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Abstract

Risk assessment of power system failures induced
by low-frequency, high-impact rare events is of
paramount importance to power system planners and
operators. In this paper, we develop a cost-effective
multi-surrogate method based on multifidelity model
for assessing risks in probabilistic power-flow
analysis under rare events. Specifically, multiple
polynomial-chaos-expansion-based surrogate models
are constructed to reproduce power system responses
to the stochastic changes of the load and the random
occurrence of component outages. These surrogates
then propagate a large number of samples at negligible
computation cost and thus efficiently screen out the
samples associated with high-risk rare events. The
results generated by the surrogates, however, may be
biased for the samples located in the low-probability tail
regions that are critical to power system risk assessment.
To resolve this issue, the original high-fidelity power
system model is adopted to fine-tune the estimation
results of low-fidelity surrogates by reevaluating only
a small portion of the samples. This multifidelity
model approach greatly improves the computational
efficiency of the traditional Monte Carlo method used in
computing the risk-event probabilities under rare events
without sacrificing computational accuracy.

1. Introduction

Faced with many independent and correlated system
conditions, variables, parameters, and events, evaluating
the risk of a bulk power system to extreme events is
prohibitively involved and very complex for large-scale
systems. A particularly daunting challenge in this
process is to select from a sufficiently large set of
low-probability extreme contingencies since it entails
the analysis of an impossibly large number of fault
samples in a power system subject to uncertain
stochastic loading conditions. The other challenge is
to find an efficient way to quantify the risk brought

by these rare events and to enhance the resilience of
the system. Hence, novel algorithmic capabilities and
analysis tools are needed to arrive at credible and timely
risk-informed decisions under various uncertainties and
threats in complex power grids.

Motivated by these challenges, some researchers
have attempted to simulate cascading outages in power
grids to better understand, predict, mitigate and restore
the power systems [1, 2] while others have developed
probabilistic methods to account for the uncertainties in
power system operation and planning [3–9]. Among
the proposed methods, those based on probabilistic
power-flow (PPF) analysis are able to propagate the
uncertainties of system inputs through a nonlinear ac
power-flow solver to obtain the probability density
functions (pdfs) of the output variables, e.g., power flow
and voltage magnitude. The obtained pdfs can provide
a full statistical description of the quantity of interest
(QoI). Even though many methods focus on deriving
information from the first two moments of the QoI [10,
11], the probabilities of the risk events that are located at
the tail regions of the pdfs are of great interest to system
planners and operators [3, 12–14]. This motivates us to
conduct the risk-probability assessment for these rare
events in PPF analysis. To solve this problem, Monte
Carlo (MC) simulations are typically implemented
because of their high accuracy and implementation
flexibility [15]. However, the impediment arises from
the prohibitively high computational burden. It turns out
that in practice, tens of thousands of MC simulations
are required to achieve a crude estimation of the
pdfs, not to mention to quantify the risks of power
system failures subject to low-frequency, high-impact
rare events. For example, for a failure probability of
10−4, it is not uncommon to use 105 (or even 106)
as the number of samples for a desired accuracy [13,
16, 17], processing of which is too time-consuming
for realistic power system applications. Even by
drawing only 104 samples, there is no guarantee that
the MC method finds rare events with large impact,
not to mention accurate estimation of their occurrence
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probability. Even with the use of variance-reduction
techniques (e.g., importance sampling), which were
proposed to reduce the sample size based on the
biased prior pdfs, the computing time still necessitates
significant reduction [13, 15, 18]. Therefore, a
few alternative methods (e.g., the Cornish-Fisher,
Edgeworth, and Gram-Charlier methods) to further
improve the computational efficiency have been
proposed. However, the accuracy of these approaches
cannot be guaranteed at either tail regions or
under heavily loaded conditions, which makes them
unreliable [3, 12, 14].

To overcome the shortcomings of the
aforementioned methods, a response-surface
(a.k.a. surrogate or reduced-order) model based
on polynomial chaos expansion (PCE) has been
advocated by [3, 19–21]. This PCE-based surrogate
model can very closely capture the behavior of
the complicated, high-fidelity simulation model
of a power system while being computationally
inexpensive to evaluate [22], allowing the efficient
propagation of a large amount of samples. However,
the straightforward sampling of a surrogate model can
lead to biased results in the low-probability tail regions
that are essential for the assessment of rare failure
events [16, 17, 23]. Furthermore, the construction of the
PCE-based surrogate model relies on the assumption
of the smoothness of the original system model
equations [24]. However, this assumption is violated
when the system topology changes following random
branch outages. Indeed, none of the aforementioned
PCE-based methods by itself is able to account for the
uncertainties of branch outages [3, 19–21, 25]. These
uncertainties are structural uncertainties that have much
larger influences on system states than those of nodal
power injections so that they should not be neglected
in assessing system risks of rare events [26]. Thus far,
only a handful of attempts have been made to account
for random branch outages in PPF analysis owing to
the complex nature of this problem [26, 27]. Finally,
the crude pdf estimates obtained from only several
thousands of samples do not adequately provide a
statistical description of long tails in the pdfs, which
are mainly induced by the low-frequency, high-impact
samples associated with rare events [26].

To address the aforementioned issues, this paper
develops a novel PCE-based hybrid multi-surrogate
(HMS) method for the risk assessment of power system
subject to rare events in PPF analysis. More specifically,
this HMS method consists of two stages:

• The first stage is the “sample propagation”
stage. Here, multi-PCE surrogates are first
constructed to model power system responses

under a non-contingency condition and each of
the single-outage (or “N − 1”) contingencies.
These low-fidelity surrogates models are used
to propagate all the samples associated with
“N − 0” and “N − 1” system states under
uncertain stochastic nodal power injections.
Besides, a small amount of samples related to
higher-order contingencies under uncertain nodal
power injections are further propagated through
the high-fidelity power system model without
using any surrogate.

• The second stage is the “sample reevaluation”
stage, which is implemented to overcome the
inaccuracy of the low-fidelity surrogates in the
tails of the target pdfs. Using the aforementioned
multi-surrogate models, the samples associated
with the high-risk rare events can be screened
out efficiently. Then, the high-fidelity power
system model is further adopted to fine-tune
the low-fidelity estimation results by reevaluating
only a small portion of the samples.

2. Problem Formulation

This section formulates the problem of
failure-probability assessment of rare risk events
in the PPF analysis considering random branch outages.
Let us first formulate the power system forward model
as

z = f(m). (1)

Here, z denotes the QoI, e.g., voltage magnitude,
voltage stability margin, and line flow; m =
[m1,m2, . . . ,mN ] is a vector of uncertain model
parameters described by some distribution functions
with finite variance. In our work, the active power and
reactive power of the loads are considered to follow the
Gaussian distribution and the branch states are modeled
in the form of 0-1 binomial distributions [3, 26]. The
nonlinear function, f(·), denotes the power system
model, which maps the model parameters, m, to the
QoI, z. Since the framework developed in this paper
is in the context of PPF analysis, f(·) represents the
nonlinear ac power-flow model.

Due to the uncertainties in the model input
parameters, the QoI will follow some unknown pdf
q(z). With that, the probability for target events can be
represented by

Pf = Pr(Z ∈ Ωf ) =

∫
Ωf

q(z)dz =

∫
χΩf

(z)q(z)dz,

(2)
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where χ is the characteristic function satisfying

χΩf
(z) =

{
1 if z ∈ Ωf ,

0 if z 6∈ Ωf ,
(3)

and Ωf is the target domain defined as

Ωf =∆ {Z : g(Z) < 0}. (4)

Here, g(z) is a limit state function which is also
called the “performance function” that defines the target
domain for failure-probability assessment [16]. More
specifically, the domain where g < 0 stands for the
failure domain, and the domain where g ≥ 0 stands for
the safe domain [16, 17]. Based on (2), the probability
of failure can be expressed as

Pf =

∫
χ{g(z)<0}q(z)dz. (5)

Now, we have completed the formulation of the
failure-probability assessment of a power system. For
the rare events considered in this paper, the failure
probability is typically very low, with a value of Pf <
10−3 or Pf < 10−4. This entails high requirements to
achieve a good accuracy in the long tail of q(z).
Remark. In this paper, we choose, as our risk estimate
(e.g., probability of occurrence), the failure probability
exceeding the operational limit in PPF analysis by
following the practice suggested by Leite da Silva and
de Castro [13].

3. Algorithm Preliminaries

This section will first introduce the relationship
between the MC and the response-surface methods.
Then, a cost-effective way to construct a response
surface of the power system model via the PCE is
illustrated.

3.1. Relationship Between MC Simulations
and the Response Surface Method

The most straightforward way to conduct a risk
assessment is through MC simulations, where a set of
Nm samples are drawn from the multivariate probability
distribution of m, yielding {m(j)}Nm

j=1. Then, for each

m(j), j = 1, . . . , Nm, the QoI is realized through zj =
f(m(j)), yielding a set of {z(j)}Nm

j=1. The probability of
failure is calculated as

PMC
f =

Nm∑
j=1

1

Nm
χ{g(z)<0}(z

j). (6)

Despite its easy implementation, the computational
burden for executing the complicated solver f(·) at Nm

parameter values is too heavy for practical applications.
This motivates us to use an accurate surrogate model,

f̃(m), that holds a relationship with the original

complicated power system model, f(m), as f̃(m) ≈
f(m). By this way, the uncertainties of the system
model can be propagated through the surrogate model,

f̃(m), at little or no extra computational cost. The limit
state function for the response surface model described
as g̃(z) also holds for g̃(Z) ≈ g(Z). This enables us
to estimate the probability of rare risk events in PPF
analysis using the response surface method via

PRS
f =

Nm∑
j=1

1

Nm
χ{g̃(z)<0}(z

j). (7)

By this way, the risk assessment in PPF analysis can
be conducted in the surrogate model efficiently. Next,
we will present the basic knowledge of the PCE-based
surrogate model

3.2. Review of the PCE-based Response
Surface

Introduced by Wiener and further developed by Xiu
and Karniadakis [22, 24], the generalized polynomial
chaos expansion has been shown to be a cost-effective
tool in modeling response surfaces [3, 19–21]. In
this method, the stochastic outputs are represented
as a weighted sum of a given set of orthogonal
polynomial chaos basis functions constructed from the
probability distribution of the input random variables.
Let ξ = [ξ1, ξ2, . . . , ξN ] be a vector of random variables
following a standard probability distribution (e.g., the
Gaussian or beta distribution), to which, as shown
in Table 1 [24], a unique orthogonal polynomial is
associated.

Table 1. Univariate gPC Polynomial Bases

Random Variable Polynomial Basis Function Support
Gaussian Hermite (−∞,+∞)
Gamma Laguerre [0,+∞)

Beta Jacobi [0, 1]
Uniform Legendre [−1, 1]

Let Φi(ξ1, ξ2, . . . , ξN ) denote this procedure’s
corresponding polynomial chaos basis and ai denote the
ith polynomial chaos coefficient. Formally, we have

z =

NP∑
i=0

aiΦi(ξ), (8)
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where NP = (N + P )!/(N !P !) − 1; N is the total
number of the random variables involved in the gPC;
and P is the maximum order of the polynomial chaos
basis functions, for which a relatively low number
(typically 2) is found to provide output results with
enough accuracy [3, 19, 21, 28]. From the polynomial
chaos coefficients, the mean, µ, and the variance, σ2, of
the output z can be determined as

µ = a0, (9)

σ2 =

NP∑
i=1

a2
i E[φ2

i ], (10)

where E[·] is the expectation operator.

3.2.1. The Orthogonal Polynomial Chaos Basis A
set of one-dimensional polynomial chaos basis functions
{φi(ξ), i = 0, 1, 2, 3, . . .} with respect to some real
positive measure should satisfy the following relations:∫

R
φr(ξ)φs(ξ)dλ

{
= 0 if r 6= s ,

> 0 if r = s.
(11)

Here, λ is a probability measure defined as the
cumulative distribution function (cdf) of ξ. For every
cdf, the associated orthogonal polynomials are unique.

Similarly, any set of multi-dimensional polynomial
chaos basis functions, {φi(ξ), i = 1, 2, 3, . . .}, is
orthogonal to each other with respect to their joint
probability measure.

3.2.2. Three-Term Recurrence Relation Although
several representative probability distributions can be
easily addressed by the presented gPC framework using
their corresponding polynomial chaos bases function
(see Table 1 for example), it is difficult to handle all
types of probability distributions. For example, the
well-known Weibull distribution used for wind power
modeling is missing. To deal with that, we propose to
adopt the Stieltjes procedure [29] that is able to handle
arbitrary distributions. Its main idea is to generate
polynomial chaos bases of an arbitrary pdf through
the three-term recurrence relationship of the orthogonal
polynomials so that they satisfy (11).

The orthogonal polynomials satisfy a three-term
recurrence relation given by

φk+1(ξ) = (ξ − αk)φk(ξ)− βkφk−1(ξ),

φ−1 = 0, φ0 = 1;

k = 0, 1, 2, . . . ,K, (12)

where φk(ξ) is a set of orthogonal polynomials defined
as

φk(ξ) = ξk + lower-degree terms, k = 0, 1, . . . ,K,
(13)

and αk and βk are the coefficients of the orthogonal
polynomials of the kth order, which are uniquely
determined by a probability measure.

3.2.3. The Stieltjes Procedure Several methods
exist in the literature to calculate the coefficients αk

and βk of an orthogonal polynomial chaos basis for an
arbitrary probability measure. In this paper, the Stieltjes
procedure is chosen as an accurate and a cost-effective
method [21, 30]. It is given by

αk =

∫
R ξφ

2
k(ξ)dλ(ξ)∫

R φ
2
k(ξ)dλ(ξ)

, k = 0, 1, 2, . . . ,K, (14)

βk =

∫
R φ

2
k(ξ)dλ(ξ)∫

R φ
2
k−1(ξ)dλ(ξ)

, k = 1, 2, . . . ,K. (15)

Here, β0 is arbitrary and can be conveniently chosen
as β0 =

∫
R dλ(ξ) and K is the highest order

of the polynomials. If the measure consists of n
discrete points, the integrals in (14) and (15) become
summations.

3.2.4. Construction of the Polynomial Chaos Basis
A set of multi-dimensional polynomial chaos basis
functions can be constructed as the tensor product of
the one-dimensional polynomial chaos basis associated
with each input random variable. Formally, we have

φ(ξ) = φ(ξ1)⊗ φ(ξ2)⊗ · · · ⊗ φ(ξN ), (16)

where Φ(ξi) denotes the one-dimensional polynomial
chaos basis for the ith random variable.

3.2.5. Collocation Points They can be regarded as
a finite sample of ξ = [ξ1, ξ2, . . . , ξN ] that are chosen
to approximate the polynomial chaos coefficients. The
elements of the collocation points are generated by
using the union of the zeros and the roots of one
higher-order, one-dimensional polynomial for every
random variable [3, 24]. For example, for a 2nd-order
Hermite polynomial, its one higher-order polynomial is
φ3(ξ) = ξ3 − 3ξ. The elements of the collocation
points are {

√
3,−
√

3, 0}. With these 3 collocation point
elements, if there are N random variables, the number
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of possible combinations is 3N . Since there are NP + 1
unknown coefficients, at least NP + 1 independent
combinations should be chosen randomly from the
3N possible ones [3]. Using the detailed procedure
described in [3], the polynomial chaos coefficients can
be approximated at selected collocation points.

4. The Proposed Hybrid Multi-Surrogate
(HMS) Method

This section will introduce the proposed HMS
method with two hybrid procedures involved. The
hybrid PCE-based method is first introduced to improve
the sampling accuracy along the tails of the QoI. Then, a
hybrid multi-PCE model is further developed to handle
the topology uncertainties.

4.1. Hybrid PCE-based Method

Motivated by the fact that the direct surrogate-based
MC simulations may introduce a significant error in
the small-probability tail regions of the pdfs, Li and
Xiu [16] first developed the hybrid PCE method, which
is shown to be a cost-effective tool in handling small
failure probabilities [17, 23]. The main idea is to
combine the sampling of the surrogate and original
system models. For most of samples, which are located
“away” from the limit state for the QoI, the samples
of the surrogate models are used. For the samples
located “close” to the limit state of the QoIs, the samples
are reevaluated through the original system model. By
doing so, only a small portion of the samples are
obtained from the original system model; thus, the
overall cost is much cheaper than the one obtained by
sampling using the power system model. Furthermore,
this reevaluation stage, also known as a two-stage MC
method [23], prevents loss of accuracy coming from the
direct usage of the surrogate-based method. Therefore,
based on (6) and (7), the risk of rare events via the hybrid
approach can be obtained from

PH
f =

Nm∑
j=1

1

Nm
χΩ̃f (zj), (17)

where the approximate target domain is defined as

Ω̃f =∆ {g̃(Z) < −γ} ∪ {{|g̃(Z)| ≤ γ} ∩ {g(Z) < 0}}.
(18)

Here, γ denotes a threshold, typically set to a small
positive number. It is worth noting that γ determines
the efficiency of this algorithm. A larger value of γ
leads to more reevaluations of the original model, yet
with a high accuracy. If γ = 0, the two-stage MC

method is equivalent to a one-stage, direct surrogate
method. Choosing a proper value of γ can enable
the results of this two-stage MC method to converge
to those of the MC simulations based on the original
model [16]. Therefore, the hybrid approach enjoys both
the accuracy of the MC method and the efficiency of the
surrogate-based method.

4.2. Description of the HMS Method

Although we have obtained the accurate surrogate
model with the aforementioned hybrid PCE-based
surrogate model, we have not yet been able to fully
handle the topological uncertainties in the PPF analysis.

First, it is well known that the PCE-based surrogate
model can be inadequate for problems involving model
discontinuities [30,31]. This is because the construction
of the surrogate model is based on the smoothness
assumption of the system response. However, when
the topology of a power system changes due to
random branch outages, system responses tend to have
abrupt changes that violate this assumption. This is
especially true for the rare events involving high-order
contingencies. Facing this challenge and motivated
by the multi-element generalized polynomial chaos
(MEgPC) method that has been widely used in the
uncertainty quantification problem comprising model
discontinuities or long-term dynamic simulations [7,30,
31]; instead, we propose to use a multi-surrogate method
as explained next. Similar to the main idea underlying
the MEgPC method that decomposes the random space
of single element to construct multiple new elements,
we treat every system topology as a single element;
therefore, this results in multiple elements associated
with different system topologies. Within every single
element, we can construct its corresponding surrogate
model that only considers the nodal power-injection
uncertainties.

However, due to the complexity of the power system
model, simply adopting the idea of “multi-element”
will not be sufficient. The number of possible
topologies caused by random branch outages is directly
proportional to the number of system branches. What
is worse, even for a very-small-scale power system,
modeling all possible combinations of these topologies
can be computationally infeasible. Assuming that the
branch states are modeled to follow the pdfs of 0-1
binomial distributions and the number of transmission
lines is denoted by Nbranch, the total number of the
combinations becomes 2Nbranch . For example, for a
power system with Nbranch = 30, the total number
of the possible topologies reaches 230 ≈ 1.07 ×
109. However, construction of that many surrogate
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models for these different topologies goes far beyond
the existing computational capabilities, thus rendering
this method highly impractical.

To overcome this problem, we further consider a
hybrid approach to handle the numerous topologies with
a much higher computational efficiency. Following the
power system planning tradition, we classify different
system topologies into N − 1, N − 2, N − 3, etc.
criteria. For the original system model without any
branch outages and for the N − 1 criterion, we maintain
the idea of “multi-element” and construct Nbranch +
1 surrogate models for them separately. For the
topologies corresponding to N − 2 and higher-order
contingencies, we retain the traditional MC method
without constructing any surrogate model.

This is because we need to consider the balance
between the construction of the surrogate model and
the usage of the direct MC method. As is shown
in Section 3.2, constructing the PCE-based surrogate
model depends on the realizations at a small number of
collocation points. That is nearly all the computational
cost associated with using the surrogate model. Once
the surrogate model is constructed, the realizations of a
large number of samples through this surrogate model
can be computationally negligible. However, if the
number of samples that need to be propagated through
the surrogate model is very small, e.g., 2, 1, or even
0, then the construction of the surrogate model itself
already becomes computationally more expensive than
directly using the original system model. In these cases,
using direct MC simulations is more cost-effective.

Even though system failures may cascade in
numerous ways, it is well known that the probability
of occurrence of every topology can vary dramatically.
Apart from the original system model without branch
outages, the contingencies of the N − 1 criterion occur
more frequently than those of the higher-order criteria,
e.g., theN−2 and theN−3 criteria, as shown in Table 2
taken from [32].

Table 2. An IEEE Survey of Total Number of North

America Overhead Transmission Outages at 230 kV

and above (1965-1985)

Type N-1 N-2 N-3 N-4 N-5 N-6 N-7 N-8

Count 10143 951 143 36 8 2 4 2

Furthermore, for all the contingencies of the
N − 1 criterion, we only need to construct Nbranch
surrogate models. For the risk assessment aiming
at rare events associated with a very low probability,
e.g., 10−4, it is common to choose a sample size

of at least 106 samples for achieving the desired
accuracy [13, 16, 17]. If, for instance, the probability
of each N − 1 topology equals approximately 0.01%,
this implicates a 100-sample realization for such
topologies. Constructing a PCE-based surrogate model
still becomes computationally far more efficient than
the direct MC sampling with original system model.
However, when the same logic is applied to the N − 2
criterion or higher-order contingencies, the number of
surrogates increases combinatorially (e.g.,

(
Nbranch

2

)
and(

Nbranch
3

)
for the N − 2 and N − 3 criteria, respectively),

contributing to diminishing returns in computational
efficiency, or, even worse, making this model less
efficient than the direct MC sampling.

The above discussions prompt us to merge the
aforementioned hybrid PCE method into the framework
of the HMS method. The associated framework is
depicted in Fig. 1. Note that the computational
efficiency of the HMS method can be further improved
if all the blocks highlighted in orange are processed
with parallel computing. The detailed procedure for
implementing the HMS algorithm is illustrated in
Algorithm 1.

5. Simulation Results

Using the framework we have established in the
preceding section, we perform extensive studies on
the IEEE 24-bus Reliability Test System (RTS) whose
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Figure 1. Flowchart of risk-probability assessment

via the HMS method.
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Algorithm 1 Power System Risk-Probability
Assessment via the HMS Algorithm

1: Model the uncertainties with their associated pdfs,
including those of nodal power injections and
branch states; choose the QoI for failure-probability
assessment;

2: Considering only the uncertainties of nodal power
injections, construct the PCE-based surrogate
model of the system without branch outage;

3: for k = 1, . . . , Nbranch do
4: Set Branch k in an “off” state and all the

other branches in “on” states; then, construct a
PCE-based surrogate model by only considering the
nodal power-injection uncertainties;

5: end for
6: Generate Nm samples as {m(j)}Nm

j=1, including
uncertainties for nodal power injections and branch
states;

7: for j = 1, . . . , Nm do
8: Classify m(j) into different types of

contingencies, i.e., N − 0, N − 1, N − 2,
etc.

9: ifm(j) belongs to the cases of the N − 0 or the
N − 1 criteria then

10: Find the corresponding surrogate model for
m(j) and compute zj via its surrogate model
f̃(m(j));

11: if zj located in target domain Ω̃f then
12: Mark samplem(j) for reevaluation;
13: end if
14: else
15: Compute zj via original system model

f(m(j));
16: end if
17: end for
18: Reevaluate all the samples marked in Step 12 via

f(m(j));
19: Perform risk-probability assessment via (17)

network and reliability data are extracted from [33]. The
algorithms are tested with MATPOWER package using
MATLAB® R2018a version on a laptop with 2.60-GHz
Intel® Core™ i7-6600U processors and a 16 GB of main
memory.

For this test system, we build a setup to capture
the low-probability risk events resulting from topology
changes and the variations of the active and reactive
power of the loads. Here, it is assumed that the
loads follow a Gaussian distribution with mean values
equal to the original bus loads and standard deviations
equal to 15% of their means. The probabilities of

transmission-line outages are obtained via

P` =
αλpt

8, 760
, (19)

where λp is the permanent outage rate [outages/yr]; t is
the permanent outage duration [h]; and α is the scaling
factor [26]. The data for λp, t, and α are provided
in [33].

5.1. Case Study 1

In this case study, the proposed HMS method is
verified in the risk-probability assessment simulations
under different scaling factors. The simulation results
of the HMS method are compared with the MC method
with 1, 000, 000 samples of power-flow cases. Under
different scaling factors, the samples are associated with
different numbers of contingencies. Here, we increase α
from 1 to 3 to 5, in order to generate samples provided
in Table 3.

Table 3. Sample Sizes for Random Branch Outages

Group A (α = 1)
Type N-0 N-1 N-2 N-3 N-4 N-5

Count 974948 24743 308 1 0 0

Group B (α = 3)
Type N-0 N-1 N-2 N-3 N-4 N-5

Count 926468 70838 2645 47 2 0

Group C (α = 5)
Type N-0 N-1 N-2 N-3 N-4 N-5

Count 879625 113230 6868 265 11 1

Let us also denote the number of samples for
reevaluation as Nre. It is easy to verify that the number
of higher-order contingencies increases with an increase
in the scaling factor. To make a fair comparison,
the samples are propagated through both the MC and
HMS methods. It should be noted that 2 CPUs are
used in parallel to execute the simulation runs with
the MC and HMS methods as displayed in the orange
blocks shown in Fig. 1. Let us select the voltage
magnitude at Bus 3 as the QoI. Now, we seek to assess
the probability of the QoI falling below its minimum
operating limit, i.e., 0.95 pu. It is easy to infer that
as α increases, the tails of the pdfs become thicker,
leading to a higher risk probability, PMC

f . However,
this probability is still too low, making an accurate
assessment with the traditional response-surface-based
method computationally demanding. This motivates
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Table 4. Validation of the HMS Method with

Different Values of P and γ under Different Scaling

Factors α

Group A Data Validation
P γ Nre PH

f (%) PMC
f (%) Time

(s)
2 10−3 1479 0.782 0.845 27.3
2 1.5 · 10−3 2259 0.826 0.845 31.4
2 2 · 10−3 3059 0.843 0.845 34.1
2 3 · 10−3 4676 0.844 0.845 40.7

4 10−5 13 0.859 0.845 25.7
4 10−4 161 0.856 0.845 26.2
4 10−3 1643 0.846 0.845 31.7
4 1.5 · 10−3 2454 0.845 0.845 34.9

Group B Data Validation
P γ Nre PH

f (%) PMC
f (%) Time

(s)
2 10−3 1718 1.25 1.31 43.0
2 1.5 · 10−3 2573 1.29 1.31 50.2
2 2 · 10−3 3496 1.31 1.31 53.1
2 3 · 10−3 5333 1.31 1.31 63.6

4 10−5 17 1.33 1.31 40.5
4 10−4 188 1.32 1.31 41.7
4 10−3 1886 1.32 1.31 48.6
4 1.5 · 10−3 2760 1.31 1.31 54.0

Group C Data Validation
P γ Nre PH

f (%) PMC
f (%) Time

(s)
2 10−3 2049 1.75 1.82 66.7
2 1.5 · 10−3 3076 1.80 1.82 72.9
2 2 · 10−3 4092 1.81 1.82 78.1
2 3 · 10−3 6121 1.81 1.82 90.2

4 10−5 28 1.84 1.82 56.8
4 10−4 205 1.83 1.82 59.3
4 10−3 2085 1.82 1.82 70.5
4 1.5 · 10−3 3162 1.82 1.82 73.5

us to conduct extensive simulations to validate our
proposed HMS method using varying PCE orders and
tuning parameters, γ, and under varying scaling factors,
α, thereby producing the results displayed in Table 4.

The following conclusions can be drawn from these
results:

− Compared to the MC method execution that
requires approximately 1.5 h to complete all the
tests, the HMS method execution requires only
about 1 min.

− Compared to the MC results, the HMS method
can provide equally accurate simulation results
even for risk events with a very low probability,
e.g., 10−4 or 10−5.

− A larger γ will lead to a larger state space
required for reevaluation, and consequently, to an
increasing number of reevaluations and a larger
computing cost, yet it brings further improvement
in simulation accuracy.

− With a higher PCE order P , the simulation results
tend to be more accurate under the same γ values.
For a relatively low P value, a larger γ value is
required to achieve the same level of accuracy.

− As α increases, the computational efficiency
gradually decreases. This is partly because there
are more samples associated with higher-order
contingencies that are propagated through the
power system solver f(·). On the other hand,
the tails of pdfs become thicker, which potentially
leads to more reevaluations for the same target
domain.

5.2. Case Study 2

To evaluate the performance of HMS method in
a relatively larger power system, the IEEE 118-bus
system with 186 branches is selected. Regarding the
MC method, we use a sample size of 106 to generate
a collection of N − k events that fit a negative binomial
distribution [34]. Of these, 829, 909 areN −0, 154, 720
are N − 1, 14, 452 are N − 2, 870 are N − 3, and
47 are N − 4, and 2 are N − 5 event samples, while
the samples required to construct multiple surrogates
in the HMS method are significantly less. All loads
follow a Gaussian distribution with mean values equal
to the original bus loads and standard deviations equal
to 5% of their means [3]. Since line-outage rates have
not been provided for the IEEE 118-bus system in [33],
we set the failure rate of each transmission line to
0.1% by multiplying the average failure rate reported
in [26] for the IEEE RTS 24-bus system by a scaling
factor of α = 2.5 so as to increase the complexity of
the assessment derived from the increased likelihood of
outage occurrence. In this case, the QoI is chosen to be
the apparent power of Line 117 connecting Buses 74 and
75 [13]. We validate the accuracy and computational
efficiency of the HMS method in dealing with different
limit settings for the QoI, and the results in Table 5 are
obtained.

These results lead to the following conclusions:

• For the IEEE 118-bus test system, the HMS
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method can always complete the simulations
within 5 min, much faster than the MC method
that spends approximately 3.5 h to complete the
simulations.

• The simulation results obtained using the HMS
method are very accurate compared to the
benchmark results obtained via the MC method.
Even if the PCE order is very low, the desired
accuracy can be maintained.

• The QoI of the HMS method is not limited to bus

Table 5. Validation of the HMS Method with

Different Values of P , γ, and QoI Limit Settings on

the IEEE 118-Bus System

Group 1 with limit set to 60 MVA
P γ Nre PH

f (%) PMC
f (%) Time

(s)
2 10−3 35 3.02 3.02 254.6
2 10−2 271 3.02 3.02 256.8
2 10−1 2872 3.02 3.02 269.0
3 10−3 26 3.02 3.02 256.1
3 10−2 269 3.02 3.02 258.7
3 10−1 2859 3.02 3.02 282.1

Group 2 with limit set to 65 MVA
P γ Nre PH

f (%) PMC
f (%) Time

(s)
2 10−3 16 0.538 0.538 251.9
2 10−2 135 0.538 0.538 254.5
2 10−1 1532 0.538 0.538 265.7
3 10−3 15 0.538 0.538 258.2
3 10−2 136 0.538 0.538 260.7
3 10−1 1537 0.538 0.538 276.9

Group 3 with limit set to 70 MVA
P γ Nre PH

f (%) PMC
f (%) Time

(s)
2 10−1 38 0.207 0.207 253.0
2 1 415 0.207 0.207 258.6
3 10−1 35 0.207 0.207 259.6
3 1 414 0.207 0.207 265.8

Group 4 with limit set to 80 MVA
P γ Nre PH

f (%) PMC
f (%) Time

(s)
2 10−1 19 0.111 0.111 251.6
2 1 223 0.111 0.111 257.4
3 10−1 19 0.111 0.111 258.7
3 1 224 0.111 0.111 261.9

voltage and can be used for other quantities, such
as the power flow on transmission lines.

• Even in a relatively large test system, the usage
of the surrogate model is still cost-effective
since we construct surrogate models only for
high-probability contingency events.

6. Conclusions

In the presence of low-frequency, high-impact
rare events in power systems, this paper develops a
novel HMS method, which leverages the low-fidelity
surrogate model and the high-fidelity power system
model, to quantify the likelihood of rare risk events
in probabilistic power-flow analysis in a cost-effective
manner. Simulation results show that the HMS
method with a multifidelity model can accurately
capture the low-probability risk events with a much
better computational efficiency than the traditional MC
method.
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