402–
411.

[16] S. S. Ogden et al., “MDInference: Balancing inference accuracy and
latency for mobile applications,” in Proceedings of IEEE International

Conference on Cloud Engineering (IC2E 2020), 2020.
[17] G. R. Gilman et al., “Challenges and opportunities of dnn model

execution caching,” in Proceedings of the Workshop on Distributed

Infrastructures for Deep Learning, 2019, pp. 7–12.
[18] “Github repo for perseus,” https://github.com/cake-lab/perseus, 2019.
[19] D. Crankshaw et al., “Clipper: A low-latency online prediction serving

system,” in 14th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 17), 2017, pp. 613–627.
[20] F. Romero et al., “Infaas: A model-less inference serving system,”

2019.
[21] C. Olston et al., “Tensorflow-serving: Flexible, high-performance ml

serving,” arXiv preprint arXiv:1712.06139, 2017.
[22] “Nvidia tensorrt inference server,” https://github.com/NVIDIA/

tensorrt-inference-server, 2019.
[23] “Apache predictionio,” https://github.com/apache/predictionio, 2019.
[24] “Redisai,” https://github.com/RedisAI/RedisAI, 2019.
[25] “Ai platform,” https://cloud.google.com/ai-platform/, 2019.
[26] “Azure machine learning,” https://azure.microsoft.com/en-us/services/

machine-learning-studio/, 2019.
[27] “Sagemaker,” https://aws.amazon.com/sagemaker/, 2019.
[28] Y. Liu et al., “Optimizing CNN model inference on CPUs,” in 2019

USENIX Annual Technical Conference (USENIX ATC 19), 2019, pp.
1025–1040.

[29] J. Soifer et al., “Deep learning inference service at microsoft,” in 2019

USENIX Conference on Operational Machine Learning (OpML 19),
2019, pp. 15–17.

[30] M. Zhang et al., “Accelerating large scale deep learning inference
through DeepCPU at microsoft,” in 2019 USENIX Conference on

Operational Machine Learning (OpML 19), 2019, pp. 5–7.
[31] “Amazon elastic inference,” https://aws.amazon.com/

machine-learning/elastic-inference/, 2019.
[32] V. J. Reddi et al., “Mlperf inference benchmark,” arXiv preprint

arXiv:1911.02549, 2019.
[33] M. LeMay et al., “PERSEUS: Characterizing Performance and

Costof Multi-Tenant Serving for CNN Models,” arXiv preprint

arXiv:1912.02322, 2019.
[34] “Nvidia tensorrt hyperscale inference platform,” https://www.nvidia.

com/en-us/deep-learning-ai/solutions/inference-platform/hpc/, 2019.
[35] C. Szegedy et al., “Rethinking the inception architecture for computer

vision,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 2818–2826.
[36] K. He et al., “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 770–778.
[37] “Tensorflow,” https://github.com/tensorflow/tensorflow, 2019.
[38] “Pytorch,” https://github.com/pytorch/pytorch, 2019.
[39] I. Krasin et al., “Openimages: A public dataset for large-scale multi-

label and multi-class image classification.” Dataset available from

https://github.com/openimages, 2017.
[40] K. Hazelwood et al., “Applied machine learning at facebook: A

datacenter infrastructure perspective,” in 2018 IEEE International

Symposium on High Performance Computer Architecture (HPCA),
Feb. 2018, pp. 620–629.

[41] J. Park et al., “Deep learning inference in facebook data centers: Char-
acterization, performance optimizations and hardware implications,”
arXiv:1811.09886, Nov. 2018.

[42] “5 steps to better gcp network performance,” https://cloud.google.
com/blog/products/gcp/5-steps-to-better-gcp-network-performance?
hl=ml, 2017.

72

