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Abstract. We give a short proof for a well-known formula for the rank
of a G-crossed braided extension of a modular tensor category.

1. Introduction

G-crossed braided extensions of modular tensor categories are an impor-
tant ingredient for the process of gauging in topological phases of matter in
the framework of modular tensor categories [BBCW14]. Let C be a mod-
ular tensor category, which for the purpose of this note is a semisimple,
C-linear abelian ribbon category with simple tensor unit, such that the set
of isomorphism classes of simple objects Irr(C) is finite and the braiding is
non-degenerate, see e.g. [BK01]. A global symmetry [BBCW14] of C is a pair
(G, ρ) consisting of a finite group G and homomorphism ρ : G → Autbr

⊗ (C),
where Autbr

⊗ (C) is the group of isomorphism classes of braided autoequiv-
alences of C. Gauging a global symmetry (G, ρ) of C [CGPW16] is a two
step process which eventually produces a new modular tensor category and
is given as follows:

(1) Construct a G-crossed braided extension F =
⊕

g∈GFg of C.
(2) Consider the equivariantization FG of F to obtain a new modular

tensor category, which therefore contains Rep(G) as a symmetric
subcategory.

A G-crossed braided fusion category is a fusion category F equipped with
the following structure:

• F is faithfully G-graded, i.e. F =
⊕
Fg and Xg⊗Yh ∈ Fgh for every

g, h ∈ G, Xg ∈ Fg, and Yh ∈ Fh.
• There is an G-action X 7→ gX = ρ(g)(X) given by a monoidal func-
tor ρ : G → Aut⊗(F), where Aut⊗(F) is the categorical group of
monoidal autoequivalences.
• There is a natural family of isomorphisms

cX,Y : X ⊗ Y → gY ⊗X , g ∈ G,X ∈ Fg, Y ∈ F
with ρ(g)(Fh) ⊂ Fghg−1 fulfilling certain coeherence diagrams, see
e.g. [Tur10].
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We note that Fe is a braided fusion category and we get a global symmetry
ρ : G → Autbr

⊗ (Fe) given by restriction and truncation of ρ. We are only
interested in the case where Fe is a modular tensor category. We refer to
[DGNO10,Tur10] for more details.

We call a G-crossed braided fusion category F =
⊕

g∈GFg a G-crossed
braided extension of a modular tensor category C if Fe is braided equivalent
to C. The above data of F gives by restriction a global symmetry (G, ρ) on
C ∼= Fe. We note that given a modular tensor category C and a global action
(G, ρ) as an input one has to check that certain obstructions have to vanish
in order for a G-crossed braided to exist, see [ENO10].
G-crossed braided extensions arise naturally in rational conformal field

theory. Let A be a (completely) rational conformal net, then the category of
representations Rep(A) is a unitary modular tensor category [KLM01]. Let
G ≤ Aut(A) be a finite group of automorphisms of the net A. There is a
category G–Rep(A) of G-twisted representations of A, which is a G-crossed
braided extension of the unitary modular tensor category Rep(A). The fixed
point or “orbifold net” AG is again completely rational and Rep(AG) is
a gauging of Rep(A) by G, i.e. Rep(AG) is braided equivalent to the G-
equivariantization (G–Rep(A))G, see [Müg05] for the original reference and
[Bis18] for a review.

Starting with a modular tensor category C we want to compute certain
invariants of possible G-crossed braided extensions F =

⊕
g∈GFg with Fe ∼=

C. The simplest invariant of F is its rank rk(F) := | Irr(F)|.
We note that the global symmetry (G, ρ) associated with a G-crossed

braided extension F of C equips Irr(C) with a G-action. This G-space already
contains all the information about the rank of possible G-crossed braided
extensions associated with (G, ρ). Namely, the following well-know formula,
cf. [BBCW14, Eq. (348)] holds.
Proposition 1.1. Let F =

⊕
g∈GFg be a (faithful) G-crossed braided ex-

tension of a modular tensor category C ∼= Fe. Then the rank of Fg is equal
to the size of the stabilizer Irr(C)g, i.e.

rk(Fg) = | Irr(C)g| .
In particular, the rank of F is determined via the G-action on Irr(C) by

rk(F) =
∑
g∈G
| Irr(C)g| = |G|| Irr(C)/G| .

The goal of this note is to provide a short proof of this statement using
modular invariants, which were used in the operator algebra literature, e.g.
[BEK99,BEK00].

2. The rank of module categories and G-crossed braided
extensions

Let C be a modular tensor category and A a simple non-degenerate algebra
object in C. Here non-degenerate means that the trace pairing ΦA : A → A
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given by

ΦA = ((evA) ◦ (idĀ⊗m)⊗ idĀ) ◦ (idĀ⊗(idA⊗coevA) ◦m) ◦ (coevĀ ⊗ idA)

is invertible, which implies that A has the structure of a special symmetric
Frobenius algebra object, see [KR08, Lemma 2.3].

We denote the category with the opposite braiding by C. The full cen-
ter Z(A) is a Lagrangian algebra object in Z(C) ∼= C � C [FFRS06,KR08,
DMNO13]. We note that the forgetful functor F : C�C → C maps X�Y 7→
X ⊗ Y and has an adjoint I : C → C � C. The image I(1) has the canonical
structure of a Lagrangian algebra in C � C. If X ∈ C we denote by X̄ ∈ C
a dual object. The full center Z(A) can be realized as the left center of
the braided product of (A � 1) ⊗+ I(1) [FFRS06, KR08]. Given a simple
non-degenerate algebra A there are two functors α± from C to the category
ACA of A-bimodules in C. They are given by equipping the image of the free
right module functor −⊗A with a left action using the braiding or opposite
braiding, respectively, see [FFRS06].

The following proposition is well-known to experts.

Proposition 2.1. Let C be a modular tensor category, A a simple non-
degenerate algebra object in C, and Z the associated modular invariant ma-
trix, i.e. Z = (ZX,Y )X,Y ∈Irr(C) is the square matrix given by

ZX,Y = dimC Hom
ACA(α+(X), α−(Ȳ )) .

Then
(1) The full center Z(A) of A as an object in C � C is given by

Z(A) ∼=
⊕

X,Y ∈Irr(C)

ZX,Y ·X � Ȳ .

(2) The rank rk(CA) of the category of right A-modules CA is given by
the trace of the matrix Z:

rk(CA) = tr(Z) =
∑

X∈Irr(C)

ZX,X .

Proof. The first statement is [FFRS06, Remark 3.7]. The second statement
is [BEK99, Corollary 6.1] in the case that A is a Q-system and C is a unitary
modular tensor category realized as endomorphisms of a type III factor. In
the more general setting, it follows from [KR08, Eq. (4.4) and Prop. 4.3].
Namely, F (Z(A)) ∼=

⊕
X,Y ∈Irr(C) ZX,YX ⊗ Ȳ thus dim Hom(1, F (Z(A)) =

tr(Z) equals the number of isomorphism classes of simple modules in CA,
since F (Z(A)) is equivalent to

⊕
M∈Irr(CA)M ⊗A M̄ and since M ⊗A M̄ is a

connected algebra by [KR08, Proof of Prop. 4.10]. �

For φ ∈ Autbr
⊗ (C) there is a canonical Lagrangian algebra Lφ = (id�φ)I(1)

in C�C, see e.g. [DNO13, Sec 3.2-3.3]. The algebra Lφ corresponds to the full
center of a C-module category, which we denote by Cφ, cf. [KR08,DMNO13].
This module category can be obtained, using e.g. [KR08], by taking any
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connected summand A of the algebra F (Lφ) (which always fulfills Z(A) =
Lφ) and considering the C-module category Cφ := CA, see [KR08], and also
[ENO10, Lemma 5.1]. Since Lφ ∼=

⊕
X∈Irr(C)X � φ(X̄), i.e. ZX,Y = δφ(X),Y ,

Proposition 2.1 immediately gives the following statement.

Lemma 2.2. The rank of Cφ equals | Irr(C)φ|, i.e. the number of isomorphism
classes of simple objects in C which are fixed by φ.

Proof of Proposition 1.1. Let F =
⊕

g∈GFg be a G-crossed braided exten-
sion of a modular tensor category C. By [ENO10, Sec. 5.4] the category Fg
is equivalent as a left C-module category to the category Cg in Lemma 2.2
and the statement follows. �

2.1. The rank of permutation extensions. Let C be a modular tensor
category. Gannon and Jones announced [GJ18] that certain cohomological
obstructions vanish and thus that there is always an Sn-crossed braided
extension of C�n which we denote by C o Sn, where the action of Sn is given
by permuations of objects. More general, for any subgroup G ≤ Sn there is
a G-crossed braided extension C oG.

For the cyclic subgroup Zn ∼= 〈(12 · · ·n)〉 ⊂ Sn with n prime we obtain

rk(C o Zn) = rk(C)n + (n− 1) rk(C) ,

which in the case n = 2 is also true by construction for the examples con-
sidered in [EMJP18].

In general, for the full symmetric group, we get that rk((C oSn)g) depends
only on the conjugacy class Cg of g ∈ Sn. Namely, rk(C o Sn)g) = rk(C))|a|
where a = (a1, . . . , an) and aj is the number of j-cycles (counting 1-cycles)
in the cycle decomposition of g and |a| =

∑
j aj . Thus summing over all

elements of the p(n) conjugacy classes we get

rk(C o Sn) =
∑

a=(a1,...,an)

ca rk(C)|a| , ca =
n!∏

j(j)
aj (aj !)

,

where ca = |Cg| the size of the conjugacy class Cg of an element g ∈ Sn with
cycle type a = (a1, . . . , an) and the sum runs over all unordered partitions
of {1, . . . , n} with aj the number of partitions of length j. Explicitly,

rk(C o S3) = rk(C)3 + 3 rk(C)2 + 2 rk(C)
rk(C o S4) = rk(C)4 + 6 rk(C)3 + 11 rk(C)2 + 6 rk(C)
rk(C o S5) = rk(C)5 + 10 rk(C)4 + 35 rk(C)3 + 50 rk(C)2 + 24 rk(C)

· · ·
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