Detecting and Characterizing Bots that Commit Code

Tapajit Dey
Sara Mousavi
The University of Tennessee
Knoxville, TN, USA
tdey2@vols.utk.edu
mousavi@vols.utk.edu

Anna Filippova
Github
San Francisco, CA, USA
annafil@github.com

ABSTRACT

Background: Some developer activity traditionally performed man-
ually, such as making code commits, opening, managing, or closing
issues is increasingly subject to automation in many OSS projects.
Specifically, such activity is often performed by tools that react to
events or run at specific times. We refer to such automation tools as
bots and, in many software mining scenarios related to developer
productivity or code quality, it is desirable to identify bots in order
to separate their actions from actions of individuals. Aim: Find an
automated way of identifying bots and code committed by these
bots, and to characterize the types of bots based on their activity
patterns. Method and Result: We propose BIMAN, a systematic
approach to detect bots using author names, commit messages, files
modified by the commit, and projects associated with the commits.
For our test data, the value for AUC-ROC was 0.9. We also charac-
terized these bots based on the time patterns of their code commits
and the types of files modified, and found that they primarily work
with documentation files and web pages, and these files are most
prevalent in HTML and JavaScript ecosystems. We have compiled a
shareable dataset containing detailed information about 461 bots we
found (all of which have more than 1000 commits) and 13,762,430
commiits they created.

KEYWORDS

bots, automated commits, random forest, ensemble model, social
coding platforms, software engineering

ACM Reference Format:

Tapajit Dey, Sara Mousavi, Eduardo Ponce, Tanner Fry, Bogdan Vasilescu,
Anna Filippova, and Audris Mockus. 2020. Detecting and Characterizing
Bots that Commit Code. In 17th International Conference on Mining Software
Repositories (MSR °20), October 5-6, 2020, Seoul, Republic of Korea. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3379597.3387478

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR 20, October 5-6, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7517-7/20/05....$15.00
https://doi.org/10.1145/3379597.3387478

Eduardo Ponce
Tanner Fry
The University of Tennessee
Knoxville, TN, USA
eponcemo@utk.edu
tfry2@vols.utk.edu

Bogdan Vasilescu
Carnegie Mellon University
Pittsburgh, PA, USA
vasilescu@cmu.edu

Audris Mockus
The University of Tennessee
Knoxville, TN, USA
audris@utk.edu

1 INTRODUCTION

Bot is a classification assigned to a software application that per-
forms automated tasks based on a predefined set of instructions,
and it either runs continuously or is triggered by events associated
with events, time conditions, or manual execution. Examples of
applications that can function as bots are automated scripts, activ-
ity loggers [24], web crawlers [8], and chat bots [9, 26]. A large
number of software developers, teams, and companies use bots to
do various, often repetitive, tasks, because bots can perform those
tasks more efficiently than human users [23, 33, 37].

In social coding platforms [11, 12] such as GitHub and BitBucket
a number of bots regularly create code commits, issues, and pull
requests. However, detecting a bot is a challenging task because
on the surface there is no apparent difference between the activity
of a bot and that of a human. Moreover, the message structure,
message content, and linguistic style of a code commit created by a
bot can look very similar to a commit created by a human author.
While there are a number of well-known and active bots, such as
Dependabot! and Greenkeeper,? not all bots are as popular and
easily recognizable, as we disclose in this work.

Our review of the existing literature did not reveal any systematic
approach for determining whether a given author in a social coding
platform is a bot. Therefore, in this work, we propose BIMAN
— Bot Identification by commit Message, commit Association, and
author Name — a novel technique to detect bots that commit code.
BIMAN is comprised of three methods that consider independent
aspects of the commits made by a particular author: 1) Commit
Message: Identify if commit messages are being generated from
templates; 2) Commit Association: Predict if an author is a bot using
a random forest model, with features related to files and projects
associated with the commits as predictors; and 3) Author Name:
Match author’s name and email to common bot patterns. The code
for BIMAN is available at our GitHub repository.>

We applied BIMAN to the World of Code dataset [35], which has
a collection of more than 34 million authors who have committed
code to a GitHub repository, along with detailed information for
approximately 1.6 billion commits made by these authors. A dataset
was compiled with information about 461 bots, detected by BIMAN

Uhttps://dependabot.com
Zhttps://greenkeeper.io
3https:// github.com/ssc-oscar/BIMAN_bot_detection [19]

MSR 20, October 5-6, 2020, Seoul, Republic of Korea

and manually verified as bots, each with more than 1,000 commits,
along with detailed information about 13,762,430 commits made by
these bots. This dataset is available at [18].

We also aim to characterize the bots found using BIMAN based
on their activity, that is, the type of files modified and the commit
timestamp, which can provide insights into the type of work they
perform and the programming languages they work with. We dis-
covered four different classes of bots based on the pattern of their
activity over the 24 hours of a day and identified the type of files
commonly edited by bots.

In summary, we make the following contributions in this paper:
1) BIMAN, a generalizable technique combining three different
methods for identifying if a given author is a bot; 2) Characteri-
zation of bots based on their activity patterns; and 3) A labeled
dataset comprised of 461 bots with 13,762,430 commits. We expect
our efforts will be useful in enabling further research in software
development requiring either the inclusion or exclusion of bots.

The rest of the paper is organized as follows: We discuss the mo-
tivation for our work and the specific research questions addressed
in this paper in Section 2. In Section 3, we discuss related works in
the topic. Section 4 focuses on the proposed methods for detecting
and characterizing bots that commit code. In Section 5, we describe
the results we found pertaining to our research questions. Finally,
we discuss the limitations of the current version of our work and
the possible future works in Section 6 and conclude the paper in
Section 7.

2 MOTIVATION AND RESEARCH QUESTIONS

The main motivation behind our bot detection effort is twofold: 1)
Data cleaning: the automated nature of bots can significantly affect
the estimates of team size, the amount of activity, and developer
productivity, which can threaten the validity of such measures and
any decision based on such measures; and 2) Research: enabling
further research into bots.

Many software researchers look at the activity of software devel-
opers for understanding their cultural behavior [3, 13-17], estimat-
ing team size [7], measuring productivity [49], and studying devel-
oper interaction such as knowledge flow within a project [32, 36]
and prediction of build failures [48]. While conducting such studies,
it is important to account for developers that are bots because bots
typically have different activity patterns than humans. For example,
bots may generate physically impossible metrics of activity and
productivity, or could at least significantly bias these estimates.
Furthermore, the desire to stand out can lead to creation of ex-
treme numbers of files or commits via automation (e.g., GitHub
author one—million—repo4 has 1,102,551 commits and the repository
biggest-repo-ever > has 9,960,000 commits). ©

However, the first step in adopting a data cleaning scheme to
mitigate the effects of bots in software engineering research is to
find the bots and, as mentioned earlier, we found no systematic
approach for that. Therefore, the first research question we address
in this paper is:

RQ1: How can we determine if a particular author is a bot?
“https://github.com/one-million-repo

Shttps://github.com/one-million-repo/biggest-repo-ever
Chttps://bitbucket.org/swsc/overview/src/master/fun

T. Dey et al.

A logical follow-up to this research question is characterizing
the bots found. Previous methodologies proposed for bot character-
ization are to examine the design and construction of bots [22] and
their intrinsic properties and interaction patterns [34], while we
strive to characterize bots based on activity patterns, for example,
type of files modified and commit timestamp.

In contrast to the existing taxonomy for bots, which is generated
using a theoretical setting, (e.g., Erlenhov et. al. used faceted anal-
ysis [22] and Lebeuf [34] used the taxonomy generation method
proposed by [45]), we select a data intensive technique to character-
ize bots using BIMAN because of the limited information available
other than what can be obtained from their commit activity.

The general assumption about bots is that they primarily per-
form tedious tasks, and we want to investigate the veracity of this
conjecture. In addition, we want to estimate the prevalence of bots
in relation to programming languages, which can highlight the type
of work they perform and the areas with scope for bot adoption.
Therefore, we pose our second research question as:

RQ2: What type of work do bots perform and which pro-
gramming languages do they work with?

3 RELATED WORKS

The idea of “bots”, or software applications that can imitate human
activity, dates back to 1950 with Alan Turing asking the question
“Can machines think?” [2]. Recent advancements in artificial intelli-
gence, especially natural language processing and machine learning
have led to a proliferation of bots across domains, such as in vir-
tual assistants (Apple’s Siri [47] and Google’s Assistant [42], and
Amazon’s Alexa 7), education [5, 31], e-commerce [44], customer
service [29], and social media platforms [1].

Open-source software (OSS) communities, and software engi-
neering in general, primarily use bots to reduce the workload of
repetitive tasks. Wessel et. al. [46] studied 351 GitHub projects
with more than 2,500 stars and found that 26% of them use bots,
with bot usage rising since 2013. Bots also support communication
and decision making [40, 43], automate deployment and evalua-
tion of software [6], and automate tasks that would require human
interaction in collaborative software development platforms [33].

However, while these studies highlight how bots are used and
how prevalent bot adoption is in popular OSS projects, they do
not present any generalizable method to detect the bots that are
already present. Wessel et. al. [46] inspected the GitHub account
of a suspected bot and checked if it is tagged as a bot. They also
examined pull request messages, in search of obvious messages,
for instance: “This is an automated pull request to..”. Erlenhov
et. al. [22] and Lebeuf [34] analyzed 11 and 3 well-known bots,
respectively, and neither suggested a formal method of detecting if
a given author is a bot.

In terms of bot characterization, Lebeuf [34] proposed charac-
terizing bots by analyzing 22 facets organized into 3 dimensions:
Environmental (where the bot operates), Intrinsic (internal bot
properties), and Interaction (how the bot interacts with its environ-
ment). Erlenhov et. al. [22] focused on the “DevBots”, i.e., bots that
support software development, and proposed a taxonomy compris-
ing 4 facets: Purpose (general or specialized), Initiation (triggered

"https://developer.amazon.com/en-US/alexa

Detecting and Characterizing Bots that Commit Code

by users and/or system), Communication (how the bot communi-
cates with other users), and Intelligence (adaptive or static). Dey
et. al. [20] used the dataset shared with this work to categorize bot
commits by the type of file operations (add, delete, or modify), find
the distribution of file types changed, and identify the file types
that tend to get updated together.

4 METHODOLOGY

In this section, we describe the data used for analysis, present
our proposed approach for detecting bots, and describe how we
characterized the bots found.

4.1 Data

The data used for this study was obtained from the World of Code
(WoC) [35] dataset. Specifically, version P which was collected
between May 15, 2019 and June 5, 2019 based on updates/new
repositories identified on May 15, 2019. The data contained infor-
mation on 73,314,320 unique non-forked Git repositories, 34,424,362
unique author IDs, and 1,685,985,529 commits. The author IDs were
represented by a combination of the authors name and email ad-
dress: first-name last-name<email-address>. Asan example,
for an author with first name “John”, last name “Doe”, and email
address “myemail@me.com”, the corresponding author ID in the
WoC dataset would be: “John Doe<myemail@me.com>”.

The data is stored in the form of mappings between various Git
objects. For our study we used the mappings between the commit
authors and commits (a2c), commits and filenames (including the
file path) changed by that commit (c2f), commits and the GitHub
projects that commit is associated with (c2p), and commits and
the contents of the commits comprising the commit timestamp,
timezone, and commit message (c2cc).

Our method of extracting information about the authors con-
sisted of the following steps:

(1) Obtaining a list of all authors from the WoC dataset.

(2) Identifying all commits for the authors using the a2c map.

(3) Extracting the list of files modified by a commit, the list
of projects the commit is associated with, and the commit
content for each of the commits for every author using the
c2f, c2p, and c2cc maps, respectively.

4.2 Bot Detection

BIMAN, our proposed technique for detecting bots, comprises
three methods, 1) Bot Identification by Name (BIN), 2) Bot Identifica-
tion by commit Message (BIM), and 3) Bot Identification by Commit
Association (BICA), each relying on distinct data attributes. We dis-
cuss these methods separately rather than as a single model because
they can be used independently and not all of the required data for
each method is available or easily obtainable, and researchers with
access to partial data can still use a subset of BIMAN. An overview
of the BIMAN approach is illustrated in Figure 1.

4.2.1 Identifying bots by name (BIN). We began devising a pos-
sible method for detecting bots by comparing names of known
bots. Erlenhov et. al. [22] studied 11 bots, which we took as a start-
ing point in our investigation. However, since the author IDs in
our dataset consist of name-email combinations, we had to search

MSR 20, October 5-6, 2020, Seoul, Republic of Korea

through the list of authors for identifying the possible author IDs
that could be related to one of these 11 bots. We did not found
an entry matching 3 of the 11 bots: “First-timers”, “Marbot”, and
“CssRooster”, and found a total of 57 author IDs that could be asso-
ciated with one of the other bots. We noticed that 25 (37%) of these
author IDs had the substring “bot”. We further searched for other
known bots (e.g., Travis CI and Jenkins bots) in our dataset and
noticed that many of the author IDs we suspected as bots also had
the substring “bot” in their name or email.

Based on these observations, regular expressions were used to
identify if an author is a bot by checking if the author name or
email has the substring “bot”. However, to avoid including false
positives like “Abbot” or “Botha”, the regular expression searched
for “bot” preceded and followed by non-alpha characters. We further
excluded author IDs that had the word “bot” only in the domain
name of their email addresses (e.g., hr@future-bot.ai), since we
are not convinced that these are always bots. Although matching
regular expressions does not detect all bots, nor is it able to filter
authors trying to disguise themselves as bots, it is a straightforward
solution that does not requires any other data, and can be regarded
as a good starting point.

Creating the Golden Dataset for BIM and BICA: There is no
publicly available golden dataset of bots in social-coding platforms
for training machine learning models. However, we noticed that
the name based bot identification method was very precise, i.e., it
had few false positives. Therefore, we used BIN to create a golden
dataset. Two of this paper’s authors independently analyzed the
author IDs and descriptions, and commit and pull request messages,
when available, to manually verify the authors identified as bots
by BIN and remove the ambiguous cases (less than 1%) based on
consensus. We found a total of 13,150 bot authors via this process.
We also needed to include a set of human authors to complete a
training dataset. We randomly selected 13,150 authors, and again
manually ensured that no bots were in this list. This was our golden
dataset, consisting of 26,300 authors, used for training and testing
the BIM and BICA methods of BIMAN.

Comparing the commit activities of humans and bots: Our
initial assumption was that bots are very active agents and produce
a significantly greater number of commits than humans, therefore,
we could detect bots by evaluating the number of commits. However,
upon investigating the 13,150 bots in the golden dataset, we found
that assumption to be incorrect. While the maximum number of
bot commits was admittedly huge (2, 463, 758), the median number
was only 2, and the first and third quantile values were 1 and 16,
respectively. In contrast, the median number of human commits was
4, and the first and third quantile values were 2 and 17, respectively.
These observations indicated that the number of commits between
humans and bots is not significantly different.

We hypothesize that the reason behind why many bots have
few commits relates to any of the following reasons: (1) Given that
author IDs consist of a name-email combination, slight variations in
either appear as different authors, when they are not. For example,
a “dotnet-bot” has three name variations that appear as different
authors: beep boop, Beep boop, and Beep Boop, though it has the
same email address: dotnet-bot@microsoft.com. We need to em-
ploy anti-aliasing methods [4] to address this issue. (2) Bots might
have been implemented as an experiment or coursework, and never

MSR 20, October 5-6, 2020, Seoul, Republic of Korea

T. Dey et al.

s A ’ N
] \\ 7 \
. \
{ Commits Message 1 | BIM: Document Ratio \
: i template algorithm score !
1
! ale N !
| ! 1 1
1 I H .
1 I H .
! - : 1 1
i i 4 1
I ;
' Authors Files, 1; BICA: Random Probability | 1s author
: WoC data projects ; | . score Ensemble —‘-: abot?
| " :
1 I H .
1 I H H
i h '
! .
1 Name, email - BIN: Regular Y/N :
| i expression match !
1 I l‘ ;
\\ /’ \\ " ll
s Data -7 . Modeling e

Figure 1: BIMAN workflow: Commit data pertaining to authors is used for message template detection, activity pattern based
predictions using a random forest model, and name pattern matching. Scores from each method are used by an ensemble
model (another random forest model) that classifies the given author as a bot or not a bot.

used afterwards. For example, we found a bot named “learn.chat.bot”
that most likely belongs in this category. (3) Bots might have been
designed for a project, but were never fully adopted.

4.2.2 Detecting bots by commit messages (BIM). Characteristics
of commit messages can be used to identify an author as a bot. One
approach is to assume that many bots routinely use template mes-
sages as the starting point for the commit message. Consequently,
detecting if the commit messages by an author originate from a
template can be used to identify such bots. Although humans can
also generate commit messages with similar and consistent pat-
terns (e.g., follow a set of software development guidelines), the
key assumption BIM follows is that for a large number of commit
messages, the variability of messages’ content generated by bots is
lower than those generated by humans.

BIM utilizes the document template score algorithm presented in
Alg. 1. Given a set of documents (commit messages), the algorithm
compares document pairs and uses a similarity measure to group
documents. The Similarity procedure represents a method that
computes a “similarity” measure that is of interest [10, 28, 30, 39],
with the percent identity of the aligned commit messages being
used for BIM. A group represents documents that are suspected to
conform to a similar base document, and each group has a single
template document assigned to it and this is the document always
used for comparisons. A new group is created when a document’s
similarity with any template document does not reach the similarity
threshold, kp,, and this document is set as the template document for
that group. After all documents are compared, a score is calculated
based on the ratio of the number of template documents and the
number of documents: 1 — H, where T is the set of template
documents and D is the set of documents.

In BIM, commit messages were aligned and scored using a
combination of global (Needleman-Wunsch [38]) and local (Smith-
Waterman [41]) sequence alignment algorithms available via the
Python alignment?® library. The similarity threshold, kj,, was set
to 40% after testing the accuracy of Alg. 1 on the golden data using
thresholds of 40, 50, 60, and 70%.

Shttps://pypi.org/project/alignment

Algorithm 1 Document template score

Inputs: set of documents D and similarity threshold k;,
Output: 1 - ratio of number of templates to documents

:T«0 > set of template documents
22 G «— {0} »template groups, G; is associated to template i
3: ford € D do

4 fort e Tandd ¢ G do

5 if StmrLARITY(d,) > kj) then

6 Add d to G;

7 end if

8 end for

9 if d ¢ G then
10: AdddtoT
11: Add d to Gy
12: end if
13: end for

||T]|

14: return 1 — bl

4.2.3 Detecting bots by files changed and projects associated with
commits (BICA). We calculated 20 metrics using the files changed
by each commit, the projects that commit is associated with, and
the timestamp and timezone of the commits, based on our initial
assumptions about how bots and humans might be different, and
empirical validation of the assumption by observing the differences
in distribution of those variables for bots and humans.

For predicting whether an author is a bot using the numerical
features, we tested several modeling approaches: linear and logistic
regression, generalized additive models, support vector machines,
and random forest. The random forest model performed better than
the other approaches, so we decided to use that approach. We used
the random forest implementation available in the “randomForest”
package in R, with these 20 variables as predictors, to predict if the
author of those commits is a bot. After iteratively selecting and
removing predictors based on their importance in the model, and
measuring the AUC-ROC every time, we found that a model with
only 6 predictors was the best model. The list of predictors is given
in Table 1, along with the description of each variable. We found

Detecting and Characterizing Bots that Commit Code

that the timestamp of a commit and any time related measure (e.g.,
how long a bot has been active and at what times of the day it
makes commits) are not important predictors.

In order to tune the random forest model, we used the “train”
function from the caret package in R for performing a grid search
(using a 10 fold cross-validation) on the training data to find the
best values of the model parameters that resulted with the highest
accuracy: “ntree" (number of trees to grow) and “mtry" (number
of variables randomly sampled as candidates at each split). The
optimum values for “ntree” and “mtry” were 100 and 2, respectively.

Table 1: Predictors used in the random forest model

Variable Name Variable Description

Tot.FilesChanged = Number of files changed by author
across commits (includes duplicates)
Unigq.File. Exten Number of unique file extensions in
all the author’s commits
Std.File.pCommit Std. dev. of number of files per commit
Avg FilepCommit Mean number of files per commit

Tot.uniq.Projects =~ Number of unique projects commits
have been associated with

Median number of projects the com-
mits have been associated with (in-
cludes duplicates); We took the me-
dian value, because the distribution of
projects per commit was very skewed,
and the mean was heavily influenced

by the maximum value.

Median.Project.
pCommit

4.2.4 Ensemble model: Based on the fact that BIN, BIM, and BICA
methods consider different aspects of the authors and commits, we
decided to use an ensemble model, implemented as another random
forest model. The ensemble model in BIMAN utilizes the outputs
of the three methods as predictors to make a final judgement as to
whether an author is a bot or not. The output from BIN is a binary
value (1 — bot, 0 — human), stating if the author ID matches the
regular expressions we checked against; the output from BIM is a
score, with higher values corresponding to a higher probability of
the author being a bot; and the output from BICA is the probability
that an author is a bot.

Creating the Training Dataset for the ensemble model: Recall
the golden dataset was generated using the BIN method, so we did
not used it for training the ensemble model. Instead, we created
a new training dataset partly consisting of 67 bots from which
57 author IDs were associated with 8 bots described in [22] (as
mentioned in Section 4.2.1) and 10 author IDs associated with 3
other known bots that were not in the golden dataset: Scala Steward,
codacy-badger, and fossabot. Also, 67 human authors were included
via random selection and manual validation. The final training data
for the ensemble model had only 134 observations, however, given
that we had 3 predictors, we were reasonably satisfied with it.

MSR 20, October 5-6, 2020, Seoul, Republic of Korea

4.3 Bot Characterization

Instead of trying to design a taxonomy of bots, as was done in
previous studies [22, 34], we aim to classify bots by their activity
patterns, specifically, by the files modified and the timestamps
of commits, due to the limited information available of the bots.
This characterization was applied to the 13,150 bots in the golden
dataset. We looked at how the number of commits made by a bot
are distributed over the 24 hours of a day, which gives an indication
of what type of work a bot performs.

4.3.1 Characterization of bots by activity hours: By observing the
distribution of commits created by a bot over the 24 hours of a day
using time-of-day histograms for a randomly selected sample of
50 bots identified by BIMAN, and employing a qualitative analysis
technique similar to card sorting, we identified three distinct pat-
terns: 1) Bots were active almost uniformly over the 24 hours of a
day, or, in some cases, they had no activity for a few contiguous
hours and almost uniform activity during the rest of the day; 2)
Bots’ activity patterns resembled the typical activity patterns of
humans very closely, i.e., they were more active during “working
hours”, with a few contiguous peak activity hours, and they had
limited activity over the rest of the day; 3) Bots were active only
for a few specific hours and had almost no activity during the rest
of the day. We named the three types of bot patterns, respectively,
as: “Continuous Activity Bots”, “Synchronous Activity Bots” (their
activity seems to be synchronized with typical human activity), and
“Spike Activity Bots”. There were some bots with activity patterns
that did follow any of the three patterns described, we classified
these bots as “Other Bots”.

We applied this characterization only on the “active” bots, be-
cause bots with very few commits would almost always follow the
“Spike Activity Bots” or “Other Bots” pattern. Moreover, we were
more interested in the “active” bots because they have a greater
influence over the projects and ecosystems they are active in, as
they have more code contribution than the rest. We designated
the bots with more than 1,000 commits as “active” bots, and we
found 454 (3%) bots in the golden dataset matching that criteria. For
the characterization process, we had three of this paper’s authors
independently classify the bots based on their commits’ distribution
over the hours of day and a fourth author compile the results into
a final classification, taking into account the rating stated by the
others and using her own judgement for the ambiguous cases.

4.3.2 Identifying files modified by bots: We also investigated which
programming languages bots worked with and what types of files
they modified. We extracted the file extensions from the files modi-
fied by each commit from the bots in the golden dataset, and used
the linguist ° tool to obtain an estimated language classification
based on a common open-source model. This information was used
to infer which programming languages a bot worked with.

5 RESULTS

5.1 Qualitative Validation of BIMAN

Before going into the detailed performance evaluation of BIMAN,
we wanted to test how it performs in detecting a few known bots.

“https://github.com/github/linguist

MSR 20, October 5-6, 2020, Seoul, Republic of Korea

T. Dey et al.

Table 2: Performance of the models in detecting 8 known bots from [22] and 3 other known bots outside the golden dataset

Bot No. of author IDs associ- No. of IDs identified as No. of IDs identified as No. of IDs identified as No. of IDs identified as
ated with the bot bot by BIN bot by BICA bot by BIM bot by BIMAN

Dependabot 4 4 4 2 4

Greenkeeper 15 10 13 11 13

Spotbot 1 0 1 1 1

Imgbot 5 1 4 3 4

Deploybot 29 9 20 17 23

Repairnator 1 0 0 1 1

Mary-Poppins 1 0 1 1 1

Typot 1 1 0 1 1

Scala Steward 6 0 6 6 6

codacy-badger 2 0 2 2 2

fossabot 2 0 2 2 2

Total 67 25 (37%) 53 (79%) 47 (70%) 58 (87%)

As mentioned in Section 4.2.1, we obtained a set of 57 author IDs
associated with 8 of the bots described in [22]. In addition, we
examined 10 author IDs associated with 3 well-known bots, Scala
Steward, codacy-badger, and fossabot, that were not in the golden
dataset. The performance of bot detection of BIMAN and each of
its constituent methods is shown in Table 2.

We found that BIMAN identified 58 (87%) out of 67 author IDs
as bots, and 6 out of 9 other IDs could be identified as not actually
being a bot via manual investigation, they were either spoofing
the name or simply using the same name. The 3 other IDs, 2 of
which were associated with “Deploybot” 10 11, and the other with
“Imgbot” 12 had 1 commit each, making any decision about them
being bots difficult to make even via manual investigation.

5.2 Performance Evaluation of BIMAN

In this section, we discuss the performance of BIMAN, our pro-
posed approach for bot detection. As mentioned in Section 4.2,
BIMAN is comprised of three independent methods, each looking
at a different aspect of the commit authors and the commits, and an
ensemble model that combines the results from the three methods
for estimating the final prediction. We decided to evaluate the per-
formance of each method and discuss what we learned with each
one in detecting bots that commit code.

5.2.1 Performance of BIN:. We did not use the golden dataset to
validate the accuracy of BIN because this method was used to
construct that dataset (see Section 4.2.1). However, during creation
of the golden dataset, BIN obtained a precision close to 99%, which
indicates that any author considered to be a bot using this method
has a very high probability of being a bot. In general, humans do not
try to disguise themselves as bots. The recall measure is not high,
because BIN missed a lot of cases where the bots do not explicitly
have the substring “bot” in their name. As mentioned in Section 5.1,
we observed an estimated recall of 37% on the set of 67 bot IDs we
manually investigated.

5.2.2 Performance of BIM:. Our proposed method for detecting
whether an author is a bot by applying the document template score

10deploybot-lm <45803032+deploybot-lm@users.noreply.github.com>
DeployBot <deploybot@imgs.co.za>
2imgbot<imgbothelp@gmail.com>

algorithm, Alg. 1, solely relied on the commit messages. Figures 2a-b
present the ratio of the number of probable templates to the number
of commit messages for the bots and humans in the golden dataset.
Note that bots tend to have a lower ratio than humans. The reason
for both plots having a high template ratio is that if an author has
a single commit message, the ratio is bound to be 1. Over 25% of
the bots in the golden dataset have only 1 commit.

We wanted to find an optimal threshold for the template ratio, so
that the authors, for whom the ratio is lower than the threshold, can
be regarded as bots (the output from the BIM method is (1-ratio),
so a lower value is more likely to be human and vice versa). This
information would be useful for researchers who might only use
this technique to detect whether a given author is a bot, and this
also helps us calculate the performance of this method. The optimal
threshold was found using the “closest.topleft” optimality criterion
(calculated as: min((1 — sensitivities)? + (1 — specificities)?)) us-
ing the pROC package in R. The AUC-ROC value using the ratio
values as predicted probabilities was 0.70, and the optimal values
for the threshold, sensitivity, and specificity were found to be 0.51,
0.67, and 0.63, respectively. We plotted the sensitivity and the speci-
ficity measures in Figure 2c, and highlighted the optimal threshold,
sensitivity, and specificity values for that threshold.

True Positive: The cases where this model could correctly identify
bots were cases where the bots actually used templates or repeated
the same commit message, e.g., a bot named “Autobuild bot on
Travis-CI” used the same commit message “update html,” for
all of the 739 commits it made, and a bot named “Common Work-
flow Language project bot” created 1,373 commits that used the
form: “$USER-CODE: $SOFTWARE configuration files updated.
Change performed by $NAME”. BIM could identify these messages
as coming from the same template message and classify these au-
thors as bots.

False Negative: The cases where this model could not correctly
identify bots were mostly cases where the bots reviewed code
added by humans and created a commit message that added a
few words with the commit message written by a human, e.g., a
bot named “Auto Roll Bot” created commit messages in the form
of: “6COMMIT-SEQUENCE-NUMBER: $LONG-HUMAN-COMMIT-TEXT
$PATTERN”, with one specific example being “3602: Fix errors
in the Newspeak Mac installer genrators. Fix a slip in
platforms/Cross/vm/

Detecting and Characterizing Bots that Commit Code

Frequency
400 600 800 1000
L L L |
Frequency
1000 1500 2000
1 L |

200
L
500

L]

MSR 20, October 5-6, 2020, Seoul, Republic of Korea

Performance
|

Ratio

(@)

Figure 2: (a) Ratio of number of detected templates and the number of commit messages for the 13,150 bots in the golden
dataset; (b) Ratio of number of detected templates and the number of commit messages for the 13,150 humans (non-bots) in
the golden dataset; (c) Plot of sensitivity, specificity, and cutoff (threshold), when predicting if an author is a bot using the ratio
of number of detected templates to the number of commit messages.

sqCogStackAlignment.h for the ARM’s getsp. Eliminate
non-spur and stack VMs from the ARM builds (it builds
veerry slowly) Include 64-bit and Mac Pharo VMs in
archives and uploads.-----------——=-——=———————————— ,
with the length of “$SLONG-HUMAN-COMMIT-TEXT” typically
ranging between 20 and 50 words. BIM failed to identify this tem-
plate and misclassified this author as a human.

True Negative: The human authors correctly identified had some
variation in the text, with the usual descriptions of change. Some
examples are: “Added a count down controller”and “Enabling
multiport deployments. By mapping ports a little bit
more specific we get all the servers listed in the
server browser”.

False Positive: In contrast, humans who were misclassified as bots
usually had short commit messages that were not descriptive, and
they reused the same commit message multiple times. Example of
typical messages are: “Initial Commit”, “Added File by Upload”,
and “Updated $FILE”.

Our observations support that BIM is useful in detecting “typical”
bots that modify small parts of a message in every commit, and
“typical” humans who write descriptive commit messages. However,
we can also conclude that it is very hard to identify if an author is
a bot using just one signal.

5.2.3 Performance of BICA:. As mentioned in Section 4.2.3, the
BICA approach uses a random forest model with the measures
listed in Table 1 as predictors for identifying bots. We used the
golden dataset generated using the BIN method (Section 4.2.1) for
training the model and testing its performance. 70% of the data,
selected randomly, was used for training the model and the rest
30% was used for testing it, and the procedure was repeated 100
times with different random seeds.

The model showed good performance, with an AUC-ROC value
of 0.89. The variable importance plot (Figure 3) indicates that the
total number of unique file extensions and the total number of
files changed in all the commits made by an author are the most
important variables.

To understand what each of the predictors tell us about how
the behavior of the bots differ from that of humans, we looked at

Unig.File.Exten o
Tot.FilesChanged o
Std.File.pCommit o
Avg.File.pCommit o
Median.Project.pCommit| o

Tot.unig.Projects o

T T I T I T I
20 30 40 50

MeanDecreaseAccuracy

Figure 3: Variable importance plot for the random forest
model used to identify bots

their partial dependence plots, see Figure 4. The greater values in
the vertical axis of each plot correspond to a higher probability
of an author being a bot, and the values in the horizontal axis are
the possible predictors’ values. These plots illustrate an empirical
understanding about how the behavior of the bots is different from
humans. We notice that bots tend to have fewer number of unique
file extensions and their commits are associated with fewer number
of different projects, i.e., they tend to operate in one ecosystem.
However, their commits tend to be associated with a greater num-
ber of projects per commit, the projects they commit to are more
popular. Bots typically make larger commits, as we notice that they
tend to have more files per commit on average and a greater number
of total files changed. They are also more consistent in terms of
commit size because the variation in the number of files per commit
is lower. These observations fall in line with our idea of typical bots,
which keep updating a consistent set of files and typically partake
in popular projects.

5.24 Performance of the ensemble model: We combined the results
of BIN, BIM, and BICA using an ensemble model, implemented
as a random forest model. The dataset used for training and testing

MSR 20, October 5-6, 2020, Seoul, Republic of Korea

1 Uniq.File.Exten 2 Tot.FilesChanged 3 Std.File.pCommit

© © ©
o o ﬁ o
< <] <] \h
o o o
o | o | =
o T T T T T o T T T T T o T T T T T
0 20000 40000 0.0e+00 1.5e+07 0 5000 15000 25000
4 Tot.uniq.Projects 5 Avg.File.pCommit 6 Median.Project.pCmmt
© © ©
o o o
</ < | / < | (
o o o
Q = =
T T T T T T o T T T T T o T T T T T
0 20000 40000 0 20000 40000 0 1000 3000

Figure 4: Partial dependence plot for all the predictors in the
random forest model

the performance of this model had only 134 observations, because
of reasons described in Section 4.2.4. We used 80% of the data for
training, and 20% for testing, and repeated the process 100 times
with different random seeds. The performance of this model had
variation because of the small size of the training data. The value
of the AUC-ROC measure varied between 0.89 and 0.95, with a
median of 0.90.

To address RQ1, we devised BIMAN, a systematic approach
for detecting bots using information about their names, commit
messages, files modified by the commit, and projects associated
with the commits.

5.3 Estimating the Number of Commit Bots

While we can easily obtain the number and activity of author IDs
that contain the substring “bot”, it is much more difficult to de-
termine the total number of author IDs that, from their string
representation, can not be inferred to be bots. Yet, even a rough
gauge on the prevalence of bots and code committed by bots would
be helpful to have a handle on the fraction of code commit activity
that is automated. To do that we randomly selected a sample of
10,000 authors IDs outside of our datasets used so far (none had the
substring “bot” in their names). BIMAN predicted 1,167 authors
IDs to be bots, and we randomly sampled 100 authors IDs among
those. A subjective assessment conducted by two authors of this
paper discovered at least 9 of these author IDs likely to produce
mostly automated commits. From this, we can obtain a rough es-
timate that approximately 11.67% X 9% =~ 1% of all authors IDs
who commit code are bots. Therefore, from the total population
of approximately 40 million authors in open-source Git commits,
approximately 400,000 authors are bots. The 9 author IDs that we
identified as bots were found to have created between 10 and 1,500
times more commits than the remaining author IDs. Such high dis-
crepancy strengthens our concerns described in Section 2 that the
empirical analyses relying on measures of developer productivity
can be strongly biased even if the actual bot population represents
a modest 1% of all developer author IDs.

T. Dey et al.

5.4 Shared Dataset of Bot Commits

We have compiled the information about the commits made by
461 bots detected using BIMAN, each of whom have created more
than 1,000 commits, into a single dataset and made it available for
researchers interested in conducting studies on such data, which
includes information about 13,762,430 commits made by these
bots. We decided to focus on the more active bots since these bots
would have a much greater effect on any estimate of developer
productivity, team size, etc. and they are the ones that should be
accounted for during any data cleaning process.

The data is stored in a delimited text file (semicolon as the
separator) with the following format in each line: “author_id”;
“commit-sha”; “time-of-the-commit”; “timezone”; “files-modified-by-
the-commit”; “projects-the-commit-is-associated-with”; “commit-
message”. In the case of having multiple projects and files for a
given commit, they are separated by ’,. The data is available at
Zenodo, through the link provided in Section 1. Additional data
about other authors, along with the likelihood of each being a bot
will be provided upon requests.

5.5 Bot Characterization

5.5.1 Characterizing the bots based on their activity during the day:
As mentioned in Section 4.3, we classified the bots into 3 particular
categories, and an “others” category for bots that do not fall in any
of the previous ones. After going through the categorization process
for the 454 bots with more than 1,000 commits, as mentioned in
Section 4.3, we found 100 (22%) “continuous activity pattern bots”,
162 (36%) “synchronous activity pattern bots”, 128 (28%) “spike
activity pattern bots”, and 64 (14%) bots classified as “others”.
Here we give one typical example from each category, and de-
scribe what type of work they do. This would help in understanding
why these bots have the observed activity pattern, and would en-
able inferring what type of the work a bot does if it falls in one of
the observed categories. We also show how their commit activity
over the 24 hours of a day are distributed using radial activity plots,
where we show what is the relative amount of activity of the bot
in a given hour over its lifetime. The hours between 8 a.m. and 4
p-m. are highlighted in each plot, since these hours are known to
be the typical working hours. The plots in Figure 5 are all examples
of radial activity plots.
1. Continuous Activity Bots: A continuous activity bot shows
almost uniform activity over the 24 hours of a day. A representative
example of this class is the “Currency bot”, 1> which collects up-to-
date exchange rate data every hour and distributes it for free. The
radial activity plot for this bot is shown in Figure 5a. This bot has a
very uniform distribution of activity because it is active throughout
the day. Other bots in this category also perform tasks that require
them to be similarly active throughout the day.
2. Sync Activity Bots: These bots typically work in response to
the activity of a human, which means their activity during the day
closely resembles that of a human. A typical example of the Sync
bot class is the “Pure bot” 4, which enables automated pull request
workflows, reacting to input from web-hooks, and performing ac-
tions as configured. The radial activity pattern for this bot, as shown

Bhttps://github.com/currencybot
Yhttps://github.com/syndesisio/pure-bot

Detecting and Characterizing Bots that Commit Code

Currency Bot <joss@demandanalytics.com> pure-bot[bot] <pure-bot[botj@users.noreply.github.com>

23 0/24 4 23 0/24 4
2 2
21 3 21 3
20 4 20 4
19 5 19 5
18 6 18 6
17 7 17 7
16 8 16 8
15 9 15 9
14 10 4 1
13 12 11 13 12 11
(@) (b)

MSR 20, October 5-6, 2020, Seoul, Republic of Korea

Paper.js Bot <bot@paperjs.org> Nur a bot <joerg.nur-bot@thalheim.io>

23 0/24 4 23 0/24 4
2 2
21 3 21 3
20 4 20 4
19 5 19 5
18 6 18 6
17 7 17 7
16 8 16 8
15 9 15 9
14 4 1
13 12 11 13 12 11
© @

Figure 5: Classes of bots identified via activity patterns: (a) The Currency Bot - A Continuous Activity Bot, (b) The Pure Bot -
A Sync Activity Bot, (c) The Paper.js Bot - A Spike Activity Bot, (d) Nur a Bot - An Other Bot

in Figure 5b, is similar to the typical activity pattern of humans
because it reacts in response to humans creating pull requests.
3. Spike Activity Bots: These bots perform actions at a fixed
time of the day or at regular intervals. The type of work they
perform primarily falls into two categories, backup data and update
websites. A prime example of such a bot is the “Paper.js Bot” 1,
which automatically regenerates the Paper.js website once per day,
and its radial activity plot is shown in Figure 5c.
4. Other Bots: There are a number of bots whose activity pat-
tern do not match any of the categories previously described. A
particular example is the “Nur a Bot” 16, which is responsible for
updating the NUR repository based on community updates and
NIX repository updates. Nix is a powerful package manager for
Linux and other Unix systems that makes package management re-
liable and reproducible, and NUR is a community repository where
anyone can submit software to be added in. Seeing as this bot does
two different types of work, its activity does not follows a regular
pattern, as can be observed by its radial activity plot in Figure 5d.
Our effort of categorizing bots code sheds light on which specific
activities they do, thus it covers the “Initiation” facet described
n [22]. Broadly speaking, we can infer that the bots that show
continuous activity or spike-like activity are the “active” bots, which
are activated by the system running it. In contrast, the “Synchronous
Activity Bots” are “reactive”, i.e., they work in response to the
activity of a human or another bot. We can not infer anything
specific about the “Other” bots with the information we have.

5.5.2 What types of files do bots modify? Understanding the types
of files these bots work with can give us more insight into the
type of work they perform and which programming languages
they work with. Following the characterization steps as described
in Section 4.3, we discovered the types of files modified by the
13,150 bots in the golden dataset. The type of files modified most
frequently by bots are shown in Figure 6. The frequency values
in the vertical axis of the plots represent the number of bots that
have modified a specific type of file. We notice that bots mostly
work with configuration and documentation related files, along
with HTML and JavaScript files.

Shttps://github.com/paperjs-bot
1Shttps://github.com/nur-bot

4000

3000

2000

) IIIII
o 5 &

> R
< f\“ p"\ & R &
@ \” N

Language Type

Frequency

Figure 6: The types of files most frequently modified by bots

4000
3500
3000

2500

1500
1000
500 I
0 [] -

/\e\«&&"’o e (’Q*Ae Q~<>~ é&c,& &«\Qo

Frequency

N
S
8
5

\'° 0~o\ < <+«
Software Ecosystems

Figure 7: The programming languages bots contribute to

We also tried to investigate which programming languages bots
most frequently work with, so we took the list of languages exam-
ined by Wessel et. al. [46] and measured how many of the 13,150 bots
have contributed to one of them. The distribution of bots in different
languages is shown in Figure 7, with the number of bots working
with a particular language shown in the vertical axis. We notice
that, similar to what we observed earlier, HTML and JavaScript
are the languages bots are most active in, which corroborates the
findings of [46].

MSR 20, October 5-6, 2020, Seoul, Republic of Korea

Regarding RQ2, we identified four different types of bots based
on their commit activity during the day and found that bots pri-
marily work with configuration and documentation files, with
HTML and JavaScript being the most common programming
languages they contribute to.

6 LIMITATIONS AND FUTURE WORK

Our approach of detecting bots is a first step towards a challenging
task, and there are a number of limitations to our approach and
possible scope for improvement.

6.1 Internal Validity

The biggest problem we faced during designing BIMAN was the
lack of a golden dataset. We only knew about a handful of bots,
which was not enough to design an accurate machine learning
model. We tackled this problem by creating a dataset with one
of the methods we proposed (BIN), and manually validating it.
However, the bots found by BIN can have different characteristics
than the rest of the bots, specifically, ones that may be trying to
hide the fact that they are bots, and our method is not be able to
detect them.

We did not have a ground truth to validate the golden data against
(nor are we aware of the possibility of compiling such data with
absolute certainty), so we had to come up with, what we judged
to be, a reasonable alternative. The golden dataset was manually
curated by two authors of this paper, and the ambiguous cases,
including the bots trying to disguise themselves as humans and
vice versa, were excluded from the golden dataset.

Using the dataset generated by BIN as a golden dataset also
means that we were not able to estimate the recall of BIN with
it. Instead, we had to use a much smaller dataset to estimate its
recall. Similarly, our final ensemble model was also trained with
this smaller dataset, which led to some variation in its performance
(AUC-ROC value varied between 0.89 and 0.95).

Another threat to the effectiveness of our method is that a num-
ber of developers use automated scripts to handle some of their
works, which uses their Git credentials while making commits. This
is a tricky challenge for our method, since the signal from those
authors appears mixed, and depending on what fraction of commits
made using that author’s ID is made by the bots, our method can
fail to detect such authors as bots. Similarly, a few organizational
IDs are sometimes used by bots as well as humans, and we have a
similar issue regarding those IDs as well. We did not address the
problem of multiple IDs belonging to the same author, however, we
are testing different approaches for addressing this issue [25], and,
as a future work, plan on extending BIMAN with this capability.

Provided that an estimated 1% of the commit authors were found
to be bots (Section 5.3), an author detected as a bot by a 90% accurate
model has only only 8.3% chance of actually being a bot (using
Bayes’ Theorem), i.e., we are bound to have false positives.

6.2 Construct Validity

The construct validity threats primarily apply to the BIM approach
we used, since it was designed with specific ideas about how a
bot might work. BIM focuses on identifying bots that authored all

T. Dey et al.

the commit messages it is associated with, independent of whether
they were generated by a template-based approach or not. However,
many developers make use of bots for generating certain commit
messages (re-using the same author ID) and this hybrid classifica-
tion is not addressed in this work. The main factors that give rise to
limitations are the content of commit messages, number of commit
messages per author, and performance of similarity measure.

The performance of BIM depends primarily on the performance
of the similarity measure used to compare commit messages. Com-
mit messages tend to be concise, making it difficult to extract con-
tent characteristics (structural or semantic) that are useful for text
similarity metrics. Humans with consistent message styles become
difficult to differentiate from template-based bot messages. More-
over, if there are few commit messages or many unique messages,
the document template score will not be effective, thus, this ap-
proach works better when enough data is available to almost satu-
rate the document template score. We note that BIM’s performance
will also vary based on the language of the commit messages (e.g.,
Spanish and Chinese), and does not support multilingual sets of com-
mit messages. BIM’s performance can be improved by using more
effective similarity measures based on natural language process-
ing [27], document embeddings, clustering, and machine learning
models [21].

6.3 External Validity

Our goal in this paper was to identify bots that make commits in
social coding platforms. To that effect, our method of detecting bots
could work for detecting other types of bots, such as pull-request
bots, and chat bots.

7 CONCLUSION

The automated nature of bots can inflate estimates of the amount
of productivity and team size in software projects. Such bias may
invalidate analyses and decisions based on these measures. Fur-
thermore, bot activity may bias the estimates of social networks
linking developers with bots or with other developers with whom
they are not in contact. Bots, therefore, should be excluded from
studies that focus on modeling the behavior of human developers
in OSS projects. In this work we presented a novel approach, BI-
MAN, to detect bots using information from code commits. Our
approach combines three independent models based on pattern
matching, document similarity, and random forest classification. A
significant portion of authors can be identified as bots using our
proposed method, which can make studies of developers based on
code commit data more accurate.

ACKNOWLEDGEMENT

The work has been partially supported by the following NSF awards:
CNS-1925615, I1S-1633437, and 1IS-1901102. Vasilescu has been sup-
ported in part by the NSF awards 1717415, 1901311.

REFERENCES

[1] Norah Abokhodair, Daisy Yoo, and David W McDonald. 2015. Dissecting a social
botnet: Growth, content and influence in Twitter. In Proceedings of the 18th ACM
Conference on Computer Supported Cooperative Work & Social Computing. ACM,
839-851.

Detecting and Characterizing Bots that Commit Code

&2,

3

=

[4

o

=

[10

[11]

[12

[13

=
it

[15]

[16]

[17

[18]

[19

[20]

[21

[22]

[23]

™
=t

[25]

M Alan. 1950. Turing. Computing machinery and intelligence. Mind 59, 236 (1950),
433-460.

Sadika Amreen, Bogdan Bichescu, Randy Bradley, Tapajit Dey, Yuxing Ma, Audris
Mockus, Sara Mousavi, and Russell Zaretzki. 2019. A methodology for measuring
FLOSS ecosystems. In Towards Engineering Free/Libre Open Source Software
(FLOSS) Ecosystems for Impact and Sustainability. Springer, Singapore, 1-29.
Sadika Amreen, Audris Mockus, Russell Zaretzki, Christopher Bogart, and Yuxia
Zhang. 2019. ALFAA: Active Learning Fingerprint based Anti-Aliasing for cor-
recting developer identity errors in version control systems. Empirical Software
Engineering (2019), 1-32.

Luciana Benotti, Maria Cecilia Martinez, and Fernando Schapachnik. 2014. En-
gaging high school students using chatbots. In Proceedings of the 2014 conference
on Innovation & technology in computer science education. ACM, 63-68.

Ivan Beschastnikh, Mircea F Lungu, and Yanyan Zhuang. 2017. Accelerating
software engineering research adoption with analysis bots. In 2017 IEEE/ACM
39th International Conference on Software Engineering: New Ideas and Emerging
Technologies Results Track (ICSE-NIER). IEEE, 35-38.

Tanmay Bhowmik, Nan Niu, Wentao Wang, Jing-Ru C Cheng, Ling Li, and
Xiongfei Cao. 2015. Optimal group size for software change tasks: A social
information foraging perspective. IEEE transactions on cybernetics 46, 8 (2015),
1784-1795.

Paolo Boldi, Andrea Marino, Massimo Santini, and Sebastiano Vigna. 2018. BUb-
iNG: Massive crawling for the masses. ACM Transactions on the Web (TWEB) 12,
2 (2018), 1-26.

Nick Bradley, Thomas Fritz, and Reid Holmes. 2018. Context-aware conversa-
tional developer assistants. In 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE). IEEE, 993-1003.

David Buttler. 2004. A short survey of document structure similarity algorithms.
Technical Report. Lawrence Livermore National Lab.(LLNL), Livermore, CA
(United States).

Valerio Cosentino, Javier L Canovas Izquierdo, and Jordi Cabot. 2017. A systematic
mapping study of software development with GitHub. IEEE Access 5 (2017), 7173~
7192.

Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding
in GitHub: Transparency and collaboration in an open software repository. In
Proceedings of the ACM 2012 conference on computer supported cooperative work.
ACM, 1277-1286.

Tapajit Dey, Yuxing Ma, and Audris Mockus. 2019. Patterns of effort contribu-
tion and demand and user classification based on participation patterns in npm
ecosystem. In Proceedings of the Fifteenth International Conference on Predictive
Models and Data Analytics in Software Engineering. ACM, 36-45.

Tapajit Dey and Audris Mockus. 2018. Are software dependency supply chain
metrics useful in predicting change of popularity of npm packages?. In Proceedings
of the 14th International Conference on Predictive Models and Data Analytics in
Software Engineering. ACM, 66-69.

Tapajit Dey and Audris Mockus. 2018. Modeling relationship between post-
release faults and usage in mobile software. In Proceedings of the 14th International
Conference on Predictive Models and Data Analytics in Software Engineering. ACM,
56-65.

Tapajit Dey and Audris Mockus. 2020. Deriving a usage-independent software
quality metric. Empirical Software Engineering 25, 2 (2020), 1596-1641.

Tapajit Dey and Audris Mockus. 2020. Which Pull Requests Get Accepted and
Why? A study of popular NPM Packages. arXiv preprint arXiv:2003.01153 (2020).
Tapajit Dey, Sara Mousavi, Eduardo Ponce, Tanner Fry, Bogdan Vasilescu, Anna
Filippova, and Audris Mockus. 2020. A dataset of Bot Commits. (Jan. 2020).
https://doi.org/10.5281/zenodo.3610205

Tapajit Dey, Sara Mousavi, Eduardo Ponce, Tanner Fry, Bogdan Vasilescu, Anna
Filippova, and Audris Mockus. 2020. tapjdey/BIMAN_bot_detection: Initial BI-
MAN model. (March 2020). https://doi.org/10.5281/zenodo.3711620

Tapajit Dey, Bogdan Vasilescu, and Audris Mockus. 2020. An Exploratory Study
of Bot Commits. arXiv preprint arXiv:2003.07961 (2020).

Phillip George Efthimion, Scott Payne, and Nicholas Proferes. 2018. Supervised
machine learning bot detection techniques to identify social Twitter bots. SMU
Data Science Review 1, 2 (2018), 5.

Linda Erlenhov, Francisco Gomes de Oliveira Neto, Riccardo Scandariato, and
Philipp Leitner. 2019. Current and future bots in software development. In
Proceedings of the 1st International Workshop on Bots in Software Engineering.
IEEE Press, 7-11.

Umer Farooq and Jonathan Grudin. 2016. Human-computer integration. interac-
tions 23, 6 (Oct. 2016), 26-32. https://doi.org/10.1145/3001896

Stéphane Frénot and Julien Ponge. 2012. LogOS: An automatic logging framework
for service-oriented architectures. In 2012 38th Euromicro Conference on Software
Engineering and Advanced Applications. IEEE, 224-227.

Tanner Fry, Tapajit Dey, Andrey Karnauch, and Audris Mockus. 2020. A Dataset
and an Approach for Identity Resolution of 38 Million Author IDs extracted from

[26

[27

[28

[29]

@
=

[31

[32

[33

[34

[35

[36

[37

[38

[39

=
=

[41

[42

[43

[44]

[45]

[46

[47

[48

N
)

MSR 20, October 5-6, 2020, Seoul, Republic of Korea

2B Git Commits. arXiv preprint arXiv:2003.08349 (2020).

Steven Gianvecchio, Mengjun Xie, Zhengyu Wu, and Haining Wang. 2008. Mea-
surement and classification of humans and bots in Internet chat. In USENIX
security symposium. 155-170.

Emitza Guzman, David Azdcar, and Yang Li. 2014. Sentiment analysis of commit
comments in GitHub: An empirical study. In Proceedings of the 11th Working
Conference on Mining Software Repositories. 352-355.

Sven Helmer. 2007. Measuring the structural similarity of semistructured docu-
ments using entropy. In Proceedings of the 33rd international conference on Very
large data bases. VLDB Endowment, 1022-1032.

Mohit Jain, Ramachandra Kota, Pratyush Kumar, and Shwetak N Patel. 2018.
Convey: Exploring the use of a context view for chatbots. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems. ACM, 468.
Andreas Karwath and Kristian Kersting. 2006. Relational sequence alignment.
MLG 2006 (2006), 149.

Alice Kerry, Richard Ellis, and Susan Bull. 2008. Conversational agents in e-
learning. In International Conference on Innovative Techniques and Applications of
Artificial Intelligence. Springer, 169-182.

Noureddine Kerzazi and Ikram El Asri. 2016. Knowledge flows within open source
software projects: A social network perspective. In International Symposium on
Ubiquitous Networking. Springer, 247-258.

Carlene Lebeuf, Margaret-Anne Storey, and Alexey Zagalsky. 2017. Software
bots. IEEE Software 35, 1 (2017), 18-23.

Carlene R Lebeuf. 2018. A taxonomy of software bots: Towards a deeper under-
standing of software bot characteristics. Ph.D. Dissertation.

Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaretzki, and Audris Mockus.
2019. World of Code: An infrastructure for mining the universe of open source
VCS data. In IEEE Working Conference on Mining Software Repositories. papers/
WoC.pdf

Audris Mockus. 2009. Succession: Measuring transfer of code and developer
productivity. In Proceedings of the 31st International Conference on Software Engi-
neering. IEEE Computer Society, 67-77.

Martin Monperrus. 2019. Explainable software bot contributions: Case study
of automated bug fixes. In 2019 IEEE/ACM Ist International Workshop on Bots in
Software Engineering (BotSE). IEEE, 12-15.

Saul B Needleman and Christian D Wunsch. 1970. A general method applicable
to the search for similarities in the amino acid sequence of two proteins. Journal
of molecular biology 48, 3 (1970), 443-453.

Christian Paul, Achim Rettinger, Aditya Mogadala, Craig A Knoblock, and Pedro
Szekely. 2016. Efficient graph-based document similarity. In European Semantic
Web Conference. Springer, 334-349.

Sara Pérez-Soler, Esther Guerra, Juan de Lara, and Francisco Jurado. 2017. The
rise of the (modelling) bots: Towards assisted modelling via social networks. In
Proceedings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering. IEEE Press, 723-728.

Temple F Smith, Michael S Waterman, et al. 1981. Identification of common
molecular subsequences. Journal of molecular biology 147, 1 (1981), 195-197.
Nick Statt. 2016. Why Google’s fancy new Al assistant is just called ‘Google’.
Retrieved March 21 (2016), 2017.

Margaret-Anne Storey and Alexey Zagalsky. 2016. Disrupting developer produc-
tivity one bot at a time. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 928-931.

NT Thomas. 2016. An e-business chatbot using AIML and LSA. In 2016 Interna-
tional Conference on Advances in Computing, Communications and Informatics
(ICACCI). IEEE, 2740-2742.

Muhammad Usman, Ricardo Britto, Jiirgen Bérstler, and Emilia Mendes. 2017.
Taxonomies in software engineering: A systematic mapping study and a revised
taxonomy development method. Information and Software Technology 85 (2017),
43-59.

Mairieli Wessel, Bruno Mendes de Souza, Igor Steinmacher, Igor S Wiese, Ivanil-
ton Polato, Ana Paula Chaves, and Marco A Gerosa. 2018. The power of bots:
Characterizing and understanding bots in OSS projects. Proceedings of the ACM
on Human-Computer Interaction 2, CSCW (2018), 182.

Norman Winarsky, Bill Mark, and Henry Kressel. 2012. The development of Siri
and the SRI Venture Creation Process. SRI International, Menlo Park, USA, Tech.
Rep (2012).

Timo Wolf, Adrian Schroter, Daniela Damian, and Thanh Nguyen. 2009. Predict-
ing build failures using social network analysis on developer communication.
In Proceedings of the 31st International Conference on Software Engineering. IEEE
Computer Society, 1-11.

Minghui Zhou and Audris Mockus. 2010. Developer fluency: Achieving true
mastery in software projects. In Proceedings of the eighteenth ACM SIGSOFT
international symposium on Foundations of software engineering. ACM, 137-146.

