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Abstract: Many researchers have argued that models of collaborative processes should account for
temporality, but there exist different approaches for doing so. We compared two specific approaches to
modeling collaborative processes in a CSCL context: Epistemic Network Analysis, which models events
cotemporally (unordered and temporally proximate), and Sequential Pattern Mining, which models
events sequentially (ordered and temporally proximate). Our results suggest that in this context
cotemporal models constructed with Epistemic Network Analysis outperform sequential models
constructed with Sequential Pattern Mining in terms of (a) explanatory power, (b) efficiency, and (c)
interpretability.

Introduction

A central claim of computer-supported collaborative learning (CSCL) research is that collaborative processes
influence group performance, and studies have shown that these processes have an important temporal dimension
(Reimann, 2009). Researchers thus argue that models of collaborative processes should account for temporality
(McGrath & Tschan, 2004), but there exist different approaches for doing so. Sequential models, which identify
ordered patterns, can be used to investigate whether specific sequences of temporally proximate discourse moves,
such as talk or actions, explain variation in group outcomes (Kapur, 2011). Cotemporal models, which identify
unordered but temporally proximate patterns, can be used to investigate whether discourse moves that co-occur
within some period of time explain variation in group outcomes (Siebert-Evenstone et al., 2017).

Prior work has shown that both cotemporal models (Csanadi, Eagan, Shaffer, Kollar, & Fischer, 2019)
and sequential models (Kapur, 2011) have advantages over atemporal models such as coding and counting;
however, no empirical comparisons have been made between cotemporal models and sequential models in
collaborative contexts. Thus, it is unclear whether accounting for temporal proximity, versus both temporal
proximity and sequence, is a more effective approach for modeling collaborative processes. Such a comparison
will help inform researchers about the conditions under which one class of models outperforms another,
potentially impacting assessments of complex thinking and performance. But more importantly, comparing
techniques that model temporality in terms of local sequence versus local cotemporality can provide insight in to
the nature of temporality itself in CSCL contexts.

In this paper, we present an initial attempt to address this issue by comparing two specific modeling
approaches: Epistemic Network Analysis (Shaffer, Collier, & Ruis, 2016), which models events cotemporally,
and Sequential Pattern Mining (Srikant & Agrawal, 1996), which models events sequentially. We use both models
to analyze data collected from air defense warfare (ADW) teams participating in computer-simulated training
scenarios. We compare the efficacy of these models at finding differences in group performance in terms of (a)
explanatory power, (b) efficiency, and (c) interpretability.

Theory
Researchers in CSCL argue that collaboration has an important temporal dimension. For example, Kozlowski &
Illgen (2006) argue that repeated interactions between individuals create behavioral, cognitive, or motivational
states that influence future interactions. Similarly, Clark (1996) argues that as collaborative activities unfold in
time, information is added to the common ground, the set of shared knowledge and experiences that exist between
people when they interact, which in turn influences subsequent actions and interpretations (Dillenbourg, 1999).
Models of collaboration that do not account for temporality thus omit crucial information, limiting their
validity (Kapur, 2011). One prevalent response to this critique has been to focus on sequences of discourse moves.
Sequence is potentially important because, as Reimann (2009) argues, “human learning is inherently cumulative,
[and] the sequence in which experiences are encountered affects how one learns and what one learns.” Moreover,
in some collaborative settings, discourse moves should be carried out in a particular order. For example, Hutchins’
(1995) study of quartermasters in the U.S. Navy showed that navigation teams needed to follow a particular
sequence of actions in order to accurately track the position of their ship. Sequential models, such as Sequential



Pattern Mining (SPM), have been used to identify sequences of discourse moves that groups make during
collaborative processes in a variety of contexts (Perera et al., 2009).

There is, however, another aspect of the temporality of collaborative processes: temporal proximity.
Events at any point in time are influenced by prior actions. However, the influence of prior activity does not
always span the entire history of group interaction. Halpin and von Davier (2017) argue that the actions of one
part of a group make actions by other parts more or less likely in the near future. For example, when one group
member asks a question, others are likely to respond soon after. Suthers & Desiato (2012) argue that actions and
interactions are interpreted with respect to the recent temporal context, or the immediately preceding events.
Discourse moves within the recent temporal context may influence one another, directly reference one another,
or build upon one another. Thus, while collaborative processes are composed of complex interactions among
individuals, the most relevant interactions are bounded by temporal proximity.

Many SPM algorithms allow researchers to account for recent temporal context using sliding windows.
Such algorithms add the constraint that the identified sequences must occur within a given window of events.
However, an alternative approach is to model temporality based on co-occurrence rather than sequence, which
focuses on temporal proximity irrespective of order.

In cotemporal models, two discourse moves are meaningfully connected if they co-occur within the same
recent temporal context (Shaffer, 2017). For example, Epistemic Network Analysis (ENA) can be used to identify
the connections groups make during collaboration (Shaffer et al., 2016). ENA identifies these connections by
measuring how often particular discourse moves co-occur within the recent temporal context, operationalized as
a sliding window that moves through each event—for example, problem step or turn of talk—in the data. ENA
represents connections between discourse moves using undirected network models, meaning that connections
between moves A and B in the network could mean that A followed B or that B followed A. In this way, ENA is
sensitive to the order of events in the data—changing the order of events changes which events are present in a
given window, and thus changes the results of the model—but the order in which discourse moves occur within
any window is not represented in the model. ENA has been used to study CSCL and collaborative problem solving
processes in many domains (e.g., Arastoopour, Shaffer, Swiecki, Ruis, & Chesler, 2016; Sullivan et al., 2018).

While it may seem counterintuitive to ignore the local order of discourse moves—after all, we perceive
human actions as unfolding linearly in time—there are clearly contexts in which the specific order of these moves
is less important than their cotemporality. For example, in complex and ill-formed problem solving, groups might
consider issues A, B, and C at one point in the problem solving process; however, it may make little difference
whether in that brief span of time they talk about A then B then C, or C then B then A—or any of the possible
orderings of those issues. This approach has potential advantages over sequence models. For example, the results
of SPM are lists of ordered patterns. A typical analysis identifies frequent patterns using SPM, then clusters those
patterns using similarity metrics. Finally, researchers interpret these clusters in terms of the patterns within them
(Jovanovi¢, Gasevi¢, Dawson, Pardo, & Mirriahi, 2017). In contrast, ENA produces network models for each unit
of analysis, and provides an integrated visualization that helps to interpret the dimensions along which groups of
networks differ. Because visualizations can reduce cognitive load in making inferences (Norman, 1993),
cotemporal models with integrated visualizations may have interpretive advantages. Moreover, the number of
possible permutations of discourse moves rises far more rapidly than their possible pairwise combinations as the
number of significant types of moves increases. So in a case where specific ordering is not relevant, sequential
models, which distribute sample variance across many variables, may have less explanatory power and may be
overfit unless the analyzed dataset is large.

In this paper, we present an attempt to compare cotemporal and sequential approaches to modeling
collaboration: ENA, which models events cotemporally, and SPM, which models events sequentially. We use
both models to analyze data collected from air defense warfare teams (ADW) as they participated in computer-
simulated training scenarios. In these scenarios, ADW teams detect, identify, assess, and take action toward
nearby radar contacts. In theory, this process should follow a specific sequence for each contact; however, the
demands of the task may lead to deviations from the sequence. Thus, the collaborative problem is neither so well-
formed that only specific sequences are of interest nor so ill-formed that sequences are likely to be of little interest.
We use this data to compare two hierarchical linear models—one using predictors derived from ENA and one
using predictors derived from SPM—to assess whether ENA or SPM provides a more effective model of group
performance in terms of (a) explanatory power, (b) efficiency, and (c) interpretability.

Methods

As part of the Tactical Decision Making Under Stress project, 16 teams composed of six members each
participated in four simulated training scenarios to test the impact of a decision-support system on team
performance (Johnston, Poirier, & Smith-Jentsch, 1998). During the scenarios, teams performed the defect-to-



engage sequence. A watch-station provided basic information about identification and behavior of ships and
aircraft in the vicinity (referred to as tracks). Teams needed to detect and identify multiple tracks, often
simultaneously, assess whether they were threats, and decide how to respond, although the full sequence of actions
did not apply to every track. (For example, non-hostile tracks did not require a response.) Teams in the control
condition (n = 8) had access to standard watch-stations. Teams in the experimental condition (» = 8) had access
to watch-stations enhanced with information about the tactical situation. Each team participated in the same four
30-minute scenarios; scenario order was counterbalanced using a Latin square.

We analyzed two data sources for each feam-scenario (that is, each team in each scenario): (1) a transcript
of team communications and (2) a teamwork behavior score. Transcripts were segmented into 12,027 turns of
talk. Teamwork behavior was assessed in a prior study using the Air Defense Warfare Team Observation Measure
(ATOM) (Johnston, Smith-Jentsch, & Cannon-Bowers, 1997), which summarizes four dimensions of teamwork
performance—supporting behavior, leadership, information exchange, and communication—into an overall score
from 1 (worst) to 55 (best).

Coding

We analyzed the transcripts using the codes in Table 1, which were developed using a grounded analysis informed
by both the existing ADW literature (e.g., Paris et al., 2000) and prior qualitative analyses conducted on similar
data (e.g., Morrison et al., 1996). To code the data, we developed automated classifiers for each of the codes in
Table 1 using the ncodeR package for the statistical programming language R (Marquart, Swiecki, Eagan, &
Shaffer, 2018). We assessed concept validity by requiring that two human raters achieve acceptable values of
Cohen’s kappa (k> 0.65) with statistically significant values of Shaffer’s rho (p <0.05), and we assessed
reliability by requiring that both human raters independently achieve acceptable values of kappa and rho compared
to the automated classifier (1). For each code, all pairwise combinations of raters (humans and automated
classifier) achieved k > 0.80 and p(0.65) < 0.05.

Table 1: Qualitative codes, definitions, and examples

Code Definition
Talk about radar detection of a track

Example
IR/EW NEW BEARING, BEARING

tactical actions taken by the team

Detection or the identification of a track, (e.g., | 078 APQ120 CORRELATES TRACK

vessel type). 7036 POSSIBLE F-4

. . AIR/IDS TRACK NUMBER 7021
Track Behavior t{:iiiﬁ";;ﬁ‘cfrsnfggng abouta | HROP IN ALTITUDE TO 18
THOUSAND FEET

Talk about whether a track is TRACKS OF INTEREST 7013
Assessment friendly or hostile, the threat level of | LEVEL 5 7037 LEVEL 5 7007

a track, or indicating tracks of LEVEL 4 TRACK 7020 LEVEL 5

interest AND 7036 LEVEL 5.

Talk about procedural information, TAO ID, STILL NO RESPONSE
Status Updates e.g., track responses, or talk about FROM TRACK 37, POSSIBLE

PUMA HELO.

Seeking Information

Asking questions regarding track

TAO CO, WE'VE UPGRADED

behavior, identification, or status. THEM TO LEVEL 7 RIGHT?
Recommendation Recommending or requesting AIR/TIC RECOMMEND LEVEL
tactical actions THREE ON TRACK 7016 7022

Deterrent Orders

Giving orders meant to warn or
deter tracks.

TIC AIR, CONDUCT LEVEL 2
WARNING ON 7037

Defensive Orders

Giving orders to prepare defenses or
engage hostile tracks

TAO/CO COVER 7016 WITH BIRDS

Epistemic Network Analysis

To conduct a cotemporal analysis, we used the rENA package for the statistical programming language R
(Marquart, Swiecki, Collier, et al., 2018). ENA uses a sliding window to construct a network model for each turn
of talk in the data. Connections in the network are defined as the co-occurrence between codes in the current turn
of talk and codes within the recent temporal context, which we defined as each line plus the four previous lines
based on our qualitative analysis of the data (a window size of 5 turns of talk). The resulting networks are



aggregated for all turns of talk for each unit of analysis (team-scenario), such that each team-scenario is
represented by a vector whose elements are the number of co-occurrences between each pair of codes for that
team-scenario. ENA normalizes the matrix of co-occurrence vectors to account for variation in the amount of talk
between teams and performs a dimensional reduction on the matrix via singular value decomposition.

Networks were visualized using two coordinated representations: (1) an ENA score, which represents the
location of a team-scenario’s network in the space (or ENA space) created by the dimensional reduction, and (2)
a weighted network graph in which the nodes correspond to codes, and the edges are proportional to the relative
frequency of connection between two codes. The positions of the network graph nodes are fixed across networks,
and those positions are determined by an optimization algorithm that minimizes the difference between the ENA
scores and their corresponding network centroids. Thus, ENA scores toward the extremes of a dimension have
network graphs with strong connections between nodes located on the extremes. As a result, dimensions in this
ENA space distinguish team-scenarios in terms of cotemporality between codes whose nodes are located at the
extremes.

Sequential Pattern Mining

To conduct a sequential analysis, we used the TraMineR package for the statistical programming language R
(Gabadinho, Ritschard, Miiller, & Studer, 2011). SPM identifies frequent patterns using a support threshold,
where the support for a given pattern is the percentage of sequences that contain at least one instance of the pattern.
We defined a sequence as the ordered list of codes across all turns of talk for a given team-scenario. In our data,
codes can co-occur within a single turn of talk, so the SPM algorithm treats these codes as occurring
simultaneously by defining event sequences which may contain patterns of un-ordered as well as ordered events
(Ritschard, Biirgin, & Studer, 2013). We used a support threshold of 0.75 to limit the total number of patterns
returned by the algorithm, which eases interpretation, and a window size of five turns of talk to match our ENA
model (2). To interpret the SPM results, we counted the frequency of each high-support pattern for each team-
scenario and applied Principal Components Analysis (PCA) to this data, resulting in a PCA score for each team-
scenario—that is, the position of each team-scenario on the PCA dimensions (3). To interpret the PCA results, we
used the dimension loadings, which show how much each variable—in this case, each frequent pattern—
contributes to each dimension.

Model Comparison

We compared cotemporal and sequential models by constructing two Hierarchical Linear Models (HLMs). HLM
is a regression technique for data with a nested-structure: in this case, team-scenarios (level-one) were nested into
teams (level-two). In both HLMs, teams were random effects, the team-scenario ATOM score was the outcome
variable at level-one, and Scenario was a control variable at level-two. For the cotemporal HLM (CT-HLM), ENA
scores were explanatory variables at level-one. For the sequential HLM (S-HLM), PCA scores were explanatory
variables at level-one.

We assessed model fit using two estimates of the total variance explained for HLMs: one from Snijders
and Bosker (2012, TVE1) and the other from LaHuis and colleagues (2014, TVE2) (4). We assessed the efficiency
of the models (model fit adjusted for number of parameters) using the Akaike information criterion corrected for
small sample sizes. Following Burnham and Anderson (2004), we used a minimum AIC, difference of 4 to
indicate that the models were distinguishable.

Results

Epistemic Network Analysis

The first six ENA dimensions accounted for more variance in the data than any original variable. To reduce the
chance of overfitting, we only used ENA scores on the first two dimensions in the CT-HLM. These two
dimensions accounted for the highest proportion of the total variance: 51%. Figure 1 shows the average network
across all team-scenarios and the ENA scores for each team-scenario in this space.

On the left side of the space are connections to Defensive Orders, Deterrent Orders, Status Updates, and
Recommendations, all of which relate to actions taken by teams toward tracks. On the right side of the space are
connections to Seeking Information. This suggests that the first dimension distinguishes team-scenarios in terms
of whether they focused on Tactical Actions versus Seeking Information. Toward the top of the space are
connections to Detection and Track Behavior; toward the bottom are connections to the remaining codes.
Detection and Track Behavior relate to passing information about tracks, while the remaining codes relate to using
information about tracks. This suggests that the second dimension distinguishes team-scenarios in terms of
whether they focused on Track Information versus Track Processing.
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Figure 1. Average ENA network across all team-scenarios and ENA scores for each team-scenario.

Sequential Pattern Mining

Our SPM analysis returned 165 patterns. PCA on counts of these patterns returned 23 dimensions that accounted
for more variance than any original variable. To maintain consistency with the ENA analysis, we only used
PCA scores on the first three dimensions, which accounted for 53% of the variance. As there are 165 original
variables, interpretation requires considering 165 loadings for each dimension. However, it is common to use
only the loadings with high magnitudes for interpretation. We interpreted each dimension by considering
commonalities between the ten patterns that loaded at either extreme. To conserve space, we show only the
three patterns at each extreme for each dimension in Table 2.

Table 2: Patterns with extreme loadings on first three principal components

PCI | PC2 | PC3
Patterns with Extreme Negative Loadings
(Track Behavior)-(Detection)- | (Assessment)-(Seeking (Track Behavior, Assessment)-(Seeking
(Track Behavior) Information) Information)
(Track Behavior)-(Detection, (Seeking Information) (Deterrent Orders)
Track Behavior)

(Seeking Information)-

(Track Behavior)-(Track (Seeking Information)-(Track

Behavior)-(Detection)

(Status Update)-(Assessment)

Behavior)

Patterns with Extreme Positive Loadings
(et O e e
(Saws Updey (DeestionDeterrnt Orders) | (S5EKIe Informtion)(Detecion-
(OSrtgzlrlz)Update)-(Deterrent (Status Update)-(Detection) (Detection)-(Detection)

The extreme negative side of the first dimension includes patterns involving Track Behavior and
Detection. The extreme positive side includes patterns involving Defensive Orders, Deterrent Orders, Status
Updates, and Recommendations. This suggests that the first dimension distinguishes team-scenarios in terms of



whether they focused on Track Information versus Tactical Actions. The extreme negative side of the second
dimension includes many patterns involving Seeking Information, while the extreme positive side includes
patterns involving Status Updates or ending with Deterrent Orders. This suggests that the second dimension
distinguishes team-scenarios in terms of whether they focused on Seeking Information versus Deterring Tracks.
Finally, the extreme negative side of the third dimension includes many patterns involving Assessment. The
extreme positive side includes patterns involving Seeking Information, Detection, and Track Behavior. This
suggests that the third dimension distinguishes team-scenarios in terms of whether they focused on Assessing
Tracks versus Exchanging Information.

Model Comparison

We compared the CT-HLM (ENA scores as explanatory variables) to the S-HLM (PCA scores as explanatory
variables). Coefficients, standard errors (with corresponding p-values), as well as measures of model fit and
efficiency for both models are shown in Table 3.

Table 3: Cotemporal HLM and sequential HLM, including parameter estimates and model fit

ENA PCA Scenarios Model Fit
Model | Intercept

1 | 2 | 1] 2 3| B] c | D |TVEl]|TVE2 | AIC.
CT- | 36.55% |-10.1%| —0.42 278 | 234 | 2.84

}

HLM | (1.06) |(2.77) | (3.49) (1.58)| (1.57) | (1.49)| 0-23° | 0-233 |377.19
s- | 3632+ 0.12 | 0.38% |-0.18| 2.67 | —1.61 | 3.1
HLM | (1.11) (0.09)] (0.18) [(0.14)| (1.61) | (1.66) | (1.55)| %238 | 0-237 | 38172

() indicates standard error; * indicates p < 0.05; { indicates significantly lower AIC. score (A > 4)

For the CT-HLM (cotemporal), the variance estimates for the random effects were 0.67 at level two and
16.70 at level one. Of the explanatory variables, only the coefficient for scores on the first ENA dimension (ENAT)
was significant. The negative coefficient (—10.1) indicates that teams with higher teamwork behavior ratings
focused more on tactical actions toward tracks than seeking information about tracks.

For the S-HLM (sequential), the variance estimates for the random effects were 0.06 at level two and
17.79 at level one. Of the explanatory variables, only the coefficient for scores on the second PCA dimension
(PC2) was significant. The positive coefficient (0.38) indicates that teams with higher teamwork behavior ratings
focused more on deterring tracks than seeking information about tracks.

For both estimates of total variance explained, the CT-HLM performed better. Moreover, the CT-HLM
had an AIC. score 4.53 points lower than the S-HLM. Thus, the two models are distinguishable: the cotemporal
model performed better than the sequence model in explaining differences in team behavior scores efficiently.

Discussion

Our results suggest that cotemporal models of collaborative processes constructed with ENA outperform
sequential models constructed with SPM on several dimensions. The cotemporal models explained more of the
difference between team-scenarios, and while differences in total variance explained were small, model selection
for efficiency via AIC. showed that the cotemporal-HLM was distinguishable from, and preferable to, the
sequential-HLM. A possible explanation is that our ENA model used 28 un-ordered pairs of codes to derive
predictors for the regression analysis, while our SPM model used 165 frequent patterns. The dimensional
reduction on the ENA variables needed only two dimensions to account for a large proportion of the total variance
while SPM needed three dimensions to account for approximately the same proportion of the total variance. Thus,
the HLM model with ENA predictors was more parsimonious and less likely to overfit the data.

Our results also suggest that cotemporal models can have interpretive advantages compared to sequence
models. The ENA algorithm combined connection identification, dimensional reduction, and visualization into
one technique; once we generated the model it was ready to interpret. SPM, on the other hand, required several
steps of post processing. More importantly, however, interpretation using ENA is done via integrated
visualizations—network graphs projected into a low-dimensional space. SPM does not include such
visualizations. Because visualizations can reduce cognitive load by replacing cognitive calculations with
perceptual inferences, ENA has an interpretive advantage compared to SPM.

Together, these results suggest that in CSCL and collaborative problem solving more generally, the
specific local order of discourse moves may be less important than their local cotemporality. In the context we
examined, teams were expected to follow a specific sequence of steps regarding each track; however, teams had



to manage multiple tracks at once and the full sequence of actions did not apply to every track: it mattered more
that specific discourse moves occurred together than that they occurred in a specific order.

Our results have several important limitations. First, we examined only one particular context of
collaboration. However, the general features of this collaborative task, which contained both well-formed and ill-
formed components, suggests that our findings may generalize to similar conditions in CSCL. Our future work
will continue to investigate cotemporal and sequence models in similar contexts, as well as contexts that are more
well-formed and more ill-formed. Second, it is possible that dimensional reduction on the SPM results via other
techniques, such as clustering or factor analysis, could yield sequence models that perform better and are easier
to interpret. Our results suggest that a two-cluster solution would be required to compete with ENA in terms of
model efficiency, but each cluster would then need to be interpreted using more than 80 patterns. Allowing more
clusters could ease interpretation but sacrifice efficiency. Similarly, we could apply a factor analysis to the SPM
results using a two-factor solution, but it is unclear whether the performance and interpretability of the resulting
sequence model would improve. Thus, we hypothesize results similar to those reported here. Our future work will
compare cotemporal models developed using ENA to sequential models developed using clustering or factor
analysis on SPM results to test this hypothesis.

Despite these limitations, our comparisons suggest that in CSCL contexts, cotemporal models can
outperform sequential models. More importantly however, our results suggest that in some CSCL contexts, local
order appears to be less important than local cotemporality. These results have implications for research and
assessment in CSCL—in contexts that share both well-formed and ill-formed features, cotemporal models are a
potentially more effective means of assessing complex thinking and performance. In turn, these models may better
inform pedagogy and learning in such contexts.

Endnotes

(1) Shaffer’s rho is a Monte Carlo rejective statistic that quantifies Type I error for generalizing from a sample of data coded
by two raters to the true rate of agreement.

(2) There are no established guidelines for choosing a support threshold. We tested multiple support thresholds above and
below 0.75, and the quantitative results of the HLM comparisons were similar in all cases.

(3) Performing a cluster analysis on the high-support patterns is more commonly used to interpret the results of SPM;
however, methods are not reliably available for event sequences. One implementation exists (Ritschard et al., 2018), but
it has not been validated. PCA has a standard method of interpretation and is agnostic to the type of pattern.

(4) Because these models are non-nested, we were unable to test for significant differences in model fit.
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