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Abstract
Firefly is an untethered multi-user virtual reality (VR) sys-

tem for commodity mobile devices. It supports more than 10
users to simultaneously enjoy high-quality VR content using a
single commodity server, a single WiFi access point, and com-
mercial off-the-shelf (COTS) mobile devices. Firefly employs
a series of techniques including offline content preparation,
viewport-adaptive streaming with motion prediction, adaptive
content quality control among users, to name a few, to ensure
good image quality, low motion-to-photon delay, a high frame
rate at 60 FPS, scalability with respect to the number of users,
and fairness among users. We have implemented Firefly in
17,400 lines of code. We use our prototype to demonstrate, for
the first time, the feasibility of supporting 15 mobile VR users
at 60 FPS using COTS smartphones and a single AP/server.

1 Introduction

Virtual Reality (VR) has registered numerous applications. In
this paper, we focus on multi-user VR where multiple users
jointly participate in exploring a VR scene. This enables
many applications that single-user VR cannot support such as
team training, social VR, group therapy, collaborative product
design, and multi-user gaming.

We envision the following use case with more than 10
collocated users in a VR room. To start multi-user VR, each
user simply launches the app on her smartphone and plugs the
phone into a VR headset (e.g., a $50 Samsung Gear VR [18] or
even a $10 Google Cardboard [9] with a $6 VR controller [5]).
These mobile devices fetch the VR content from an off-the-
shelf server based on the users’ real-time motion. The devices
and the server communicate wirelessly over a single WiFi
access point (AP). The users can enjoy the high-quality VR
content as if it is rendered by a desktop PC with a powerful
GPU. Meanwhile, each user can see and possibly interact with
other users in the virtual world.

This paper aims at realizing the above ambitious use case.
We design and implement Firefly, a novel multi-user VR sys-
tem for mobile devices. The goals of Firefly are the following.
First, Firefly works with affordable, commercial off-the-shelf
(COTS) mobile devices, server, and AP. This helps reduce the
deployment cost and facilitate the “bring-your-own-device”
(BYOD) policies that many enterprises adopt today [6]. Sec-
ond, Firefly employs untethered, wireless VR to overcome the
inconvenience and trip hazards incurred by wired cables [19].

This is important for multi-user VR where multiple users’
cables may easily get intertwined. Third, Firefly offers high
content quality, low “motion-to-photon” (M2P) latency, and a
high frame rate. An M2P higher than 16ms can cause nausea
to VR users [11]. We target Quad HD (1440p) resolution, 60
frames per second (FPS) that can provide a good experience
even for fast-paced VR gaming – the most demanding VR
task [10]. Fourth, Firefly aims at supporting ∼15 users who
can form a sizeable group of, for example, co-workers, stu-
dents, and patients. To our knowledge, no existing system can
achieve this using a single commodity server and WiFi AP.
Recent work on multi-user VR only demonstrated 4 concur-
rent emulated users [47]. Fifth, Firefly allows complex VR
scenes with both background and dynamic foreground objects,
such as other users’ avatars that users can interact with.

The above goals pose multiple challenges. The CPU/GPU
power of a smartphone is at least one order of magnitude
lower than its desktop counterpart [57], not to mention the en-
ergy/heat constraints; the heterogeneity of their computational
capabilities should also to be taken into consideration; the
bandwidth offered by a single AP is limited for multiple users;
another key challenge is multi-user scalability, which calls
for strategic decisions of splitting the client-server workload,
as well as scalable approaches for rendering and distributing
the content. To address the above challenges, Firefly makes a
series of judicious design decisions as follows.
• Firefly performs one-time, offline content preparation by
enumerating, pre-rendering, and storing the views at all po-
sitions reachable in a virtual scene [27]. At runtime, given
a user’s position and viewing direction, the server directly
retrieves the stored high-quality content and delivers it to the
user. This completely eliminates the online rendering over-
head. Prior work [27] applies offline rendering to a single
mobile device for local VR scenes, while Firefly further ex-
tends this concept to networked multi-user VR where offline
rendering is found to be an indispensable mechanism ensuring
scalability (§3.1).
• To reduce the network bandwidth consumption, Firefly takes
a viewport-adaptive approach: each user only requests for the
content that the user is about to perceive based on motion pre-
diction. We conduct a thorough analysis of 25 human users’
motion traces collected from an IRB-approved user trial. The
results shed light on developing a lightweight yet effective
motion prediction approach for Firefly. In the literature, sev-
eral studies [24, 33, 39] have examined 360° video viewers’
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viewing patterns that only involve rotational movement (yaw
and pitch). Our study instead investigates generic VR users’
motion that consists of both the rotational and translational
viewport movement as well as their interplay (§3.2).
• Firefly supports Adaptive Quality Control (AQC), which
determines the content quality of each user based on the total
network bandwidth, the bandwidth available to each user,
and the amount of to-be-delivered content. AQC essentially
extends traditional video bitrate adaptation [40, 41, 51, 66]:
from handling a single client to multiple clients, from dealing
with regular videos to immersive VR content, and from being
invoked at the second level to the millisecond level to adapt to
users’ motion. These differences require AQC to be effective,
lightweight, fair, and scalable as reflected in our design (§3.4).
• Firefly handles dynamic foreground objects in a scalable
and adaptive manner. Specifically, objects’ 3D models are dis-
tributed to the clients offline. They are then rendered locally
by the client. This eliminates the uncertainty caused by the
network as well as the potential resource competition from
other users compared to a server-side approach. To prevent too
many objects appearing in the viewport from slowing down
client-side rendering, Firefly supports adaptively reducing the
objects’ fidelity to maintain a high FPS (§3.6).

Additionally, Firefly has integrated several system-level op-
timizations, such as motion prediction error toleration (§3.3),
client-side hierarchical cache (§3.5), and AP-assisted band-
width estimation (§4). Our implementation on commodity An-
droid/Linux platforms involves 17,400 lines of code. We con-
duct extensive evaluations using commercial VR scenes, real
users’ motion traces, and off-the-shelf smartphones/AP/server.
We highlight the evaluation results as follows (§5).
• Firefly achieves very low motion-to-photon delay (≤15ms
for 99% of the frames), low stall duration (around 1 second per
minute), a frame rate at 60 FPS, and fairness among the users
when supporting 15 concurrent users with a single server and
a single 802.11ac AP (§5.2).
• Firefly is adaptive to users dynamically joining and leaving
the system as well as network bandwidth changes (§5.4,§5.5).
• Firefly significantly outperforms existing systems. We ex-
tend Furion [44], a state-of-the-art single-user VR system
over WiFi, to support multi-user VR. Due to its more efficient
content fetching strategy, Firefly exhibits 18% higher median
FPS, 6.9× lower stall duration, and much higher content qual-
ity, compared to multi-user Furion (§5.2). We also use our
15-user dataset to evaluate MUVR [47], a very recently pro-
posed multi-user mobile VR framework. Through simulation,
we find that for 27% of the time, the MUVR server still needs
to perform online rendering for more than 5 devices. This
makes MUVR not scalable to many users (§5.6).
• Firefly incurs acceptable CPU, GPU, and memory usage.
When tested on 5 modern smartphones, after 25-minute VR
sessions, the battery life percentage drops by 4% to 8%, and
the devices’ temperature reaches no higher than 50°C (§5.7).

Firefly is to our knowledge the first system that can scale
untethered multi-user mobile VR. We make multi-fold contri-
butions in this work: (1) the design of Firefly, (2) the study of
real VR users’ motion, and (3) our prototype implementation
that demonstrates the support of 15 VR users at 60 FPS using
COTS smartphones and a single AP/server. With emerging
wireless technologies (e.g., 802.11ax and 5G), we believe that
Firefly has the potential to scale up to even more users.

2 Motivation and Overview

Firefly enables multiple users (10+) to simultaneously enjoy
high-quality VR at 60 FPS using commodity smartphones, a
single off-the-shelf server, and a single WiFi access point. We
consider three high-level architectural design options.

A Serverless Design does not involve a server, so all the VR
content is stored on users’ mobile devices, which also per-
form full-fledged rendering. Most of today’s commercial 3D
games and VR mobile apps use this approach. However, pre-
vious studies [27,44] indicate that today’s commodity mobile
devices are far from being powerful enough to perform heavy-
duty real-time rendering for high-quality VR. Other concerns
include excessive energy consumption and heat dissipation.

Server Performing Online Rendering. This design option
offloads the rendering task to an (edge) server, which per-
forms real-time rendering of the VR scene for all users based
on their positions and viewports. The rendered scenes are then
distributed to the users wirelessly as encoded video frames.
This approach has been adopted by a prior single-user, cloud-
assisted VR system [44]. It drastically reduces the client-side
overhead, but in the multi-user scenario, the rendering and
video encoding workload becomes too high for a single server
to handle. To illustrate this, we perform an H.264 encoding ex-
periment on a high-end workstation equipped with an Nvidia
GTX 1080 GPU. The achievable encoding performance is
92 FPS, 199 FPS, and 342 FPS for 4K, 2K, and 1080p reso-
lutions, respectively. This clearly cannot support 10+ users,
each requiring a frame rate of higher than 60 FPS.

Server Performing One-time, Exhaustive Offline Render-
ing. The server exhaustively enumerates all possible views
at all positions, renders them at a high quality, encodes them
into video frames, and saves the frames in the storage [27].
At runtime, the server simply retrieves and transmits the pre-
encoded frames based on each user’s position and viewport.
In this way, the rendering/encoding overhead at runtime is
completely eliminated, so the server can easily scale to tens
or even hundreds of simultaneous users. These benefits come
at the cost of high storage usage, which is largely not an issue
given the cheap storage today.

System Architecture. Firefly employs the third approach
given its good runtime performance and superior scalabil-
ity. Figure 1 plots the overall architecture. As shown, Firefly
consists of a content server and multiple commodity mobile
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Figure 1: The Firefly system architecture.

devices. They are wirelessly connected through a WiFi access
point (AP). This setup can be easily realized in enterprise
or home environments at a very low cost. Note that prior
work [27] applies offline rendering to a single mobile device
for local VR scenes, while Firefly further extends this concept
to networked multi-user VR where offline rendering is found
to be an indispensable mechanism ensuring the scalability.

The server consists of a content database that stores ren-
dered/encoded content indexed by a user’s position and view-
ing direction. The database is built by the Offline Rendering
Engine that performs the aforementioned exhaustive content
generation (§3.1). Another critical component is the AQC
module that is introduced to scale the system and to handle
the wireless bandwidth fluctuation. It determines in real-time
the content quality for each user. Designing AQC is challeng-
ing due to multiple requirements including boosting users’
QoE, maintaining good performance, ensuring scalability, and
achieving fairness. We detail its design in §3.4.

On the client side, there are two high-level design choices
on the content fetching strategy for background frames. First,
the client can prefetch all surrounding frames at every new vir-
tual position [44]. However, this technique may consume high
bandwidth with a considerable amount of wasted traffic (i.e.,
the fetched content is not viewed by the user, see our evalua-
tion in §5.2), making it infeasible for multi-user VR. Second,
to reduce the bandwidth footprint, the client can use its his-
torical motion trajectory to predict the future viewport and
to prefetch only the portions that will likely be consumed in
the near future. Firefly is the first to incorporate this viewport-
adaptative approach into generic VR using robust motion
prediction (§3.2,§3.3). The client also efficiently manages its
local cache (§3.5) and handles foreground dynamic objects in
an adaptive and scalable manner (§3.6).

3 System Design
3.1 Offline Rendering Engine
The offline rendering engine produces the content database.
The whole VR world is discretized into grids. At each grid
position that the user can reach, the rendering engine renders
a mega frame that captures the 360° panoramic view [28]
that the user can possibly perceive at a high quality. Firefly
uses Equirectangular projection [7] to generate the panoramic

representation, but other projection algorithms [8, 14, 67] can
also be applied. As shown in Figure 2, besides the color
frame (top), a mega frame also includes a panoramic depth
map (bottom) where the brightness of each pixel indicates its
distance from the user. The depth map will be used to ensure
the correct occlusion when overlaying foreground objects
such as avatars of other users onto the scene (§3.6).

We next apply the tiling technique [38, 53] by dividing
each mega frame into mega tiles. Each tile is independently
encoded and can be separately transmitted and decoded. The
rationale is that, since the user only sees a portion of the whole
panoramic scene at a given time, there is oftentimes no need
to fetch the entire mega frame. The mega tiles thus allow
users to (pre)fetch the content more adaptively at a finer gran-
ularity, to reduce the network bandwidth consumption. Note
that although viewport-adaptive tiling has been used in 360°
panoramic video streaming, applying this concept to generic
VR (in particular, multi-user VR) is new. The tiling scheme
requires the user to predict its viewport, i.e., to determine
which tiles to fetch based on the observed viewport trajectory,
as to be detailed in §3.2 and §3.3.

A decision we need to make is to determine the number
of tiles and their layout. While having more tiles provides
more bandwidth saving opportunities, in the meantime it in-
creases the decoding overhead and makes compression less
efficient. After carefully studying the above tradeoffs using
real users’ viewport trajectory data (§3.2), we decide to verti-
cally segment each mega frame into four mega tiles as shown
in Figure 2. We choose vertical segmentation because accord-
ing to our data collected from 25 users, users tend to keep their
sight vertically centered (i.e., looking at the equator) while
moving the viewport horizontally. This makes horizontal seg-
mentation at the equator (0° latitude) inefficient because the
vertically centered viewport will always overlap with at least
two tiles, i.e., one above and the other below the equator.

As described above, at each position, the offline rendering
engine renders four tiles capturing the panoramic view and
depth. Each tile is then independently encoded into video
frames with multiple quality levels. The rendered and encoded
tiles are stored in the content database, indexed by the user’s
grid position, the tile ID (1 to 4), and the quality level.

3.2 VR Viewport Movement:
Characterization and Prediction

Users’ motion makes VR immersive and interactive. In the lit-
erature, many studies have investigated users’ head rotational
movement when watching 360° videos [24, 33, 39]. Generic
VR differs from 360° videos in that it further involves trans-
lational movement. To our knowledge, no prior study has
comprehensively investigated VR users’ motion patterns and
their predictability, which are our focus here.

Collecting Viewport Movement Data from Real Users.
We conduct an IRB-approved user study involving 25 vol-
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Figure 2: Mega frame.
Figure 3: Users’ translational
trajectories (the Office scene).

Figure 4: Users’ translational
trajectories (the Museum scene).
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untary participants recruited from a large university. Among
the 25 users, 9 are female. The users are from 8 departments
as undergraduate (16), master (4), and Ph.D. students (5). Dur-
ing the study, each subject wears an Oculus Rift headset [15]
connected to a high-end PC. The subject can freely make
rotational movement by moving her head as well as perform
translational movement using the handheld controller.

We obtain two large VR scenes from the Unity store:
Office [16] (30m×26m) and Museum [13] (35m×30m, L-
shape). We then develop a custom VR system (different from
Firefly) that loads each scene for the users to explore. Our
system logs from each user the precise viewport trajectory.
We let each subject explore each scene in a random order for
5 minutes, with an arbitrarily long break allowed between the
two sessions. We will make our dataset publicly available.

Motion Trace Characterization. We now characterize the
unique dataset above to reveal VR users’ motion dynamics
and to provide insights for Firefly’s design. To begin with,
Figures 3 and 4 plot the translational movement trajectories
of all users, represented by different colors, for the two VR
scenes. As shown, in most locations, the users’ trajectories are
highly heterogeneous. This finding suggests that the server
should not use broadcast or multicast, simply because users
typically see different content at a given time.

Fast motion may cause difficulties for viewport prediction.
We thus quantify the users’ motion speed. The translational
movement speed is fixed at 1m/s (set based on reported ex-
periences from another user study) when the user presses the
controller button. Figure 5 plots the distributions of rotational
movement speed, calculated by sliding a 500ms window over
the trajectory, across all window positions for five randomly
selected users. As shown, the users exhibit different speeds,
whose medians range from 1.3°/s to 18.6°/s for yaw and from
0.5°/s to 7.0°/s for pitch. The median speed across all 25 users
is 10.2°/s and 2.4°/s for yaw and pitch, respectively. Interest-

ingly, such speeds match those for typical 360° users [53],
implying that translational movement does not necessarily
slow down the rotational movement.

Another challenging scenario is users’ sudden movement
after a stationary period. How often do stationary periods
(SPs) occur? Figure 6 plots the distributions of SP duration
per pause, which by our definition has to last at least 500ms.
Figure 7 plots the total SP duration per user. As shown, an SP
is typically short: 69% of translational SPs and 89% of rota-
tional SPs are shorter than 2 seconds. However, Figure 7 indi-
cates that they occur frequently: within a 5-min VR session,
a typical user spends 43 seconds (median) being stationary.
Such frequent SPs lead to bursty, non-continuous movement
patterns that pose difficulties for viewport prediction. To deal
with SPs, we design mechanisms such as conservative tile
scheduling (§3.3) and bandwidth reservation (§3.4). We also
find that translational and rotational SPs are not correlated,
i.e., a user is typically looking at a fixed direction while mov-
ing, or looking around while standing still. This motivates us
to separate the translational and rotational dimensions when
performing viewport prediction (see below).

Viewport (Motion) Prediction is required by the tiling
scheme (§3.1). We make two decisions regarding Firefly’s
viewport prediction scheme. First, we decide to run it distribu-
tively on client devices to make the server scalable. Second,
given the above measurement results, we predict each dimen-
sion separately (yaw/pitch for rotational movement and X/Y/Z
for translational movement), and then combine them into the
final predicted view. We find that this strategy greatly reduces
the computational complexity while achieving a decent accu-
racy – a desirable tradeoff we want to strike. Regarding the
actual algorithm, we continuously train a linear regression
(LR) model using the motion trajectory observed within a
history window of H milliseconds; we then use this model
to predict the future trajectory within a prediction window
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of P milliseconds before discarding the model. The simple
LR model is found to be very lightweight yet effective for
360° videos [53]; here we investigate its effectiveness for
generic VR motion prediction. Further improvement using
more powerful machine learning tools is our on-going work.
Ideally, P should be set to the duration of the entire tile pro-
cessing pipeline (form request being sent to tiles being de-
coded) plus some safety margin. Guided by this, we set P to
150ms based on empirical profiling. We set H to 50ms based
on cross-validating different values of H, which is found to
not qualitatively impact the prediction accuracy. Note that
when integrated with Firefly, the prediction is performed in
an online manner: at runtime, Firefly continuously (1) trains
a linear regression model based on the motion trajectory ob-
served within a window (H), (2) uses this model to predict
the viewport, and (3) discards this model immediately.

Figure 8 and 9 plot the prediction results for transla-
tional and rotational movement, respectively, across all users
(H=50ms, P=150ms, the Office scene), with the SPs excluded.
The accuracy metric is the mean absolute error (MAE, in
distance or degree). The overall accuracy is high: the me-
dian MAE is around 1.4 cm for translational movement,
and 1.6°/7.4° for vertical (pitch) / horizontal (yaw) rotational
movement. The results for the Museum scene are similar. We
discuss how Firefly further tolerates prediction errors in §3.3.

3.3 Client-side Tile Fetching Scheduling
The client needs to judiciously decide which (mega) tiles
to fetch and in which order.Recall that the client continu-
ously predicts the viewport trajectory within a prediction
window (§3.2). The trajectory is a time series of 6-tuples
{t,x,y,z, pitch,yaw} where t is the (future) timestamp; x, y,
and z are the grid position (translational movement); pitch,
and yaw are the viewing direction (rotational movement). The
timestamp difference between two consecutive tuples is 1/F ,
where F is the frame rate. In other words, each tuple corre-
sponds to the predicted viewport of a future frame. The client
then translates yaw and pitch of each tuple into a list of tiles
according to the projection algorithm (e.g., Equirectangular).

The client now has a preliminary list of tiles to be fetched.
It next prunes the list using two rules. First, if a tile is already
in a client-side cache (§3.5), it will be removed from the list.
Second, if a tile appears multiple times in the list, only the
earliest appearance (with the smallest t) will be kept. This
pruned list where the tiles are ordered by their t values will
then be sent to the server. To adapt to users’ motion, the above
scheduling process is performed continuously on a per-frame
basis. The server therefore sees a stream of mega tile lists for
each user. We describe how the server processes it in §3.4.

Tolerating Viewport Prediction Errors. Due to users’ ran-
domness, viewport prediction errors are inevitable. Firefly
employs three mechanisms to tolerate them. First, it uses large
tiles (90°×180°) that can absorb rotational prediction errors,

as a tile needs to be fetched as long as the predicted viewport
has any overlap with it. Second, to further tolerate rotational
prediction errors, we virtually enlarge the field-of-view by
p% in each direction when calculating the to-be-fetched tiles.
p is configured to 10% given the rotational prediction MAE
shown in Figure 9. Third, recall from §3.2 that sudden trans-
lational movement after a stationary period (SP) is difficult to
predict. To address this issue, when the user is stationary, we
add the tiles (corresponding to the current viewing direction)
of all four neighboring grids to the predicted tile list. In this
way, no matter which direction the user moves towards, the
corresponding tiles are always in the to-be-fetched list.

3.4 Adaptive Quality Control (AQC)
AQC takes as input the lists of tiles requested by the users,
and outputs each user’s appropriate quality level. It runs on
the server that has the global knowledge of all users. An ideal
AQC algorithm has the following features. (1) For each user,
AQC will maximize the quality level while minimizing the
stall (rebuffering); meanwhile, the number of quality switches
should be minimized to provide a smooth user experience.
(2) The selected quality levels should be fair across all the
users; in other words, the quality levels should be largely
proportional to the users’ wireless channel capacities. (3)
AQC needs to execute in a fast-paced manner (ideally at the
per-frame granularity for each user) to adapt to users’ motion.
(4) AQC should scale well for multiple users.

At a first glance, AQC is similar to a video bitrate adap-
tation algorithm where a plethora of studies have been con-
ducted [40,41,51,66]. However, AQC in Firefly is much more
challenging. In particular, requirements (2), (3), and (4) do
not appear in typical bitrate adaptation algorithms running on
a single client for regular video-on-demand services.

In our initial design, we attempt to establish a principled
optimization framework that maximizes a QoE (Quality of
Experience) utility function. However, we find that this ap-
proach is computationally infeasible on a per-tile basis, as the
solution space expands exponentially as the number of users
increases. To this end, we develop a lightweight, heuristic-
based algorithm that produces empirically good quality se-
lection decisions. Our design considers all four requirements
mentioned above. It runs efficiently on commodity servers,
achieving frame-level scheduling for 10+ users.

AQC Algorithm. We now walk through the detailed logic
of the algorithm listed in Figure 10. It uses the available
bandwidth obtained from the wireless AP and the recently
received to-be-fetched tiles (§3.3) to adjust the quality level
(Q[i]) for each user i. In each invocation, AQC gets the total
available downlink bandwidth across all users (Line 01), as
well as each individual user’s available downlink bandwidth
from the AP (Line 03). They represent the global and local
network bandwidth constraints respectively (see §4 for their
details). λ (empirically set to 90%) adds a safety margin for
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T = get_total_bw_from_AP() * λ
Q’[1..n] = Q[1..n]
B[1..n] = get_individual_bw_from_AP([1..n]) * λ
foreach user i:

while (bw_util(Tiles[i],Q’[i])≥B[i] and Q’[i] is not lowest):
Q’[i] = Q’[i] - 1

T = T – min(B[i], max(RESERVE, bw_util(Tiles[i], Q’[i])))
if (T < 0):

lru_decrease(Q’[1..n]) until (T≥0 or Q’[1..n] are lowest)
else:

lru_increase(Q’[1..n]) until (T≈0 or Q’[1..n] are highest)
Q[1..n] = Q’[1..n]

01
02
03
04
05
06
07
08
09
10
11
12

n: total number of users
T: total available bandwidth across all users
Q: users’ current quality levels (input & output)
Tiles: users’ to-be-fetched tile lists (input)
Q’: local copy of Q
B: individual user’s available bandwidth
λ: bandwidth usage safety margin
RESERVE: reserved bandwidth for each user

Figure 10: The multi-user AQC algorithm.

tolerating the bandwidth fluctuation. Lines 05–06 deal with
the local bandwidth constraint. For a given user i’s tiles to be
fetched (Tiles[i]), as long as their bandwidth utilization
(calculated by bw_util()) exceeds the available bandwidth
B[i], the quality is lowered to avoid stalls. Line 07 then
subtracts the user’s used/reserved bandwidth from the global
bandwidth budget T. An important design decision we make
is to reserve a certain amount of bandwidth (RESERVE) for
each user to handle the user’s sudden movement (§3.2) that
may incur unexpected bandwidth utilization. The reserved
bandwidth for each user is set to ηT/n where T is the AP’s
total bandwidth, n is the number of users, and η is a tunable
parameter. A large η reserves more bandwidth, which can
help increase the resilience to users’ bursty movement at the
cost of a lower flexible (i.e., non-reserved) bandwidth of other
users. We empirically choose η=0.75 that yields a satisfactory
tradeoff between the two above factors.

We next consider how to estimate the tiles’ bandwidth
requirement, i.e., realizing bw_util() in Line 05. Recall
from §3.3 that each tile has its display deadline. Let the total
size (in bytes) of the tiles at quality level q with a deadline at or
before ti be Si,q. Let t0 be the current time, tc be the estimated
decoding time, and ts be the server-side queuing delay. t0 and
tc are reported by the user and ts is estimated by the server.
In order to not miss the deadline ti, the required bandwidth
should be at least b(ti) = Si,q/max{0,(ti− t0− tc− ts)} (it
can be ∞ when a stall occurs). Then the overall required
bandwidth is conservatively estimated as maxti{b(ti)}.

Lines 08 to 11 deal with the global bandwidth constraint. If
the global bandwidth budget T is depleted (Line 08), then we
reduce the users’ quality levels (Line 09); otherwise we try to
increase them (Line 11). To facilitate fairness and make the
quality switch smooth, the decrease/increase of the quality
levels is performed in a “least recently used (LRU)” manner,
one user at a time, i.e., the user whose quality level was least
recently changed is selected. The quality level increase is
subject to the local bandwidth constraint.

Since users’ requests arrive asynchronously, AQC needs
to be invoked to update Q[1..n] whenever a new request

arrives. Then the tile transmission thread will retrieve the tiles
from the content database and put them into the tile trans-
mission queues. If the requested tiles for a user change, or if
AQC produces a different schedule in a future invocation for
this user, the not-yet-transmitted tiles in the user’s queue will
be updated. Thanks to AQC’s lightweight nature, users’ mo-
tion and network bandwidth fluctuation will be immediately
reflected in the tiles’ quality levels, making Firefly robust.

3.5 Client-Side Hierarchical Cache
When a user receives mega tiles from the server, the tiles
will be cached, decoded, and rendered. Since tile decoding
takes non-negligible time, it needs to be performed in advance.
Firefly, a decoding scheduler determines which tiles to de-
code. Its logic is similar to the tile fetching scheduler (§3.3),
by using the viewport prediction results. Predicted tiles with
a closer display deadline take a higher decoding priority.

To handle large VR scenes, Firefly needs to fetch and de-
code a large number of tiles. Firefly thus employs a 3-layer
hierarchical tile cache. Borrowing the CPU cache terminolo-
gies, we name the three layers L1, L2, and L3. Residing in
the GPU memory, The L1 cache stores decoded mega tiles
that can be immediately rendered by the GPU. It is the fastest
cache, but its capacity is the smallest (hundreds of tiles) due
to the large size of decoded tiles and limited GPU memory.
The L2 cache stores encoded tiles in the main memory with a
capacity of thousands of tiles. The L3 cache dumps encoded
tiles in the persistent storage; it has the largest size but is the
slowest. When a tile arrives, it is first stored in L2 cache; if
L2 is full, some old tiles in L2 may be swapped to L3 in an
LRU manner. The L2-to-L3 swap involving writing to flash
drive, and is thus performed in a batched manner for good
write performance. Swapping back from L3 to L2 is triggered
by the decoding schedulers’ decisions. This typically occurs
when a user visits a previously explored grid position.

3.6 Handling Dynamic Foreground Objects
A VR scene may consist of a background view as well as
one or more foreground objects. The background view at
a specific virtual location is static. Due to its large area and
complexity, its rendering typically dominates the workload for
preparing the scene. In contrast, foreground objects are more
dynamic and less complex than a background scene. Their
examples include moving objects (e.g., other users’ avatars)
and interactive objects (e.g., a virtual control panel). Despite
being less complex than the background view, due to their
dynamic and interactive nature, failure to render foreground
objects in time may also cause considerable QoE degradation.

Firefly employs two mechanisms to handle foreground ob-
jects. First, objects’ 3D models (polygons, textures, etc.) are
distributed to the clients offline. This reduces the runtime
network bandwidth consumption and the server’s workload
(compared to a server-side approach). In a typical VR scene,
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Quality High Medium Low
# Polygons, Size (MB) 30016, 3.30 14566, 1.30 7283, 0.68

Table 1: Three quality levels of the avatar object.
Client Device High Medium Low

Samsung Galaxy S8 (SGS8) 7,7,7 3,3,7 3,3,3
Samsung Galaxy S10 (SGS10) 3,3,3 3,3,3 3,3,3
Samsung Galaxy Note 8 (SGN8) 3,7,7 3,3,7 3,3,3
Motorola Moto Z3 (Z3) 3,7,7 3,3,3 3,3,3

Table 2: Rendering profiles for different phones: whether 60+ FPS
can be achieved with 3,6,9 concurrent objects in different qualities.

the objects’ 3D models are not large (e.g., tens of MBs in to-
tal) so they can be bundled with the app installation package
or be fetched when the app launches for the first time.

Second, foreground objects are rendered locally by the
client. This eliminates the uncertainty caused by the network
as well as the potential resource competition from other users
compared to a server-side approach. A challenge here is that
the number of objects appearing in the viewport may change
dynamically. If there are too many objects, the local rendering
may still become the bottleneck. For example, in multi-user
social VR, a user “sees” other users as 3D avatars; depend-
ing on the users’ position, more than 10 avatars may appear
in the viewport, incurring high rendering overhead. To ad-
dress this challenge, Firefly supports trading off the rendering
quality for a high frame rate. Specifically, the client creates
low-quality versions for each object type by downsampling
its polygon meshes. Table 1 shows an example of an avatar
object originally with 30K polygons. Firefly downsamples
them (using Blender [4]) to the medium and low quality with
14.6K and 7.3K polygons respectively. This downsampling
process is an offline, one-time effort. Then at runtime, depend-
ing on the number of objects to be rendered, their qualities
are dynamically determined to facilitate 60 FPS. Downsam-
pling may also use more sophisticated polygon simplification
techniques such as bounded-error polygon simplification [42],
progressive encoding [45], or adaptive display elision based
on the size of the object and its position in the scene [34].

To properly determine the objects’ qualities, each client
creates a rendering profile offline. Let us first assume that
there is only one object type (e.g., the avatar). As exemplified
in Table 2, for each quality level, the profile maps the number
of concurrent objects (3, 6, 9 are shown) to whether 60+ FPS
can be achieved. Note that we assign the same quality to all
objects to simplify the quality selection. The profile is created
by the client through automated tests. During a test, the client
is also performing tile decoding/rendering to mimic the work-
load of generating the background view. Then at runtime, the
client can directly consult its profile to determine the objects’
quality level. For example, when there are 6 objects, SGS8
should use the medium quality (Table 1) to achieve 60 FPS.
When there are multiple types of objects, it may be infeasible
to exhaustively enumerate their combinations. In this case, we
can apply simple machine learning to predict the rendering
performance, using features such as the number of objects, the
total number of polygons, etc. We leave this as future work.

4 System Implementation

Client and Server. We have integrated the components in §3
into the holistic Firefly system that works on commodity An-
droid/Linux OSes. The client is implemented using Android
SDK with a total line of code (LoC) of 14,900. Tile decoding
is realized using the low-level Android MediaCodec API [3].
We leverage multiple concurrent hardware decoders, whose
optimal number depends on the device, to boost the decod-
ing performance. We use OpenGL ES to perform tile pro-
jection/rendering, and use the OpenGL FBO (Framebuffer
Object) to realize the L1 decoded cache (§3.5). We have suc-
cessfully tested Firefly on four mobile devices: SGS8, SGS10,
Moto Z3, and SGN 8 (full names in Table 2). These devices
can be readily plugged into affordable VR headsets. The rota-
tional and translational motion is provided by the on-device
motion sensors and the VR headset controller, respectively.
The server is implemented on Ubuntu 16.04 with about 1,000
LoC. The clients and the server communicate over TCP.

WiFi AP. The clients and server are wirelessly connected by
a commodity WiFi AP. Since the server is only one wireless
hop away from the users, AQC can directly obtain accurate
global and per-user available bandwidth from the AP (Line 01
and 03 in Figure 10). This avoids the error-prone bandwidth
estimation process widely used in Internet video streaming.
To obtain the AP-wide overall bandwidth, we modify the
AP’s firmware to collect statistics on the maximum PHY rates
of the clients, the wireless bandwidth used (20–160MHz in
5GHz Wi-Fi bands), and the busy channel time from hardware
registers. To estimate each user’s available bandwidth, we
also collect statistics on the PHY rate and the frame error
rate. The available bandwidth for a client i is estimated as
Φi(1−εi)(1−U)OTCP/N, where Φi is its PHY rate, εi is the
error rate, U is the channel busy airtime, N is the number of
clients taking into account that the airtime will be shared fairly
among clients, OTCP is the TCP overhead estimated offline
through bandwidth saturation experiments. Similar statistics
are available on other APs via interfaces such as WebUI.

The Offline Rendering Engine (§3.1) consists of a rendering
engine (developed in C# using the Unity API) and a mega
tile encoder (developed in Python) with a total LoC of 1,500.
We use standard H.264 encoding that is supported by all
mainstream mobile devices today.

5 Evaluation
5.1 Evaluation Setup

Content Preparation. We use two commercial VR scenes
purchased from the Unity store: Office [16] (30m×26m) and
Museum [13] (35m×30m, L-shape). The offline rendering
engine (§3.1) discretizes both scenes into 5cm×5cm grids,
which are fine-grained enough to provide a smooth transla-
tional movement experience. The offline engine renders each
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Figure 11: Our experimental equipment: 5 smartphones, 10 Rasp-
berry Pis, and the WiFi access point.

panoramic frame in 1440p (Quad HD, 2560×1440) resolu-
tion, and encodes each mega tile into four quality levels, using
the following CRF (Constant Rate Factor) values: 19, 23, 27,
31. A higher CRF corresponds to a lower quality and a lower
encoded bitrate. The CRF values are selected by following
prior recommendations [17, 20] where the encoded bitrate
ratio between two neighboring quality levels is approximately
1:1.5. The content database size is 137 GB and 99 GB for
Office and Museum, respectively. When exploring each scene,
a user can see other users as avatars, which are rendered by
the client as foreground objects. The statistics of the avatar’s
three quality levels are listed in Table 1.

Hardware and Software. As shown in Figure 11, we use 15
client devices. 5 of them are COTS smartphones with differ-
ent computational capabilities: SGS8×2 (released in 2017),
SGN8 (2017), Z3 (2018), and SGS10 (2019). They all run
unmodified Android 9.0. For the remaining clients, we use
10 Raspberry Pi 4 (model B) to emulate them, each having a
quad-core ARM Cortex-A72 CPU @ 1.5GHz and 2GB mem-
ory. The Pis run Raspbian OS (Debian v10 with Linux kernel
4.19). We run full-fledged Firefly on the 5 smartphones. For
the Pis, we create an emulated version of Firefly by replacing
the decoding and rendering components with their emulated
counterparts. The decoding/rendering latency is properly em-
ulated using the numbers profiled from the 5 smartphones.
All other components such as AQC, viewport prediction, tile
fetching scheduler, decoding scheduler, L2/L3 caching are
identical to those running on a real Firefly client. The server
is a desktop PC with an octa-core CPU @ 3.6GHz, 16 GB
memory, 1TB disk, and Ubuntu 16.04. The server does not
have a dedicated GPU. Clients and server are connected by
an Aruba AP running 802.11ac on 80MHz bandwidth.

Physical Environment. The experiments are conducted in a
typical office room (7.9m×7.3m) where all the devices, the
server, and the AP are located. We distribute the devices at
random locations. We find that their locations have a small
impact on network performance. For a single device, placing
it at the spot nearest to the AP and the spot furthest from the
AP yields a throughput difference no more than 11%.

Experimental Approach. To ensure reproducibility, our
high-level experimental approach is to replay real users’ mo-
tion traces collected in §3.2. Recall that we have 25 user traces
and 15 devices. In each run, we randomly pick 15 users and
assign them in a random order to the devices. Each device

then replays the corresponding user’s motion trace by feeding
the sensor stream to Firefly with precise timing. By default,
each experiment consists of 5 back-to-back runs with different
user-to-device assignments. We set the users’ field-of-view
(FoV) to a typical value of 100°×90° [53]. Unless otherwise
mentioned, the presented results are based on the Office scene
as the results for the Museum scene are qualitatively similar.

5.2 Overall Performance Comparison
We first evaluate the overall performance of Firefly, with the
following metrics. (1) Missed Frame Count (MFC). In our
client implementation, a high-precision rendering timer is trig-
gered every 15ms (or 66.67 Hz). If a frame is not ready at the
current timer event, it needs to wait for the next timer event,
i.e., after 15ms. In this case the client reports one MFC. MFC
is highly correlated with the motion-to-photon delay [69], the
time needed for a user’s motion to be reflected on the display.
When MFC=0 (the ideal case), the motion-to-photon delay is
minimized to no longer than 15ms, i.e., the motion is reflected
in the immediate next frame. When MFC>0, a stall occurs.
(2) Average frame rate is measured by sliding a 1-second
window over a VR session and calculating the average FPS
within each window. Our target FPS is 60. (3) Stall duration
is the rebuffering time experienced by a user. We normalize it
to seconds per minute for a VR session. This metric is corre-
lated with the MFC. (4) Content Quality. Recall that a tile’s
quality is defined by the CRF value ∈{19,23,27,31} (§5.1).
We then define the quality of a frame as the average quality
of all tiles visible in the viewport. (5) Inter-frame Quality
Variation is measured by sliding a 1-second window over
a VR session and calculating the standard deviation of all
frames’ quality values (defined above) within each window.
Since frequent quality switches degrade the QoE [66], a lower
value of this metric is preferred. (6) Intra-frame Quality
Variation of a frame is defined as the standard deviation of
the quality values of all tiles appearing in a frame’s view-
port. Similar to the inter-frame quality variation, we prefer a
lower intra-frame quality variation. Metrics (4), (5), and (6)
are defined for the background view only. We evaluate the
adaptation mechanism for foreground objects in §5.3.

Approaches to Compare. We compare three approaches: (1)
full-fledged Firefly, (2) full Firefly with perfect prediction,
and (3) the multi-user version of Furion [44]. Approach (2)
represents an ideal scenario where users’ viewport trajectories
are known a priori. It helps us understand how much perfor-
mance improvement we can further gain by having the perfect
knowledge of users’ motion. Regarding Approach (3), Furion
is the state-of-the-art solution for single-user untethered VR.
We create a multi-user version of Furion as follows. We use
the full Firefly as the base (to handle multi-user), and then
make (and only make) the following modifications accord-
ing to Furion’s design. First, we remove viewport prediction
that Furion does not perform. Second, Furion does not use
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Figure 16: MFC (Museum).
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Figure 19: Quality fairness.

viewport-adaptation; the client instead always requests for all
tiles belonging to all four neighboring grids; we thus modify
the tile scheduling module (§3.3) accordingly.

We next present the results for the Office scene. Fig-
ures 12, 13, 14, and 15 plot the distributions of the aforemen-
tioned four metrics: MFC (across all timer events), average
FPS (across all 1-sec windows’ measurements), stall (across
all users’ sessions), and average content quality (across all
users’ sessions). Thanks to its adaptiveness to available net-
work/computation resources and its resilience to motion pre-
diction inaccuracy, Firefly achieves overall good performance
across all these metrics, which are the same or only slightly
worse compared to Firefly with perfect prediction. Specifi-
cally, (1) 99% of the timer events (99% for perfect prediction)
have MFC=0, i.e., a motion-to-photon delay ≤15ms; (2) for
90%/99% of the 1-sec windows (95%/99% for perfect predic-
tion), the average FPS is at least 60/50 FPS; (3) the median
stall duration is only 1.2 sec/min (1.0 sec/min for perfect pre-
diction); (4) the median content quality is around CRF 24.2
(CRF 22.2 for perfect prediction). In Figure 15, the slightly
lower quality compared to that of perfect prediction is due to
the additionally fetched tiles. The bandwidth consumed by
these tiles is wasted because they are not viewed by the users
due to viewport prediction errors.

The multi-user Furion exhibits much worse performance.
This is because without prediction, it can only blindly fetch
an excessive number of tiles without any prioritization. As a
result, the bandwidth consumed of many tiles is wasted, lead-
ing to a much lower content quality; wasted tiles may also
cause head-of-line blocking for useful tiles, causing stalls and
a lower FPS. The results for the Museum scene are qualita-
tively similar, as exemplified in Figures 16 and 17, which plot
the MFC and content quality results, respectively.

We also measure the inter/intra-frame quality variations,
and find them to be low. For Firefly, the 25th, 50th, and 75th
percentiles of the inter-frame quality variation (across all 1-
sec windows’ measurements) are 0, 0.2, and 0.3, respectively;

the 90th percentile of the intra-frame quality variation is 0.
Both metrics are very close to Firefly with perfect prediction.
The low quality variations are attributed to AQC’s quality
selection mechanism. It (1) assigns the same quality to all the
tiles in a viewport and (2) performs LRU-style quality changes
that not only ensure fairness (to be shown next) across users
but also facilitate smooth quality switches for a given user.
Fairness. Figures 18 and 19 plot the distributions of FPS and
content quality respectively, for five smartphones. Note that
although the instantaneous available bandwidth may differ
across the devices, in the long run, each device largely gets an
equal share of the bandwidth (as verified by us). Also, since
each device replays multiple human users’ motion traces,
this should largely smooth out the impact of motion diversity
among the human users. In addition, the devices’ compu-
tational power heterogeneity is considered by the adaptive
object quality selection mechanism (§3.6). Therefore, we ex-
pect the distributions to be similar among the devices. This is
indeed shown in Figures 18 and 19, confirming that AQC can
achieve a decent level of fairness among the devices.
Real Phones vs. Emulated Devices. We observe small per-
formance differences between the two device groups: the 5
real smartphones and the 10 Raspberry Pis. Their average stall
duration (across all users’ sessions belonging to each group)
differs by less than 2%; for both groups, 99% of the timer
events have MFC=0; both groups also exhibit very similar
FPS distributions; the median content quality is CRF 24.2
and 26.1 for the phone and the Pi group, respectively. This
difference is likely attributed to the conservative emulation
settings (e.g., decoding latency) used in emulation. Overall,
We believe that Firefly is accurately emulated on the Pis.

5.3 Micro Benchmarks
We now present several micro benchmarks to showcase the
impact of key design decisions of Firefly.
Impact of AQC. Figure 20 plots the stall duration across all
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VR sessions with AQC enabled vs. disabled. When AQC is
disabled, we consider two extreme cases: always fetching
the highest quality (CRF=19) and always fetching the lowest
quality (CRF=31). As shown, the former suffers from very
long stalls (median: 9.6 sec/min); the issue with the latter is
the low content quality (CRF 31). AQC instead strikes a much
better tradeoff: the achieved average quality is CRF 23.8,
while the stall duration is only slightly increased compared to
statically using CRF=31 without AQC.

Impact of Bandwidth Reservation in AQC. Recall
from §3.4 that we make an important design decision in AQC
by reserving for each user a fixed amount of bandwidth to
handle the user’s sudden motion that may incur unexpected
bandwidth utilization. Figure 21 indicates that this mecha-
nism is highly beneficial. If bandwidth reservation (BWR) is
disabled, the median stall duration increases drastically from
1.2 sec/min to 8.8 sec/min.

Impact of Viewport Prediction. To justify our viewport pre-
diction design, we consider four variations shown in Fig-
ure 22. “LT+LR” is Firefly’s approach where we use Linear
regression (LR) for both the Translational movement and
Rotational movement prediction; “ST+SR” represents a naïve
Static strategy: directly using the current viewport as the pre-
dicted viewport by assuming the user is stationary in both the
translational and the rotational dimensions; “LT+SR” corre-
sponds to using LR for translational prediction and Static for
rotational prediction; “ST+LR” represents using Static and
LR for translational and rotational prediction, respectively.
Here, we consider all 25 users’ motion traces by replaying
them sequentially using one Samsung Galaxy Note 8 phone.

Figure 22 shows that Firefly’s approach, LT+LR, achieves
the overall highest FPS. Also, LT+SR significantly outper-
forms ST+LR and ST+SR. This suggests that translational
prediction accuracy plays a more important role in determin-
ing the system performance compared to rotational prediction

accuracy. The reason is that large tiles (90°×180°) can shield
many rotational prediction errors (§3.3) but not any transla-
tional prediction error.
Impact of Adaptive Object Quality Selection. By analyz-
ing the logs produced by the experiments in §5.2, we find that
oftentimes many avatars indeed appear in the viewport: in
more than 40% (10%) of the viewports, 4 (8) or more avatars
need to be rendered, and this number can reach 10. Too many
foreground objects incur high local rendering workload in par-
ticular for computationally weak devices. This overhead can
be effectively mitigated by the object quality selection scheme
(§3.6), which adaptively reduces the fidelity of foreground
objects (in our experiments, the users’ avatars) to maintain
a high FPS. Figure 23 suggests that by disabling this feature
(the “Static” curve, which always renders the objects at the
highest quality), the FPS drops significantly: the fraction of
1-sec windows with <60 FPS increases from 8% to 37%.

5.4 Adaptiveness to Number of Users
We conduct an experiment to demonstrate that Firefly can
properly handle users dynamically joining and leaving the
system. We begin with 5 randomly chosen devices at t=0; at
t=60s, 5 randomly chosen devices join the system; at t=120s,
5 more devices start their VR sessions; at t=180s, 5 devices
leave the system; finally at t=240s, 5 more devices leave.
Figures 24 and 25 plot the average FPS and average CRF
across all users, respectively, over time. As shown, regardless
of the user dynamics, the frame rate almost always stays above
60 FPS. Meanwhile, the content quality well adapts to the
bandwidth available to each individual device. When there are
no more than 10 devices, each device can enjoy the highest
content quality at CRF 19. With 15 devices, AQC reduces the
average quality level to ∼24 due to bandwidth scarcity while
maintaining fairness across users (Figures 18 and 19). The
fluctuations in Figures 24 and 25 (also in Figures 26 and 27 to
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be described in §5.5) are attributed to our averaging method
(first over a 1-second window and then over all users) for
calculating each FPS and content quality sample.

5.5 Adaptiveness to Available Bandwidth
We conduct two experiments to investigate how Firefly adapts
to changing network bandwidth. In the first one, we begin
with unthrottled bandwidth (around 200 Mbps as reported by
the AP) at t=0; we then use the Linux tc tool [12] to throttle
the AP-wide bandwidth to 140 Mbps at t=60s; the bandwidth
throttling is removed at t=180s. The second experiment is the
same except that the bandwidth throttling is set to 100 Mbps.
For both experiments, we fix the number of devices to 15.

Figures 26 and 27 plot the average FPS and average content
quality across all users, respectively, over time. When the total
bandwidth reduces, the content quality immediately drops to
the lowest in order to maintain a high frame rate. For 140Mbps
bandwidth throttling, AQC manages to stabilize the frame rate
at 60+ FPS. For 100Mbps throttling, each device gets only
∼6.7Mbps bandwidth on average that can barely support even
the lowest quality level at CRF=31. As a result, the frame rate
occasionally drops below 60 FPS.

5.6 Comparison with MUVR
MUVR [47] is a recently proposed, state-of-the-art multi-
user mobile VR framework. It is also (to our knowledge) the
most relevant work to Firefly. In MUVR, a server maintains
a centralized cache that stores the rendered and encoded VR
content. Given a user’s translational position, the server can
directly transmit the view if it is cached; otherwise the server
needs to render the view and properly cache it. In their evalu-
ation, the authors emulated 4 concurrent users of MUVR.

We quantify the effectiveness of MUVR on our Office
dataset using simulation. The setup is similar to §5.2 where
we replay 15 randomly selected users’ motion traces 5 times.
Meanwhile, we simulate the centralized cache: for every
frame, all devices simultaneously “send” their translational
positions to the server; upon cache misses, the server will “ren-
der” the corresponding positions and add them to the cache.
We assume the cache is initially empty and has unlimited ca-
pacity. We find that for 27% of the time, there are more than
5 concurrent cache misses, i.e., the server needs to render for
more than 5 devices. According to our pilot experiment in §2,
this cannot be supported by even a high-end GPU, leading to
poor scalability. Firefly eliminates this issue by performing
exhaustive offline rendering (§3.1). It also introduces other
important components that MUVR does not have such as
AQC, viewport adaptation, and handling foreground objects.

5.7 Resource Usage and Thermal Overhead

CPU, GPU, and Memory. Firefly incurs acceptable runtime
overhead and resource footprint on mobile devices. During a
VR session, the CPU usage (reported by the Android Studio

Profiler) is no higher than 30% across the five smartphones.1

The overall memory usage (CPU+GPU) is no higher than 1.6
GB, which is mostly spent on L1 and L2 cache. Note that the
cache capacities (L1, L2, and L3) are adjustable in Firefly.

Energy Usage and Thermal Characteristics. To profile the
energy usage, we fully charge the five phones, and then repeat
the experiment in §5.2 by running on each phone five back-
to-back VR sessions. After that (25 minutes later), we record
the remaining battery percentage, which ranges from 92% to
96% (average 93.8%) depending on the device’s power con-
sumption and battery capacity. We also monitor the CPU/GPU
temperature. After continuously playing the VR content for 25
minutes, the highest temperature (either GPU or CPU) among
the devices is 50°C, which only feels moderately warm. Over-
all we think the above energy and thermal characteristics are
completely acceptable for mobile VR.

6 Related Work

360° Video Streaming. There exist a plethora of work on
streaming 360° videos. Prior systems such as Flare [53], Ru-
biks [38], Freedom [60], and POI360 [62] also take a viewport-
adaptive streaming approach. Some other studies focus on
viewport prediction for 360° videos [24,33,39]. Compared to
the work above, Firefly extends the viewport-adaptation idea
to generic VR that involves both the rotational and transla-
tional viewport movement. In particular, we demonstrate how
viewport adaptation can benefit multi-user VR systems.

Single-user Mobile VR has also been well investigated.
Flashback [27] and Furion [44] demonstrate high-quality
single-user VR on COTS smartphones. Flashback is a com-
pletely local system (on a single device, content stored in
SD card). We leverage its core concept of offline rendering to
support high-quality, networked multi-user VR. We extend Fu-
rion to a multi-user version and quantitatively compare it with
Firefly in §5.2. MoVR [22, 23] employs 60 GHz mmWave
wireless for mobile VR. Liu et al. [48] proposed system-level
optimizations for the mobile VR rendering pipeline. Tan et al.
explored supporting mobile VR over LTE [61]. None of the
above work explicitly focuses on the multi-user scenario.

Multi-user VR/AR. Despite a plethora of work on single-
user VR, much fewer studies have been conducted on its
multi-user counterpart. The most relevant work to Firefly is
MUVR [47] that is described in detail in §5.6. Bo et al. devel-
oped a multi-user 360° video streaming system based on mul-
ticast [25]. A recent positioning paper [49] discusses several
practical issues of designing a multi-user VR system (with-
out implementation). Some studies investigated multi-user or
collaborative augmented reality (AR) [54, 55, 68]. Compared
to the above work, Firefly is a generic multi-user VR system.
It achieves much better scalability compared to MUVR.

1Android Studio Profiler does not report the GPU utilization.
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7 Discussion

Efficient Offline Rendering. Future VR applications can
involve large and complex scenes, drastically increasing the
overheads of offline rendering. Firefly plans to explore well-
known rendering optimization techniques [29, 50] which use
different hierarchical structures for adapting to the surface
tessellation and level of detail.

Handling Dynamic Background. While significantly boost-
ing scalability, Firefly’s offline rendering assumes the back-
ground content is static (but can be arbitrarily complex). Sim-
ple dynamic content involving short animation sequences can
still be rendered offline. Complex dynamic content (involving
lighting, reflection, etc.) has to be rendered at runtime.

Enhancing Firefly using Computer Graphics and Multi-
media Techniques. While the contributions of Firefly are
mostly on the system side, we are aware that Firefly can be
enhanced by various techniques developed from the com-
puter graphics and multimedia community. For example, the
3D models of foreground objects can be simplified using
techniques proposed by [31, 32, 35, 56]; visibility or distance
culling [34, 36, 52] can be applied to reduce the runtime ren-
dering overhead while maintaining objects’ visual qualities;
more sophisticated partitioning [58, 59] can be employed
to make caching more efficient for both static background
and dynamic foreground; more efficient video codec such as
H.265 [37] and the next-generation H.266 standard [1] can
be leveraged to further reduce the bandwidth footprint for
background content delivery; powered by recent advances in
deep learning, deep neural networks (super-resolution) can
be applied to enhance the image quality [30, 65]. The above
approaches are orthogonal to Firefly’s exhaustive rendering
paradigm and are compatible with the AQC scheme.

Improving Motion Prediction. Firefly employs online linear
regression for motion prediction. Despite being simple, it is
experimentally demonstrated to be efficient and effective. The
prediction accuracy could be further improved using more
sophisticated prediction methods. For instance, over 3-DoF
head movement data, deep learning approaches such as LSTM
(Long Short-Term Memory) was found to outperform classic
machine learning in particular when the prediction window is
long [64]. Another promising direction is to enrich the feature
set using, for example, velocity, acceleration, and even VR
content features such as saliency [33]. We plan to explore the
above directions in our future work.

7.1 Lessons Learned
We learned several important lessons from Firefly, which may
guide the design of future multimedia systems.

First, Wirth’s law [21] also applies to multimedia: the con-
tent resolution/quality increase may outpace the graphics
technology evolution. While 3D computer games already
use some pre-computation techniques such as projecting pre-

rendered 2D panoramic background [2] and rendering faraway
3D objects as 2D sprites, we believe that more extensive of-
fline computation and caching will remain a core technique
that can scale up high-quality content rendering on commod-
ity hardware, in particular in emerging multimedia services
such as mixed reality and cloud gaming.

Second, scheduling content delivery in a multi-user system
requires considering a wide range of factors: network band-
width, device rendering capability, users’ QoE, users’ inter-
action, and cross-user fairness. Our experience of developing
AQC indicates that while establishing a full-fledged optimiza-
tion framework may be difficult, a robust heuristic-driven
algorithm can work well in practice. In addition, to adapt
to users’ fast-paced, bursty interactions, the scheduling algo-
rithm needs to run at a frequency that is much higher than tra-
ditional videos’ bitrate adaptation algorithms [40, 41, 51, 66].

Third, from traditional videos (0 Degree-of-Freedom, DoF)
to 360° videos (3-DoF) and then to VR/volumetric (6-DoF),
multimedia content tend to become more immersive and in-
teractive. To embrace such trends, future multimedia systems
need more intelligence, which is not limited to motion pre-
diction as showcased in Firefly. Elements such as users’ eye
movement [43, 46], users’ voice, salient visual content [33],
and sound source, to name a few, can all be leveraged to infer
viewers’ intention and henceforth to facilitate system-level
decision making such as content prefetching and scheduling.

Fourth, in addition to content, client devices, and server,
the network (in particular, the wireless one) is also a key
component whose interplay with the multimedia system needs
to be carefully optimized. The lower-layer wireless channel
information could be leveraged to guide network resource
allocation. In Firefly, we demonstrate this over 802.11ac WiFi
(§4). Similar cross-layer design could be conducted for other
WiFi standards (802.11ax [26]) and cellular networks [62,63].

8 Concluding Remarks

We have demonstrated with Firefly that it is feasible to sup-
port 15 VR users at 60 FPS using COTS smartphones and a
single AP/server. Our design makes judicious decisions on
(1) partitioning the workload (offline vs. runtime, client vs.
server), (2) making the system adaptive to the available net-
work/computation resources, both collectively and locally to
each user, and (3) handling users’ fast-paced, bursty motion.
We believe that the core concepts of Firefly are applicable to
other multi-user scenarios such as those of augmented reality
and mixed reality. Our data will be made publicly available.
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