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Abstract: This paper examines whether and to what extent long and short readers make 
different contributions to collaborative design discussions in a CSCL environment—that is, 
we investigate whether a simple measure of reading behavior based on clickstream data is a 
good proxy for engagement with readings. Our approach to addressing this question is 
multimodal, involving two sources of data: (a) a record of students’ online conversations, and 
(b) the frequency and duration with which documents were open on each student’s screen. 
This study suggests that in this specific case, relatively thin data about reading frequency and 
mean reading duration can be used to make inferences about students’ reading behavior in a 
CSCL context where it is impossible to observe directly. It also shows the power of a 
multimodal approach to the data—here, we are using one mode of data (discussion) to get a 
better understanding of another mode (clickstream). 

Introduction 
In computer-supported collaborative learning (CSCL) environments, people learn complex thinking through 
interactions with people and tools (Hutchins, 1995). However, there are important actions and interactions that 
cannot be observed. One particularly difficult activity to investigate in CSCL contexts is reading. Prior research 
on text comprehension (Bell, 2001) suggests that there is a correlation between the amount of time that a student 
reads and the extent to which they understand the text. However, these studies are based on observations of the 
time students spend actually attending to a document. While it is possible to use eye-tracking systems to model 
what parts of a text a student focuses on in a CSCL context, this requires equipment that is difficult to deploy at 
scale (Rayner, Chace, Slattery, & Ashby, 2006). An alternative approach is to infer from clicking and scrolling 
behavior how a student engages with a text. 

But how much data about student reading is needed to understand what role text resources play in a 
CSCL environment? The answer to that question clearly depends on the specifics of the CSCL environment: 
what is being learned, by whom, and through what activities, and what role the information from texts plays in 
the process. In this paper, we argue that it may be possible to infer students’ level of engagement with a text 
using only a small amount of information: the frequency with which students open documents, and the length of 
time that the documents remain open on the screen. Most CSCL environments already record these as part of 
their clickstream data—the data collected by the CSCL system as students work. Using one CSCL environment, 
we show that this relatively sparse data is a reasonable proxy for students’ depth of engagement with texts.  

Specifically, we investigate student learning in the context of a virtual internship in which students 
read engineering resources and collaborate with other students through an online chat interface to design an 
assistive mechanical device. Most of the information that is the basis for collaborative discussions and design 
experimentation is conveyed by technical documents and research reports. In other words, reading plays a 
central role in this context. There is thus an important interaction between students’ engagement with the 
readings and their collaborative discussions, both of which influence how they make design decisions. 

Our approach to addressing this question is multimodal. We used clickstream data to identify (a) long 
readers (low frequency, high duration) and (b) short readers (high frequency, low duration). We then used chat 
data to examine whether and to what extent long and short readers made different contributions to collaborative 
discussions—that is, we investigated whether a simple measure of reading behavior based on clickstream data 
could be used to make inferences about students’ depth of engagement with the texts in this CSCL setting.  

To accomplish this, we used epistemic network analysis (ENA; Shaffer, Collier, and Ruis, 2016) to 
analyze students’ discourse in the domain based on their contributions to collaborative discussions. We then 
used the resulting ENA model to investigate the differences in discourse patterns between long and short 
readers. Our results show meaningful differences in discourse between long and short readers, suggesting that a 
thick stream of data (such as chats) and be used to interpret the meaning of a thinner stream of data (such as 



information on when documents are opened and closed). That is, in addition to using multiple data sources to 
get a better understanding of student learning, we used one mode of data (discussion data) to get a better 
understanding of another mode (clickstream data). 

Theory 
A broad range of work in CSCL has shown that analyses of learning should not focus on a (hypothetical) 
unassisted individual, but rather need to consider individuals collaborating with others and using artifacts to 
solve complex problems (Hutchins, 1995; Lave, 1988; Shaffer, 2017). One particularly important tool for 
learning is written texts, which are a prominent feature of many learning environments, both computer-
supported and face-to-face (Snow, 2002). However, investigating reading engagement in a CSCL context is 
difficult because we cannot observe students directly (Siemens, 2013). Some researchers attempt to use eye-
tracking to model engagement with texts, but such studies are difficult at scale and require considerable 
expertise to analyze the data (Rayner et al., 2006).  

Clickstream data, which most CSCL environments record, could also provide evidence of engagement 
with items on screen. For example, Coiro (2003) argues that reading duration—the amount of uninterrupted 
time on which a text appears on screen—can be used as a proxy measure for engagement with a text. However, 
the relationship between reading time and reading comprehension is complex. On one hand, researchers 
generally agree that more time spent reading leads to improvement in reading comprehension (McKeown, Beck, 
& Blake, 2009). On the other hand, the exact nature of the relationship is still debated (Bell, 2001). For 
example, Coiro (2003) argues that there are two basic reading behaviors: (a) skimming, or “getting only the gist 
of text in a short time,” and (b) studying, or “reading texts with the intent of retaining the information for a 
period of time.”  

Studying behavior, however, is reflected not only in the total duration of time that a student engages 
with a reading, but also in whether they engage for sufficient time in one reading session to process the 
information. This is distinct from a student who might spend the same total amount time on reading but do so in 
a series of small and separate chunks, which is more indicative of skimming behavior. If we only consider 
reading duration as a metric of reading engagement, it would be difficult to distinguish between someone who 
opens a document once and spends a period time attempting to understand the contents, and someone who 
opens a reading multiple times, but spends only a short amount of time in each case. Similarly, it is difficult to 
distinguish students who spend a long time reading because they are engaging deeply with the content and those 
who spend a long time reading because they are struggling to understand it. Long reading duration, especially 
combined with repeated reading of the same text, can indicate students who are struggling to retain information 
in sufficiently large amounts to enable full comprehension (Bell, 2001; Rasinski, 2000). Thus, we need to take 
into account both the frequency and duration of reading to distinguish skimming behavior from studying 
behavior in a CSCL context. 

Of course, we are ultimately interested in the extent to which reading behaviors contribute to 
understanding more generally. Research (Snow, 2002) shows that students who have low reading 
comprehension develop only very shallow knowledge, such as scattered facts and simple definitions of key 
terms. Shallow understanding is not sufficient to solve complex problems or apply knowledge to new situations. 
This suggests that different reading comprehension levels may relate to different levels of understanding, and 
thus different ways of framing, investigating, and solving complex problems. To model distributed cognition in 
the context of reading, then, we need to model how students apply knowledge from what they have read to their 
collaborations with others in order to solve complex problems. 

To understand this complex relationship between reading and collaborative problem solving, we chose 
to analyze data from a group of students solving an engineering design problem in a CSCL simulation that 
positioned them as interns at an engineering firm. That is, we examined the interplay between reading and 
collaborative discussion in the context of an authentic learning task (Shaffer, 2006). 

Shaffer (2012) argues that application of knowledge to a real-world problem in the context of a 
community of practice like engineering involves the development (and deployment) of an epistemic frame: a 
pattern of connections among knowledge, skills, and other cognitive elements that characterize a discourse 
community. Here we model how students have understood what the read by seeing whether and how they 
integrate the readings into the knowledge, skills, and other elements of practice in the domain (Collier, Ruis, & 
Shaffer, 2016).  

These relationships can be modeled with ENA, a technique for identifying and quantifying connections 
among epistemic frame elements and representing them in dynamic network models. Critically, ENA accounts 
for both connections made within an individual’s own discourse and connections made to the discourse of other 
individuals in a collaborative discussion. That is, ENA models how an individual contributes to collaborative 



discourse. In this study, we explore whether long readers have different epistemic frames than short readers by 
comparing their ENA networks, which indicate the contributions each student made to collaborative problem-
solving activities. Specifically, we ask:  

 
RQ1: Do long readers and short readers show different patterns of interaction in collaborative discussions? 
RQ2: Do these differences (if any) reflect a difference in the depth to which long and short readers are 

engaging in the text? 

Methods 

Research Context 
We analyzed data from a virtual internship, RescuShell, in which students play the role of an intern at a fictional 
engineering design firm. In RescuShell, students design the robotic legs for a mechanical exoskeleton to be used 
by rescue workers. They use an online work portal with text resources, simulated design tools, and a built-in 
chat interface to collaborate with their project teams. The virtual internship simulates the engineering design 
process, including reviewing and summarizing research reports, creating device prototypes, discussing design 
choices with teammates, and working to balance the needs of various stakeholders (Chesler et al., 2015). 

In RescuShell, the primary source of information about the technical constraints and performance 
parameters is a set of reading materials, including technical reports and research briefs. These documents, which 
consist of detailed text descriptions as well as tables, graphs, and images, help students gain sufficient technical 
knowledge to design and evaluate the performance of a mechanical exoskeleton. Importantly, key information is 
not concentrated in one place, but is diffused across the documents. That is, students need to integrate 
information from various documents and then discuss design decisions with their teammates, providing insight 
into how and to what extent the readings inform their design reasoning. 

In this study, we analyzed group discussions (12,859 lines of chat data) and individual clickstreams 
(24,034 lines of clickstream data) from 203 college students who used RescuShell at eight different sites in the 
United States between 2013 and 2015.  

Data Analysis 

Identifying long and short readers 
We extracted students’ clickstream data, which consist of a time-stamped record of clicks in the system, 
including accessing resources, sending emails and messages, saving notes, and so on. We then calculated 
(a) how often each student opened one of the 17 different documents (frequency), and (b) the length of time 
each document was open on screen before the student clicked on anything outside the document (duration).  

The documents in RescuShell contain an average of 463 words, with a range 153 to 786 words. 
Although reading speed varies based on a number of factors, college students typically read around 450 words 
per minute (Carver, 1992). In this study, the median frequency was 104 clicks (i.e., accessing the readings 104 
times over the course of the virtual internship), and the median duration was 48 seconds. We used these values 
to divide students into long (lower frequency, higher duration than the medians) and short (higher frequency, 
lower duration than the medians) reading groups. Students with both frequencies and mean durations lower than 
the medians were omitted from the analysis, as this indicates little meaningful engagement with the readings. 
Students with frequencies and mean durations higher than the medians were also omitted, as this could indicate 
students who were struggling to understand the content. 

Discourse Coding 
Chat transcripts were segmented by utterance, defined as when a student sent a single message in the chat 
program. To code the chat data for key epistemic frame elements relevant to the simulated engineering design 
process, we used an automated coding process (ncodeR; Marquart, Swiecki, Eagan, & Shaffer, 2018) based on 
regular expression matching. We validated all six codes using a series of comparisons between two human 
raters and ncodeR; pairwise Cohen’s kappa scores ranged between 0.83 and 1.00 (see Table 1). We used 
Shaffer’s rho to determine, for each kappa value, the likelihood that it would be found by two coders if their true 
rate of agreement was kappa < 0.65 (Shaffer, 2017). As shown in Table 2, all of the kappa values have rho 
values less than 0.05, meaning that if the coders were to code the whole dataset, they would have a level of 
agreement of kappa > 0.65 with a Type I error rate of less than 5%. 
 
 



 
 
Table 1: Coding scheme and inter-rater reliability statistics (*indicates ρ(0.65)<0.05; **indicates ρ(0.65)<0.01) 
 

Code Name Description Example 
Kappa 
R1 v. 
R2 

Kappa 
R1 v. 

ncodeR 

Kappa 
R2 v. 

ncodeR 

DESIGN 
REASONING  

Design development, 
prioritization, tradeoffs, 
and decisions 

“Steel can carry a big load, but it is 
heavy and weighs down on the recharge 
interval, and it is a costly option.” 

0.89** 0.89* 0.89** 

PERFORMANCE 
PARAMETERS 

Attributes: payload, 
recharge interval, agility, 
safety, or cost. 

“My device has a pretty good safety, 
payload, agility, and recharge interval” 0.89** 1.00** 0.89** 

TECHNICAL 
CONSTRAINTS 

Inputs: actuators, ROM, 
materials, power sources, 
or sensors. 

“Our two best were both made with 
Aluminum, NiCd Batteries, Piezoelectric 
sensors, and Pneumatic actuators.” 

0.83** 0.94** 0.89** 

CLIENT AND 
CONSULTANT 
REQUESTS 

Decisions based on internal 
consultant’s requests or 
client’s health or comfort 

“We tried to meet at least the minimum 
of each of the internal consultant’s 
request.” 

1.00** 1.00* 1.00** 

COLLAB-
ORATION 

Facilitating a joint meeting 
or the production of team 
design products. 

“How should we make our team 
batch?” 1.00** 1.00* 1.00** 

DATA 

Discussion of numerical 
values, results tables, 
graphs, research papers, or 
relative quantities. 

“I thought that safety near the maximum 
was not very good (close to 225 - one 
had 218 RPN)” 

0.90** 0.87** 0.89** 

ENA Discourse Model 
To construct the ENA model, we defined the units of analysis as all lines of data associated with a single 
student. The ENA algorithm uses a moving window to construct a network model for each line in the data, 
showing how codes in the current line are connected to codes that occur within the recent temporal context 
(Siebert-Evenstone et al., 2017). Based on a grounded analysis of the data, we used a window of 7 lines (each 
line plus the 6 previous lines) within each team activity. The resulting networks are aggregated for all lines for 
each unit of analysis in the model. Networks were normalized to account for the fact that some students spoke 
more than others. We used a dimensional reduction that placed the means of the groups of long and short 
readers as close as possible to the x-axis of the projected space, and the y-axis was defined by the first 
dimension of a singular value decomposition (Shaffer, Collier, & Ruis, 2016). 

ENA networks were visualized using network graphs where the nodes correspond to the codes, and the 
edges reflect the relative frequency of co-occurrence, or connection, between two codes. ENA produces two 
coordinated representations for each unit of analysis: (1) a plotted point, which represents the location of that 
unit’s network in the projected space, and (2) a weighted network graph. The positions of the network graph 
nodes are fixed, and determined by an optimization routine that minimizes the difference between the plotted 
points and their corresponding network centroids. Because of this co-registration of network graphs and 
projected space (co-registration correlations (Spearman) were dimension 1 = 0.93, dimension 2 = 0.96), the 
positions of the network graph nodes—and the connections they define—can be used to interpret the dimensions 
of the projected space and explain the positions of plotted points in the space. To test for differences between 
the networks of long and short readers, we applied a two-sample t-test, assuming unequal variance to the 
location of points in the projected ENA space, then used the corresponding network graphs to interpret the 
statistically significant differences. 

Results 

Quantitative Results 
Figure 1 shows each student’s network location, along with the means and 95% confidence intervals of the long 
readers (blue) and the short readers (red). There is a statistically significant difference between long and short 
readers on the first dimension with a moderate effect size (meanlong = 0.02, meanshort = −0.18; t = 3.28, p < 0.01, 
Cohen’s d = 0.57).  



 

 
Figure 1. ENA scatter plot showing long (blue) and short (red) readers. Each point is a single student; the 

squares are group means; the dashed boxes are 95% confidence intervals (t-distribution). 
 

To examine which connections accounted for the differences between long and short readers, we 
constructed mean epistemic networks for each group. As Figure 2 shows, both long readers (blue network, right) 
and short readers (red network, left) made dense networks of connections. This suggests that students in both 
groups were engaging in important engineering design practices. However, when we subtract one network from 
the other (Figure 2, middle) to identify why there is a statistically significant difference between the two groups, 
the long readers (blue network, right) made more links between DATA and other elements of the design 
reasoning process in their discussions, while short readers (left) made more links FROM TECHNICAL 
CONSTRAINTS to the other elements of the design reasoning process. 

Note that the two groups were not having independent discussions: 58% of the discussions involved 
both long and short readers, and these results did not differ between mixed and homogenous groups.  

 

 
Figure 2. Mean ENA network diagrams showing the connections made by long readers and short readers. 

Short readers (left, red) mainly connected TECHNICAL CONSTRAINTS with other elements; 
long readers (right, blue) primarily connected DATA with design reasoning elements. 

 
Qualitative Results 
To understand the importance of these differences between long and short readers, we analyzed students’ 
discussions qualitatively. Here, we present an example of a student discussion in RescuShell. This discussion 
took place at an early stage in the design process, when students meet to decide on a power source and control 
sensors for an experimental prototype. Just before the meeting, students read 6 technical documents, which are 
their only source of information about the different power sources and control sensors. For example, the Safety 
Standard Handbook provides data about the probability of failure modes occurring for different batteries and 
control sensors. The documents include detailed descriptions of how different sensors function, as well as 
numeric data about the effects of the sensors on payload, agility, battery recharge interval, cost, and safety. The 
Control Sensor Overview contains the table shown below (Table 2), which indicates how much each sensor 
costs and how each sensor affects device safety. (In this case, the higher the risk priority number, the less safe 
the device will be.) However, no single document contains complete information about the effects of different 
power sources and control sensors on exoskeleton performance. Thus, integrating information from multiple 
documents is the only way for students to understand the tradeoffs associated with different design choices.   
 
Table 2: Data table provided in the Control Sensor Overview  
 

Control Sensor Strain-Gauge Piezoelectric Optic-Binary 
Cost per Sensor ($) 99 110 54 



Risk Priority Number 84 55 102 
After reading these documents, students meet with their project teams to discuss which control sensor 

they should choose for their design. Table 3 provides an excerpt from one project team’s conversation about 
which control sensor to choose. In the conversation are Sam and Mike, both identified as short readers based on 
their clickstream data, and Joe, identified as a long reader. 
 
Table 3: Excerpt of one project team’s discussion about choosing a control sensor 

 

 
Line 1: Sam’s Question: In line 1, Sam asks his teammates: “what attributes for the sensor does 

everyone think is most important?” Thus, he suggests that identifying PERFORMANCE PARAMETERS will help the 
team decide which sensor to choose. 

Line 2: Joe’s Proposal: Joe, a long reader, begins line 2 by declaring his preference: “I would still go 
with the Piezoelectric sensor” (TECHNICAL CONSTRAINTS). However, he does not just state his preference, he 
goes on to justify his claim (that is, use DESIGN REASONING). First, he acknowledges, the sensor he chose has a 
downside (“it is the most expensive”; PERFORMANCE PARAMETERS) but he also addresses this concern by 
arguing that it is only the most expensive “by $11” (DATA). Finally, he explains that his choice has two highly 
desirable attributes: “the highest recharge interval, second highest agility.” Thus, he is proposing and justifying 
his design choice by weighing the pros and cons of his proposal (DESIGN REASONING).  

In doing this, Joe is integrating information from multiple sources. The comparative cost information 
among control sensors comes from the data table in the Control Sensor Overview (shown above). This 
document explains the relationship between piezoelectric sensors and two important PERFORMANCE 
PARAMETERS: recharge interval and agility. However, the ranking of the recharge interval and agility among 
three control sensors—which is the basis of Joe’s justification—can only be found in graphs from a different 
document: the Control Sensor and Power Source Experimental Report, which describes the results obtained 
from experiments to evaluate the recharge interval and agility of three different control sensors. In order to make 
justify his choice in terms of both performance parameters and cost, in other words, Joe used pieces of 
information from different documents and synthesized them into a coherent argument.  

Line 3: Mike’s response: In line 3, Mike, one of the short readers, also references the data table from 
the Control Sensor Overview (“looking at the data table…”; DATA) shown in Table 2. And he also states his 
preference: “I would choose the optic binary sensor” (TECHNICAL CONSTRAINTS). However, unlike Joe, Mike 
does not provide a clear justification for choosing the optic binary sensor. Instead, he provides an explanation of 
how the optic binary sensor functions in contrast to the piezoelectric: “This does not take into account the need 
for reflection in order for it to work” (DESIGN REASONING). If we refer back to Table 2 from the Control Sensor 
Overview, we might infer that he was thinking about the cost efficiency: the optic binary sensor has the lowest 
cost. But he does not actually talk explicitly about any of the performance attributes—which were the basis of 
Sam’s original question. Instead, he refers to an explanation of how optic binary sensors function that also 
comes from the Control Sensor Overview. Based on this limitation, Mike accepts Joe’s proposal.  

Line Student 
Reader 
Type Discussion Utterance Codes 

1 Sam Short 
So what attributes for the sensor does everyone 
think is most important? Then maybe we can 
choose a sensor based on that. 

TECHNICAL CONSTRAINTS 

2 Joe Long 

Sounds good, we can think about the design later. 
As for the sensor I would still go with the 
Piezoelectric sensor because even though it is the 
most expensive, it is such only by $11, it has the 
highest recharge interval, second highest agility. 

DESIGN REASONING 
PERFORMANCE PARAMETERS 
TECHNICAL CONSTRAINTS 
DATA   

3 Mike Short 

Looking at the data table, I would choose the optic 
binary sensor. However, this does not take into 
account the need for reflection in order for it to 
work. I agree with Joe and choose the Piezoelectric. 

DESIGN REASONING 
TECHNICAL CONSTRAINTS 
DATA 

4 Joe Long 

I don't think we should use the optic binary sensor 
because although the cost is pretty cheap, and it has 
the best recharge interval by about 40 minutes, it 
performs worst in agility and safety. 

DESIGN REASONING 
PERFORMANCE PARAMETERS 
TECHNICAL CONSTRAINTS 
DATA   



Thus, Mike is clearly engaged with the Control Sensor Overview document: he references the data 
table and knows how the optic binary sensor works. However, all of this information comes from the same 
document. He is not integrating information across multiple readings, and he is not reading deeply enough to 
recognize that in this situation, his explanation of the mechanisms by which the binary optical sensor functions 
is less relevant than its impact on the PERFORMANCE PARAMETERS of the device.  

Line 4: Joe’s response: In line 4, Joe disagrees with Mike: “I don’t think we should use the optic 
binary sensor” (TECHNICAL CONSTRAINTS), and he explicitly refers to four PERFORMANCE PARAMETERS, where 
Mike did not refer to any. He recognizes the optic binary sensor has benefits on cost (“the cost is pretty cheap”) 
and recharge interval (“it has the best recharge interval by about 40 minutes”; DATA). However, he emphasizes 
that the optic binary “performs worst in agility and safety” (DESIGN REASONING). 

That is, Joe reuses the cost and safety information from the Control Sensor Overview shown in Table 2 
and combines the information from the Control Sensor and Power Source Experimental Report on recharge 
interval, payload, and agility, and the Safety Standard Handbook on safety information, to determine the impact 
of optic binary sensors. Once again, he is looking across multiple documents and integrating information about 
multiple performance attributes to support is argument against an alternative to his original proposal.  

Comparing ENA models for Mike and Joe 

 
Figure 3. Individual ENA networks showing the connections made by Joe, the long reader (right) and Mike, the 
short reader (left). Joe connected DATA with TECHNICAL CONSTRAINTS, DESIGN REASONING, and PERFORMANCE 

PARAMETERS; Mike (left) connected only TECHNICAL CONSTRAINTS with DATA and DESIGN REASONING. 
 

Figure 3 above shows the individual networks of Mike and Joe from just this short excerpt. In line 2, 
when Joe talks about his preference, he makes a connection between TECHNICAL CONSTRAINTS and DESIGN 
REASONING when he justifies his choice. He also makes a connection between PERFORMANCE PARAMETERS and 
DATA by explaining his choice in terms of both performance parameters and cost with actual value from 
multiple documents. Similarly, in line 4, Joe makes connections among TECHNICAL CONSTRAINTS, DATA, 
PERFORMANCE PARAMETERS, and DESIGN REASONING. On the other hand, Mike makes a connection between 
TECHNICAL CONSTRAINTS and DESIGN REASONING (line 3), and TECHNICAL CONSTRAINTS and DATA (line 3). 
These individual networks of Mike and Joe align with the characteristics of long and short readers’ group 
networks in the sense that they show Joe linking concepts more completely than Mike did, and specifically 
making more robust connections to DATA. 

Combined with the qualitative analysis, which shows that linking of these concepts is a reflection of 
deeper engagement with the readings, and the quantitative analysis above, which shows that longer readers 
consistently make more robust use of data during design discussions, suggests that longer reading is associated 
with deeper reading. 

Discussion 
In this paper, we investigated whether long readers make different contributions to collaborative discussions 
than short readers in one CSCL context. Our results show that short readers were less likely to be able to 
articulate complex arguments with clear justifications, whereas long readers who engage more deeply with the 
readings were better able to flexibly and dynamically integrate information from multiple sources and work it 
into their arguments in collaborative discussions. Given these differences, our findings suggest that in this case, 
relatively thin data about reading frequency and mean reading duration could be used to make inferences about 
students’ reading behavior in a CSCL context where it is impossible to directly observe students’ reading 
behavior directly. It also shows the power of a multimodal approach to the data—and in particular, it shows that 
in addition to using multimodal data to get a better understanding of the student learning, we can also use one 



mode of data (in this case, discussion data) to get a better understanding of another mode (in this case, 
clickstream data). 

This study has several limitations. First, it does not show directly that reading frequency and duration 
correspond with reading comprehension, only that they correspond with more or less sophisticated contributions 
to collaborative discussions. In particular, it did not model the relationship between specific reading behaviors 
and contributions to collaborative discussions in temporal context. Moreover, further research would be needed 
to disambiguate the effects of reading frequency and duration from other variables, such as prior engineering 
knowledge. In future work, we plan to build on this work to address these shortcomings by modeling the 
relationships between reading behaviors and discussion contributions as they occur in temporal proximity. 
Despite these limitations, this study suggests that student reading behaviors are associated with complex 
problem-solving behaviors: specifically, that long readers read more deeply, and are thus able to make more 
sophisticated contributions to collaborative problem-solving efforts than short readers who are reading 
shallowly. Moreover, it provides evidence that the frequency and duration of reading, which can be easily 
determined from the clickstream data recorded by most CSCL environments, can in some cases be used as a 
proxy for reading engagement, which is difficult to observe directly in virtual settings. 

References  
Bell, T. (2001). Extensive reading: Speed and comprehension. The reading matrix, 1(1). 
Carver, R. P. (1992). Reading rate: Theory, research, and practical implications. Journal of Reading, 36(2), 84-95. 
Chesler, N.C., Ruis, A.R., Collier, W., Swiecki, Z., Arastoopour, G., & Shaffer, D.W. (2015). A novel paradigm 

for engineering education: Virtual internships with individualized mentoring and assessment of 
engineering thinking. Journal of Biomechanical Engineering, 137(2). 

Coiro, J. (2003). Exploring literacy on the internet: Reading comprehension on the internet: Expanding our 
understanding of reading comprehension to encompass new literacies. The reading teacher, 56(5), 458-464. 

Collier, W., Ruis, A., & Shaffer, D. W. (2016). Local versus global connection making in discourse. Paper 
presented at the 12th International Conference of the Learning Sciences. Singapore. 

Hutchins, E. (1995). Cognition in the Wild. MIT press. 
Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 

33(1), 159–174. 
Lave, J. (1988). Cognition in Practice. Cambridge: Cambridge University Press. 
Marquart, C. L., Swiecki, Z, Eagan, B., & Shaffer, D. W. (2018). ncodeR: Techniques for Automated Classifiers. 

R package version 0.1.2. https://CRAN.R-project.org/package=ncodeR 
McKeown, M. G., Beck, I. L., & Blake, R. G. (2009). Rethinking reading comprehension instruction: A comparison 

of instruction for strategies and content approaches. Reading Research Quarterly, 44(3), 218-253. 
Rasinski, T. V. (2000). Commentary: Speed does matter in reading. The Reading Teacher, 54(2), 146-151. 
Rayner, K., Chace, K. H., Slattery, T. J., & Ashby, J. (2006). Eye movements as reflections of comprehension 

processes in reading. Scientific studies of reading, 10(3), 241-255. 
Shaffer, D. W. (2006). How computer games help children learn. Macmillan. 
Shaffer, D.W. (2012). Models of situated action: Computer games and the problem of transfer. In C. 

Steinkuehler, K. Squire, S. Barab (Eds.), Games learning, and society: Learning and meaning in the 
digital age, (pp. 403-433). Cambridge, UK: Cambridge University Press. 

Shaffer, D.W. (2017). Quantitative Ethnography. Madison, WI: Cathcart Press. 
Shaffer, D.W., Collier, W., & Ruis, A.R. (2016). A tutorial on epistemic network analysis: Analyzing the structure 

of connections in cognitive, social, and interaction data. Journal of Learning Analytics, 3(3), 9–45. 
Siebert-Evenstone, A. L., Irgens, G. A., Collier, W., Swiecki, Z., Ruis, A. R., & Shaffer, D. W. (2017). In 

Search of Conversational Grain Size: Modelling Semantic Structure Using Moving Stanza 
Windows. Journal of Learning Analytics, 4(3), 123-139. 

Siemens, G. (2013). Learning analytics: The emergence of a discipline. American Behavioral Scientist, 57(10), 1380-1400. 
Snow, C. (2002). Reading for understanding: Toward an R&D program in reading comprehension. Rand Corp. 

Acknowledgments 
This work was funded in part by the National Science Foundation (DRL-1661036, DRL-1713110), the U.S. 
Army Research Laboratory (W911NF-18-2-0039), the Wisconsin Alumni Research Foundation, and the Office 
of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin-Madison. The 
opinions, findings, and conclusions do not reflect the views of the funding agencies, cooperating institutions, or 
other individuals. 


