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A B S T R A C T

Collaborative Problem Solving (CPS) is an interactive, interdependent, and temporal process. However, current
methods for measuring the CPS processes of individuals, such as coding and counting, treat these processes as
sets of isolated and independent events. In contrast, Epistemic Network Analysis (ENA) models how the con-
tributions of a given individual relate to the contributions of others. This article examines the communications of
air defense warfare teams from an experiment comparing two different computer-based decision support sys-
tems, using this data to ask whether ENA provides a more ecologically valid quantitative model of CPS than
coding and counting. Qualitative analysis showed that commanders using one system asked questions to un-
derstand the tactical situation, while commanders using an experimental system focused more on actions in
response to the tactical situation. Neither of the coding and counting approaches we tested corroborated these
findings with statistically significant results. In contrast, ENA created models of the individual contributions of
commanders that (a) showed statistical differences between commanders using the two systems to corroborate
the qualitative analysis, and (b) revealed differences in individual performance. This suggests that ENA is a more
powerful tool for CPS assessment than coding and counting approaches.

1. Introduction

As the problems faced by society grow more complex, interrelated,
and ill-formed, we have increasingly turned to groups and teams for
solutions. In response, Collaborative Problem Solving (CPS) has been
widely recognized as a vital 21st century skill (Griffin & Care, 2014).
Several definitions of CPS exist in the literature, however, most share
the view that it is fundamentally socio-cognitive. In CPS, framing, in-
vestigating, and solving problems is situated in a collaborative context
that involves information sharing, negotiation of meaning, and more
broadly, processes which attempt to establish and maintain a shared
conception of the problem (Hesse, Care, Buder, Sassenberg, & Griffin,
2015; Miyake & Kirschner, 2014; Roschelle & Teasley, 1995; Rosen,
2015).

Although definitions of CPS share these features, they may disagree
on whether the construct should be applied to the individual or the
group. For example, Roschelle and Teasley (1995) argue that CPS is
consists of solving problems together while building a jointly understood
problem space. The Organization for Economic Co-operation and De-
velopment, on the other hand, draws on literature from CPS,

collaborative learning, and organizational psychology, to argue that
CPS is the capacity of an individual to engage in problem solving while
collaborating with others (OECD, 2017). In this paper, we also oper-
ationalize CPS at the individual level and define it broadly as the socio-
cognitive processes an individual uses to solve problems with others.
The importance of examining CPS at the individual level is reflected in
recent efforts to develop large-scale assessments of individual CPS
process and performance, including the Assessment and Teaching of
21st Century Skills project (Griffin & Care, 2014) and the Programme
for International Student Assessment (OECD, 2017).

While these assessments speak to the value of CPS in educational
contexts, CPS skills are important in a variety of domains. Military
contexts, in particular, often rely on teams to solve problems that are
too complex for any individual to solve alone. For example, Hutchins'
seminal study of quartermasters in the U.S. Navy (1995) showed that
navigation teams have to coordinate tools and information to solve a
task with cognitive demands that outpace the capabilities of any one
team member. Similarly, Navy air defense warfare (ADW) teams must
work together to identify potentially hostile aircraft and defend their
ship in situations that are time sensitive and information-dense (Smith,

https://doi.org/10.1016/j.chb.2019.01.009
Received 29 May 2018; Received in revised form 29 October 2018; Accepted 13 January 2019

∗ Corresponding author. Educational Sciences Building, Room 499, 1025 West Johnson Street, Madison, WI 53706-1706, United States.
E-mail address: swiecki@wisc.edu (Z. Swiecki).

Computers in Human Behavior xxx (xxxx) xxx–xxx

0747-5632/ © 2019 Elsevier Ltd. All rights reserved.

Please cite this article as: Swiecki, Z., Computers in Human Behavior, https://doi.org/10.1016/j.chb.2019.01.009

http://www.sciencedirect.com/science/journal/07475632
https://www.elsevier.com/locate/comphumbeh
https://doi.org/10.1016/j.chb.2019.01.009
https://doi.org/10.1016/j.chb.2019.01.009
mailto:swiecki@wisc.edu
https://doi.org/10.1016/j.chb.2019.01.009


Johnston, & Paris, 2004).
In this paper, we argue that in addition to being socio-cognitive, CPS

is fundamentally interactive, interdependent, and temporal. As we ex-
plain in more detail below, individuals communicate with one another,
share resources, and use tools while engaging in CPS. These activities
mean that CPS is characterized by interactions between people and
between tools. However, CPS is distinguished from other interactive
settings in the sense that the contributions of a given individual are
related to and influenced by the contributions of others. In other words,
CPS processes are interdependent. Moreover, CPS processes unfold in
time and may vary over the course of problem solving. Thus, CPS also
has an important temporal dimension. Together, these three features
imply that a key challenge for CPS assessments is measuring the con-
tributions of individuals while accounting for how they relate to the
contributions of other members of the team within a given span of
time.1

Despite these implications, assessments of CPS have traditionally
relied on relatively simple measures based on self or peer ratings of CPS
performance (Kyllonen, Zhu, & von Davier, 2017). More recently, re-
searchers have begun to focus on the CPS processes of individuals by
examining their interactions—conversations, steps taken toward solu-
tions, interface actions, and so on—during problem solving scenarios
such as games, simulations, and online projects. While these approaches
improve upon previous efforts by focusing on CPS processes, as we
discuss in more detail below, the measurement techniques they employ
tend to treat these processes as isolated and independent events. Thus,
there is still a need for techniques that account for the interactive, in-
terdependent, and temporal nature of CPS.

In this paper, we present a qualitative analysis of the CPS processes
of individuals in the context of ADW team training scenarios. This
analysis highlights the interactive, interdependent, and temporal fea-
tures that ecologically valid measures of CPS should account for. Next,
we analyze the same data using three quantitative techniques: two
based on coding and counting (Chi, 1997; Kapur, 2011; Suthers,
2006)—a common approach to measuring CPS—and one based on
Epistemic Network Analysis, or ENA (Shaffer, 2017; Shaffer, Collier, &
Ruis, 2016)—an approach to measuring CPS that models the connec-
tions between the things individuals say, do, and produce in colla-
borative settings. Our findings suggest that ENA is a powerful tool for
CPS assessment, and that coding and counting approaches are limited in
their ability to model important aspects of CPS in a team setting.

2. Theory

2.1. Interaction

Problem solving is one important function of teams. While there are
many different kinds of team, for the purposes of this paper, we define a
team as a group of individuals with distinct roles who work together to
reach a common objective (Salas, Dickinson, Converse, & Tannenbaum,
1992). When individuals on teams solve problems together, they in-
teract with one another and with tools to do so. Their processes include
taskwork—individual interactions with “tasks, tools, machines and
systems” (Bowers, Braun, & Morgan, 1997; 90). But they also include
teamwork—interactions that facilitate taskwork by exchanging in-
formation or coordinating behavior (Marks, Mathieu, & Zaccaro, 2001).
As this understanding of CPS indicates, team processes are not simply
the sum of individual actions; rather, individual actions interact with

one another, creating a context independent of any single individual.

2.2. Interdependence

As several researchers argue (see, for example, Kozlowski & Ilgen,
2006), in a team setting, the interactions between individuals reify to
form emergent states: stable behavioral, cognitive, or motivational
states that arise through repeated interaction and, in turn, influence
future interactions. For example, Reimann, Yacef, and Kay (2011) argue
that a team's history of action is a resource that influences their sub-
sequent actions. Similarly, Clark (1996) argues that as collaborative
activities unfold, teams add information to the common ground—the set
of shared knowledge and experiences that exist between people when
they interact. The contents of the common ground influence subsequent
actions and how those actions are interpreted (Dillenbourg, 1999).

The things that individuals contribute constitute the team's dis-
course: the actual things members of the team say, the concepts they
use, the actions they take, and the artifacts they produce. But critically,
because interaction produces a common ground, the discourse of the
team is interdependent: the actions of one member directly affect the
processes of other individuals on the team. For example, when one team
member needs input from another in order to complete their taskwork,
or when different team members must share limited resources, the ac-
tions of each individual are contingent on the actions of others. In other
words, both taskwork (the actions of each team member toward ac-
complishing a task) and teamwork (the actions of each team member
toward managing the processes of collaboration) imply that teams are
interdependent interactive systems.

2.3. Temporality

The creation of emergent states and specifically of common ground
mean that CPS has an important temporal dimension: events at any
point in time are influenced by prior actions. However, this temporality
is not unbounded. The influence of prior activity and shared under-
standing does not always span the entire history of team actions and
interactions. Shaffer (2017) argues that actions and interactions are
interpreted with respect to the recent temporal context, or the im-
mediately preceding events (see also, Suthers & Desiato, 2012). Simi-
larly, Halpin and von Davier (2017) argue that team interactions are
temporally clustered, meaning that the actions of a given part of the team
make certain actions by other parts of the team more or less likely in the
near future. For example, when one team member asks a question,
other team members are likely to respond soon after. Thus, while team
processes are composed of complex interactions among individuals, the
interactions that are most relevant to the interdependence of team
processes are locally bounded.

2.4. Modeling CPS

The interactive, interdependent, and temporal nature of teams
means that assessing the CPS processes of individuals is particularly
challenging. Just as team processes consist of entangled interactions
among individuals over time, the evidence teams produce is similarly
entangled. A key challenge for measuring CPS, then, is to assess in-
dividual contributions in a way that accounts for how they are related
to the contributions of other members of the team within a given span
of time.

2.5. Coding and counting approaches

Despite these challenges, extant techniques for measuring CPS treat
individual contributions as isolated and independent events.
Quantitative content analysis, or coding and counting (Chi, 1997; Kapur,
2011; Suthers, 2006) is a widely used method that measures colla-
borative processes by counting the qualitative codes, survey scores, or

1 In this paper we focus on CPS because of its particular importance in edu-
cational and professional settings (as described above). There are certainly
other socio-cognitive processes that are also interactive, interdependent, and
temporal, and the results we present here might generalize to those settings.
However, addressing the full range of socio-cognitive settings that involve in-
teraction, interdependence, and temporality is beyond the scope of this paper.
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observer ratings attributed to individuals in collaborative activities.
Researchers then use these measures to make claims about CPS pro-
cesses or outcomes. For example, Hao, Liu, von Davier, Kyllonen, and
Kitchen (2016) applied a coding and counting approach to the chat
utterances of individuals who worked in dyads to solve problems. The
authors coded the utterances for four CPS skills and examined the re-
lationship between the frequency of these codes and outcome measures.

In some cases, researchers compute counts for a relatively large
number of code variables, leading to data sets with high dimensionality.
For example, to study the processes of individuals in a wiki-based CPS
project, Prokofieva (2013) used an automated coding scheme to code
for 15 actions such as comments and edits. To analyze this data, the
author counted the action codes for each individual and applied the
multivariate technique Principal Components Analysis (PCA) to reduce
the dimensionality of the data to two constructs: actions taken on their
own contributions and actions taken on the contributions of others. 2

Coding and counting methods are useful because they are easy to
implement and easy to understand. Of course, collecting and coding
data is non-trivial, but once these processes are complete, counts and
proportions are simple to calculate. Researchers can use these results
alone or in combination with more sophisticated techniques to find
differences between individuals or teams and explain variation in other
outcome measures.

While coding and counting methods are useful, in the context of CPS
they either ignore or attempt to control for the very phenomena they
are trying to assess. These methods analyze the contributions of in-
dividuals to CPS, but they do so without taking into account how those
contributions were connected to and dependent on the recent activity of
the team. In other words, coding and counting assumes that team dis-
course can modeled by looking at the frequency of individual team
member contributions without reference to the contributions of others
on the team. This means that such techniques ignore important as-
sessment evidence for individuals by treating this evidence as if it were
produced by isolated events.

It follows that if the goal of CPS assessments is to make claims about
the processes or skills of individuals, then coding and counting methods
are a poor way to justify those claims. The processes of individuals in
CPS contexts are interactive, interdependent, and temporally bounded,
implying the same for the evidence they produce during assessments.
Because coding and counting methods ignore these features, assess-
ments that rely on them are misaligned. Even if they correspond ac-
curately to external evaluations of team performance in some cases,
they do so with a flawed model of the situation, raising both theoretical
and practical concerns about their validity (Mislevy, 1996).

2.6. Temporal models

There are a number of methods that attempt to account for the in-
teraction, interdependence, and temporality of CPS. One method, Lag
Sequential Analysis (Bakeman & Gottman, 1997) can model CPS pro-
cesses using the transitional probabilities between sequences of colla-
borative actions. For example, Kapur (2011) used Lag Sequential Ana-
lysis to compare the processes of teams who solved well-formed versus
ill-formed problems. Another method, Sequential Pattern Mining
(Srikant & Agrawal, 1996) can model CPS interactions by mining data
for frequent sequences of collaborative actions. For example, Perera,

Kay, Koprinska, Yacef, and Zaïane (2009) compared the sequences of
actions that high and low achieving teams made as they participated in
an online software development project. Similarly, Maldano, Kay, Al-
Qaraghuli, and Kharrufa (2011) compared the sequences of actions that
high and low achieving teams made as they used a digital tabletop tool
to collaboratively solve problems.

While these two methods can account for the interactive, inter-
dependent, and temporal nature of CPS contexts, they can only—at
least in their current implementations— account for these factors at a
single level of analysis: these methods can model the actions of an in-
dividual while accounting for their own prior actions, or they can
model team actions while accounting for the prior actions of the team.
However, they cannot model the actions of a particular individual while
simultaneously taking into account the prior actions of that individual
and the rest of the team.

2.7. Models of interaction

Social Network Analysis (SNA) is one method that can situate the
actions of individuals in the context of their team. SNA can be used to
model patterns of interaction among individuals, for example, which
individuals are communicating, the frequency of communication, and
the order in which the communication occurs, while simultaneously
modeling properties of the team as a whole, such as cohesion
(Haythornthwaite, 1996; Sweet, 2017). However, SNA only measures
the structure of interactions between individuals on a team, not the
content of those interactions. Because team interactions are influenced
by the type of information shared, the content communicated, and the
cognitive processes used by the individual team members (Gašević,
Joksimović, Eagan, & Shaffer, 2019), a content neutral method like SNA
provides a limited model of CPS processes.

An alternative model of interactivity in CPS is ENA. Like SNA, ENA
builds network models that describe interactive, interdependent, and
temporal phenomena. However, whereas SNA builds networks that
describe interactions among individuals, ENA builds networks that de-
scribe interactions among the discourse of individuals. Because ENA
models interactions between the discourse of an individual and the
discourse of others within a given recent temporal context (Shaffer,
2017; Siebert-Evenstone et al., 2017), this method can account for the
interactivity, interdependence, and temporality of CPS processes at the
individual level of analysis while also modeling the relationships be-
tween the actions of one individual and the other members of a team.
This affordance of ENA allows us to meaningfully compare coding and
counting to a more theoretically valid approach for assessing the CPS
processes of individuals.

2.8. Novel contributions

There is already an extensive body of work using ENA, including
applications of ENA to CPS contexts. For example, ENA has been used to
analyze CPS data from simulations of professional practice in domains
such as engineering (Arastoopour, Swiecki, Chesler, & Shaffer, 2015),
urban planning (Bagley & Shaffer, 2015), and medicine (Sullivan et al.,
2018). However, this study extends prior applications of ENA to CPS in
two important ways. First, the primary goal of this paper is to in-
vestigate how measuring the contributions of individuals in the context
of their teams (using ENA) compares to measuring the contributions of
individuals as isolated events (using coding and counting). While prior
work by Siebert-Evenstone et al. (2017) has suggested that this affor-
dance of ENA is valuable in collaborative contexts, this claim has not
been empirically tested. Second, in this study, we apply ENA to a novel
and important context. In particular, we analyze the communications of
ADW teams as they managed potentially hostile air contacts in simu-
lated peacekeeping scenarios. We chose the context of ADW teams
because it is particularly well suited to assessments of CPS. In ADW
teams, individuals have well-defined roles, and their activities are

2 Another approach is to highly script the CPS activity. For example, the
Programme for International Student Assessment (OECD, 2017) controls CPS
scenarios by limiting team size, composition, and action. Teams consist of one
human and at least one computer-controlled agent. The actions of the human
are constrained to a small set of choices which allows researchers to associate
each action with a particular CPS skill. These actions are then scored and
counted to yield a measure of CPS skill. In other words, such assessments
combine highly scripted scenarios with a coding and counting approach.
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complex, interdependent, and time-sensitive (Paris, Johnston, &
Reeves, 2000). Moreover, there exists a robust set of data on ADW team
performance in a high fidelity simulation. This allows us to go beyond
previous studies of ENA as a tool for examining collaboration by ex-
amining the performance of professionals in a high-performance domain,
rather than student learners.

2.9. Prior analyses of the data

The data we use here was collected as part of the Tactical Decision
Making Under Stress (TADMUS) program (Cannon-Bowers & Salas,
1998). One goal of this program was to understand the decision making
processes of ADW teams as they managed deceptive situations, such as
concealed attacks, decoys, and non-hostile aircraft responding to in-
flight emergencies. An important outcome of the TADMUS program was
the development of a decision support system for the commanding of-
ficers on ADW teams. These computer displays were designed to aid the
decision making processes of commanders by lowering the demands on
their attention and memory in high stress situations (Johnston, Fiore,
Paris, & Smith, 2013).

A study by Morrison, Kelly, Moore, and Hutchins (1996) examined
the effect of the decision support system on team communication by
comparing teams with access to the system (experimental condition) to
those without it (control condition). Using a coding and counting ap-
proach, these researchers found that teams in the experimental condi-
tion were statistically significantly less likely to talk about sensor-based
information, for example, speed, location, radar type, compared to
teams in the control condition. In addition, no statistically significant
differences between the two conditions were found in terms of the
number of tactical actions they ordered or the number of clarifications
they had to make about the tactical situation. The authors did find that
teams in the experimental condition clarified less information about
aircraft behavior and identity in particular, but these specific differ-
ences were not reported as statistically significant. More importantly,
the results described above were examined at the team level, not the
individual level. Here, we build on this prior work3 to illustrate the
value that ENA can add over a traditional coding and counting
methods, but we do so by examining how the contributions of in-
dividual team members, particularly the commanding officers, were
affected by the presence or absence of the decision support system.

Prior work (see, for example, Kapur, 2011) has compared coding
and counting to other methods for assessing CPS. Here, we take a si-
milar approach by comparing coding and counting to ENA. Specifically,
we conducted a qualitative analysis of the communications of ADW
teams to understand the interactive, interdependent, and temporal
nature of this CPS context and highlight important differences between
commanders in the experimental and control conditions. Next, we as-
sessed CPS using two coding and counting analyses to model the qua-
litative differences we found between commanders in the two condi-
tions: (1) a univariate analysis, which uses the cumulative counts of
different kinds of coded talk, and (2) a multivariate analysis using PCA
on the same code variables. Finally, we conducted an ENA analysis and
compared the results to both the counting and coding approaches, and
to the original qualitative analysis.

3. Methods

3.1. Data

As part of the TADMUS project, 16 ADW teams participated in four
simulated training scenarios to test the effect of a decision support
system and critical thinking-and-teamwork training on team perfor-
mance (see Johnston et al., 2013 for a more complete description). The
goal for each team during the scenarios was to perform the detect-to-
engage sequence. In brief, this entails developing and maintaining
awareness of a tactical situation by detecting and identifying vessels, or
tracks, assessing whether tracks are threats, and finally, deciding whe-
ther to take action towards tracks, for example, warning, covering with
weapons, or engaging (Paris et al., 2000).

Each team consisted of six participants assigned to particular roles.
Two participants held command roles and the remaining four held
supporting roles. All participants had approximately the same military
rank and similar levels of experience. The two command roles were the
Commanding Officer (CO) and the Tactical Action Officer (TAO). The
CO and TAO were responsible for defending the ship and making tac-
tical decisions regarding actions toward tracks. The support roles con-
sisted of the Identification Supervisor (IDS), the Air Warfare
Coordinator (ADWC), the Tactical Information Coordinator (TIC), and
the Electronic Warfare Supervisor (EWS). Their main function was to
report the information necessary for the commanders to develop and
maintain awareness of the tactical situation and make decisions. Their
duties included reporting the detection of tracks, determining the
identification of tracks (e.g., aircraft type), sending warning to tracks,
and in some cases, recommending tactical actions to their supervisors.

The teams were divided into two conditions with eight teams in
each condition. The conditions differed with respect to the technolo-
gical support and training provided to the command roles on each team.
Commanders in the control condition had access to standard technology
referred to as the command and decision simulation watch-station. This
watch-station provided basic information about track identification and
behavior. Commanders in the experimental condition had access to a
decision support system designed to provide information about track
identification, behavior, threat levels, and actions taken toward the
track. This system was designed to support the decision making of
commanders and reduce the cognitive effort involved in maintaining
tactical awareness. It was developed in response to prior work that
found that the existing watch stations failed to meet the needs of
commanders in high stress situations (Hutchins & Kowalski, 1993;
Hutchins, Morrison, & Kelly, 1996).

In addition, all team members in the experimental condition re-
ceived computer-based training to develop critical thinking and team-
work skills, and face-to-face training to develop their teamwork and
after action review skills. Teamwork training included emphasizing
information exchange among team members, providing backup and
support to team members, using proper communications phraseology,
providing situation updates, and establishing task priorities. Control
condition teams received their typical combat training curriculum.

Each team, regardless of condition, participated in the same four
scenarios during the experiment. Each scenario was designed to take
30min to complete, and the order in which teams completed the sce-
narios was counterbalanced using a Latin square. The four scenarios
differed with respect to their geographical location, types of tracks
present, and the behavior that tracks demonstrated. During each sce-
nario, teams performed the detect-to-engage sequence for multiple
tracks in situations that simulated the essential characteristics of littoral
warfare operations. Each scenario required individual team members to
process and communicate information within their team. In addition,
team members could also communicate with personnel outside of their
team, such as external commanding officers and tracks. Individuals
playing these external roles used scenario-specific scripts to standardize
these communications as much as possible. Analyses by Johnston et al.

3 Entin and Serfaty (1999) used similar data to investigate the communica-
tions of ADW teams and their commanders, and developed a measure of an-
ticipation. However, their analysis accounted for the ratio of information ex-
changed from commanders to team members and team members to
commanders, but did not examine the specific kinds of team communication,
which our qualitative analysis (see below) suggested was an important differ-
ence between teams.

Z. Swiecki et al. Computers in Human Behavior xxx (xxxx) xxx–xxx

4



(2013) suggested that these scenarios were roughly equivalent in terms
of the workload they placed on teams. For a more detailed description
of the scenarios, see Johnston, Poirier, and Smith-Jentsch (1998) and
Hall, Dwyer, Cannon-Bowers, Salas, and Volpe (1993).

Transcripts from each team/scenario combination were analyzed
for this study.4 The dataset consists of 63 transcripts from the 16 teams:
32 from the experimental condition and 31 from the control,5 and has
been analyzed in several prior studies (Foltz & Martin, 2008; Foltz,
Martin, Abdelali, Rosenstein, & Oberbreckling, 2006; Johnston et al.,
2013; Smith et al., 2004). Here, the transcripts were segmented into
lines corresponding to turns of talk, for a total of 12,027 lines. Our units
of analysis were the individual ADW team members across their four
training scenarios. In total, the analysis included 94 individuals.6 In
light of the experimental design, we grouped individuals according to
their experimental condition and their duties on the team: command or
support. In what follows, we focus the analysis on the 29 individuals
who held command roles—16 in the experimental condition and 13 in
the control—because the experiment was designed to affect their per-
formance directly.

3.2. Qualitative analysis

To investigate how the individual contributions of the commanders
differed between conditions, we analyzed the transcripts qualitatively
using the codes described in Table 1 below. Not being experts in naval
warfare, our first step in developing these codes was to familiarize
ourselves with the different stages of the detect-to-engage sequence for
ADW teams as described in the existing literature (see, for example,
Paris et al., 2000). We then conducted a grounded analysis of the data
(Glaser & Strauss, 1967), and triangulated our findings with prior
qualitative analyses that have been conducted on similar data (see, for
example, Morrison et al., 1996). These codes capture aspects of the
socio-cognitive nature of CPS in the ADW context. However, we note
that although taskwork and teamwork are hypothesized to be important
dimensions of CPS, we did not distinguish between the two in this
analysis because of the nature of the data being analyzed. Specifically,
because we were modeling the talk between team members, every ac-
tion was both a contribution to the solution of the problem (i.e., task-
work) and simultaneously a contribution to the team process (team-
work). For example, reporting Track Behavior is an important problem
step in the detect-to-engage sequence, but it also shares important in-
formation that members of the team can use to develop and maintain a
shared understanding of the problem.

To code the data, we developed an automated coding scheme using
the nCodeR package for the statistical programming language R
((Marquart, Swiecki, Eagan, & Shaffer, 2018). We used nCodeR to de-
velop automated classifiers for each of the codes in Table 1 using reg-
ular expression lists. Turns of talk that matched one or more regular
expressions associated with a code were annotated with that code.
nCodeR uses two interrater reliability statistics to establish code relia-
bility: Cohen's kappa, and Shaffer's rho (Eagan, Rogers, Pozen,
Marquart, & Shaffer, 2016; Author et al., 2017a). The kappa statistic
measures the agreement between two raters, while accounting for

agreement due to chance. Rho measures whether the level of agreement
found for a sample coded by two raters generalizes to the rest of the
dataset. In this study, we used the standard threshold for kappa
(> 0.65) and a rho threshold of< 0.05 to determine whether the
agreement between human coding and an automated classifier was
suitable.7

To create valid and reliable codes, we assessed concept validity by
requiring that two human raters achieve acceptable measures of kappa
and rho, and reliability by requiring that both human raters in-
dependently achieve acceptable measures of kappa and rho compared
to the automated classifier. Table 2 shows interrater reliability mea-
sures, kappa (rho), for each code.

After validating the automated classifier for each code, we used the
automated classifiers to code the data.

3.3. Code counts

For each commander, we calculated raw counts for the separate
codes. Normality checks—Shapiro Wilks tests and Q-Q plots—on the
code counts suggested the distributions for several codes were non-
normal. To account for non-normality, small sample sizes, and to apply
a consistent statistical test across cases, we used two-sample Mann-
Whitney U tests to compare the distribution of code counts for each
code between the conditions. We also conducted post-hoc power ana-
lyses on these tests using the statistical software G∗Power (Faul,
Erdfelder, Lang, & Buchner, 2007).

3.4. Principal Components Analysis

To investigate whether a quantitative approach that accounts for
linear relationships between multiple variables could capture the qua-
litative differences we found between commanders in the two condi-
tions, we performed a PCA on the code count matrix. PCA is a multi-
variate statistical technique that reduces the dimensionality of highly
correlated data by finding linear combinations of the original dimen-
sions that maximize the variance accounted for in the data
(Bartholomew, Steele, Galbraith, & Moustaki, 2008). Because we were
interested in measuring the individual contributions of commanders in
the context of their teammates, we applied PCA to the count matrix for
all subjects in the study.

Prior to conducting the PCA, we performed a Bartlett's test of
sphericity to test whether the variables in the dataset were sufficiently
correlated to warrant using PCA. The test was significant at p < 0.05.
As part of the PCA method, the count matrix was mean-centered and
each dimension was scaled to have unit variance. This scaling ensures
that the variance maximized by PCA will not be due to differences in
the ranges of the original variables.

To compare the individual contributions of the commanders be-
tween conditions, we analyzed the PCA scores for commanders on the
dimensions, i.e., principal components with eigenvalues greater than
one. In this case, the PCA returned three dimensions that meet this
criteria. Normality checks on these scores suggested that distributions
of scores on two of the three dimensions were non-normal. To account
for non-normality, small sample sizes, and to apply a consistent statis-
tical test across cases, we applied two-sample Mann-Whitney U tests to

4 As part of the original experiment, each team/scenario combination was
also scored using the Air Defense Warfare Team Observation Measure
(Johnston, Smith-Jentsch, & Cannon-Bowers, 1997) which provides scores on
four dimensions of teamwork behavior. We did not analyze those outcome
variables here because they were measured at the team level, and our interest
was in differences between individual commanders in the two conditions.

5 Each team had 4 transcripts, one for each scenario they completed. A
transcript for one scenario from a control condition team was missing from the
dataset.

6 Turns of talk for three COs in the control condition were missing from the
data set, indicating that these COs were either absent from the scenarios or did
not choose to speak.

7 Rho follows the same logic as a standard hypothesis test and its inter-
pretation is similar to that of a p value. In our study, the null hypothesis for a
test using rho is that, for a given code, the sample of data coded by two raters
was drawn from a dataset with a true kappa of less than 0.65. A rho of less than
0.05 means that the kappa value observed on the sample was greater than 95
percent of the kappa values in the null hypothesis distribution. In other words, a
rho of less than 0.05 allows us to reject the null hypothesis that the true rate of
agreement between two raters is below the chosen threshold (in this case, 0.65),
thus supporting the hypothesis that rate of agreement over the whole dataset is
above the threshold.
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compare the distributions of PCA scores for commanders in the two
conditions. We conducted post-hoc power analyses on these tests using
the statistical software G∗Power.

We interpreted the meaning of the PCA dimensions using the
principal component loadings, which show how much each varia-
ble—in this case each code—contributes to each dimension.

To confirm that PCA represented an appropriate multivariable
linear model of the codes, we also tested whether rotating the principal
components and allowing them to correlate would yield a solution that
was easier to interpret. We applied two approaches using oblique ro-
tations to produce correlated components: one in which we rotated the
original PCA solution and one in which we used an exploratory factor
analysis.

3.5. Epistemic Network Analysis

Finally, we used ENA (Shaffer, 2017; Eagan et al., 2016) to test
whether a quantitative model that accounted for interactions between
team members could capture the qualitative differences we saw be-
tween commanders in the two conditions.

To conduct this analysis, we used the ENA Web Tool (version 0.1.0)
(Marquart, Hinojosa, Swiecki, & Shaffer, 2018). The ENA algorithm
uses a sliding window to construct a network model for each turn of talk
in the data, showing how codes in the current turn of talk are connected
to codes that occur within the recent temporal context (Siebert-Evenstone
et al., 2017), defined as a specified number of lines preceding the
current turn of talk. The resulting networks are aggregated for all turns
of talk for each subject in the model. In this way, ENA models the

connections that each subject makes between concepts and actions
taking into account the actions of others on the team (Shaffer, 2017). That
is, ENA models the connections that an individual made between codes,
whether those connections were within their own talk, or whether they
were made to things other people said or did in the recent temporal
context.

We used an ENA model based on the codes in Table 1. Although our
analysis was focused on individuals in the command roles, in order to
account for contributions commanders made in the context of their
team, all turns of talk, whether they were spoken by commanders,
supporting members, or external agents where included in the analysis.
We defined the recent temporal context as being five lines, each line
plus the four previous lines. We chose to define the recent temporal
context in this way because our qualitative analysis of the data sug-
gested that the majority of referents for a given line were contained
within four lines.

Mathematically, the collection of networks for all subjects in the
analysis is represented as a matrix of connection counts. In other words,
the columns of this matrix correspond to code pairs and the rows cor-
respond to a point in high-dimensional space for each subject. The ENA
model normalized this matrix before subjecting it to a dimensional
reduction. A normalized model accounts for the fact that different
subjects may have been more or less talkative during the experiment.
For the dimensional reduction, we used a technique that combines (1) a
hyperplane projection of the high-dimensional points to a line that
maximizes the difference between the means of two groups—in this
case, commanders in the experimental condition versus those in the
control condition—and (2) a singular value decomposition (SVD). SVD
is the same dimensional reduction technique commonly applied in PCA.
The resulting space highlights the differences between groups (if any)
by constructing a dimensional reduction that places the means of the
groups as close as possible to the X-axis of the space.

Networks were visualized in this space using two coordinated re-
presentations for each subject: (1) a projected point, which represents
the location of that subject's network in the low-dimensional projected
space, and (2) a weighted network graph network where nodes corre-
spond to the codes, and edges reflect the relative frequency of con-
nection between two codes. The positions of the network graph nodes
are fixed, and those positions are determined by an optimization rou-
tine that minimizes the difference between the projected points and
their corresponding network centroids. Thus, projected points toward
the extremes of either dimension will have network graphs with strong

Table 1
Qualitative codes, definitions, and examples.

Code Definition Examples

Detect/Identify Talk about radar detection of a track or the identification of a track,
(e.g., vessel type).

1) IR/EW NEW BEARING, BEARING 078 APQ120 CORRELATES TRACK
7036 POSSIBLE F-4

2) TIC/IDC TRACK 7023 NO MODES NO CODES.
Track Behavior Talk about kinematic data about a track or a track's location 1) AIR/IDS TRACK NUMBER 7021 DROP IN ALTITUDE TO 18 THOUSAND

FEET
2) TAC/AIR TRACK 7031 THE HELO THAT WAS TAKING OFF THE OIL

PLATFORM IS TURNED EAST
Assessment/Prioritization Talk about whether a track is friendly or hostile, the threat level of a

track, or indicating tracks of interest
1) TRACKS OF INTEREST 7013 LEVEL 5 7037 LEVEL 5 7007 LEVEL 4

TRACK 7020 LEVEL 5 AND 7036 LEVEL 5
2) CO, AYE. LET'S UPGRADE OUR THREAT LEVEL TO 6.

Status Updates Talk about procedural information, e.g., track responses to tactical
actions, or talk about tactical actions taken by the team

1) TAO ID, STILL NO RESPONSE FROM TRACK 37, POSSIBLE PUMA HELO.
2) GOT HIM COVERED.

Seeking Information Asking questions regarding track behavior, identification, or status. 1) TAO CO, WE'VE UPGRADED THEM TO LEVEL 7 RIGHT?
2) WHERE IS 23?

Recommendations Recommending or requesting tactical actions 1) AIR/TIC RECOMMEND LEVEL THREE ON TRACK 7016 7022
2) GB, THIS IS GW, REQUEST PERMISSION TO TAKE TRACK 7022 WITH

BIRDS HOSTILE AIR. THREAT LEVEL HIGH. RANGE 7NM.
Deterrent Orders Giving orders meant to warn or deter tracks. 1) TIC AIR, CONDUCT LEVEL 2 WARNING ON 7037

2) AIR THIS IS TAC CONDUCT LEVEL ONE QUERY TRACK 7036
Defensive Orders Giving orders to prepare ship defenses or engage hostile tracks 1) TAO/CO COVER 7016 WITH BIRDS

2) AIR KILL TRACK 7022 WITH BIRDS

Table 2
Interrater reliability statistics.

Code Human 1 vs
Human 2

Human 1 vs
Automated

Human 2 vs
Automated

Detect/Identify 0.94 (< .01) 0.94 (< .01) 0.89 (< .01)
Track Behavior 0.83 (< .01) 0.94 (< .01) 0.77 (0.03)
Assessment/Prioritization 1 (< .01) 0.94 (< .01) 0.94 (< .01)
Status Updates 0.93 (< .01) 0.94 (< .01) 0.87 (< .01)
Seeking Information 0.94 (< .01) 1 (< .01) 0.94 (< .01)
Recommendations 1 (< .01) 0.92 (0.01) 0.92 (< .01)
Preparation 1 (< .01) 0.83 (0.03) 0.93 (< .01)
Deterrent Orders 0.94 (< .01) 0.93 (< .01) 0.89 (< .01)
Defensive Orders 0.84 (0.04) 0.92 (0.01) 0.92 (0.01)

Note. Agreement thresholds were kappa>0.65 with rho<0.05.
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connections between nodes located on the extremes. In other words,
dimensions in this space distinguish subjects in terms of connections
between codes whose nodes are located at the extremes and the posi-
tions of these nodes can be used to interpret the dimensions of the
space. This interpretation is similar to that of dimensions in a PCA
model based on coded data, but using temporally localized co-occur-
rences of codes rather than counts of individual codes (see Shaffer et al.,
2016 for a more detailed explanation of the mathematics of ENA; see
Arastoopour et al., 2015 and Sullivan et al., 2018 for more examples of
this type of analysis).

To compare the individual contributions of the commanders be-
tween conditions, we analyzed the locations of their projected points in
the ENA. Normality checks suggested that the distributions of projected
points were normal. However, to maintain consistency between the
statistical tests applied to code counts, PCA scores, and ENA points, we
applied a two-sample Mann-Whitney U test to compare the distribu-
tions of the projected points for commanders in the control and ex-
perimental conditions, and conducted power analyses of these tests
using G∗Power. We interpreted the meaning of any differences by
computing mean networks, averaging the connection weights across the
networks in each condition. Finally, we also compared mean and in-
dividual networks using network difference graphs. These graphs are
calculated by subtracting the weight of each connection in one network
from the corresponding connections in another network.

4. Results

4.1. Qualitative results

4.1.1. The detect-to-engage sequence
The goal for each team during the training scenarios was to perform

the ADW detect-to-engage sequence. This sequence begins as the team
detects ships or aircraft on radar, referred to as tracks. Track detections
are typically reported by one of the supporting members of the team.

After a track is detected, the team needs to identify it—for example,
helicopter, jet, merchant ship, commercial airline—and its weapon
capabilities in order to assess whether it is hostile. In addition to on-
board computers and radar, the team uses identification, friend or foe
(IFF) codes to understand track intent. IFF codes are broadcast by tracks
and classified into five categories, or modes, that identify the track as
civilian or military.

Depending on the track's behavior and identity, the team assigns it a
threat level. These assignments are typically made by the commanding
officers on the team, the CO and the TAO. Threat levels range from 1 to
7, with tracks at level 4 and above considered potentially hostile
priorities. Based on the track's threat level, the team begins to take
action toward it at the direction of the commanding officers. These
actions range from deterrent messages sent to tracks, called warnings or
queries, to defensive actions that prepare for and engage in combat with
the track.

A typical sequence of actions would be to issue level 1 or 2 warnings
to the track soon after it is detected and before it is within its weapons
range. Low-level warnings declare the presence of the warship and
request that the track identify itself and state its intentions. Soon after,
the commanders would order the track covered with weapons in pre-
paration for engagement, should it be necessary. These early actions
can be critical in ADW situations because they allow the team gather
information about track intent and prepare for combat before the ship is
in immediate danger.

If the team receives no response to the low-level warnings and the
track continues to demonstrate potentially hostile behavior, the com-
manders would order level 3 warnings, which warn the track that the
ship is prepared to defend itself and request that it divert course. If the
track does not respond to level three warnings and still fits a hostile
profile, the commanders must decide whether to engage the track in
combat.

Of course, in ADW scenarios, teams typically have to deal with
multiple tracks simultaneously, and each track may be at different
stages in the detect-to-engage sequence. As track behavior changes,
teams may have to cycle through stages of the sequence multiple times
for certain tracks. Moreover, in some circumstances, it may be appro-
priate to skip stages of the sequence in order to manage multiple tracks
at once.

In addition to managing multiple tracks, teams have limited time to
make decisions and take action. For example, a hostile Super Frelon
helicopter can carry missiles with a range of approximately 30 nautical
miles. This means that if a Super Frelon is initially detected 50 nautical
miles from the warship and is traveling inbound at top speed, it could
close the distance to its weapons range in under six minutes. Supersonic
jets could close this distance in less than a minute. Thus, ADW teams
must be able to detect, identify, assess, and act on tracks quickly in
order to defend the ship against potential threats.

To make matters still more difficult, team members communicate
complicated information about multiple tracks, give assessments, and
issue orders over a single communication channel. Given the complex
nature of the problem, time pressures, and the communication format,
there are many opportunities for errors to arise. This is why the
TADMUS project developed a decision support system to convey in-
formation about track behavior, track history, assessments, and the
sequence of actions taken by the team more efficiently. The goal of this
system was to support the decision making of the CO and TAO in these
high stress situations by reducing their cognitive load.

In the examples below, we compare commanders without access to
the decision support system (control condition), who received standard
training, to commanders with access to the system (experimental con-
dition), who received teamwork training in addition to the standard
curriculum. Note that in the transcripts below, speakers sometimes
began their turn of talk by addressing the member(s) of the team for
whom the message was intended, followed by who was speaking. Thus,
in the transcripts “TAO, CO” should be read as “TAO, this is CO.”

4.1.2. Example 1: control condition
In the following excerpt, supporting members of the team report

different information about four new tracks, information that the
commanders need to integrate in order to develop an understanding of
the tactical situation.

Line Speaker Utterance

1 IDS TAO TRACK 16 NO MODES AND CODES, TO THE NORTHWEST.
2 EWS TAO TRACK 13, 14, 15. I AM GETTING PRIMUS 40 PUMA HELO.
3 IDS TAO TRACK 13, 14, 15 NO MODES AND CODES.
4 TAO TAO AYE.

In particular, both the IDS (line 1) and the EWS (line 2) identify new
radar contacts. The IDS reports (lines 1 and 3) that none of the contacts
have “modes and codes,” meaning that there is no information about
whether the new tracks are friend or foe. As described previously, this
designation, called identification, friend or foe, or IFF, is based on a set of
numeric codes that identify a track as civilian or military aircraft. The
EWS (line 2) reports the radar signature (“Primus 40“) and aircraft type
(“Puma helo” or helicopter) for three of the contacts, tracks 13, 14, and
15. (Although it makes the situation potentially more confusing, track
numbers are not assigned sequentially; tracks 13, 14, and 15 were
identified after track 16.)

The IDS and EWS direct their information to the TAO, who ac-
knowledges receipt of the information (line 4). However, notice that the
TAO has to integrate these different pieces of information in order to
understand the rapidly evolving situation.

As the situation progresses, this process only becomes more chal-
lenging. The demands of the task are such that the team cannot simply
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report information, process that information, and move on without
interruption; as we see below, new information can come at any time.

5 CO TAO, CO, LET'S GO AHEAD AND ISSUE A THREAT LEVEL FOR THE
PUMAS 13, 14, 15.

6 EWS TAO, EWS TRACK 012 IDENTIFIED AS F-4.
7 TAO LEVEL 4, AYE.
8 TAO SAY AGAIN TRACK NUMBER F-4?
9 EWS 14. CORRECTION 12, BEARING 094
10 TAO TAO, AYE.

In line 5, the CO steps in and asks the TAO to evaluate the threat
posed by the Puma helicopters reported in lines 2 and 3. The TAO (line
7) classifies the tracks as “level 4” threats, meaning that they are po-
tentially hostile tracks that the team should monitor.

Notice, however, that between when the CO asks for a threat as-
sessment and the TAO replies, the EWS (line 6) reports another contact
identified as an F-4 jet. The TAO then has to ask the EWS (line 8) to
repeat the information because he or she was busy making the threat
assessment. The EWS repeats the track number of the F-4, and adds
additional information about its location (line 9). The TAO acknowl-
edges this message in line 10.

As this excerpt shows, the members of this team are able to quickly
distinguish similar sounding information (e.g., 14, level 4, F-4, 94).
However, the commanders are often receiving new input while they are
communicating decisions based on previous information. This means
that they frequently have to request clarification from supporting
members of the team to maintain an understanding of the tactical si-
tuation.

Over the next four minutes (omitted here), the team continues to
detect, identify, and assess new tracks. However, despite identifying six
potentially hostile tracks in the area, the TAO has yet to issue any
warnings. Recall that warnings are a critical component of the detect-
to-engage sequence issued at the direction of the commanders on the
team.

In the excerpt below, the IDS recommends warnings on two tracks.
However, the TAO is busy communicating with the EWS to clarify the
identity and location of one of those tracks and misses this information.

49 IDS TAO, ID, DO WE WANT THREAT LEVEL WARNING 3 ON 22 AND 16?
50 EWS SAME BEARING IT'S A SUPER FRELON, THAT'S THE ONLY INFOR-

MATION I HAVE RIGHT NOW.
51 IDS NEGATIVE MODES AND CODES ON 16 AND 22. THEY ARE INSIDE

20.
52 TAO EWS, TAO, UNDERSTAND SAME BEARING AS THE SUPER FRELON?
53 EWS AFFIRM. 16, 22 ARE BASICALLY THE SAME BEARING.
54 TAO TAO, AYE.

In line 49, the IDS addresses the TAO and suggests level 3 warnings
on tracks 22 and 16. It is unusual to recommend a level 3 warning—-
which is typically reserved for imminent threats—when the team had
yet to issue any lower level warnings. The demands of the situation
were thus impeding standard execution of the detect-to-engage se-
quence.

Soon after giving the recommendation, the IDS reports (line 51) that
there is no identifying information for the track (“Negative modes and
codes”), and emphasizes that it is nearing the weapons range for certain
hostile aircraft (“inside 20 [nautical miles]“). This additional informa-
tion supports the earlier recommendation (line 49) to issue a level 3
warning.

However, the TAO does not respond to this critical information,
instead asking the EWS (line 52) to clarify the bearing of track 22. The
TAO's need to clarify the tactical situation causes him or her to ignore
time-sensitive information. As a result, despite suggestions from the
IDS, the team does not take action toward two threatening tracks.

In the next few exchanges (omitted here), the team identifies track
22 as a possible helicopter flying in tandem with track 16. Having
clarified the tactical situation, the TAO orders the IDS to issue the
team's first warnings to their tracks of interest.

58 TAO ID, TAO, LET'S GO OUT WITH LEVEL 1 WARNINGS ON 7013, 14, 15,
16, AND 22.

59 CO TAO, CO, LET'S GO AHEAD AND MAKE 22 THE SAME THREAT
LEVEL AS 16, LEVEL 6.

60 TAO 22 LEVEL 6, AYE.
61 IDS SIR, THEY'RE INSIDE 20, DO YOU WANT A LEVEL 1 OR A LEVEL 3

WARNING?

In line 58, the TAO orders the IDS to send warnings to five tracks.
Notice, however, that the TAO orders level 1 warnings, which are ty-
pically issued very early in the detect-to-engage sequence. This suggests
that the TAO may have missed the IDS's previous recommendation for
level 3 warnings (lines 49 and 51 above). In response, the CO upgrades
the threat assessment for track 22 to the second highest threat level
(line 59) and the TAO acknowledges this message (line 60).

At this point, the team has identified two tracks posing an imminent
threat to the ship. In line 61, the IDS repeats the recommendation for a
level three warning, again emphasizing the potential threat they pose:
“Sir, they're inside 20 [nautical miles].” The TAO heeds the re-
commendation and finally (after the end of this excerpt) orders level 3
warnings to the tracks. This suggests that the TAO either missed in-
formation at critical times or was unable to quickly act on it because of
the effort it took to understand the tactical situation. In particular, the
TAO's efforts to understand the situation prevented the team from fol-
lowing the general trend of the detect-to-engage-sequence for air de-
fense warfare, and lead to inappropriate orders given the situation.

Altogether, this example illustrates two key elements of team per-
formance in the control condition. First, the activities of ADW teams are
highly interactive. When commanders seek information and make as-
sessments, they do so in relation to information about track detection,
identification, and behavior. In such a context, it is impossible to un-
derstand or assess any one turn of talk without understanding who and
what it is responding to.

Second, the example shows that the activities of ADW teams are
time-sensitive and information dense, making them highly complex. At
any given time, multiple conversations may be occurring and multiple
tracks may be in different stages of detection, identification, assess-
ment, or action. As a result, commanders often have to seek or clarify
information in order to understand the tactical situation. This in turn
means that in some circumstances, commanders are unable to take
action in a timely manner.

4.1.3. Example 2: experimental condition
In this example, the structure of the team and its goals are the same

as in the example above. Here, however, the two commanders have
access to a decision support system that provides them information
about track identity, assessment, current and past behavior, as well as a
history of actions taken by the team.

At this point in the scenario, the team is managing two tracks. One
of which, track 7, was just detected by the CO. Typically tracks are
detected and reported by the supporting members of the team, but the
availability of the decision support system enabled the CO to access this
information directly, as the following excerpt illustrates.

Line Speaker Utterance

1 CO OK 07 IS MOVING TOWARDS US SO WE'VE GOT TO COVER
WITH GUNS OR BULLDOGS ON 07

2 TAO NEGATIVE
3 TAO TIC GO OUT WITH LEVEL ONE QUERY ON 07 AND COVER WITH

BULLDOGS
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The CO reports the detection of track 7, letting the team know it is
inbound (line 1). In the same turn, the CO issues orders to “cover with
guns or bulldogs [anti-ship missiles] on 07”—that is, assign weapons to
the track in preparation for self-defense. After adding an order to issue a
level 1 warning to the track, the TAO passes the CO's orders to the TIC
(line 3).

Thus, commanders on this team are reacting to the developing
tactical situation by contributing new information about the track (line
1) and immediately responding to it with early actions from the detect-
to-engage sequence: warning the track and covering it with weapons
(lines 1 and 3).

As the scenario evolves, the team manages another track of interest
(track 36). However, the identity of Track 07 is still unknown, and it
has yet to respond to level 1 warnings. The TAO has contacted the
bridge of the ship for visual confirmation on the identity of track 07. As
more information about the tracks comes in, the commanders respond
to the developing situation.

27 ADWC TAO, ADWC BEARING 064 TRACK 36 APPEARS TO BE INBOUND
UNKNOWN MISSILE PLATFORM

28 TAO INITIATE LEVEL ONE QUERY ON TRACK 36
29 IDS AYE
30 BRIDGE COMBAT THIS IS BRIDGE TRACK 7007 IS A MERCHANT SHIP

The ADWC reports (line 27) the detection of track 36, which is
headed in their direction and capable of carrying missiles. The TAO
follows up immediately by ordering a level 1 warning on the track (line
28). In the next line (30), the bridge reports to the team (hailing them
as “combat”) that they have visually confirmed track 7 as a merchant
ship. Merchant ships are civilian vessels, making them unlikely threats.

31 TAO AYE CO DID YOU COPY THAT
32 CO YEAH I'VE GOT IT NOW WE'VE GOT 36 AND 20 COMING AT US
33 TAO GOT THEM
34 TAO INITIATING LEVEL ONE QUERY ON 36

Immediately after receiving the information from the bridge, the
TAO acknowledges the information (line 31), and asks the CO: “did you
copy that.” The CO confirms receipt of the message (line 32), and then
turns the team's attention to track 36, which was detected previously by
the ADWC, and track 20, a new contact. The TAO confirms that they are
aware of the two tracks (line 33) and reports that they are in the process
of warning track 36 (line 34). Notice, however, that the TAO does not
act on track 20.

In other words, there is a rapid exchange of information about
multiple tracks; in response, the commanders adapt their priorities,
make decisions, and take action toward potential threats. However,
during this process, the TAO seems to have overlooked a potentially
threatening track.

In the interim lines (omitted here), the team detects another new
track and sends out the level 1 warning on track 36. After the warning
goes out, the ADWC requests further action on track 36.

39 ADWC TAO, ADWC REQUEST WE COVER TRACK 7036
40 TAO COVER 36
41 IDS COVER 36 AYE
42 CO COVER 20 AS WELL

The TAO follows up on track 36 by ordering it covered with
weapons (lines 39–41). Then, the CO returns the team's attention to
track 20, which the TAO has still failed to address: “Cover 20 as well”
(line 42).

These excerpts show that the commanders on this team responded

to the tactical situation by passing information about tracks and taking
appropriate actions toward them. Moreover, commanders made sure
that important information was not lost. When it appeared that a po-
tentially threatening track had been neglected, as we saw in line 34, it
was the CO who made sure that team remained aware of the track.

This example illustrates two key elements of team performance in
the experimental condition. First, as in the control condition, the ac-
tivities of ADW teams in the experimental condition are highly inter-
active. However, the nature of the interactions was different because
the commanders in this condition were trained in effective commu-
nication and had access to information that they did not need to acquire
verbally or hold in their memory. While commanders still responded to
other members of the team, there was less need to clarify commu-
nications, and thus more opportunities to contribute to the team's un-
derstanding of the tactical situation.

Second, commanders in the experimental condition not only con-
tributed to their teams' understanding of the emerging tactical situation
by passing information about tracks; they also responded to these si-
tuations in a timely manner with appropriate decisions and actions.
Commanders in the experimental condition were thus better able to
manage complex situations, ensuring that potentially hostile tracks
were not lost from the tactical picture. The decision support system and
training allowed commanders to focus less on understanding the tactical
situation and more on contributing to and acting on that situation.

4.2. Quantitative results

The qualitative results above suggest that the problem solving ac-
tivities of ADW teams are highly interactive. In this context, individuals
respond to and build upon the contributions of others as they pass in-
formation, make decisions, and take actions. In such a context, it is
impossible to understand or assess any one contribution without un-
derstanding who and what it is responding to.

These results also suggest that commanders in the control and ex-
perimental conditions contributed to their teams in different ways.
Those in the control condition often needed to clarify the tactical si-
tuation by asking questions. Consequently, they were less able to take
appropriate actions toward tracks. Commanders in the experimental
condition were able to focus less on understanding the tactical situation
and more on contributing to and acting on that situation.

While qualitative methods are well suited to providing a thick de-
scription of a small number of cases, our goal here is to determine
whether and how the differences we found constitute a pattern that
generalizes within the larger set of data we have available. In the next
sections, we report and compare the results of three quantitative ap-
proaches designed to capture the qualitative differences shown in the
examples above.

4.2.1. Code comparisons
Our first approach to capturing the differences in commander con-

tributions between the two conditions was to count the contributions of
each individual—that is, count their coded talk—and compare those
counts. We compared the distributions of the counts for each code using
two-sample Mann-Whitney U tests. Count distributions for the codes
related to understanding the tactical situation are represented as box
plots in Fig. 1.

The Mann-Whitney U tests showed a significant difference between
the control condition (Mdn=34.0, N= 13) and the experimental
condition (Mdn=18.5, N=16) for Seeking Information (U=16.5,
p=0.00002, d=2.0, power=0.99). We found no significant differ-
ences for Track Behavior, Detect/Identify, Assessment/Prioritization, or
Status Updates (Table 3). These results suggest that commanders in the
control condition sought more information than those in the experi-
mental condition.

We also compared the count distributions between the two condi-
tions for the codes related to tactical decisions (Fig. 2).
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Mann-Whitney U tests showed no significant differences between
conditions for Defensive Orders, Deterrent Orders, and
Recommendation (Table 4). These results suggest that commanders in
the two conditions did not differ in terms of decisions or actions they
took toward tracks.

These results are unsurprising given the experimental design. If the
decision support system was an effective means of providing com-
manders with information about the tactical situation, we would expect
commanders in the experimental condition to seek less information
overall.

In the qualitative examples, commanders in the control condition
did indeed seek information. However, this seeking was in relation to
information about the tactical situation, that is, tracking behavior,
identification, and assessment. Moreover, we saw that the commanders
in the experimental condition made decisions and took action in rela-
tion to changes in the tactical situation, and at times, inserted new
information about tracks into the team's common ground of shared
information. In this code-counting model, however, there are no sig-
nificant differences in commander behavior between conditions in
terms of tactical decisions or contributions to the tactical situation, only
differences in terms of seeking information.

Thus, while a univariate approach is relatively easy to apply to the
data, it provides a very thin description of how the commanders in the
two conditions contributed differently to their respective teams; we
learn only that some commanders asked more questions than others.

4.2.2. Principal Components Analysis
Only the first three principal components had eigenvalues greater

than 1, meaning that they accounted for more variance in the data than
any original variable. Together, these dimensions account for more
than 78% of the variance.

The loadings for the first three dimensions (Table 5) shows that the
first dimensions (Total Talk) distinguishes individuals in terms of their
overall amount of coded talk: all of the codes loaded in the same di-
rection. The second dimension (Tactical Talk) distinguishes individuals

who were engaged in passing information about tracks—Track Beha-
vior and Detect/Identify loading most negatively—from those who
were recommending action and describing the tactical situation—Re-
commendations and Status Updates loading most positively. Finally, the
third dimension (Command Behavior) distinguishes individuals engaged
in command behavior—Defensive Orders and Assessment/Prioritiza-
tion loading most negatively—from individuals who recommended
action and passed information—Track Behavior, Status Updates, De-
tect/Identify, and Recommendations loading positively.

Fig. 1. Count distributions (box plots) for codes related to understanding the
tactical situation, commanders in control versus experimental conditions.

Table 3
Code count comparisons—understanding the tactical situation.

Code Control (n= 13) Experimental (n= 16) U p Cohen's d Power

Mdn Mdn

Assessment/Prioritization 18.0 6.5 72.5 0.17 0.53 0.27
Detect/Identify 13 12 105.5 0.96 0.02 0.05
Seeking Information 34.0 8.5 16.5 0.00002∗ 2.0 0.99
Status Update 2 3 121.5 0.45 0.29 0.11
Track Behavior 17.0 16.5 102.5 0.96 0.02 0.05

Note. Results for two-sample Mann-Whitney U tests between commanders in the control and experimental conditions for codes related to understanding the tactical
situation. ∗p < 0.05.

Fig. 2. Count distributions (box plots) for codes related to tactical decisions,
commanders in control versus experimental conditions.

Table 4
Code count comparisons—tactical decisions.

Code Control
(n= 13)

Experimental
(n= 16)

U p Cohen's d Power

Mdn Mdn

Defensive Orders 7.0 5.5 99.5 0.85 0.07 0.05
Deterrent Orders 15.0 18.5 116.5 0.60 0.21 0.08
Recommendation 2.0 2.5 109.5 0.82 0.09 0.06

Note. Results for Mann-Whitney U tests between commanders in the control and
experimental conditions for codes related to tactical decisions. No significant
results found at the p < 0.05 level.

Table 5
Principal component loadings.

Code Total Talk
(PC1)

Tactical Talk
(PC2)

Command Behavior
(PC3)

Seeking Information −0.753 0.107 −0.207
Track Behavior −0.491 −0.588 0.557
Status Update −0.241 0.533 0.674
Assessment/Prioritization −0.858 −0.089 −0.228
Deterrent Orders −0.861 0.122 −0.079
Detect/Identify −0.166 −0.843 0.415
Recommendation −0.329 0.580 0.566
Defensive Orders −0.810 −0.001 −0.336
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We also tested whether rotating the principal components and al-
lowing them to correlate would yield a solution that was easier to in-
terpret by (a) rotating the original PCA solution, and (b) using an ex-
ploratory factor analysis to extract and rotate three factors—the
number suggested by the original PCA. Both approaches produced di-
mensions/factors with low correlations and similar interpretations to
the original principal components. There were no significant differences
between conditions on any of the rotated components/factors in any of
the models. For the sake of brevity, we thus present only the specific
outcomes of the PCA analysis.

Mann-Whitney U tests showed no significant differences between
the PCA score distributions of commanders in the two conditions on any
of the three dimensions (Fig. 3 and Table 6). These results suggest that
commanders in the two conditions did not differ in their total talk,
tactical talk, or command behavior as measured by PCA.

While PCA simultaneously accounts for multiple variables, we were
not able to find meaningful differences between the contributions of
commanders in the two conditions using this approach. Thus, a multi-
variate coding and counting approach was not sufficient for modeling
the differences between commanders in the two conditions that we
found qualitatively.

4.2.3. Epistemic Network Analysis
The first seven dimensions in the ENA model accounted for more

variance in the data than any original variable. However, for the sake of
clarity of interpretation, we only report results in terms of the first two
dimensions, which account for more than 43% of the variance.

The network node locations (see Table 7) show that the first di-
mension (Seeking Information/Tactical Decision Making) distinguishes
individuals in terms of the extent to which they connected Seeking
Information versus tactical decisions with other relevant aspects of the

discourse, that is, the other codes: Seeking Information is located on the
negative side of the space, while Recommendations, Deterrent Orders,
and Defensive Orders are located on the positive side. The second di-
mension (Tactical Information/Action) distinguishes individuals in terms
of the extent to which they connect basic track information versus ac-
tions with other relevant aspects of the discourse: Track Behavior and
Detect/Identify are located on the negative side of the space, while all
of the other nodes are located on the positive side.

These interpretations mean that the projected points for comman-
ders with relatively more connections to Seeking Information will be
located toward the left-hand side of the space while those with rela-
tively more connections to the tactical decision making codes will be
located toward the right-hand side of the space. Similarly, the projected
points for commanders with relatively more connections to Track
Behavior and Detect/Identify will be located toward the bottom of the
space, while those with relatively more connections among the other
codes will be located toward the top of the space. Fig. 4 below shows
the distribution of commanders in this space.

On the left-hand side of the space, we see almost exclusively pro-
jected points (circles) for commanders from the control condition
(blue). On the right-hand side are only points from the commanders in
the experimental condition (red). The mean location of commanders in
the space are indicated by squares in the figure. The boxes around these
squares are 95% confidence intervals around the means. We can also
see that in the ENA model the TAOs from the two qualitative examples
above are both representative of the commanders in their respective
conditions (being close to the mean for each group), and also very
distinct from one another, as the qualitative results showed. Finally, we
see that one commander from the experimental condition, the red point
farthest to the left, is an outlier: That commander's point is closer to the
mean for the control condition than the mean for the experimental

Fig. 3. PCA score distributions (box plots) for commanders by condition.

Table 6
PCA score comparisons.

Dimension Control
(n= 13)

Experimental
(n=16)

U p Cohen's d Power

Mdn Mdn

Total Talk (PC1) −1.99 −0.50 129 0.29 0.42 0.18
Tactical Talk

(PC2)
0.42 0.25 99 0.85 0.082 0.05

Command
Behavior
(PC3)

−1.35 −0.58 135 0.18 0.52 0.26

Note. Results for Mann-Whitney U tests between commanders in the control and
experimental conditions on the three PCA dimensions. No significant results
were found at the p < 0.05 level.

Table 7
ENA network node positions.

Code ENA1 ENA2

Seeking Information −2.28919 0.963926
Assessment/Prioritization −0.11787 0.57612
Defensive Orders 0.202934 0.591342
Detect/Identify 0.425875 −1.55452
Recommendation 0.443784 1.006938
Track Behavior 0.457889 −0.86826
Status Update 1.042839 1.23255
Deterrent Orders 1.215247 1.331691

Fig. 4. ENA means and projected points for commanders in the control (blue,
left) and experimental (red, right) conditions. Boxes are 95% confidence in-
tervals on the first and second dimensions. The point in purple corresponds to
the control condition TAO in the qualitative results described above. The point
in yellow corresponds to the experimental condition TAO described above. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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condition on the first dimension.
The mean positions of commanders from the control and experi-

mental conditions suggest that the two groups are different with respect
to their positions on the first dimension, but not with respect to the
second. To test whether these differences were statistically significant,
we conducted a two-sample Mann-Whitney U test between distributions
of the projected points in ENA space for commanders in the two con-
ditions. We found a significant difference between the control
(Mdn=−0.21, N=13) and experimental (Mdn=0.25, N=16) point
distributions on the first dimension (U=206, p < 0.01, d=2.98,
power= 1.00). We found no significant difference between the control
(Mdn=0.25, N=13) and experimental (Mdn=0.19, N=0.16) point
distributions on the second dimension (U=106, p=0.95, d= 0.03,
power= 0.05). These results suggest that commanders in the control
condition made stronger connections to Seeking Information, while
commanders in the experimental condition made stronger connections
to codes related to tactical decision making.

To better understand these differences, we examined the mean
networks for the commanders in both conditions.

The mean network for commanders in the control condition (blue,
left, Fig. 5) shows that their strongest connections were from Seeking
Information (indicated by thicker, more saturated lines) to Track Be-
havior and Detect/Identify, and less frequently to Assessment/Prior-
itization. In other words, the network graph shows the specific kinds of
information that these commanders are seeking: consistent with the
qualitative findings above, commanders in the control condition needed
to seek information about tracks in order to understand the tactical si-
tuation.

The mean network for commanders in the experimental condition
(red, right, Fig. 5), on the other hand, shows that their strongest con-
nections were between Track Behavior and Detect/Identify: indicating,
as we saw in the qualitative findings above, that they were contributing
information about the tactical situation. Moreover, their strongest
connections include connections among Deterrent Orders, Track Be-
havior, and Detect/Identify. In other words, the network graph shows
that these commanders were making connections among three critical
elements of the detect-to-engage sequence: consistent with the quali-
tative findings above, they were using information about the tactical
situation to guide tactical decisions and actions.

To highlight the differences between commanders in the two con-
ditions, we computed the difference between the mean networks for
each condition. The resulting network is plotted in Fig. 6 below.

This mean network difference graph shows again that commanders
in the control condition were seeking information about the tactical si-
tuation, and were doing so more than commanders in the experimental
condition. It also shows that commanders in the experimental condition
were contributing information about tracks and linking information about
the tactical situation to tactical actions. And, that they were doing so more
than commanders in the control condition.

Thus, the ENA network graphs provide both: (a) a visual

representation of the key findings of the qualitative analysis above, and
(b) a way to demonstrate that the key findings of the qualitative ana-
lysis are statistically significant between the two groups.

Moreover—and critically important for modeling the contributions
of individuals in the context of the work of the team as a whole, we can
also use ENA to examine the network graphs of individual commanders.
For example, Fig. 7 below shows the network difference graph for the
TAO in the control condition and the TAO in the experimental condi-
tion described in the qualitative analysis above.

This difference graph is quite similar to the difference graph for the
mean networks of the two conditions. This suggests that, indeed, the
differences observed in the qualitative analysis are a good representa-
tion of the overall condition differences.

Finally, ENA can identify individuals who are outliers in a group.
Consider the network graph for one TAO from the experimental con-
dition (the red point farthest to the left in Fig. 4 above) subtracted from
the mean network for commanders in the experimental condition (See
Fig. 8).

Here we can see that the performance of this TAO was more like the
commanders in the control condition than the average commander in
the experimental condition: This TAO makes stronger connections than
average in the experimental condition to Seeking Information, and
weaker connections than average between tactical information and
tactical decisions and actions.

Altogether, these results suggest that ENA was able to model the
individual contributions of commanders in the two conditions such that
the models (a) aligned with the original qualitative analysis, (b) showed
statistical differences between the two groups for findings from the
original qualitative analysis, and (c) were able to distinguish differences

Fig. 5. Mean ENA networks for commanders in the control (blue, left) and
experimental (red, right) conditions. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 6. ENA difference graph for commanders in the control (blue) and ex-
perimental (red) conditions.

Fig. 7. ENA difference graph for the TAO in the control condition (purple, left)
versus the TAO in the experimental condition (yellow, right) described in the
qualitative results above. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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in individual performance.

5. Discussion

In this paper, we compared a qualitative analysis of CPS with three
quantitative analyses: two using coding and counting and one using
ENA. Our data was collected from ADW teams participating in simu-
lated peacekeeping scenarios. Their CPS processes involved working
together to detect, assess, and act on potential hostile vessels. While
commanders on teams from the experimental condition were given
teamwork training and access to a system designed to support their
tactical decision making and reduce their cognitive load, commanders
on teams from the control condition had access to standard ADW
training and systems.

A qualitative analysis illustrated that the CPS processes of ADW
commanders were highly interactive, interdependent, and temporal.
However, this analysis also revealed the commanders in the two con-
ditions reacted differently to the evolving tactical situations.
Commanders in the control condition needed to seek information about
potentially hostile aircraft to understand the tactical situation; com-
manders in the experimental condition were able to contribute in-
formation about the tactical situation for the team and use information
about the tactical situation to guide tactical decisions and actions.
These results suggested that the system used by commanders in the
experimental condition successfully supported their decision making by
providing them with important information about the evolving tactical
situation, and that their training affected their interactions with the rest
of the team.

Despite these rich qualitative findings, quantitative analysis based
on coding and counting the different kinds of talk in the two conditions
found only one statistically significant result: Commanders in the con-
trol condition sought more information than commanders in the ex-
perimental condition. In other words, a coding and counting approach
did not model the nuanced differences revealed through qualitative
analysis.

A PCA analysis, which accounted for the combinations of codes that
individuals contributed, did not find any statistically significant dif-
ferences between commanders in the two conditions. Thus, neither a
univariate nor a multivariate coding and counting approach were able
to model the differences we found qualitatively. An ENA analysis, on
the other hand, was able to model the individual contributions of
commanders in the two conditions such that the models (a) aligned
with the original qualitative analysis, (b) showed statistical differences
between the two groups for findings from the original qualitative
analysis, and (c) were able to distinguish differences in individual
performance.

Specifically, ENA was able to find a statistically significant differ-
ence between commanders in terms of the kinds of tactical information
they sought to clarify. Moreover, the ENA analysis found that com-
manders in the experimental condition made statistically significantly
more connections between different kinds of tactical information and
between tactical information and tactical actions, compared to com-
manders in the control condition.

These findings from ENA are consistent with prior work by Morrison
et al. (1996) who used a coding and counting approach to analyze
communication data collected from a similar context. They found that
ADW teams whose commanders had access to the decision support
system (a) talked statistically significantly less about track information
overall, (b) showed no difference in overall amount of actions ordered,
(c) showed no difference in the overall amount of clarifications and (d)
clarified less information about track behavior and identity in parti-
cular (not reported as statistically significant).

There are, however, some important differences between this pre-
vious work and the ENA analysis presented here. First, this previous
work examined the effect of the decision support system on CPS pro-
cesses at the team level. ENA was able to test claims about commanders
at the individual level. An ENA analysis was able to model the unique
contributions of commanders distinct from, but taking into account the
actions of, the other members of the team. In addition, it was able to
find statistically significant differences between commanders in the two
conditions that corroborated qualitative findings, and identify the
performance patterns of individual commanders and compare them.

The differences between results from coding and counting and re-
sults from ENA analysis can be explained by the way each method
models team discourse. Univariate coding and counting assumes that
team discourse can be modeled by looking individually at the frequency
with which team members use—or talk about—concepts from the do-
main, without reference to other concepts used by an individual or to
the concepts used by other team members. PCA assumes that team
discourse can be modeled by finding latent constructs in the discourse
that explain how individuals use concepts from the domain. However,
PCA still works without reference to how other team members use
concepts, and – more importantly – without reference to the temporal
relationships between one concept and another in the data.

ENA, on the other hand, assumes that meaning –and therefore both
understanding and action – is constructed through the local relation-
ships among concepts. ENA models these relationships by accounting
for the concepts used by an individual, while taking into account the
concepts other team members are using within the recent temporal
context. Thus, the critical difference between the methods is that the
theory of discourse on which counting and coding is based, and the way
it is operationalized in both univariate and multivariate techniques,
fundamentally ignores interactivity (that a key property of the discourse
is the relationships between actions), interdependency (the actions of one
team member depends on the actions of others) and temporality (there is
a span of activity in which actions depend on one another).

As we saw qualitatively, the individual contributions of comman-
ders were in relation to multiple events. Commanders in the control
condition sought information in relation to talk about track behavior,
identification, and assessment; commanders in the experimental con-
dition made decisions and took action in relation to similar informa-
tion. However, these relationships had a particular structure that our
univariate and PCA approaches ignored. Namely, the contributions of
the commanders were in response to, and thus in some way dependent
on, the recent contributions of the team. And as we saw, those con-
tributions came from several sources: the supporting members of the
team, agents external to the team, and the commanders themselves.
Because ENA modeled connections between the contributions of in-
dividual commanders and the contributions of the rest of the team
within the recent temporal context, the method was able to detect the
qualitative differences we found in the two conditions.

While our results suggest that ENA has important advantages over

Fig. 8. ENA difference graph for the outlier TAO in the experimental condition
(red circle, green network, left) versus the mean network for commanders in the
experimental condition (red square, red network, right). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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coding and counting, our findings have several limitations. First, we
focused on CPS in this study because of its particular importance in
educational and professional settings. There are certainly other socio-
cognitive processes that are also interactive, interdependent, and tem-
poral, and the results we present here might generalize to those set-
tings. However, addressing the full range of socio-cognitive settings that
involve interaction, interdependence, and temporality is beyond the
scope of this paper.

Second, our power analyses suggest that the non-significant differ-
ences we found for coding and counting could be due to under-powered
tests, and that larger sample sizes are needed to strengthen our claims.
In this case, it was not possible to collect and analyze more data given
that the original data collection was completed over 20 years ago by
researchers with different analytic goals. More importantly, however,
investigations of CPS phenomena using small sample sizes are com-
monplace in the field, particularly when qualitative methods are used.
Thus, methods that can detect statistically significant differences with
small samples, such as ENA, are valuable in the context of CPS assess-
ment. In addition, had we had sample sizes large enough to detect
significant differences with coding and counting, our results suggest
that ENA also has an interpretive advantage over univariate and multi-
variate coding and counting approaches. Compared to univariate ap-
proaches, ENA (a) provides a model of CPS that accounts for key
properties of CPS that are not modeled by coding and counting; and (b)
provides a visual representation that summarizes multivariate re-
lationships and eases the interpretation of complex dimensions. Finally,
we note that while more data might allow coding and counting ap-
proaches to find statistical differences, the additional data could also
provide further interpretive power to ENA. Thus, future work should
include testing the generalizability of our claims using data with larger
sample sizes.

Third, the goal of our study was to compare methods of measuring
CPS processes, not to find novel differences between ADW commanders
who participated in the experiment described above. Other studies have
investigated the effect of training and the decision support system on
team communication and team performance in some detail. Our study
builds on this prior work by focusing on the communications and per-
formance of individuals in the context of their teams, applying methods
new to this data—namely, PCA, ENA, and a qualitative analysis—and
by finding statistically significant results where others have not. In the
context of CPS, however, the finding we want to emphasize is that our
results suggest that ENA is a both a more valid and more effective ap-
proach to measuring CPS processes compared to coding and counting.
That having been said, given the emphasis placed on assessment in
ADW, the novel methods we have applied to this data, and significant
results that build upon prior work with this data, we argue that our
findings will also be of interest to the ADW community.

Fourth, while the supporting members of the team were included in
our analyses, we only reported findings for individuals in the command
roles. Our future work will explore how the teamwork training and
presence of the decision support system for commanders affected the
CPS processes of other ADW team members.

Fifth, as our qualitative analysis suggests, specific sequences of team
interaction may be important. For example, it is often appropriate for
warnings to come before defensive actions. The ENA model we used
was sensitive to the order of team interactions because it modeled in-
teractions within a given recent temporal context; however, it did not
explicitly represent that ordering in the network models. Thus, im-
portant future work will be to investigate the additional value of ap-
plications of ENA that do represent order, as well as approaches such as
Lag Sequential Analysis or Sequential Pattern Mining, which explicitly
model sequences of action.

Finally, our results are of course limited to the particular air defense
warfare teams examined in this study.

6. Conclusion

Our findings suggest several implications for CPS assessments.
While coding and counting methods can be useful and easy to apply,
they are limited when used as a sole method of assessment. Because
these methods ignore critical features of CPS, they can lead to missed
findings, missed opportunities for feedback, or invalid inferences about
CPS performance.

Moreover, our results suggest that ENA can model the contributions
of individuals to CPS while taking into account the recent contributions
of other team members. The network models produced by ENA can also
show the particular kinds of contributions individuals make and how
they are related to the contributions of others. This means that ENA
models could be used to give targeted and actionable feedback on in-
dividual performance during CPS activities. If automated codes are used
in the ENA analysis (as they were here), these models could be in-
tegrated into real-time assessments that classify individuals based on
their CPS performance.

Together, these results suggest that ENA is a powerful tool for CPS
assessment, and that coding and counting approaches are limited in
their ability to model important aspects of CPS in a team setting.
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