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Abstract: Many researchers have argued that models of collaborative processes should account for 
temporality, but there exist different approaches for doing so. We compared two specific approaches to 
modeling collaborative processes in a CSCL context: Epistemic Network Analysis, which models events 
cotemporally (unordered and temporally proximate), and Sequential Pattern Mining, which models 
events sequentially (ordered and temporally proximate). Our results suggest that in this context 
cotemporal models constructed with Epistemic Network Analysis outperform sequential models 
constructed with Sequential Pattern Mining in terms of (a) explanatory power, (b) efficiency, and (c) 
interpretability.  

Introduction 
A central claim of computer-supported collaborative learning (CSCL) research is that collaborative processes 
influence group performance, and studies have shown that these processes have an important temporal dimension 
(Reimann, 2009). Researchers thus argue that models of collaborative processes should account for temporality 
(McGrath & Tschan, 2004), but there exist different approaches for doing so. Sequential models, which identify 
ordered patterns, can be used to investigate whether specific sequences of temporally proximate discourse moves, 
such as talk or actions, explain variation in group outcomes (Kapur, 2011). Cotemporal models, which identify 
unordered but temporally proximate patterns, can be used to investigate whether discourse moves that co-occur 
within some period of time explain variation in group outcomes (Siebert-Evenstone et al., 2017). 

Prior work has shown that both cotemporal models (Csanadi, Eagan, Shaffer, Kollar, & Fischer, 2019) 
and sequential models (Kapur, 2011) have advantages over atemporal models such as coding and counting; 
however, no empirical comparisons have been made between cotemporal models and sequential models in 
collaborative contexts. Thus, it is unclear whether accounting for temporal proximity, versus both temporal 
proximity and sequence, is a more effective approach for modeling collaborative processes. Such a comparison 
will help inform researchers about the conditions under which one class of models outperforms another, 
potentially impacting assessments of complex thinking and performance. But more importantly, comparing 
techniques that model temporality in terms of local sequence versus local cotemporality can provide insight in to 
the nature of temporality itself in CSCL contexts. 

In this paper, we present an initial attempt to address this issue by comparing two specific modeling 
approaches: Epistemic Network Analysis (Shaffer, Collier, & Ruis, 2016), which models events cotemporally, 
and Sequential Pattern Mining (Srikant & Agrawal, 1996), which models events sequentially. We use both models 
to analyze data collected from air defense warfare (ADW) teams participating in computer-simulated training 
scenarios. We compare the efficacy of these models at finding differences in group performance in terms of (a) 
explanatory power, (b) efficiency, and (c) interpretability.  

Theory 
Researchers in CSCL argue that collaboration has an important temporal dimension. For example, Kozlowski & 
Illgen (2006) argue that repeated interactions between individuals create behavioral, cognitive, or motivational 
states that influence future interactions. Similarly, Clark (1996) argues that as collaborative activities unfold in 
time, information is added to the common ground, the set of shared knowledge and experiences that exist between 
people when they interact, which in turn influences subsequent actions and interpretations (Dillenbourg, 1999). 

Models of collaboration that do not account for temporality thus omit crucial information, limiting their 
validity (Kapur, 2011). One prevalent response to this critique has been to focus on sequences of discourse moves. 
Sequence is potentially important because, as Reimann (2009) argues, “human learning is inherently cumulative, 
[and] the sequence in which experiences are encountered affects how one learns and what one learns.” Moreover, 
in some collaborative settings, discourse moves should be carried out in a particular order. For example, Hutchins’ 
(1995) study of quartermasters in the U.S. Navy showed that navigation teams needed to follow a particular 
sequence of actions in order to accurately track the position of their ship. Sequential models, such as Sequential 



Pattern Mining (SPM), have been used to identify sequences of discourse moves that groups make during 
collaborative processes in a variety of contexts (Perera et al., 2009).  

There is, however, another aspect of the temporality of collaborative processes: temporal proximity. 
Events at any point in time are influenced by prior actions. However, the influence of prior activity does not 
always span the entire history of group interaction. Halpin and von Davier (2017) argue that the actions of one 
part of a group make actions by other parts more or less likely in the near future. For example, when one group 
member asks a question, others are likely to respond soon after. Suthers & Desiato (2012) argue that actions and 
interactions are interpreted with respect to the recent temporal context, or the immediately preceding events. 
Discourse moves within the recent temporal context may influence one another, directly reference one another, 
or build upon one another. Thus, while collaborative processes are composed of complex interactions among 
individuals, the most relevant interactions are bounded by temporal proximity.  

Many SPM algorithms allow researchers to account for recent temporal context using sliding windows. 
Such algorithms add the constraint that the identified sequences must occur within a given window of events. 
However, an alternative approach is to model temporality based on co-occurrence rather than sequence, which 
focuses on temporal proximity irrespective of order. 

In cotemporal models, two discourse moves are meaningfully connected if they co-occur within the same 
recent temporal context (Shaffer, 2017). For example, Epistemic Network Analysis (ENA) can be used to identify 
the connections groups make during collaboration (Shaffer et al., 2016). ENA identifies these connections by 
measuring how often particular discourse moves co-occur within the recent temporal context, operationalized as 
a sliding window that moves through each event—for example, problem step or turn of talk—in the data. ENA 
represents connections between discourse moves using undirected network models, meaning that connections 
between moves A and B in the network could mean that A followed B or that B followed A.  In this way, ENA is 
sensitive to the order of events in the data—changing the order of events changes which events are present in a 
given window, and thus changes the results of the model—but the order in which discourse moves occur within 
any window is not represented in the model. ENA has been used to study CSCL and collaborative problem solving 
processes in many domains (e.g., Arastoopour, Shaffer, Swiecki, Ruis, & Chesler, 2016; Sullivan et al., 2018). 

While it may seem counterintuitive to ignore the local order of discourse moves—after all, we perceive 
human actions as unfolding linearly in time—there are clearly contexts in which the specific order of these moves 
is less important than their cotemporality. For example, in complex and ill-formed problem solving, groups might 
consider issues A, B, and C at one point in the problem solving process; however, it may make little difference 
whether in that brief span of time they talk about A then B then C, or C then B then A—or any of the possible 
orderings of those issues. This approach has potential advantages over sequence models. For example, the results 
of SPM are lists of ordered patterns. A typical analysis identifies frequent patterns using SPM, then clusters those 
patterns using similarity metrics. Finally, researchers interpret these clusters in terms of the patterns within them 
(Jovanović, Gašević, Dawson, Pardo, & Mirriahi, 2017). In contrast, ENA produces network models for each unit 
of analysis, and provides an integrated visualization that helps to interpret the dimensions along which groups of 
networks differ. Because visualizations can reduce cognitive load in making inferences (Norman, 1993), 
cotemporal models with integrated visualizations may have interpretive advantages. Moreover, the number of 
possible permutations of discourse moves rises far more rapidly than their possible pairwise combinations as the 
number of significant types of moves increases. So in a case where specific ordering is not relevant, sequential 
models, which distribute sample variance across many variables, may have less explanatory power and may be 
overfit unless the analyzed dataset is large.  

In this paper, we present an attempt to compare cotemporal and sequential approaches to modeling 
collaboration: ENA, which models events cotemporally, and SPM, which models events sequentially. We use 
both models to analyze data collected from air defense warfare teams (ADW) as they participated in computer-
simulated training scenarios. In these scenarios, ADW teams detect, identify, assess, and take action toward 
nearby radar contacts. In theory, this process should follow a specific sequence for each contact; however, the 
demands of the task may lead to deviations from the sequence. Thus, the collaborative problem is neither so well-
formed that only specific sequences are of interest nor so ill-formed that sequences are likely to be of little interest. 
We use this data to compare two hierarchical linear models—one using predictors derived from ENA and one 
using predictors derived from SPM—to assess whether ENA or SPM provides a more effective model of group 
performance in terms of (a) explanatory power, (b) efficiency, and (c) interpretability.  

Methods 
As part of the Tactical Decision Making Under Stress project, 16 teams composed of six members each 
participated in four simulated training scenarios to test the impact of a decision-support system on team 
performance (Johnston, Poirier, & Smith-Jentsch, 1998). During the scenarios, teams performed the detect-to-



engage sequence. A watch-station provided basic information about identification and behavior of ships and 
aircraft in the vicinity (referred to as tracks). Teams needed to detect and identify multiple tracks, often 
simultaneously, assess whether they were threats, and decide how to respond, although the full sequence of actions 
did not apply to every track. (For example, non-hostile tracks did not require a response.) Teams in the control 
condition (n = 8) had access to standard watch-stations. Teams in the experimental condition (n = 8) had access 
to watch-stations enhanced with information about the tactical situation. Each team participated in the same four 
30-minute scenarios; scenario order was counterbalanced using a Latin square.  

We analyzed two data sources for each team-scenario (that is, each team in each scenario): (1) a transcript 
of team communications and (2) a teamwork behavior score. Transcripts were segmented into 12,027 turns of 
talk. Teamwork behavior was assessed in a prior study using the Air Defense Warfare Team Observation Measure 
(ATOM) (Johnston, Smith-Jentsch, & Cannon-Bowers, 1997), which summarizes four dimensions of teamwork 
performance—supporting behavior, leadership, information exchange, and communication—into an overall score 
from 1 (worst) to 55 (best).  

Coding 
We analyzed the transcripts using the codes in Table 1, which were developed using a grounded analysis informed 
by both the existing ADW literature (e.g., Paris et al., 2000) and prior qualitative analyses conducted on similar 
data (e.g., Morrison et al., 1996). To code the data, we developed automated classifiers for each of the codes in 
Table 1 using the ncodeR package for the statistical programming language R (Marquart, Swiecki, Eagan, & 
Shaffer, 2018). We assessed concept validity by requiring that two human raters achieve acceptable values of 
Cohen’s kappa (κ > 0.65) with statistically significant values of Shaffer’s rho (ρ < 0.05), and we assessed 
reliability by requiring that both human raters independently achieve acceptable values of kappa and rho compared 
to the automated classifier (1). For each code, all pairwise combinations of raters (humans and automated 
classifier) achieved κ > 0.80 and ρ(0.65) < 0.05. 
 
Table 1: Qualitative codes, definitions, and examples 
 

Code Definition  Example 

Detection 
Talk about radar detection of a track 
or the identification of a track, (e.g., 
vessel type). 

IR/EW NEW BEARING, BEARING 
078 APQ120 CORRELATES TRACK 
7036 POSSIBLE F-4 

Track Behavior Talk about kinematic data about a 
track or a track’s location 

AIR/IDS TRACK NUMBER 7021 
DROP IN ALTITUDE TO 18 
THOUSAND FEET 

Assessment 

Talk about whether a track is 
friendly or hostile, the threat level of 
a track, or indicating tracks of 
interest 

TRACKS OF INTEREST 7013 
LEVEL 5 7037 LEVEL 5 7007 
LEVEL 4 TRACK 7020 LEVEL 5 
AND 7036 LEVEL 5. 

Status Updates 
Talk about procedural information, 
e.g., track responses, or talk about 
tactical actions taken by the team 

TAO ID, STILL NO RESPONSE 
FROM TRACK 37, POSSIBLE 
PUMA HELO. 

Seeking Information Asking questions regarding track 
behavior, identification, or status.  

TAO CO, WE'VE UPGRADED 
THEM TO LEVEL 7 RIGHT? 

Recommendation Recommending or requesting 
tactical actions 

AIR/TIC RECOMMEND LEVEL 
THREE ON TRACK 7016 7022 

Deterrent Orders Giving orders meant to warn or 
deter tracks.  

TIC AIR, CONDUCT LEVEL 2 
WARNING  ON 7037 

Defensive Orders Giving orders to prepare defenses or 
engage hostile tracks TAO/CO COVER 7016 WITH BIRDS 

Epistemic Network Analysis 
To conduct a cotemporal analysis, we used the rENA package for the statistical programming language R 
(Marquart, Swiecki, Collier, et al., 2018). ENA uses a sliding window to construct a network model for each turn 
of talk in the data. Connections in the network are defined as the co-occurrence between codes in the current turn 
of talk and codes within the recent temporal context, which we defined as each line plus the four previous lines 
based on our qualitative analysis of the data (a window size of 5 turns of talk). The resulting networks are 



aggregated for all turns of talk for each unit of analysis (team-scenario), such that each team-scenario is 
represented by a vector whose elements are the number of co-occurrences between each pair of codes for that 
team-scenario. ENA normalizes the matrix of co-occurrence vectors to account for variation in the amount of talk 
between teams and performs a dimensional reduction on the matrix via singular value decomposition. 

Networks were visualized using two coordinated representations: (1) an ENA score, which represents the 
location of a team-scenario’s network in the space (or ENA space) created by the dimensional reduction, and (2) 
a weighted network graph in which the nodes correspond to codes, and the edges are proportional to the relative 
frequency of connection between two codes. The positions of the network graph nodes are fixed across networks, 
and those positions are determined by an optimization algorithm that minimizes the difference between the ENA 
scores and their corresponding network centroids. Thus, ENA scores toward the extremes of a dimension have 
network graphs with strong connections between nodes located on the extremes. As a result, dimensions in this 
ENA space distinguish team-scenarios in terms of cotemporality between codes whose nodes are located at the 
extremes.  

Sequential Pattern Mining 
To conduct a sequential analysis, we used the TraMineR package for the statistical programming language R 
(Gabadinho, Ritschard, Müller, & Studer, 2011). SPM identifies frequent patterns using a support threshold, 
where the support for a given pattern is the percentage of sequences that contain at least one instance of the pattern. 
We defined a sequence as the ordered list of codes across all turns of talk for a given team-scenario. In our data, 
codes can co-occur within a single turn of talk, so the SPM algorithm treats these codes as occurring 
simultaneously by defining event sequences which may contain patterns of un-ordered as well as ordered events 
(Ritschard, Bürgin, & Studer, 2013). We used a support threshold of 0.75 to limit the total number of patterns 
returned by the algorithm, which eases interpretation, and a window size of five turns of talk to match our ENA 
model (2). To interpret the SPM results, we counted the frequency of each high-support pattern for each team-
scenario and applied Principal Components Analysis (PCA) to this data, resulting in a PCA score for each team-
scenario—that is, the position of each team-scenario on the PCA dimensions (3). To interpret the PCA results, we 
used the dimension loadings, which show how much each variable—in this case, each frequent pattern—
contributes to each dimension.  

Model Comparison 
We compared cotemporal and sequential models by constructing two Hierarchical Linear Models (HLMs). HLM 
is a regression technique for data with a nested-structure: in this case, team-scenarios (level-one) were nested into 
teams (level-two). In both HLMs, teams were random effects, the team-scenario ATOM score was the outcome 
variable at level-one, and Scenario was a control variable at level-two. For the cotemporal HLM (CT-HLM), ENA 
scores were explanatory variables at level-one. For the sequential HLM (S-HLM), PCA scores were explanatory 
variables at level-one.  

We assessed model fit using two estimates of the total variance explained for HLMs: one from Snijders 
and Bosker (2012, TVE1) and the other from LaHuis and colleagues (2014, TVE2) (4). We assessed the efficiency 
of the models (model fit adjusted for number of parameters) using the Akaike information criterion corrected for 
small sample sizes. Following Burnham and Anderson (2004), we used a minimum AICc difference of 4 to 
indicate that the models were distinguishable. 

Results 

Epistemic Network Analysis 
The first six ENA dimensions accounted for more variance in the data than any original variable. To reduce the 
chance of overfitting, we only used ENA scores on the first two dimensions in the CT-HLM. These two 
dimensions accounted for the highest proportion of the total variance: 51%. Figure 1 shows the average network 
across all team-scenarios and the ENA scores for each team-scenario in this space.  

On the left side of the space are connections to Defensive Orders, Deterrent Orders, Status Updates, and 
Recommendations, all of which relate to actions taken by teams toward tracks. On the right side of the space are 
connections to Seeking Information. This suggests that the first dimension distinguishes team-scenarios in terms 
of whether they focused on Tactical Actions versus Seeking Information. Toward the top of the space are 
connections to Detection and Track Behavior; toward the bottom are connections to the remaining codes. 
Detection and Track Behavior relate to passing information about tracks, while the remaining codes relate to using 
information about tracks. This suggests that the second dimension distinguishes team-scenarios in terms of 
whether they focused on Track Information versus Track Processing.  



 

 
 

Figure 1. Average ENA network across all team-scenarios and ENA scores for each team-scenario.  

Sequential Pattern Mining 
Our SPM analysis returned 165 patterns. PCA on counts of these patterns returned 23 dimensions that accounted 
for more variance than any original variable. To maintain consistency with the ENA analysis, we only used 
PCA scores on the first three dimensions, which accounted for 53% of the variance. As there are 165 original 
variables, interpretation requires considering 165 loadings for each dimension.  However, it is common to use 
only the loadings with high magnitudes for interpretation. We interpreted each dimension by considering 
commonalities between the ten patterns that loaded at either extreme. To conserve space, we show only the 
three patterns at each extreme for each dimension in Table 2.  
 
Table 2: Patterns with extreme loadings on first three principal components 
 

PC1 PC2 PC3 
Patterns with Extreme Negative Loadings 

(Track Behavior)-(Detection)-
(Track Behavior) 

(Assessment)-(Seeking 
Information) 

(Track Behavior, Assessment)-(Seeking 
Information) 

(Track Behavior)-(Detection, 
Track Behavior) 

(Seeking Information) 
 

(Deterrent Orders) 
 

(Track Behavior)-(Track 
Behavior)-(Detection) 

(Seeking Information)-
(Seeking Information)-(Track 
Behavior) 

(Status Update)-(Assessment) 
 

Patterns with Extreme Positive Loadings 

(Defensive Orders) (Detection, Track Behavior)-
(Deterrent Orders) 

(Seeking Information)-(Detection)-
(Detection, Track Behavior) 

(Status Update)-
(Recommendation) (Detection)-(Deterrent Orders) (Seeking Information)-(Detection)-

(Detection) 
(Status Update)-(Deterrent 
Orders) (Status Update)-(Detection) (Detection)-(Detection) 

 
The extreme negative side of the first dimension includes patterns involving Track Behavior and 

Detection. The extreme positive side includes patterns involving Defensive Orders, Deterrent Orders, Status 
Updates, and Recommendations. This suggests that the first dimension distinguishes team-scenarios in terms of 



whether they focused on Track Information versus Tactical Actions. The extreme negative side of the second 
dimension includes many patterns involving Seeking Information, while the extreme positive side includes 
patterns involving Status Updates or ending with Deterrent Orders. This suggests that the second dimension 
distinguishes team-scenarios in terms of whether they focused on Seeking Information versus Deterring Tracks. 
Finally, the extreme negative side of the third dimension includes many patterns involving Assessment. The 
extreme positive side includes patterns involving Seeking Information, Detection, and Track Behavior. This 
suggests that the third dimension distinguishes team-scenarios in terms of whether they focused on Assessing 
Tracks versus Exchanging Information.  

Model Comparison 
We compared the CT-HLM (ENA scores as explanatory variables) to the S-HLM (PCA scores as explanatory 
variables). Coefficients, standard errors (with corresponding p-values), as well as measures of model fit and 
efficiency for both models are shown in Table 3. 
 
Table 3: Cotemporal HLM and sequential HLM, including parameter estimates and model fit 
 

Model Intercept 
ENA PCA Scenarios Model Fit 

1 2 1 2 3 B C D TVE1 TVE2 AICc 

CT-
HLM 

36.55* 
(1.06) 

–10.1* 
(2.77) 

–0.42 
(3.49)       2.78 

(1.58) 
–2.34 
(1.57) 

2.84 
(1.49) 0.259 0.253 377.19† 

S-
HLM 

36.32* 
(1.11)     0.12 

(0.09) 
0.38* 
(0.18) 

–0.18 
(0.14) 

2.67 
(1.61) 

–1.61 
(1.66) 

3.1 
(1.55) 0.238 0.237 381.72 

( ) indicates standard error; * indicates p < 0.05; † indicates significantly lower AICc score (Δ > 4) 
 

For the CT-HLM (cotemporal), the variance estimates for the random effects were 0.67 at level two and 
16.70 at level one. Of the explanatory variables, only the coefficient for scores on the first ENA dimension (ENA1) 
was significant. The negative coefficient (–10.1) indicates that teams with higher teamwork behavior ratings 
focused more on tactical actions toward tracks than seeking information about tracks.  

For the S-HLM (sequential), the variance estimates for the random effects were 0.06 at level two and 
17.79 at level one. Of the explanatory variables, only the coefficient for scores on the second PCA dimension 
(PC2) was significant. The positive coefficient (0.38) indicates that teams with higher teamwork behavior ratings 
focused more on deterring tracks than seeking information about tracks.  

For both estimates of total variance explained, the CT-HLM performed better. Moreover, the CT-HLM 
had an AICc score 4.53 points lower than the S-HLM. Thus, the two models are distinguishable: the cotemporal 
model performed better than the sequence model in explaining differences in team behavior scores efficiently.   

Discussion 
Our results suggest that cotemporal models of collaborative processes constructed with ENA outperform 
sequential models constructed with SPM on several dimensions. The cotemporal models explained more of the 
difference between team-scenarios, and while differences in total variance explained were small, model selection 
for efficiency via AICc showed that the cotemporal-HLM was distinguishable from, and preferable to, the 
sequential-HLM. A possible explanation is that our ENA model used 28 un-ordered pairs of codes to derive 
predictors for the regression analysis, while our SPM model used 165 frequent patterns. The dimensional 
reduction on the ENA variables needed only two dimensions to account for a large proportion of the total variance 
while SPM needed three dimensions to account for approximately the same proportion of the total variance. Thus, 
the HLM model with ENA predictors was more parsimonious and less likely to overfit the data.  

Our results also suggest that cotemporal models can have interpretive advantages compared to sequence 
models. The ENA algorithm combined connection identification, dimensional reduction, and visualization into 
one technique; once we generated the model it was ready to interpret. SPM, on the other hand, required several 
steps of post processing. More importantly, however, interpretation using ENA is done via integrated 
visualizations—network graphs projected into a low-dimensional space. SPM does not include such 
visualizations. Because visualizations can reduce cognitive load by replacing cognitive calculations with 
perceptual inferences, ENA has an interpretive advantage compared to SPM. 

Together, these results suggest that in CSCL and collaborative problem solving more generally, the 
specific local order of discourse moves may be less important than their local cotemporality. In the context we 
examined, teams were expected to follow a specific sequence of steps regarding each track; however, teams had 



to manage multiple tracks at once and the full sequence of actions did not apply to every track: it mattered more 
that specific discourse moves occurred together than that they occurred in a specific order.  

Our results have several important limitations. First, we examined only one particular context of 
collaboration. However, the general features of this collaborative task, which contained both well-formed and ill-
formed components, suggests that our findings may generalize to similar conditions in CSCL. Our future work 
will continue to investigate cotemporal and sequence models in similar contexts, as well as contexts that are more 
well-formed and more ill-formed. Second, it is possible that dimensional reduction on the SPM results via other 
techniques, such as clustering or factor analysis, could yield sequence models that perform better and are easier 
to interpret. Our results suggest that a two-cluster solution would be required to compete with ENA in terms of 
model efficiency, but each cluster would then need to be interpreted using more than 80 patterns. Allowing more 
clusters could ease interpretation but sacrifice efficiency. Similarly, we could apply a factor analysis to the SPM 
results using a two-factor solution, but it is unclear whether the performance and interpretability of the resulting 
sequence model would improve. Thus, we hypothesize results similar to those reported here. Our future work will 
compare cotemporal models developed using ENA to sequential models developed using clustering or factor 
analysis on SPM results to test this hypothesis.   
 Despite these limitations, our comparisons suggest that in CSCL contexts, cotemporal models can 
outperform sequential models. More importantly however, our results suggest that in some CSCL contexts, local 
order appears to be less important than local cotemporality. These results have implications for research and 
assessment in CSCL—in contexts that share both well-formed and ill-formed features, cotemporal models are a 
potentially more effective means of assessing complex thinking and performance. In turn, these models may better 
inform pedagogy and learning in such contexts. 

Endnotes 
(1) Shaffer’s rho is a Monte Carlo rejective statistic that quantifies Type I error for generalizing from a sample of data coded 

by two raters to the true rate of agreement. 
(2) There are no established guidelines for choosing a support threshold. We tested multiple support thresholds above and 

below 0.75, and the quantitative results of the HLM comparisons were similar in all cases. 
(3) Performing a cluster analysis on the high-support patterns is more commonly used to interpret the results of SPM; 

however, methods are not reliably available for event sequences. One implementation exists (Ritschard et al., 2018), but 
it has not been validated. PCA has a standard method of interpretation and is agnostic to the type of pattern. 

(4) Because these models are non-nested, we were unable to test for significant differences in model fit. 
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