Matryoshka: Fuzzing Deeply Nested Branches

Peng Chen
ByteDance Al Lab
spinpx@gmail.com

ABSTRACT

Greybox fuzzing has made impressive progress in recent years,
evolving from heuristics-based random mutation to solving in-
dividual branch constraints. However, they have difficulty solv-
ing path constraints that involve deeply nested conditional state-
ments, which are common in image and video decoders, network
packet analyzers, and checksum tools. We propose an approach
for addressing this problem. First, we identify all the control flow-
dependent conditional statements of the target conditional state-
ment. Next, we select the taint flow-dependent conditional state-
ments. Finally, we use three strategies to find an input that sat-
isfies all conditional statements simultaneously. We implemented
this approach in a tool called Matryoshka' and compared its effec-
tiveness on 13 open source programs with other state-of-the-art
fuzzers. Matryoshka achieved significantly higher cumulative line
and branch coverage than AFL, QSYM, and Angora. We manually
classified the crashes found by Matryoshka into 41 unique new
bugs and obtained 12 CVEs. Our evaluation demonstrates the key
technique contributing to Matryoshka’s impressive performance:
among the nesting constraints of a target conditional statement,
Matryoshka collects only those that may cause the target unreach-
able, which greatly simplifies the path constraint that it has to
solve.
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1 INTRODUCTION

Fuzzing is an automated software testing technique that has suc-
cessfully found many bugs in real-world software. Among various
categories of fuzzing techniques, coverage-based greybox fuzzing
is particularly popular, which prioritizes branch exploration to trig-
ger bugs within hard-to-reach branches efficiently. Compared with
symbolic execution, gray box fuzzing avoids expensive symbolic
constraint solving and therefore can handle large, complex pro-
grams.

AFL [2] is a rudimentary greybox fuzzer. It instruments the pro-
gram to report whether the current input has explored new states
at runtime. If the current input triggers a new program state, then
the fuzzer keeps the current input as a seed for further mutation [35].
However, since AFL mutates the input randomly using only crude
heuristics, it is difficult to achieve high code coverage.

More recent fuzzers use program state to guide input mutation
and showed impressive performance improvements over AFL, e.g.,
Vuzzer [30], Steelix [26], QSYM [41], and Angora [13]. Take An-
gora for example. It uses dynamic taint tracking to determine which
input bytes flow into the conditional statement guarding the tar-
get branch and then mutates only those relevant bytes instead of
the entire input to reduce the search space drastically. Finally, it
searches for a solution to the branch constraint by gradient descent.

However, these fuzzers face difficulties when solving path con-
straints that involve nested conditional statements. A branch con-
straint is the predicate in the conditional statement that guards the
branch. The branch is reachable only if (1) the conditional state-
ment is reachable, and (2) the branch constraint is satisfied. A path
constraint satisfies both these conditions. When a conditional state-
ment s is nested, s is reachable only if some prior conditional state-
ments P on the execution path are reachable. If the branch con-
straints in {s} UP share common input bytes, then while the fuzzer
is mutating the input to satisfy the constraint in s, it may invali-
date the constraints in P, thus making s unreachable. This problem
plagues the aforementioned fuzzers since they fail to track control
flow and taint flow dependencies between conditional statements.
Nested conditional statements are common in encoders and de-
coders for both images and videos, network packet parsers and
checksum verifiers, which have a rich history of vulnerabilities.
Though concolic execution may solve some nested constraints, Yun
et al. showed that concolic execution engines can exhibit over-
constraining issues, which makes it too expensive to solve the con-
straints [41], especially in real-world programs.

Figure 1 shows such an example in the program readpng. The
predicate on Line 6 is nested inside the predicate on Line 4. 2 It is
difficult for the fuzzer to find an input that reaches the false branch
of Line 6 because the input has to satisfy the false branch of Line 4

2 Although syntactically both Line 4 and Line 6 are at the same level, Line 6 is nested
inside Line 4 in the control flow graph because the true branch of Line 4 is an imme-
diate return.
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// pngrutil.c, Line 2406

png_crc_read(png_ptr, buffer, length);

buffer[length]l = 0;

if (png_crc_finish(png_ptr, 0) != 0)
return;

if (buffer[@0] != 1 && buffer[0] != 2) {
png_chunk_benign_error (png_ptr, "invalid unit");
return;

}

Figure 1: An example showing a nested conditional state-
ment on Line 6. It is difficult to find an input that reaches
the false branch of Line 6 due to the check on Line 4.

1| void foo(unsigned x, unsigned y, unsigned z) {
2 if (x < 2) {

3 if (x +y < 3) {

4 if (z == 1111) {

5 if (y == 2222) { .... }

6 if (y>1) { .... 1%

7 3

8 }

9 b

10|}

Figure 2: A program demonstrating nested conditional state-
ments. Line 6 depends on Line 2, 3, and 4 by control flow, and
on Line 2 and 3 by taint flow

as well. When a fuzzer tries to mutate the predicate on Line 6, it
mutates only the input bytes flowing into buffer[@], but this will
almost surely cause the CRC check in png_crc_finish() to fail,
which will cause Line 4 to take the true branch and return.

To evaluate whether current fuzzers have difficulty in solving
path constraints involving nested conditional statements, we used
Angora as a case study. We ran it on 13 open source programs,
which read structured input and therefore likely have many nested
conditional statements. Table 1 shows that on all the programs, the
majority of unsolved path constraints involve nested conditional
statements. On five of the programs, more than 90% of the unsolved
constraints involve nested conditional statement.® This suggests
that solving these constraints will improve the fuzzer’s coverage
significantly.

We design and implement an approach that allows the fuzzer to
explore deeply nested conditional statements. The following uses
the program in Figure 2 as an example. Suppose the current input
runs the false branch of Line 6, and the fuzzer wishes to explore
the true branch of Line 6.

(1) Determine control flow dependency among conditional state-
ments. The first task is to identify all the conditional state-
ments before Line 6 on the trace that may make Line 6 un-
reachable. They include Line 2, 3, and 4, because if any of

3Some conditional statements depend on other conditional statements by control flow,
but they do not share input bytes.

them takes a different branch, then Line 6 will be unreach-

able. Section 3.3 will describe how we use intraprocedural

and interprocedural post-dominator trees to find those con-
ditional statements.

Determine taint flow dependency among conditional statements.

Among the conditional statements identified in the previous

step, only those on Line 2 and 3 have taint flow dependen-

cies with Line 6. This is because when we mutate y on Line 6,

this may change the branch choice of Line 3 and hence mak-

ing Line 6 unreachable. To avoid this problem, we must keep
the branch choice of Line 3, which may require us to mu-
tate both x and y, but this may change the branch choice of

Line 2. Therefore, Line 2 and 3 have taint flow dependencies

with Line 6. By contrast, the branch choice of Line 4 never

changes as we mutate y to explore the true branch of Line 6,

so it has no taint flow dependencies with Line 6. Section 3.4

will describe how we find those taint flow dependent condi-

tional statements.

(3) Solve constraints. Finally, we need to mutate the input to
satisfy several dependent conditional statements simultane-
ously. In other words, we need to find a new input that
both reaches Line 6 and satisfies its true branch. We propose
three strategies.

o The first strategy conservatively assumes that if we mu-

tate any byte flowing into any conditional statements that
Line 6 depends on, then Line 6 will become unreachable.
So this strategy avoids mutating those bytes when fuzzing
Line 6.4 (Section 3.5.1)

o The second strategy artificially keeps the branch choices
of all the conditional statements that Line 6 depends on
when mutating the input bytes that flow into Line 6. When
it finds a satisfying input, it verifies whether the program
can reach Line 6 without altering branch choices. If so,
then the fuzzer successfully solves this problem. Other-
wise, the fuzzer will backtrack on the trace to try this
strategy on Line 3 and Line 2. (Section 3.5.2)

The last strategy tries to find a solution that satisfies all

the dependent conditional statements. It defines a joint

constraint that includes the constraint of each dependent
conditional statement. When the fuzzer finds an input
that satisfies the joint constraint, then the input is guar-
anteed to satisfy the constraints in all the dependent con-
ditional statements. (Section 3.5.3)

—
S
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Our approach assumes no special structure or property about
the program being fuzzed, such as magic bytes or checksum func-
tions. Instead, our general approach to solving nested conditional
statements can handle those special structures naturally.

We implemented our approach in a tool named Matryoshka and
compared its effectiveness on 13 open source programs against
other state-of-the-art fuzzers. Matryoshka found a total of 41 unique
new bugs and obtained 12 CVEs in seven of those programs. Ma-
tryoshka’s impressive performance is due not only to its ability to
solve nested constraints but also to how it constructs these con-
straints. Traditional symbolic execution collects the predicates in

“This strategy fails to work on this example because the fuzzer is left with no input
byte to mutate.



all the conditional statements on the path. By contrast, Matryoshka
collects the predicates in only those conditional statements that the
target branch depends on by both control flow and taint flow. Our
evaluation shows that the latter accounts for only a small fraction
of all the conditional statements on the path, which greatly simpli-
fies the constraints that Matryoshka has to solve.

2 BACKGROUND

Greybox fuzzing is a popular program testing method that incor-
porates program state monitoring with random input mutation to
great effect. However, current state-of-the-art greybox fuzzers are
unable to reliably and efficiently solve nested conditional state-
ments. Fuzzers using either heuristics (e.g., AFL) or principled mu-
tation methods (e.g., Angora) do not have enough information about
control flow and taint flow dependencies between conditional state-
ments to devise an input that can satisfy all the relevant branch
constraints. Other fuzzers utilizing hybrid concolic execution such
as Driller experience performance hits due to concretizing the en-
tire symbolic constraints of a path [41, 42]. QSYM is a practical
concolic execution fuzzer, but it is tailored to solve only the last
constraint on a path, thus facing the same challenge of solving
nested conditional statements as Angora.

Using Angora as an example, we evaluated the impact of nested
conditional statements on Angora’s performance and analyzed the
constraints in eight programs that Angora failed to solve in Ta-
ble 1, where each constraint corresponds to a unique branch in the
program. The second column shows what percentage of the un-
solved constraints are nested, which depend on other conditional
statements by control flow and taint flow (Section 3.4). The third
column shows what percentage of all the constraints, both solved
and unsolved, are nested. Table 1 shows that the majority of the un-
solved constraints are nested, ranging from 57.95% to nearly 100%.
It also shows that nested constraints account for a substantial por-
tion of all the constraints, ranging from 44.14% to 89.50%. These
results suggest that solving nested constraints could improve the
coverage of greybox fuzzers substantially.

3 DESIGN
3.1 Problem

State-of-the-art coverage-guided fuzzers, e.g., Angora [13], QSYM [41],

VUzzer [30] and REDQUEEN [4], explore new branches by solving
branch constraints, where a branch constraint is the predicate in
the conditional statement that guards the branch. This typically in-
volve the following steps. First, identify the input bytes that affect
each conditional statement using dynamic taint analysis or sim-
ilar techniques. Then, determine how the input bytes should be
mutated, such as calculating the gradient of the predicate and us-
ing gradient descent, matching magic bytes or resorting to using a
symbolic execution solver. Finally, execute the program with the
mutated input and verify if this triggers the other branch in the
conditional statement.

Although this approach is effective in solving many branch con-
straints, it fails when the target conditional statement becomes un-
reachable during input mutation.

Figure 2 shows an example. Let the variables x, y, and z contain
different input bytes. Assume that the current input executes the

Table 1: Percentage of nested constraints encountered by An-
gora

Percentage of nested constraints in

Program
all unsolved constraints  all constraints

dipeg 90.00 % 75.65%
file 86.49 % 44.14 %
jhead 57.95% 51.53%
mutool 80.88 % 58.63 %
nm 84.32 % 68.16 %
objdump 90.54 % 73.95%
readelf 84.12% 70.50 %
readpng 94.02 % 89.50 %
size 87.86 % 71.46 %
tepdump 96.15 % 78.98 %
tiff2ps 75.56 % 62.18 %
xmlint 78.18 % 72.37 %
xmlwf 96.18 % 68.16 %

false branch of Line 6, and the goal is to explore the true branch
of Line 6. Then, the fuzzer determines, by dynamic byte-level taint
analysis, that it needs to change the bytes in y. Consider two dif-
ferent initial values of x and y.

(1) x = 0 and y = 1. If the fuzzer mutates y to 3, then the
program will no longer reach Line 6 because Line 3 will take
a different (false) branch. This renders the fuzzer helpless
when solving the branch predicate, even though a satisfying
assignment y = 2 exists.

(2) x = 1 and y = 1. In this case, no value of y can satisfy the
true branches of Line 2, Line 3, and Line 6 simultaneously,
unless we also mutate x. However, since x does not flow
into the conditional statement on Line 6, the fuzzer does
not know that it should mutate x, so it can never find a sat-
isfying assignment to explore the true branch of Line 6, re-
gardless of the algorithm used to solve the constraint.

This example shows that to execute an unexplored branch, it is
sometimes inadequate to mutate only the input bytes that flow into
the conditional statement because doing so might render this state-
ment unreachable. One could naively mutate all the input bytes,
but that would increase the search space by many magnitudes to
make this approach too expensive to be practical.

3.2 Solution overview

To overcome the problem in Section 3.1, our key insight is that
when we fuzz a conditional statement, we must find an input that
both satisfies the branch constraint and keeps the statement reach-
able. Most fuzzers that explore branches by solving branch con-
straints consider only the satisfiability criterion but fail to consider
the reachability criterion. We propose the following steps to sat-
isfy both criteria while mutating the input. Let s be a conditional
statement on the trace of the program on this input. Our goal is
to mutate the input to let s take a different branch. We call s the
target conditional statement and say that the new input satisfies s.



(1) Determine control flow dependencies among conditional state-
ments. Identify all the conditional statements before s on
the trace that may make s unreachable. For example, if s
is on Line 6 in Figure 2, then if any of the conditional state-
ments on Line 2, 3, and 4 takes a different branch, then Line 6
will be unreachable. We call these the prior conditional state-
ments of s, which s depends by control flow. By contrast,
no matter which branch Line 5 takes, Line 6 will always be
reachable. Section 3.3 will describe this step in detail.

(2) Determine taint flow dependency among conditional statements.
Among the prior conditional statements of s, identify those
whose corresponding input bytes may have to be mutated
to satisfy s. For example, let s be Line 6 in Figure 2. Among
its three prior conditional statements, only those on Line 2
and 3 contain bytes (x and y) that may have to be mutated to
satisfy s. We call these effective prior conditional statements,
which s depends on by taint flow. By contrast, Line 4 con-
tains no input bytes that may have to be mutated to satisfy
s. Section 3.4 will describe this step in detail.

(3) Solve constraints. Mutate the bytes in the effective prior con-
ditional statements to satisfy s. Section 3.5 will describe this
step in detail.

Figure 3 shows an overall design of Matryoshka regarding how
the strategies are used in the fuzzing process.

3.3 Determine control flow dependency among
conditional statements

For each conditional statement s, we wish to identify all its prior
conditional statements, which are the conditional statements that,
if taking a different branch, may cause s to be unreachable. Let the
immediate prior conditional statement of s on a trace be the last
prior conditional statement of s, i.e., there is no prior conditional
statement of s between r and s. Note that if s is a prior conditional
statement of ¢, and ¢ is of u, then s is a prior conditional statement
of u. This allows us to find all the prior conditional statements of
s transitively: starting from s, we repeatedly find the immediate
prior conditional statement, and then take the union of all such
statements.

We propose two different methods for finding the immediate
prior statement that is in the same function and that is in a different
function, respectively. In our implementation for optimization, we
cached all the found dependencies to avoid repeated computation.

3.3.1 Intraprocedural immediate prior conditional statement. Start-
ing from a conditional statement s, we walk back on the trace.
When we find the first conditional statement r

e that is in the same function, and

e that s does not post-dominate [1]

then r is the immediate prior statement of s. Our implementation
used the post-dominator trees produced by LLVM [24].

If we cannot find such r, then s has no intraprocedural immedi-
ate prior conditional statement, and we will search for its interpro-
cedural immediate prior conditional statement, to be described in
Section 3.3.2.

3.3.2 Interprocedural immediate prior conditional statement. It would

be straightforward to use interprocedural post-dominator trees for

efficient handling, but unfortunately, LLVM does not provide such
information, so we designed the following method for finding the
interprocedural immediate prior conditional statement of s. Start-
ing from s, we walk back on the trace to find the first conditional
statement r that satisfies all the following:

(1) ris in a different function (let us call it f;) than s, and

(2) fr is still on the stack (i.e., it hasn’t returned) when s is exe-
cuting, and

(3) Letrc be the last call instruction that f, executed. r, must ex-
ist because r is in a deeper stack frame than s. If 7. does not
post-dominate r (note that r and r. are in the same function),
then r is the interprocedural immediate prior statement of
s.

3.3.3 Irregular interprocedural control flow. Apart from function
calls, the program could also exhibit irregular interprocedural con-
trol flows, for instance those involving EXIT and LONGJMP instruc-
tions. If a conditional statement r has at least one branch that leads
to a basic block that contains irregular flows, then we consider it to
be the prior conditional statement of all the statements after itself
even when its frame is not on the stack. If s is a conditional state-
ment after r, we add r and r’s prior conditional statements to the
set of s’s prior conditional statements. In LLVM, the basic blocks
containing irregular interprocedural control flows are terminated
with UNREACHABLE instructions.

3.4 Determine taint flow dependency among
conditional statements

For each conditional statement s, Section 3.3 finds all its prior con-
ditional statements p(s). Let b(s) be the set of input bytes that flow
into s where s is one or more conditional statements. When we
mutate the input, as long as no conditional statement in p(s) takes
a different branch, s is guaranteed to be reachable. This seems to
suggest that we should avoid mutating any byte in b(p(s)).

On the other hand, avoid mutating every byte in b(p(s)) may
prevent the fuzzer from finding a satisfying assignment for s, as dis-
cussed in Section 3.1. Take Figure 2 as an example. Let s be Line 6.
By Section 3.3.1, we determine that p(s) consists of Lines 2, 3, and
4. Therefore, b(p(s)) = {x,y, z}. If we keep all the bytes in b(p(s))
immutable, then we are left with no input byte to mutate when
trying to find an input to satisfy s.

The problem arises because Section 3.3 considers only control
flow dependency among conditional statements, but it fails to con-
sider whether taint flow dependencies exist between the condi-
tional statements. We define the effective prior conditional state-
ments of s, e(s), to be a subset of the prior conditional statements
of s, where to find an input to satisfy s, we may have to mutate
some bytes flowing into a statement in e(s). In other words, if a
prior conditional statement r of s is not also an effective prior con-
ditional statement of s, then no byte flowing into r needs to be
mutated to satisfy s. This means that we may consider only the ef-
fective prior conditional statements and ignore the non-effective
prior conditional statements.

Algorithm 1 shows the algorithm for computing effective prior
conditional statements, which relies on the following property: if
r is an effective prior conditional statement of s, and q is a prior
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Figure 3: Overview of Matryoshka. In the figure, Angora represents any fuzzer capable of identifying constraints. When the
fuzzer fails to solve a branch constraint guarding a new branch, Matryoshka determines whether the conditional statement
is nested. If so, Matryoshka tries three optimization strategies: prioritizing reachability, prioritizing satisfiability, and joint
optimization, during which it also identifies implicit flow dependencies when necessary.

conditional statement of s, and g and r share common input bytes,
then g is also an effective prior conditional statement of s.

Algorithm 1 Find effective prior conditional statements

1: function FINDEFFECTIVEPRIORCONDSTMT(S, stmts) >
s: conditional statement being fuzzed; stmts: prior conditional
statements of s. Returns: effective prior conditional statements
of s

2 Initialize a union-find data structure.

3 for all stmt € stmts do

4 T « input bytes flowing into stmt.
5 Union all t € T.

6: end for

7 0«0

8 bs « any one byte flowing into s

9 for all stmt € stmts do

10: b < any one byte flowing into stmt
1 if FIND(bs) == FIND() then

12: O «— OU {stmt}

13: end if

14: end for

15: return O

16: end function

3.5 Solve constraints

Section 3.4 determines the effective prior conditional statements
for each conditional statement s. On the one hand, if we freely
mutate the bytes flowing into any of them, s may become unreach-
able. But on the other hand, we may be required to mutate some
of those bytes to satisfy the unexplored branch of s. Therefore we
need to determine which of those statements whose relevant input
bytes we may mutate. We propose the following three alternative

strategies. Matryoshka tries them in this order and imposes a time
budget for each strategy to ensure overall efficiency.

(1) Prioritize reachability
(2) Prioritize satisfiability
(3) Joint optimization for both reachability and satisfiability

Each strategy identifies a constraint over a set of input bytes.
Then, it uses gradient-based optimization to solve the constraint.
These strategies provide benefits only when s is nested, i.e., s has ef-
fective prior conditional statements. If s is not nested, Matryoshka
simply uses existing strategies from Angora or other fuzzers to
solve the branch constraint. Therefore, Matryoshka exhibits better
performance in solving nested conditional statements while hav-
ing the same ability as other fuzzers to solve non-nested condi-
tional statements.

3.5.1 Prioritize reachability. This strategy pessimistically assumes
that if we mutate any byte that flows into any effective prior con-
ditional statements of a conditional statement s, s may become un-
reachable. Therefore, this strategy ensures that s is always reach-
able by avoiding mutating any byte that flows into any of s’s effec-
tive prior conditional statements. Formally, let b(s) be the bytes
flowing into s, and b(e(s)) be the bytes flowing into s’s effective
prior conditional statements. Angora mutates all the bytes in b(s),
which may cause s to become unreachable. By contrast, this strat-
egy of Matryoshka mutates only the bytes in b(s) \ b(e(s)), i.e. all
the bytes that flow into s but that do not flow into any effective
prior statement of s.

Take the program in Figure 2 for example. When we fuzz s on
Line 3, its only effective conditional statement is ¢ on Line 2. b(s) =
{x,y}. b(e(s)) = {x}. Using this strategy, the fuzzer mutates only
the bytes in b(s) \ b(e(s)) = {y}.

However, this strategy fails when we fuzz s on Line 6. In this
case, its effective prior statements consist of the statements on



Line 2 and 3, so b(s) = {y}, b(e(s)) = {x,y}, but b(s) \ b(dp(s)) =
0. Using this strategy, Matryoshka will fail to fuzz s because it finds
no byte to mutate.

Algorithm 2 Find a satisfying input while prioritizing satisfiabil-
ity
1: function FINDINPUT(s, stmts) > s: the target conditional
statement. stmts: effective prior conditional statements of s.
2 > Forward phase
While keeping the branch choice of each r € stmts, find
an input i that satisfies the target branch of s.

b

4: Run the program on i.
5: if s’s target branch is reachable then
6: return Success
7 end if
8 > Backtracking phase
9: Br 0 > Input bytes not to be mutated.
10: for stmt € stmts in the reverse order on the trace do
11 B « input bytes flowing into stmt
12: B « B\ By
13: While keeping the branch choice of all ¥ € stmts where
r appears before stmt on the trace, find an input i that satisfies
the target branch of stmt, during which only the input bytes
in Bp may be mutated.
14: Run the program on i.
15: if stmt’s target branch is reachable then
16: return Success
17: end if
18: Br<— BjUB
19: end for
20: return Failure

21: end function

3.5.2  Prioritize satisfiability. This strategy optimistically hopes that
a mutated input that satisfies a conditional statement s can also
reach s. It has a forward phase followed by a backtrack phase. Dur-
ing the forward phase, it mutates the bytes flowing into s while
artificially keeping the branch choices of all the effective prior
conditional statements of s, thereby guaranteeing that s is always
reachable. If it finds an input that satisfies the target branch of s, it
runs the program on that input normally (without artificially fixing
branch choices). If this trace still reaches s and chooses the target
branch, it succeeds. Otherwise, it enters the backtrack phase. Dur-
ing this phase, it starts from s and then goes backward to fuzz each
of the effective prior statements of s in that order. When it fuzzes
one such statement r, it avoids mutating any byte that may flow
into s or any effective prior conditional statement of s that is af-
ter r. The process succeeds when the fuzzer successfully fuzzes all
of these effective prior conditional statements. Algorithm 2 shows
this algorithm.

Take the program in Figure 2 as an example. When we fuzz s on
Line 6, its effective prior conditional statements are on Line 3 and
2. Let the current input be x = 1,y = 1. Under this input, both
Line 2 and 3 take the true branch, and Line 6 takes the false branch.
Our goal is to take the true branch on Line 6. Using this strategy,
during the forward phase, the fuzzer mutates y while artificially

forcing the program to take the true branch on both Line 2 and 3.
If the fuzzer finds an assignment y = 2 to satisfy the true branch
of Line 6, but since x = 1,y = 2 does not satisfy Line 3, it enters
the backtracking phase. During this phase, it will first fuzz Line 3.
Although this line is affected by two values {x, y}, since y flows
into Line 6, the fuzzer will mutate x only. If it finds a satisfying
assignment x = 0, it tries to run the program with x = 0,y = 2
without artificially forcing branch choices. Since this input reaches
Line 3 and satisfies the target (true) branch, fuzzing succeeds.

By contrast, let us assume that the fuzzer finds a satisfying as-
signment y = 3 when fuzzing Line 6. During the backtrack phase,
when fuzzing Line 3, since it can mutate only x, it cannot find a
satisfying assignment. Therefore, fuzzing of s fails.

3.5.3 Joint optimization for both reachability and satisfiability. Both
strategies in Section 3.5.1 and Section 3.5.2 search for a solution to

one constraint at a time. Section 3.5.1 mutates only the input bytes

that will not make the target conditional statement unreachable,

while Section 3.5.2 tries to satisfy the target conditional statement

and its effective prior conditional statements one at a time. How-
ever, they fail to find a solution where we must jointly optimize

multiple constraints.

Let s be the target conditional statement. Let fj(x) < 0,Vi €
[1, n] represent the constraints of the effective prior conditional
statements of s, and f,(x) < O represent the constraint of s. x is
a vector representing the input bytes. Table 2 shows how to trans-
form each type of comparison to f < 0. Our goal is to find an x that
satisfies all f;(x) < 0,i € [0, n]. Note that each f;(x) is a blackbox
function representing the computation on the input x by the ex-
pression in the conditional statement i. Since the analytic form of
fi(x) is unavailable, many common optimization techniques, such
as Lagrange multiplier, do not apply.

We propose a solution to the optimization problem. Define

g(x) = > R(fi(x)) (1)
i=0

where the rectifier R(x) = 0 V x (the binary V operator out-
puts the larger value of its operands). Therefore, g(x) = 0 only
if fi(x) = 0,Vi € [0,n]. In other words, we combined the n op-
timizations into one optimization. Now we can use the gradient
descent algorithm, similar to the one used by Angora, to find a so-
lution to g(x) = 0. Note that when we compute the gradient of
g(x) using differentiation, we need to artificially keep the branch
choices of the effective prior conditional statements of s to ensure
that s is reachable.

Let us revisit the program in Figure 2. Let [x,y] = [1, 3] be the
initial input. When we fuzz the target conditional statement s on
Line 6 to explore the true branch, we cannot solve the branch con-
straint by mutating only y. Using joint optimization, we combine
the branch constraints of s and its effective prior conditional state-
ments on Line 3 and 2 to construct (by Equation 1 and Table 2):

g([x,y]) =R(x-2+4+¢€)+R(x+y-3+¢€)+R(1-y+e)

where € = 1. On the initial input [x,y] = [1,3], g([x,y]) = 2.
Using gradient descent, we will find a solution to g([x,y]) = 0
where [x,y] = [0, 2].



Table 2: Transform a predicate into a function such that the
predicate is satisfied when the function is non-positive. € is
the smallest positive value of the type for a and b. For inte-
gers, e = 1.

Predicate  f()

a<b a-b+e
a<b a—b
a>b b-a+e
a=b b-a
a=b abs(a — b)
a#b —abs(a-b)+e
1| void bar(int y, int z) {
2 int k = 0, n = 0;
3 if (z —y == 56789) {
4 k =1; n=1;
5 }
6 if (k == 1) {
7 if (z == 123456789) { .... }
8 3
9}
10
11| void foo(int x, int y, int z) {
12 void (xfun_ptr)(int, int) = NULL;
13 if (z — x == 12345) {
14 fun_ptr = &bar;
15 } else {
16 fun_ptr = &other_fn;
17 }
18 (xfun_prt)(y, z);
19|}

Figure 4: A program showing implicit control and taint flow
dependencies

3.6 Detect implicit effective prior conditional
statements

The mutation strategies in Section 3.5 may fail if we cannot find all
the control flow and taint flow dependencies among conditional
statements. Section 3.3 and Section 3.4 described algorithms for
finding all the explicit control flow and taint flow dependencies,
respectively. However, they are unable to find implicit flows. Fig-
ure 4 shows such an example. The conditional statement on Line 13
causes an implicit taint flow into fun_ptr in function foo, which
then implicitly determines the control flow whether the program
will call the function bar or other_fn. Also, Line 3 causes an im-
plicit taint flow into the variable k, whose value will determine the
value of the predicate on Line 6. Therefore, both the conditional
statements on Line 13 and Line 3 should be effective prior con-
ditional statements for the target statement on Line 7. However,
since the taint flow is implicit, the algorithms in Section 3.4 can-
not find them.

Implicit taint flows may be identified using control flow graphs [23].

If a predicate is tainted, then the method taints all the variables that

get new values in either branch of the conditional statement. For
byte-level taint tracking, this method adds the taint label of the
predicate to each of the above variables. For example, consider the
predicate on Line 3 in Figure 4. Since the variables k and n are as-
signed new values in a branch of this conditional statement, this
method adds the taint label of the predicate (i.e., the taint label of
the variable y) to the variable k and n. However, this method often
results in over taint or taint explosion, because it may add taint
labels that will be useless to the analysis. For example, in the ex-
ample above, while the taint label added to the variable k captures
the implicit taint flow dependency from Line 3 to Line 6, the taint
label added to the variable n is useless because it does not help
identify new taint flow dependencies between conditional state-
ments. Even worse, these useless taint labels will propagate further
to other parts of the program, resulting in taint explosion.

We propose a novel approach to identify implicit control flow
and taint flow dependencies between conditional statements with-
out incurring either huge analysis overhead or taint explosion. The
insight is that rather than identifying all the implicit flows, we need
to identify only those that cause the target conditional statement
to become unreachable during input mutation. Let s be the target
conditional statement that was reachable on the original input but
became unreachable on the mutated input. We run the program
twice. First, we run the program on the original input and record
the branch choices of all the conditional statements on the path
before s. Then, we run the program on the mutated input with a
special handling: when we encounter a conditional statement, we
record its branch choice but force it to take the branch choice as in
the previous run (on the original input). Therefore, the paths of the
two runs have the same sequence of conditional statements. We ex-
amine all the conditional statements on the path from the start of
the program to s in the reverse chronological order. For each such
statement ¢, if it is not already an explicit effective prior statement
identified by the algorithms in Section 3.4 and if its branch choices
in the first run (on the original input) and the second run (on the
mutated input) differ, it has a potential control flow or taint flow
dependency with s. To test whether this dependency truly exists,
we run the program on the mutated input with a special handling:
we force all the following conditional statements to take the branch
choice as in the first run:

(1) all the conditional statements before t on the path
(2) all the explicit effective prior conditional statements
(3) all the implicit effective prior conditional statements

If the program no longer reaches s, then ¢ truly has implicit con-
trol flow or taint flow dependency with s, and we mark it as an
implicit effective prior conditional statement of s.

The complexity of this algorithm is linear in the number of con-
ditional statements before s that are affected by the mutated bytes
but are not control-flow-wise dependent on s. However, since Ma-
tryoshka mutates inputs by gradient descent on a small proportion
of the input, the number of statements we should test is likely to
be few.

4 IMPLEMENTATION

We implemented Matryoshka in 8672 lines of Rust, and 1262 lines
of C++ for LLVM pass. We borrowed from Angora the code for



byte-level taint tracking and for mutating the input by gradient de-
scent [3]. When computing intraprocedural post dominator trees,

Matryoshka uses LLVM’s function pass PostDominatorTreeWrapper

Pass [24].

5 EVALUATION

We evaluated Matryoshka in three parts. In the first part, we com-
pared Matryoshka with nine other fuzzers on the LAVA-M data
set [14]. Next, we compared Matryoshka with three other most rep-
resentative fuzzers on 13 open source programs. Finally, we eval-
uated how Matryoshka’s ability to solve nested constraints con-
tributes to its impressive performance.

We ran our experiments on a server with two Intel Xeon Gold
5118 processors and 256 GB memory running 64-bit Debian 10.%
Even though Matryoshka can fuzz a program using multiple cores
simultaneously, we configured it to fuzz the programs using only
one core during evaluation. We ran each experiment five times and
reported the average performance.

5.1 Comparison on LAVA-M

LAVA-M consists of four programs with a large number of injected
but realistic looking bugs [14]. It has been widely used for evaluat-
ing fuzzers. However, it is approaching the end of its shelf life as
the state of the art fuzzers (Angora and REDQUEEN) were able to
find almost all the injected bugs in LAVA-M. While LAVA-M can-
not show that Matryoshka advances the state of the art, it can show
whether Matryoshka is at the state of the art.

Table 3 compares the number of bugs found by 10 fuzzers. Ma-
tryoshka and REDQUEEN are the best: they both found almost all
the listed bugs in LAVA-M.

5.2 Comparison on 13 open source programs

We compared Matryoshka with AFL, QSYM and Angora by line
and branch coverage. We ran them on 13 open source programs
shown in Table 4. We chose these programs because eight of them
were used for evaluating Angora, and the rest were used frequently
for evaluating other fuzzers.

5.2.1 Program coverage and efficiency. We compared line and branch
coverage of AFL (1 Master + 1 Slave), Angora (+1 AFL Slave), QSYM
(+ 1 AFL Slave) with and without optimistic solving, and Matryoshka
(+1 AFL Slave). Table 5 shows the coverage after running AFL,
Angora, QSYM, QSYM with optimistic solving disabled, and Ma-
tryoshka on two CPU cores for 24 hours (one core for AFL slave).
Matryoshka outperformed AFL, QSYM, and Angora on all the pro-
grams, except on xmlwf, mutool, and tiff2ps where Matryoshka
had similar performance with Angora. Matryoshka’s advantage
shines the most on xmllint, where Matryoshka increased line and
branch coverage by 16.8% and 21.8%, respectively, over Angora, the
fuzzer with the next highest coverage.

Figure 5 compares the cumulative line and branch coverage by
AFL, Angora, and Matryoshka on the program readpng over time.

5Matryoshka does not need that much amount of memory. We also successfully fuzzed
all the programs on our laptop with only 8 GB memory.

®Matryoshka and REDQUEEN also found several unlisted bugs, which the LAVA-M
authors injected but were unable to trigger. Table 10 shows the IDs of unlisted bugs.

Matryoshka covered more lines and branches than QSYM and An-
gora at all time, thanks to its ability to solve nested conditional
statements.

The goal of coverage-based fuzzers is to increase coverage, as
measured by cumulative line and branch coverage. By contrast, the
number of tests generated and executed by the fuzzer per second
has no correlation with either line or branch coverage across dif-
ferent fuzzers, because smart fuzzers may generate fewer tests but
the tests are much more effective in triggering new branches.

5.2.2  Bug analysis, verification, and classification. Besides all the
inputs that crashed the program during fuzzing, we also ran Ad-
dressSanitizer(ASAN) [31] on all the seeds found by Matryoshka
and saved the inputs where ASAN reported errors. Then, we dedu-
plicated the crashes by AFL’s af1-cmin -C command.

We manually verified all the crashes and classified them into
unique bugs shown in Table 6. Matryoshka found a total of 41
unique bugs in seven programs (it found no bugs in the rest six
programs). We have reported all the bugs to the developers and 12
of them have been assigned CVE IDs.

5.3 Novel features of Matryoshka

We evaluated the key novel feature of Matryoshka: its ability to
solve constraints involving nested conditional statements.

5.3.1 Solved constraints. On each program and given the same
seeds, the constraints that Matryoshka can solve is a superset of
the constraints that Angora can solve. This is because for each con-
straint, Matryoshka will first try to solve it using Angora’s method.
If it fails, then Matryoshka will start to use the methods in Sec-
tion 3. We evaluated which constraints unsolved by Angora could
be solved by Matryoshka. To eliminate the impact of randomness
on the fuzzers, we collected the inputs generated by AFL and fed
them as the only seeds to both Angora and Matryoshka. In other
words, we discarded the new seeds generated by Angora and Ma-
tryoshka during fuzzing, respectively. We ran Matryoshka using
three different mutation strategies described in Section 3.5 for five
hours: prioritize reachability (Section 3.5.1), prioritize satisfiability
(Section 3.5.2), and joint optimization (Section 3.5.3).

Table 7 shows the number of constraints that Matryoshka could
solve but Angora could not. The table shows that Matryoshka could
solve as few as 172 and as many as 1794 new constraints (that
were unsolvable by Angora) per program. This demonstrates the
effectiveness of the algorithms in Section 3. Table 8 compares Ma-
tryoshka’s three strategies for solving constraints described in Sec-
tion 3.5. The strategy prioritizing satisfiabily was the most effec-
tive, but there were constraints that this strategy could not solve
but others could. The strategy prioritizing reachability was effec-
tive on jhead and size, and the joint optimization strategy was ef-
fective on readpng.

Figure 6 compares the cumulative constraints solved by each in-
dividual strategy over five hours on the program size. We can see
that the strategies prioritize reachability (PR) and prioritize satis-
fiability (PS) contribute greatly to the the number of constraints
solved early on in fuzzing, while joint optimization (JO) solves con-
straints slowly but continues to grow later on when the other two
strategies have reached their respective plateaus.



Table 3: Bugs found on the LAVA-M data set by different fuzzers

Listed Bugs found by each fuzzer
Program
bugs  AFL FUZZER SES VUzzer Steelix QSYM  NEUZZ REDQUEEN Angora Matryoshka
uniq 28 9 7 0 27 7 28 29 29 29 29
base64 44 0 7 9 17 43 44 48 48 48 48
md5sum 57 0 2 0 Fail 28 57 60 57 57 57
who 2136 1 0 18 50 194 1238 1582 2462 1541 2432
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(a) Line coverage

(b) Branch coverage

Figure 5: Cumulative line and branch coverage on readpng by AFL, QSYM, Angora, and Matryoshka in 24 hours

Table 4: Programs used in evaluation in Section 5.2

Program Version Argument Size (kB)
djpeg(ijg) v9c 859
file commit-6367a7c9b4 781
jhead 3.03 205
mutool(mupdf) commit-08657851b6  draw 39682
nm(binutils) commit-388a192d73 -C 6659
objdump(binutils) commit-388a192d73 -x 9357
readelf(binutils) commit-388a192d73 -a 2119
readpng(libpng)  commit-0a882b5787 1033
size(binutils) commit-388a192d73 6597
tepdump(libpacp)  commit-e9439e9b71  -nr 6022
tiff2ps(libtiff) commit-a0e273fdca 1517
xmllint(libxml2)  commit-d3de757825 6862
xmlwf{expat) commit-9f5bfc8d0a 785

Figure 1 shows an example where Angora could not reach the
false branch of Line 6 but Matryoshka could. This is because when
Angora mutated buffer[@] to satisfy the false branch of Line 6,
it caused the CRC check on Line 4 to fail, so the function never
reached Line 6. Using the strategy for prioritizing satisfiability, Ma-
tryoshka first found an assignment to buffer[@], either 1 or 2, to
reach the false branch of Line 6. Then, it backtracked to the prior
conditional statement on Line 4. Through byte-level taint analysis,
Matryoshka learned that all the input bytes flowed into Line 4, but

Constraints solved by strategy

------ \----\----\---\--- | | |
00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00
Time (HH:MM)
Prioritize reachability = += = Joint optimization = = =
Prioritize satisfiability =— — All strategies

Figure 6: Cumulative constraints solved by Matryoshka’s
three strategies, respectively, in five hours on the program
size. All strategies means trying prioritizing reachability,
prioritizing satisfiability, and joint optimization, in that or-
der until the constraint is solved.

since buffer[@] also flowed into Line 6, this strategy directed Ma-
tryoshka to keep buffer[@] fixed but to freely mutate all the bytes.
Using gradient descent, Matryoshka found an input that satisfied
the false branch of Line 4.

"The reason why gradient descent helped Matryoshka to find a solution on Line 4
is that the CRC value itself was in the input. Therefore, gradient descent found that
the objective function had a constant partial derivative with regard to the input bytes



Table 5: Comparison of coverage between AFL, QSYM, Angora and Matryoshka

Line coverage

Branch coverage

Program

¢ AFL M Angora Matryoshka  AFL oM Angora Matryoshka

opton opt off opton opt off

djpeg 5951 5994 5967 5900 6144 1915 1899 1910 1855 2123
file 2637 3098 2799 3179 3277 1746 2073 1887 2102 2284
Jjhead 399 761 756 903 948 218 445 440 538 571
mutool 5247 5557 5493 5631 5694 2177 2429 2366 2495 2550
nm 4766 6002 5390 6261 6964 2765 3314 3122 3452 3866
objdump 3904 6380 5678 7906 8076 2291 3190 3090 4263 4297
readelf 7792 8357 7906 10203 11245 5810 5645 5863 7243 7993
readpng 1643 2047 1723 2027 2187 903 1142 956 1161 1278
size 3299 4960 3845 5332 5445 1937 2438 2222 2893 2965
tcpdump 13000 12485 13362 13691 13992 7455 7025 7630 8004 8210
tiff2ps 5193 4892 5054 5303 5291 3217 3048 3109 3325 3304
xmllint 5804 6221 6058 6516 7611 4877 5334 5129 5786 7045
xmlwf 4850 4732 4684 5011 5019 1965 1920 1886 2042 2041

Table 6: Classification of verified bugs found by Matryoshka.
SBO: stack buffer overflow; HBO: heap buffer overflow;
OOM: out of memory; OBR: out of bound read.

Program Number of bugs
SBO HBO OOM OBR Total

file 4 4
jhead 2 15 6 23
nm 1 1 2
objdump 3 1 4
size 1 1 2
readelf 4
tiff2ps 1 1 2

5.3.2  Effective prior conditional statements. A key insight that al-
lows Matryoshka to solve nested constraints effectively is that it

identifies effective prior conditional statements, whose branch choices

may cause the target conditional statement to become unreachable,
and solves a constraint that consists of only those statements, in-
stead of all the prior conditional statements on the path as done
in traditional symbolic execution. Table 9 compares the average
number of effective prior conditional statements vs all prior con-
ditional statements. It shows that the effective prior conditional
statements account for a very small fraction of all the prior condi-
tional statements (less than 5% on 11 programs, and less than 10%
on all the 13 programs). This fact significantly reduces the complex-
ity of the path constraints that Matryoshka solves and increases
the likehood that the constraints can be solved.

containing the CRC value, so it directed Matryoshka to mutate those input bytes to
reduce the objective function to zero.

Table 7: Constraints unsolved by Angora, and nested con-
straints unsolved by Angora but solved by Matryoshka

Unsolved by Solved by % of nested
Program Angora Matryoshka constraints
All Nested Nested solved
djpeg 1889 1700 345 20.3%
file 610 527 172 32.6 %
Jjhead 4923 2853 316 11.1%
mutool 1883 1523 249 16.3%
nm 2564 2162 408 18.9%
objdump 4418 4000 377 94 %
readelf 4012 3375 621 18.4 %
readpng 5353 5033 1170 23.2%
size 4359 3830 593 155%
tecpdump 4343 4079 1794 44.0 %
tiff2ps 8923 6564 330 5.0%
xmllint 1838 1437 271 18.9%
xmlwf 5233 5033 301 6.0 %

6 DISCUSSION

6.1 Comparison with concolic execution

We compare Matryoshka with QSYM while its last branch solving

is disabled. This directly compares the effectiveness of Matryoshka’s
optimization strategies to that of a concolic execution engine. Ta-
ble 5 shows that Matryoshka performs better than QSYM in all the

statistics. This demonstrates that prioritizing reachability, satisfia-
bility, and joint optimization can be used on most path constraints

effectively without having to resort to concolic execution.



Table 8: Constraints solved by prioritizing reachability (PR,
Section 3.5.1), prioritizing satisfiability (PS, Section 3.5.2),
and joint optimization (JO, Section 3.5.3).

Constraints solved by

Program PR PS 70
djpeg 1 305 72
file 5 163 11
jhead 172 243 60
mutool 1 247 12
nm 30 321 78
objdump 47 343 53
readelf 2 573 86
readpng 0 1043 313
size 231 414 56
tepdump 20 1742 59
tiff2ps 10 323 16
xmllint 1 252 31
xmlwf 1 253 97

Table 9: Number of average effective prior conditional state-
ments vs. all prior conditional statements

Average prior conditional statements

Program
Effective All Effective/all

djpeg 2169  1217.98 1.8%
file 22.27 345.25 6.5%
Jjhead 16.81 2425.00 0.7 %
mutool 20.08 2087.80 1.0%
nm 27.93 842.54 33%
objdump 23.93 493.24 4.9 %
readelf 7.23 2498.21 0.3%
readpng 21.18 859.02 2.5%
size 21.72 469.46 4.6 %
tepdump 2626 268.52 9.8%
tiff2ps 3044  1747.16 1.7%
xmllint 11.80 502.39 23%
xmlwf 5.88 655.31 0.9%

6.2 Unsolved constraints

6.2.1 Unsatisfiable constraints. Some constraints are unsatisfiable.
Figure 7 shows an example in readpng. The program calls png_check
_chunk_name before calling png_format_buffer. png_check_chunk
_name checks if the character is alphanumerical on Line 7. If not,
it exits with an error. But later png_format_buffer checks the
character again on on Line 20, so the false branch of this line is
unsatisfiable.

6.2.2 Taint lost in propagation. Section 3.4 uses the results from
byte-level taint tracking to determine the taint flow dependency be-
tween nested conditional statements. Similar to Angora, Matryoshka
also extended DFSan [27] to implement byte-level taint tracking,
but neither of the two is able to track taint flows through external
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// pngrutilc.c
void
png_check_chunk_name (png_const_structrp png_ptr,
const png_uint_32 chunk_name) {
for (i=1; i<=4; ++i) {
if (¢ <65 || ¢ > 122 ||
(c > 90 && ¢ < 97))
png_chunk_error (png_ptr,
"invalid chunk type”);

¥

// pngerror.c 445

void

png_format_buffer(png_const_structrp png_ptr,
png_charp buffer,
png_const_charp error_message) {

i%.(isnonalpha(c) =9 { ...}

Figure 7: An example with an unsatisfiable constraint. The
false branch on Line 20 is unsatisfiable because it is pre-
cluded by an earlier check on Line 7.

libraries. We manually modeled the taint flow in common external
libraries for Matryoshka, but this is in no way comprehensive.

6.2.3  Program crashing when applying the strategy for prioritizing
satisfiability and joint optimization. When mutating the input us-
ing the strategy for prioritizing satisfiability (Section 3.5.2) and
joint optimization (Section 3.5.3), Matryoshka artificially keeps the
branch choices of prior conditional statements. This may cause the
program to crash. For example, a conditional statement may serve
to prevent the program from accessing data out of bound. If we mu-
tate the length of the data but artificially keep the branch choice
of the conditional statement, the program may access data out of
bound and crash.

6.2.4 Difficult joint constraints. The joint optimization strategy is
the last resort for mutation. We examined the conditional state-
ments that have at least one effective prior conditional statement
in the program tiff2ps and found that they have on average 30 such
prior statements in Table 9. It is difficult to solve such a complex
joint constraint.

6.2.5 Constraint dependent on order of branches. On xmlwf, Ma-
tryoshka and Angora reached similar branches. The unreached bra-
nches are guarded by predicates that can only be solved through a
specific combination of other branch choices, a situation that none
of the fuzzers we tested are designed to handle. These situations
are commonly seen in parser logic, where a conditional statement
checks the internal state of the parser, while the current state de-
pends on the order of the branches reached.



6.3 Other limitations of Matryoshka

6.3.1 Design limitations. Matryoshka’s branch counting method
is derived from AFL’s, a coarse grained method that can only pro-
vide limited information about the program’s internal state. This is
to maintain compatibility with AFL and AFL-like fuzzers for syn-
chronization, but leads to issues such as those mentioned in Sec-
tion 6.2.5.

6.3.2 Implementation limitations. The current implementation of
Matryoshka requires source code because we use compile-time in-
strumentation. We could overcome this limitation by instrument-
ing the executables. Matryoshka’s taint tracking uses byte-level
granularity as a balance between efficiency and accuracy, as bit-
level taint tracking would require significantly more memory and
computing power. Section 6.2 described other implementation lim-
itations.

7 RELATED WORK

7.1 Solving complicated constraints

Symbolic execution has the potential to solve complex constraints [8,
10] and is used in fuzzing [18, 19, 11, 26, 4, 34, 28, 37, 41]. One ex-
ample is Driller, which uses symbolic execution only when the co-
running AFL cannot progress due to complicated constrains [34].
Steelix [26] and REDQUEEN [4] detect magic bytes checking and
infer their input offsets to solve them without taint analysis. T-Fuzz
ignores input checks in the original program and leverages sym-
bolic execution to filter false positives and reproduce true bugs [28].
TaintScopre fixs checksum values in the generated inputs using
symbolic execution [37]. In T-Fuzz and TaintScope, input checks
and checksum checks are complex constraints. However, symbolic
execution faces the challenges of path explosion and scalability [9,
33]. QSYM uses fast concolic execution to overcome the scalabil-
ity problem, but similar to Angora, it solves only the constraint of
the target conditional statement without considering any nesting
relationships between other conditional statements [41]. By con-
trast, Matryoshka finds all those nesting conditional statements
and searches for an input that satisfies all of them.

7.2 Using control flow to guide fuzzing

Run-time control flow can contain information useful for guiding
fuzzing [30, 28, 37, 13, 25, 6, 12, 40, 16]. VUzzer uses control flow
information to prioritize inputs that may explore deep code blocks
but that do not lead to error handling codes [30]. Angora prioritizes
fuzzing on unexplored branches [13]. AFLGo and Hawkeye mea-
sure the distance between the seed input and the target location in
the control flow graph, and minimizes the distance in fuzzing [6,
12]. T-Fuzz [28] and TaintScope [37] use control flow features to
find sanity checks and checksum checks, respectively. After that,
they remove these checks to cover more code.

FairFuzz identifies the “rare branches” exercised by few inputs
using control flow information and schedules the fuzzer to gener-
ate inputs targeting the “rare branches” [25]. If a path constraint
does not exhibit taint flow dependencies on the “rare branches”,
FairFuzz can solve them efficiently similar to QSYM and Angora.
Otherwise, the input bytes flowing into the path constraint will

not be included in the mutation mask, e.g. nested conditional state-
ments, and FairFuzz will experience difficulties while solving it.

Post dominator trees [1] were used to determine control flow
dependencies [15]. Xin et al.[38] proposed a method to capture
both intraprocedural and interprocedural control dependencies ef-
ficiently based on post-dominator trees. The method inserts code at
the point before each conditional statement(BRANCHING) and the
head of its immediate post dominator block(MERGING). Similarly,
Matryoshka proposes an equivalent approach without the injec-
tions at the MERGING, which is more efficient in our case of finding
all the prior conditional statements.

SYMFUZZ [11] uses control dependencies to infer input bit de-
pendencies and use it to find an optimal mutation ratio for fuzzing.
Under this method, nested conditional statements will introduce
more complex input bit dependencies. SYMFUZZ utilizes this in-
formation to reduce mutation ratio for fuzzing, which is incapable
of solving nested conditional statements efficiently.

7.3 Using taint tracking to guide fuzzing

Taint tracking can locate which input bytes flow into the security-
sensitive code that may trigger bugs [17, 5, 21]. VUzzer [30] is
an application-aware fuzzer that uses taint analysis to locate the
position of “magic bytes” in input files and assigns these “magic
bytes” to fixed positions in the input. VUzzer can find “magic bytes”
only when they appear continuously in the input. TIFF [22] is an
improvement over VUzzer, using in-memory data structure iden-
tification techniques and taint analysis to infer input types. An-
gora [13] tracks the flow of input bytes into conditional statements
and mutates only those bytes. Matryoshka uses the same technique
to identify relevant bytes in the input. Taintscope [37] uses taint
tracking to infer checksum-handling code and bypasses these chec-
ks using control flow alteration since these checks are hard to sat-
isfy when mutating the input. T-Fuzz [28] detects complex checks
without taint tracking. Both approaches use symbolic execution to
generate valid input that would solve target constraints. Checksum-
handling code is an classic example of nesting conditional state-
ments: the code that uses the value is nested under the conditional
statement that verifies the checksum. Matryoshka is able to handle
such code naturally.

DTA++ allows dynamic taint analysis to avoid under-tainting
when implicit flows occur in data transformations[23]. It locates
culprit implicit flows that cause the under-tainting through binary
search and generates rules to add additional taint for those con-
trol dependencies only. However, the method may result in over-
tainting. Matryoshka proposes an efficient approach that can avoid
over-tainting when determining taint flow dependencies among
conditional statements.

7.4 Using machine learning to guide fuzzing

Both Angora and Matryoshka view solving constraints as a search
problem and take advantage of commonly used search algorithms
in machine learning. Skyfire [36] learns a probabilistic context-
sensitive grammar (PCSG) from existing samples and leverages the
learned grammar to generate seed inputs. Learn & Fuzz [20] first at-
tempts to use a neural network to automatically generate an input
grammar from sample inputs. Instead of learning a grammar, Rajal



et al. use neural networks to learn a function to predict the promis-
ing input bytes in a seed file to perform mutations [29]. Konstantin
et al. formalizes fuzzing as a reinforcement learning problem using
the concept of Markov decision processes and constructs an algo-
rithm based on deep Q-learning that chooses high reward actions
given an input seed [7]. NEUZZ [32] uses a surrogate neural net-
work to smoothly approximate a target program’s branch behav-
ior and then generates new input by gradient-guided techniques
to uncover new branches.

7.5 Fuzzing without valid seed inputs

SLF [39] fuzzes programs without requiring valid inputs. It groups

input bytes into fields where a field consists of consecutive bytes

that affect the same set of checks. Then, it correlates checks whose

predicates are affected by the same field. Finally, it uses a gradient-
based method to mutate the fields to satisfy all the correlated checks.
Atahighlevel, SLF’s approach is comparable to Matryoshka s strat-
egy of prioritizing satisfiability (Section 3.5.2). The differences be-
tween Matryoshka and SLF are as follows. First, Matryoshka uses

dynamic taint tracking to determine the bytes that flow into a pred-
icate, while SLF uses probing. During probing, the SLF must flip

each input byte individually, so if the input has n bytes, then the

program must run n times. In contrast, dynamic taint tracking runs

the program only once. Second, SLF determines the correlation

between two checks based on their common input fields. How-
ever, this ignores their control flow flow dependency and may find

unnecessary correlations. In contrast, Section 3.3 describes how

Matryoshka determines the prior checks that the current check

depends on by control flow. Third, SLF classifies some common

checks into several categories and applies category-specific strate-
gies effectively. For example, SLF can test offset/count of certain

fields. By contrast, Matryoshka needs no prior knowledge of the

types of checks and handles all checks uniformly. Finally, besides

the strategy of prioritizing satisfiability, which is comparable to

SLF’s strategy, Matryoshka also provides the strategies of priori-
tizing reachability and of joint optimization. Table 8 shows that

these three strategies are complementary: together they can solve

many more constraints than any single one of them can.

8 CONCLUSION

Deeply nested branches present a great challenge to coverage-based
fuzzers. We designed and implemented Matryoshka, a tool for fuzzing
deeply nested conditional statements. We proposed algorithms for
identifying nesting conditional statements that the target branch
depends on by control flow and taint flow, and proposed three
strategies for mutating the input to solve path constraints. Our
evaluation shows that Matryoshka solved more constraints and in-
creased line and branch coverage significantly. Matryoshka found
41 unique new bugs in 13 open source programs and obtained 12
CVEs.
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APPENDIX

Table 10: IDs of bugs injected but unlisted by LAVA, because the LAVA authors were unable to trigger them when preparing
the data set. Matryoshka found these bugs.

Program IDs of bugs unlisted by LAVA-M but found by Matryoshka

uniq 227

base64 274,521, 526, 527

md5sum -

who 2,4,6, 8,12, 16, 20, 24, 55, 57, 59, 61, 63, 73, 77, 81, 85, 89, 117, 125, 165, 169, 173, 177, 181, 185, 189, 193,

197, 210, 214, 218, 222, 226, 294, 298, 303, 307, 312, 316, 321, 325, 327, 334, 336, 338, 346, 350, 355, 359, 450
454, 459, 463, 468, 472, 477, 481, 483, 488, 492, 497, 501, 504, 506, 512, 514, 522, 526, 531, 535, 974, 975, 994,
995, 996, 1007, 1026, 1034, 1038, 1049, 1054, 1071, 1072, 1329, 1334, 1339, 1345, 1350, 1355, 1361, 1377, 1382
1388, 1393, 1397, 1403, 1408, 1415, 1420, 1429, 1436, 1445, 1450, 1456, 1461, 1718, 1727, 1728, 1735, 1736,
1737, 1738, 1747, 1748, 1755, 1756, 1891, 1892, 1893, 1894, 1903, 1904, 1911, 1912, 1921, 1925, 1935, 1936
1943, 1944, 1949, 1953, 1993, 1995, 1996, 2000, 2004, 2008, 2012, 2014, 2019, 2023, 2027, 2031, 2034, 2035
2039, 2043, 2047, 2051, 2055, 2061, 2065, 2069, 2073, 2077, 2079, 2081, 2083, 2085, 2147, 2181, 2189, 2194
2198, 2219, 2221, 2222, 2223, 2225, 2229, 2231, 2235, 2236, 2240, 2244, 2246, 2247, 2249, 2253, 2255, 2258
2262, 2266, 2268, 2269, 2271, 2275, 2282, 2286, 2291, 2295, 2302, 2304, 2462, 2463, 2464, 2465, 2466, 2467
2468, 2469, 2499, 2500, 2507, 2508, 2521, 2522, 2529, 2681, 2682, 2703, 2704, 2723, 2724, 2742, 2790, 2796,
2804, 2806, 2810, 2814, 2818, 2823, 2827, 2834, 2838, 2843, 2847, 2854, 2856, 2915, 2916, 2917, 2918, 2919
2920, 2921, 2922, 2974, 2975, 2982, 2983, 2994, 2995, 3002, 3003, 3013, 3021, 3082, 3083, 3099, 3185, 3186
3187, 3188, 3189, 3190, 3191, 3192, 3198, 3202, 3209, 3213, 3218, 3222, 3232, 3233, 3235, 3237, 3238, 3239,
3242, 3245, 3247, 3249, 3252, 3256, 3257, 3260, 3264, 3265, 3267, 3269, 3389, 3439, 3443, 3464, 3465, 3466
3467, 3468, 3469, 3470, 3471, 3487, 3488, 3495, 3496, 3509, 3510, 3517, 3518, 3523, 3527, 3545, 3551, 3561,
3939, 4224, 4287, 4295
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