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Abstract—Following successful adoption of cloud computing,
many service providers (SPs) are now using high-performance
Virtual Machines (VMs) located in large datacenters owned by
public cloud infrastructure providers to deploy their virtual
network functions (VNFs). Since using these VMs has a cost de-
pending on utilization time, a complex problem of VNF placement
and scheduling (VPS) must be addressed to achieve satisfactory
network performance (e.g., latency) while minimizing the cost
paid to lease VMs. In this study, a cost-efficient VPS scheme (CE-
VPS) is proposed to address the VPS problem in public cloud
networks considering dynamic requests of ordered sequences of
VNFs. Our CE-VPS scheme goes beyond existing solutions as it
models some important practical aspects such as an additional
latency incurred by booting a VM and installing a VNF instance.
Also, CE-VPS considers that VNFs can be multi-threaded or
single-threaded, and that their throughput as a function of
allocated computing resources must be modeled differently. CE-
VPS is formulated as a mixed inter linear program (MILP) and
also as an efficient heuristic algorithm. CE-VPS achieves lower
cost and latency than conventional Best-Availability and Cost-
Efficient Proactive VNF Placement schemes, and a better trade-
off between resource consumption and latency performance than
a conventional Low-Latency scheme.

Index Terms—Network Function Virtualization, Cost Effi-
ciency, VNF Placement and Scheduling, Public Cloud.

I. INTRODUCTION

NETWORK function virtualization (NFV) promises to
allow service providers (SPs) to reduce operational ex-

penditures (OpEx) and capital expenditures (CapEx) [1]. Tra-
ditional network functions such as network address translator
(NAT), firewall (FW), and intrusion detection system (IDS) are
implemented in hardware middleboxes, which are expensive
and complex to maintain and upgrade [2]. However, NFV
enables to run virtualized instances of these network func-
tions, i.e., virtual network functions (VNFs) [3], on generic
commercial off-the-shelf (COTS) servers, making provisioning
of service demands more flexible and efficient.

Service demands are often required to be steered through
an ordered set of network functions, which is referred to as a
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service function chain (SFC) [4], e.g., traffic flow of a given
demand may be required to first traverse a FW and then an
IDS. Traditionally, traffic flows are routed through the required
network functions implemented in hardware middleboxes with
manually-configured routing tables. This process is complex,
error-prone, and not optimal in terms of networking resource
occupation. In contrast, SPs can deploy VNFs according to
service demands flexibly and dynamically, and they can even
be re-configured during runtime [5].

With development of cloud computing [6], cloud infrastruc-
ture providers (CIPs) such as Google cloud platform (GCP)
and Amazon AWS offer on-demand computing in the form of
virtual machines (VMs) with a pay-as-you-go pricing model
[7], [8]. Hence, outsourcing VNFs and SFCs in public clouds
provides a good alternative for the SPs, especially for those
who might not have geographically-distributed datacenters,
e.g., Altiostar, A10 Networks, etc. [9]. Since CIPs usually
own several datacenters distributed across large geographical
regions, the SP can customize the location of VMs that
host VNFs to reduce operational cost and latency. Hence,
how to minimize cost to lease computing and networking
resources from CIPs is an important operational problem for
SPs [10]. This makes the problem of VNF placement and
scheduling in public cloud networks for dynamic traffic (VPS-
CD) different compared to existing methods (e.g., [11]–[13])
whose objectives are primarily to decrease the latency.

Solving the VPS-CD problem in realistic settings requires
one to account for several aspects which are often neglected
in previous studies. First, the cost paid by SPs to CIPs is
based on amount and duration of consumed cloud service. It
is the primary concern for SPs to reduce cost and improve
the quality of service (QoS) of demands. For instance, with
more allocated resources, some VNFs can achieve higher
throughput [14] and hence lower processing latency, but in
turn it may lead to a cost increase. Second, service demands
arrive in networks dynamically with different requirements
(e.g., latency), which should be provisioned in an efficient
and flexible manner. For instance, to serve a latency-sensitive
demand, VNFs with higher throughput are desired, while for
latency-insensitive demands, inexpensive VNFs with lower
throughput are enough. Third, a VNF instance is usually
installed in a VM or container. Booting a VM and installing
a VNF instance will incur some latency [15], which should
be taken into account when scheduling the VNF to serve
multiple demands. Finally, a VNF can be single-threaded (ST),
which can utilize one CPU core at most, or multi-threaded
(MT), which can get higher throughput with more CPU cores
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allocated [16]. For instance, a ST VNF (e.g., Snort ST IDS)
should avoid to be installed in a VM with multiple CPU cores,
otherwise computing resources will be wasted since all but one
CPU cores are idle.

In this study, we focus on the VPS-CD problem and propose
a cost-efficient VPS scheme (CE-VPS) to minimize the cost
paid by the SP to lease computing and networking resources.
Our novel contributions can be summarized as follows:

1) The joint VPS problem is, for the first time to the
best of our knowledge, studied for dynamic traffic in
a public cloud scenario. Several factors including opti-
mal location determination of VM and VNF, trade-off
between computing resource consumption and latency
guarantee, and cost-efficient data transmission scheme
between different VNF instances, are considered. This
study allows SPs to identify the best solution (in terms
of VNF placement and scheduling) to deploy VNFs in
a public cloud with reasonable cost;

2) We account for service demands with different latency
requirements, i.e., fixed, variable, and unlimited. We also
consider that, to reduce the latency caused by booting
a VM and installing VNF instances, a VNF instance
can remain in an idle state momentarily after it finishes
previous data processing;

3) We consider VNF attributes and the relationship between
VNF throughput and amount of allocated computing
resources, which further improves resource utilization ef-
ficiency but makes the VPS-CD problem more complex;

4) We formulate the VPS-CD problem as a mixed in-
teger linear program (MILP). Given a set of service
demands with different parameters, the MILP aims to
minimize the cost with latency constraints. As MILP
is computationally prohibitive for large networks with
many demands, we also develop an efficient heuristic
algorithm.

The rest of this study is organized as follows. In Section II,
we review related work. The VPS-CD problem statement is
provided in Section III. In Sections IV and V, MILP formula-
tion and heuristic approach to solve the problem are presented,
respectively. Illustrative numerical results are discussed in
Section VI. Section VII concludes this study.

II. RELATED WORK

NFV promises to reduce operation cost, and improve the
network efficiency and flexibility [17]. But it also increases
the complexity of resource allocation. In [18], authors divided
the NFV resource allocation problem into three parts: 1) VNF
chain composition, i.e., how to obtain a specific SFC given
a request since the order of VNFs may not be fixed; 2)
VNF forwarding graph embedding, i.e., strategy of placing
VNFs into physical network nodes; and 3) VNF scheduling,
exploring how to schedule the execution of VNFs to reduce the
latency of network services. The problem of VNF placement
and/or scheduling has been well investigated over the past few
years.

Authors in [19] first provided a mathematical formulation
for the problem of VNF scheduling by resorting to the flexible

job-shop problem. In [20], authors formulated the online VPS
problem and proposed several algorithms considering service
processing time, revenue, etc. Authors in [21] focused on
the joint problem of VNF scheduling and traffic steering to
minimize the total latency by proposing a MILP and a genetic
algorithm-based method. In addition to minimizing the latency
of service demands, other aspects should also be accounted
for. An energy-aware VNF placement scheme for SFC in
datacenters was proposed in [22] together with a power model
in servers and switches. Authors in [23] proposed a MILP
and a heuristic algorithm to reduce both end-to-end latency
and resource consumption. The VPS problem with objective
to minimize the operational cost incurred by deploying VNFs
without violating service level agreements (SLAs) is studied
in [24]. In [25], authors investigated two different types of
cost when multiple chained VNFs share the CPU resource:
upscaling cost and context-switching cost.

Many other challenges must be addressed to support deploy-
ing VNFs in VMs/containers in practice [26]. A virtualized
software middlebox platform named ClickOS was introduced
in [15]. While it is light-weight, VM booting latency cannot
be avoided. Also, to evaluate the performance of VNFs with
different thread attributes, authors in [16] conducted several
experiments, which verify that a MT VNF can get higher
throughput with more computing resources allocated.

Development of cloud computing has attracted attention
for SPs to outsource VNFs to public clouds. Two architec-
tures, APLOMB [27] and CloudNaaS [28], were proposed to
outsource enterprise middlebox processing to cloud. In [29],
authors studied the influence of NFV on CapEx of cloud-based
networks. In [6], a support vector regression-based predictive
model was used to minimize latency when deploying VNFs
in a multi-cloud network. In [30], performance of deploying
VNFs in an industry-relevant cloud platform (e.g., OpenStack)
in terms of throughput was evaluated. Authors in [10] studied
how to reduce cost when outsourcing the SFC to a multi-cloud
network. Also, a cost-efficient service-provisioning scheme
with QoS guarantee in a content-delivery network (CDN) was
proposed in [31]. These two studies have similar objectives to
ours; however, there are several differences: 1) We investigate
the joint VPS problem in a dynamic traffic scenario, while
both [10] and [31] studied the VNF placement problem for
static traffic; 2) Different service demands with diverse latency
requirements are generated in our study, while [31] focused on
fixed QoS requirement; 3) We consider VNFs with different
thread attributes, and computing resources can achieve dif-
ferent throughputs, making VNF scheduling more complex;
and 4) Realistic settings, e.g., VM booting time (VBT), VNF
installation time (VIT), etc., are accounted for in our study.

Moreover, the mechanism that a VNF instance can remain
in an idle state for a period of time after it finishes any
processing task, which is studied in our previous work [32],
is also introduced to reduce the latency.

III. VPS-CD PROBLEM STATEMENT

In this section, we first introduce the network model and
the metric to evaluate the incurred cost to lease computing and
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networking resources. Then, the VPS-CD problem is defined.
To solve the problem, a conventional low-latency scheme
whose objective is to reduce latency is reported and compared
with our cost-efficient scheme. Finally, concept of idle state is
introduced.

A. Network Model

1) Network Topology and Service Demand: The principle
of SPs outsourcing SFCs into the public cloud is illustrated in
Fig. 1. A CIP usually has several geographically-distributed
datacenters, divided into different regions and zones. For
instance, Google has five regions across the United States,
in each of which there is one or more zones. Computing
resources will be charged at different prices and a transmission
fee will be incurred if data is transmitted between different
zones. Table I shows pricing scheme of GCP for computing
and networking resources in different regions. CIPs offer a
pay-as-you-go pricing model. Thus, SPs can set up a VM
where and when it is required. Hence, to provision a service
demand of a user (e.g., Users A and B in Fig. 1), which
requires a SFC consisting of a specific-ordered set of VNFs,
the SP’s objective is to place these VNFs into the VMs offered
by the CIP, and also schedule these VNFs while minimizing
cost and satisfying latency requirement of service demands.
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Fig. 1: SFC provisioning in the public cloud network.

TABLE I: Pricing Scheme of GCP [7].

CPU Resource Pricing

Region Price (USD)

Iowa/Oregon/South Carolina $0.033174 / CPU hour

Los Angeles $0.03797 / CPU hour

Northern Virginia $0.037364 / CPU hour

General Network Pricing

Traffic Type Price (USD)

Egress between zones $0.01 (per GB)

Egress to the same zone No charge

Based on the pricing scheme, network topology is repre-
sented as G(V,U,E), where V denotes set of VM-capable

nodes, U denotes set of user nodes, and E denotes set of
physical links. A service demand r is presented as r =<
sr, ar, dr, lr, sr, dr >, where sr is required SFC, ar is arrival
time, dr is size of data to be processed in GB, lr is latency
requirement, sr is source, and dr is destination. We consider
three types of latency requirements:

1) fixed, lr = lfr , i.e., demand should be provisioned within
deadline lfr , which means it is latency-sensitive, e.g.,
real-time gaming [33];

2) variable, lr = [lreqr , lmaxr ], i.e., it is desirable to provision
demand within lreqr , but it is acceptable to finish within
lmaxr , e.g., video streaming [34];

3) unlimited, lr → +∞, i.e., service demand is insensitive
to latency, e.g., FTP service [35].

Assume SFC sr consists of an ordered set of VNFs denoted
as Fsr = (fsr,1, fsr,2, ..., fsr,k), where k is length of SFC,
i.e., k = |Fsr |. To process the data of a demand, an instance
of the required VNF must be installed into a VM with a
certain amount of computing resources allocated, which are
represented in number of CPU cores for simplicity. A VM can
host multiple VNFs, and it will be shut down after all VNFs
finish processing user data. The basic throughput of a VNF is
Pf Gbps. If a MT VNF is installed in a VM with multiple
allocated CPU cores, it can achieve a higher throughput while
a ST VNF always has a basic throughput [16]. To simplify the
problem, we assume the throughput of a MT VNF is linearly
proportional to the amount of CPU cores allocated, i.e., if c
CPU cores are allocated for the VM hosting the instance of
MT VNF f , the throughput is c× Pf Gbps.

2) Cost Evaluation: Cost incurred by an SP depends on
three components: 1) number of VMs set up; 2) duration a
VM keeps running and amount of CPU cores allocated to it;
and 3) amount of data transferred between different zones.

In general, our cost model is based on the usage of two
types of resources, i.e., computing and networking resources.
Note that, if relevant, other kinds of resources, e.g., storage
and memory, could be added to our model without impacting
the overall proposed scheme. Furthermore, if we consider that
some CIPs might charge for the used link bandwidth (e.g.,
AWS), the cost model can be freely modified to include an
additional item.

To quantitatively evaluate the total cost, Eq. (1) is intro-
duced, where M is set of used VMs, cm is number of CPU
cores allocated for VM m, the sum in the brackets is runtime
of VM m, PCPUm is price in dollars per CPU core per time
unit, and d (resp. Pnet) is total size (resp. transmission fee)
of data in GB transmitted between different zones. Runtime
of VM m is calculated by summing up VBT Bm, runtime of
all installed VNF instances (whose set is denoted by Fm), and
time consumed to shut down VM Dm. Furthermore, runtime
of VNF instance f is Wf = tinsf +

∑
r t
prs
f,r + tidle, where

tinsf denotes VIT of VNF instance f , tprsf,r denotes duration
that VNF instance f processes data of demand r, and tidle
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denotes duration of idle state.

costtotal =
∑
m∈M

cm ×

Bm +
∑
f∈Fm

Wf +Dm


× PCPUm + d× Pnet

(1)

B. Low-Latency Scheme vs. CE-VPS Scheme

VPS-CD Problem Definition: Given network topology of
public clouds with pricing scheme, the objective of placing
and scheduling VNFs is to minimize cost incurred by the SP
to lease computing and networking resources; also, latency
requirements of service demands, which arrive dynamically,
should be satisfied.

To solve the VPS-CD problem, we propose a CE-VPS
scheme and compare it with a conventional low-latency
scheme (C-VPS) whose objective is to minimize latency [22]
.

1) Comparison of Schemes: C-VPS scheme is shown in
Fig. 2(a). There are two service demands R1 and R2, which
have the same size of data to be processed (1GB) and latency
requirement (3.5s), but require different SFCs (SFC1 and
SFC2, respectively), and arrive at different moments (0s and
3s, respectively). SFC1 (resp. SFC2) consists of two VNFs:
ST f1 and MT f2 (resp. MT f2 and ST f3). Basic throughput
of all VNFs are assumed to be 1Gbps.

In C-VPS, different VNFs requested by a service demand
are installed in a single VM to avoid data transmission latency.
As shown in Fig. 2(a), a transmission latency of 0.1s is
initially incurred (capacity of connection between user node
and datacenter in public cloud is assumed to be 10Gbps in
this example). To provision service demand R1, we first set
up a VM with two allocated CPU cores, which incurs a VM
booting latency (1s in the example) and a VNF installation
latency (0.2s). Since f1 is ST and basic throughput is 1 Gbps,
processing latency of f1 is 1s. After that, instance of f2
is installed in same VM, whose throughput is doubled with
2 CPU cores, i.e., 2Gbps, and processing latency is 0.5s.
Finally, data is transferred from VM1 to the destination with
a transmission latency of 0.1s. In conclusion, total latency of
demand R1 is 3.1s. However, as f1 is ST, one CPU core of
VM1 is idle, leading to a waste of computing resources. The
example is analogous for demand R2.

However, the proposed CE-VPS scheme can place and
schedule VNFs based on their attributes, as shown in Fig. 2(b).
For R1, another VM with two CPU cores allocated is set up
for the instance of f2 to achieve higher throughput. Also, since
we can boot VM2 in advance before the data processed by the
instance of f1 arrives, latency can be reduced. Basic bandwidth
of connection from VM1 to VM2 is assumed to be 5Gbps
(actually, bandwidth can be customized), hence transmission
latency incurred is 0.2s. For the instance of f2 installed in
VM2, it remains in idle state for a period of time. During
this period, demand R2 arrives, and the instance can start to
process its data immediately. Hence, total latency of R2 can
be decreased from 3.1s in C-VPS to 1.9s. Assume price of
per-CPU core is $P /s, then total costs of C-VPS and CE-VPS
can be calculated by 2.9 × 2 × 2 × P = 11.6P dollars and
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(a) Low-Latency VPS scheme
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Fig. 2: Comparison of different schemes.

(2.2 × 2 + 2.3 × 2) × P = 9P dollars, respectively. Thus,
CE-VPS achieves significantly-lower cost (24%) compared to
C-VPS.

2) Idle State: In this subsection, we recall the concept of
the idle state through an example. Fig. 3(a) shows two service
demands R1 and R2, requiring the same SFC, that arrive in the
network at different instants. To provision R1, VM1 is booted
and a new instance of VNF f1 is installed, incurring some
latency. In a conventional scheme, after f1 finishes processing
the data of R1, data will be transmitted to the instance of VNF
f2; meanwhile, the instance of f1 will be removed to save
computing resources. When R2 arrives, the same procedure
is executed, unnecessarily increasing latency (i.e., intuitively,
it would have been preferable to maintain f1 and f2 active,
avoiding the re-booting).

In our proposed scheme, VNF instances (e.g., VNF f1
and f2 as shown in Fig. 3(b)) can remain in idle state after
they finish the previous task. Thus, when R2 arrives, a VNF
instance can start working immediately without the need for
booting a new VM and re-installing a VNF instance. When
the load of service demands is high, idle state can improve
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Fig. 3: Different VPS strategies: (a) without idle state and
(b) with idle state.

the network performance remarkably in terms of additional
computing resources. Details about how idle state can affect
network performance in terms of latency, resource utilization,
etc., can be found in [32]. In this study, a fixed duration of
idle state is assumed for VNF instances.

IV. MILP FORMULATION

In this section, the CE-VPS scheme is formulated as a MILP,
which tries to minimize the total cost spent by the SP on
computing and networking resources provided by the CIP.

Notations Description

G(V,U,E) Cloud network topology, where V is set

of VM-capable nodes, U is set of user

nodes, and E is set of links, (i, j) ∈ E.

Lκ(i,j) Length of κth shortest path between

nodes i and j, κ ∈ K.

Hz
i 1 if node i belongs to zone z, z ∈ Z, and

Z is set of zones.

PCPUz Price of a CPU core per hour in zone z.

Pnet Price of data when traffic transferred

between different zones (per GB).

Φ Speed of light in fiber, 200 km/ms.

Ω Transmission rate from a user node to a

VM-capable datacenter node.

Ψ A large integer constant.

C Maximum number of available CPU

cores, c ∈ [1, C] .

N Highest level of egress network capacity

that a VM can have, n ∈ [1, N ]. Basic

network capacity is Θ Gbps.

F,M Set of VNFs, f ∈ F , and set of VMs,

m ∈M , respectively.

∆f Indicator denoting whether VNF f is

MT, i.e., ∆f = 1, or ST, i.e., ∆f = 0.

Pf Basic processing capacity of VNF f .

I,B,D VIT, VBT, and time consumed to remove

a VM, respectively.

S Set of SFCs, s ∈ S.

Fs Set of VNFs in SFC s, Fs ⊆ F . Let fs,k
denote the kth VNF in SFC s, fs,k ∈ Fs.

R Set of service demands, r ∈ R.

Variables Description

ϕ Float variable denoting total cost.

xm Integer variable denoting time when VM

m is initialized.

ym Integer variable denoting time when VM

m is removed.

lim,c Integer variable denoting runtime of VM

m in node i with c CPU cores.

qcm ∈ {0, 1} 1 if VM m is allocated with c CPU cores.

gim ∈ {0, 1} 1 if VM m is initialized in node i.

hf,mr ∈ {0, 1} 1 if an instance of VNF f requested by

demand r, is installed in VM m.

hf,zr ∈ {0, 1} 1 if VNF f is installed in a VM that

belongs to zone z.

pfr Integer variable denoting the moment

when VNF f requested by demand r

starts to process user data.

pf,f
′

r,r′ ∈ {0, 1} 1 if VNF f requested by r starts to

process data before VNF f ′ requested by

r′ does.

wfr Integer variable denoting processing la-

tency of VNF f requested by demand r.

wkr Integer variable denoting transmission

latency between VMs hosting kth and

(k + 1)th VNF instances.

ukr ∈ {0, 1} 1 if kth and (k+1)th VNF instances are

installed in different VMs.

anm ∈ {0, 1} 1 if egress network capacity level allo-

cated for VM m is n.
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okr Integer variable denoting propagation la-

tency between VMs hosting kth and

(k + 1)th VNF instances.

zrk ∈ {0, 1} 1 if locations of VMs hosting kth and

(k + 1)th VNF instances belong to dif-

ferent zones.

er,κ(i,j) ∈ {0, 1} 1 if the κth shortest path between nodes

i and j is established for demand r.

Objective Function:

Minimize(ϕ) (2)

The MILP objective is to minimize the total cost as in Eq.
(3).

ϕ =
∑
z∈Z

∑
i∈V

∑
c∈[1,C]

∑
m∈M

c× lim,c ×Hz
i × PCPUz

+
∑
r∈R

∑
k∈[1,|Fsr |−1]

dr × zrk × Pnet
(3)

Latency Constraints:

ar + lr ≥ p
fsr,k
r + w

fsr,k
r +

dr
Ω

+

∑
i∈V

er,κ
(i,dr)

× Lκ
(i,dr)

Φ
,∀r ∈ R, fsr,k ∈ Fsr , κ ∈ K

(4)

Eq. (4) ensures the latency requirement of demand r. First
two items on right side ensure the last required VNF finishes
processing all data before the deadline. Transmission and
propagation latency are also considered.

p
fsr,1
r ≥ ar +

dr
Ω

+

∑
i∈V

er,κ(sr,i)
× Lκ(sr,i)

Ψ
,

∀r ∈ R, fsr,1 ∈ Fsr , κ ∈ K
(5)

Eq. (5) ensures the first VNF instance of the SFC can
start to process data only after the data has been transferred
from the user node to the node where the VM is hosting the
first VNF through the κth shortest path, which induces some
transmission and propagation latency.

p
fsr,k
r + w

fsr,k
r + wkr + okr ≤ p

fsr,k+1
r ,

∀r ∈ R, k ∈ [1, |Fsr | − 1], fsr,k ∈ Fsr

(6)

Eq. (6) ensures that processing at VNF fsr,k+1 should not
start until the data has been processed by the previous VNF
and transferred to the VM hosting VNF fsr,k+1.

wfr ≥
dr
Pf
× (∆f ×

qcm
c

+ 1−∆f ) + Ψ× (hf,mr − 1),

∀r ∈ R, f ∈ Fsr , c ∈ [1, C],m ∈M
(7)

Eq. (7) calculates the VNF processing latency. Specifically,
if the VNF is MT, that is ∆f = 1, the latency is calculated
through multiplying basic processing capacity Pf by the
number of CPU cores allocated. Otherwise, the latency is

calculated only in terms of basic processing capacity.

wkr ≥
dr

Θ× n
× anm + Ψ× (h

fsr,k,m
r + ukr − 2),

∀r ∈ R, k ∈ [1, |Fsr | − 1], fsr,k ∈ Fsr , n ∈ [1, N ],m ∈M
(8)

Eq. (8) calculates that transmission latency between VNFs
fsr,k and fsr,k+1, which applies only when they are deployed
in different VMs, i.e., both h

fsr,k,m
r and ukr equal one. The

latency is calculated in terms of the egress network capacity
level n allocated to the VM that hosts fsr,k, where a higher
level means the latency can be reduced.

okr ≥ (h
fsr,k,m
r + gim + h

fsr,k+1,m
′

r + gjm′ − 3)×
Lκ(i,j)

Ψ
+(er,κ(i,j) − 1)×Ψ,∀r ∈ R, k ∈ [1, |Fsr | − 1],

fsr,k, fsr,k+1 ∈ Fsr ,m,m
′ ∈M, i, j ∈ V, κ ∈ K

(9)

1 ≥
∑
κ∈K

er,κ(i,j) ≥ h
f,m
r + gim + hf

′,m′

r + gjm′ − 3,

∀r ∈ R, f, f ′ ∈ Fsr ,m,m
′ ∈M, i, j ∈ V

(10)

Eq. (9) calculates propagation latency of the κth shortest
path between the two VMs hosting two consecutive VNFs in a
service chain. This applies only when two VNFs are deployed
in different nodes, i.e., when the sum of all variables within
the brace equals one. Eq. (10) ensures at most one among
K-shortest paths is selected.

VNF Placement Constraints:∑
m∈M

hf,mr = 1,∀r ∈ R, f ∈ Fsr (11)

Eq. (11) ensures that each VNF of the requested SFC should
be installed in only one VM.∑
r∈R

∑
f∈Fsr

hf,mr ≥
∑
i∈V

gim ≥
∑
r∈R

∑
f∈Fsr

hf,mr /Ψ,∀m ∈M

(12)
Eq. (12) ensures that, if a VM is responsible to process user

data, it should be mapped into a VM-capable node.∑
κ∈K

eκ(sr,i) ≥ h
fsr,1,m
r + gim − 1,

∀r ∈ R, fsr,1 ∈ Fsr ,m ∈M, i ∈ V
(13)

∑
κ∈K

eκ
(i,dr)

≥ hfsr,|Fsr |,m
r + gim − 1,

∀r ∈ R, fsr,|Fsr | ∈ Fsr ,m ∈M, i ∈ V
(14)

Eqs. (13)-(14) ensure a connection is established from the
source to the node where the first VNF is installed, and from
the node where the last VNF is installed to the destination.

VNF Scheduling Constraints:

xm +B + I ≤ pfr + Ψ× (1− hf,mr ),

∀m ∈M, r ∈ R, f ∈ Fsr

(15)

Eq. (15) ensures the VM should boot before any VNF
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installed in it begins to process data.

ym ≥ D + pfr + Ψ× (hf,mr − 1) + wfr ,

∀m ∈M, r ∈ R, f ∈ Fsr

(16)

Eq. (16) ensures the VM can be shut down after all hosting
VNFs have finished their tasks.

2− hfsr,km − hfsr,k+1
m ≥ ukr ≥ h

fsr,k
m + h

fsr,k+1

m′ − 1,

∀r ∈ R, fsr,k, fsr,k+1 ∈ Fsr ,m,m
′ ∈M,m 6= m′

(17)

Eq. (17) determines value of ukr , which is used to denote
whether two consecutive VNFs in a SFC are installed in two
different VMs. ukr equals 1 iff the VNFs are deployed in two
different VMs m and m′, where both variables h

fsr,k
m and

h
fsr,k+1

m′ equal 1.

zrk ≥ h
fsr,k,z
r + h

fsr,k+1,z
′

r − 1,

∀r ∈ R, fsr,k, fsr,k+1 ∈ Fsr , z, z
′ ∈ Z, z 6= z′

(18)

hf,zr ≥ (hf,mr + gim − 1)×Hz
i ,

∀r ∈ R, f ∈ Fsr , i ∈ V, z ∈ Z,m ∈M
(19)

Eqs. (18)-(19) determine whether VNFs fsr,k and fsr,k+1

are located in two nodes that belong to different zones.

ym − xm + (qcm + gim − 2)×Ψ ≤ lim,c
≤ (2− qcm − gim)×Ψ,∀m ∈M, c ∈ [1, C], i ∈ V

(20)

Eq. (20) determines runtime of VM m with c CPU cores.

1 ≥ pf,f
′

r,r′ + pf
′,f
r′,r ≥ h

f,m
r + hf

′,m
r′ − 1,

∀r, r′ ∈ R, f ∈ Fsr , f
′ ∈ Fsr′ ,m ∈M

(21)

pfr + wfr + I − pf
′

r′ ≤ (1− pf,f
′

r,r′ ),

∀r, r′ ∈ R, f ∈ Fsr , f
′ ∈ Fsr′

(22)

Eqs. (21)-(22) ensure that, if two VNFs f and f ′ requested
by different demands are installed in the same VM, which
means both hf,mr and hf

′,m
r′ equal 1, the VM cannot process

the two requests at the same time. Hence, the processing order
is determined by Eq. (22), where if pf,f

′

r,r′ equals one, meaning
that, if VNF f first processes data, VNF f ′ cannot work until
VNF f finishes and an instance is installed.

Resource-Allocation Constraints:

1 ≥
∑

c∈[1,C]

qcm ≥
∑
r∈R

∑
f∈Fsr

hf,mr /Ψ,∀m ∈M (23)

Eq. (23) calculates the number of CPU cores allocated to a
VM.

In the MILP, dominant number of variables is among lim,c,
hf,mr , hf,zr , and pf,f

′

r,r′ , which are O(|V | × |M | × C), O(|F | ×
|M |×|R|), O(|F |×|Z|×|R|), and O(|F |2×|R|2), respectively.
|V | is size of VM-capable node set, |M | is size of VM set, |F |
is size of VNF set, |R| is size of service demand set, and |Z|
is number of zones. About constraints, the dominant number
is among (9) and (21), which are of complexity O(|F |× |R|×
|M |2 × |V |2) and O(|F |2 × |R|2 × |M |), respectively.

V. HEURISTIC APPROACH

The MILP is computationally prohibitive for large networks.
Hence, an efficient heuristic is developed to achieve near-
optimal performance for dynamic service demands in large
networks. The heuristic for CE-VPS consists of three sub-
algorithms, i.e., optimal zone determination (OZD), latency
requirement verification (LRV), and service demand provision-
ing (SDP).
A. OZD Algorithm

OZD is responsible to find the optimal zone to host as
many instances of required VNFs as possible, where trans-
mission cost is minimized. We construct a |Z| × |Fs| matrix
M , which is represented as follows. Element mfk,zj equals 1
if there is at least one instance of VNF fk in zone zj , and 0
otherwise. Next, for each row, we do AND operation between
any two adjacent elements and sum the results up to get vector
V , where the largest value vj denotes that zone zj hosts most
qualified VNFs so data transmission fee can be decreased.

V = AND(M) =


∑

k∈[1,|Fs|−1] mfk,z1 &mfk+1,z1∑
k∈[1,|Fs|−1] mfk,z2 &mfk+1,z2

...∑
k∈[1,|Fs|−1] mfk,z|Z| &mfk+1,z|Z|



=


v1
v2
...

v|Z|

 ,M =

 mf1,z1 · · · mf|Fs|,z1

...
. . .

...
mf1,z|Z| · · · mf|Fs|,z|Z|


The pseudo-code of OZD (Algorithm 1) is stated as fol-

lows. In Algorithm 1, we first determine the VMs that host
the instances of required VNFs. In line 2, relevant parameters
are initialized, where time indicator T is used to estimate the
time at which each VNF in Fs should start to process the data.
Candidate sets If1 , If2 , ..., Ifk are used to store the qualified
instances for each VNF. Note that, for the first VNF in SFC
s, processing should start after the data is transmitted from
user node s to the datacenter with a latency of d/Cin, where
d is data size and Cin is ingress network capacity from the
user to the public cloud. From line 4 to 6, if the demand must
finish before deadline DDL, each VNF instance is checked
whether it is available at a certain moment, and time indicator
T is updated with the estimated processing time according
to the basic throughput of the VNF. Otherwise, all instances
are selected as candidates since the demand is insensitive to
latency as stated in line 8. In line 9, to find the optimal zone,
the matrix-based method presented above is employed, and
then the results are returned.

Complexity: In line 1, complexity of obtaining VMs is
O(Vmax), where Vmax denotes maximum number of VMs.
From line 4 to 6, it requires O(VmaxFmax) to check the avail-
ability of each instance of each required VNF, where Fmax is
maximum number of the VNFs in a SFC. Matrix operation to
find the optimal zone in line 9 requires O(Vmax|Z|). Taking
all steps into consideration, time complexity of Algorithm 1
is O(Vmax(Fmax + |Z|)).
B. LRV Algorithm

LRV is responsible to check whether user data can be
processed by candidate instance set Λ within deadline DDL.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on May 30,2020 at 20:31:27 UTC from IEEE Xplore.  Restrictions apply. 



0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2992504, IEEE
Transactions on Communications

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Algorithm 1: OZD Algorithm
Input: Service demand r and its deadline DDL
Output: Optimal zone z, and set of qualified VNFs Q

in z
1 Find set of VMs hosting VNFs required by demand r,

i.e., Fs = (f1, f2, ..., f|Fs|);
2 Initialize time indicator T = a+ d/Cin and candidate

instance sets, i.e., If1 , If2 , ...Ifk = ∅;
3 if DDL 6= +∞ then
4 for each f ∈ Fs do
5 Add the instance of VNF f to If , if it is

available at time T ;
6 Update T = T + d/Pf ;

7 else
8 Add all existing instances for each VNF to sets

If1 , If2 , ..., Ifk correspondingly;

9 Employ the matrix-based method to find optimal zone
z and VNF set Q, and return;

Pseudo-code of LRV (Algorithm 2) can be summarized
as follows. Time indicator T is initialized in line 1. Next,
in line 3, propagation and transmission latency is calculated
for the path from source of the demand to the datacenter
hosting the first VNF instance. Specifically, Yen’s algorithm
[36] is employed to calculate K-shortest paths, and the one
with least latency is selected. From lines 4-10, T is updated
after each VNF instance processes the data. Specifically, in line
5, relevant parameters are obtained, where P ∗fk is throughput
of VNF instance fk, TSfk is the time that fk can actually start
to process the data, and Cfk is egress network capacity of the
VM hosting fk. Egress network capacity is flexible and can
be customized. In line 6, T is updated according to the actual
start processing time. Then, in lines 7-10, transmission latency
and propagation latency are considered. Finally, the result is
returned.

Complexity: In line 2, complexity of Yen’s algorithm is
O(K|V |(|E|+ |V | log |V |)). Complexity of the for loop from
line 4 to 10 is O(FmaxK|V |(|E| + |V | log |V |)). In con-
clusion, complexity of Algorithm 2 is O(FmaxK|V |(|E| +
|V | log |V |)).
C. SDP Algorithm

SDP is responsible to serve a single demand that arrives
dynamically, and pseudo-code of SDP is reported in Algo-
rithm 3. In lines 1-3, deadline DDL is determined based on
type of latency requirement of r. Algorithm 1 is called to find
optimal zone z and corresponding VNFs in line 4. Lines 5-18
employ existing or newly-installed VNF instances to serve r.
Specifically, in lines 6-7, an existeing instance of the required
VNF in zone z is selected. If there is no available instances, the
VNF prior to it is checked to see whether they are both ST or
MT, in lines 9-10. If they have the same attribute, a new VNF
instance is installed in the VM hosting the prior VNF instance.

Algorithm 2: LRV Algorithm
Input: Arrival time a of service demand r, candidate

instance set Λ, deadline DDL, and size of data
to be processed d

Output: true, if DDL can be met; false, otherwise
1 Initialize time indicator T = 0;
2 Calculate K-shortest path from source s of r to

location of first VNF instance if1 in Λ and select the
one with least latency lat(s, if1);

3 Set T = a+ d/Cin + lat(s, if1);
4 for each k ∈ |Λ| do
5 Get its throughput P ∗fk , available time TSfk , and

egress network capacity Cfk ;
6 T = max(TSfk , T ) + d/P ∗fk ;
7 if k ≤ |Λ| − 1 then
8 T = T + d/Cfk + lat(ifk , ifk+1

);

9 else
10 T = T + d/Ceg + lat(ifk , d);

11 return T ≤ DDL? true : false;

In lines 12-14, if previous procedures fail, other zones are
checked to determine whether there are qualified instances. In
lines 15-17, a new VM will be booted, for which number of
required CPU cores is calculated in Eq. (24).

In Eq. (24), if VNF f is ST, number of required CPU core
is one. Otherwise, it is calculated according to deadline DDL
and processing latency of other VNFs, i.e.,

∑
f ′∈Fs/f

d
Pf′

.
Note that processing latencies of other VNFs are estimated
in terms of their basic throughput; hence, actual processing
latency can be smaller than the estimated value.

N =


1, f is STd/

DDL−
∑

f ′∈Fs/f

d/Pf ′

× Pf

 , f is MT

(24)
In line 19, Algorithm 2 is called to verify whether the

latency requirement is met. From line 22 to 23, if LRV fails,
we check whether the latency requirement can be relaxed.

Complexity: In line 4, Algorithm 1 is called and its com-
plexity has been analyzed. Complexity of the for loop in lines
5-18 is O(FmaxVmax). Complexity of Algorithm 2 has also
been analyzed. Taking all steps into consideration, complexity
of Algorithm 3 is O(Fmax(K|V |(|E|+|V | log |V |)+Vmax)+
Vmax|Z|), which runs in polynomial time.

VI. PERFORMANCE EVALUATION

In this section, we first evaluate the performance of CE-
VPS through the MILP in a small-scale network. Then, the
heuristic algorithms of CE-VPS and three conventional VPS
schemes are compared in large-scale networks.
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Algorithm 3: SDP Algorithm
Input: Service demand r

1 Initialize set of VNF instances to serve r, i.e., Λ = ∅,

deadline for r, i.e., DDL = lr;

2 if r has a variable latency requirement then
3 Set DDL = lreqr ;

4 Call Algorithm 1 with < r,DDL > to find optimal

zone z and qualified VNF set Q;

5 for each fk ∈ Fs, k ≤ |Fs| do
6 if fk ∈ Q then
7 Find qualified instance if in zone z,

Λ = Λ ∪ if ;

8 else
9 if fk−1 ∈ Q, and meantime, fk−1 and fk have

the same attribute then
10 Install an instance ifk in fk−1’ VM;

11 else
12 Check all instances of fk in other zones;

13 if there exist qualified instances then
14 Select the one ifk in the most

inexpensive zone;

15 else
16 Set up a new VM in zone z with N

CPU cores, calculated by Eq. (24);

17 Install an instance ifk in the VM;

18 Λ = Λ ∪ ifk , Q = Q ∪ fk;

19 Call Algorithm 2 with args < a,Λ, DDL, d > and get

the returned result flag;

20 if flag == true then
21 Serve the demand with Λ;

22 else if DDL == lreqr then
23 Set DDL = lmaxr , go to Step 4;

A. Simulation Setup
The MILP is implemented using ILOG CPLEX v12.5, and

heuristic algorithms are coded in Python. All simulations run
on a personal computer with Intel i7-7600 2.9 GHz CPU, 16
GB RAM, and Windows 10 operating system.

For MILP, network topology N6S9 shown in Fig. 4(a)
is employed, which includes two NFV-capable datacenters
belonging to different zones. Prices of CPU core in each
zone are $0.03/hour and $0.04/hour, respectively. Networking
price for data transmission between zones is $0.01/GB. Data
sizes and latency requirements (including fixed and variable)
of demands are uniformly distributed in the range [0.1GB,
2GB] and [0.1s, 15s], respectively, according to different types

of applications [37]. Further, value of latency requirement is
set as infinite for latency-insensitive demands. We assume
three VNFs, whose throughputs and attributes are (1Gbps,
MT), (2Gbps, MT), and (4Gbps, ST). Also, VBT and VIT are
assumed to be 20ms and 10ms, respectively. Basic network
capacity Θ is 5 Gbps, and if a VM is allocated with c
CPU cores, its egress network capacity is c × Θ Gbps [7].
Performance of MILP is compared with CE-VPS heuristic by
giving as input the same set of static service demands. Besides,
three baseline schemes whose main procedures are as follows.

1) CPVNF [31]: For each demand, servers (replaced by
VMs in this study for fair comparison) with higher
importance rank metric (SIR) are selected for required
VNFs. SIR is originally defined according to the re-
maining computing capacity of a server, bandwidth
capacity of links, and whether VNF instances preexist.
Since in our study we are considering a public cloud,
and computing resource and bandwidth in public cloud
can be regarded as unlimited (e.g., the link bandwidth
between datacenters can reach over 1 Pbps in Google
datacenter network [38]), we modify SIR definition by
using the available time and number of CPU cores of
a VM instead of remaining computing and bandwidth
capacity.

2) Best-Availability [20]: For each required VNF of a
demand, the scheme attempts to place it into a VM
whose current demand queue has the earliest finish time
(i.e., best availability).

3) Low-Latency [22]: This scheme sets up a new VM to
host all VNF instances for each demand. Number of
CPU cores allocated to the VM is calculated according
to Eq. (24).
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Fig. 4: Network topologies used in simulation.

The heuristic approach is conducted on US Backbone topol-
ogy [39], as shown in Fig. 4(b), and there are four datacenters
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belonging to four different zones. Prices of CPU core in
datacenters 1, 13, 19, and 26 are $0.034/h, $0.038/h, $0.04/h,
and $0.035/h, respectively, based on the pricing scheme of
GCP [7] as stated before. Traffic arrives dynamically according
to a Poisson distribution with λ demands per second. Four
different SFCs and six optional VNFs, i.e., NAT, FW, traffic
monitor (TM), WAN optimization controller (WOC), intrusion
detection and prevention system (IDPS), and video optimiza-
tion controller (VOC), are considered [25], [40]. Four SFCs
are: Web Service (NAT-FW-TM-WOC-IDPS), VoIP (NAT-FW-
TM-FW-NAT), Video Streaming (NAT-FW-TM-VOC-IDPS),
and Online Gaming (NAT-FW-VOC-WOC-IDPS). We assume
throughputs and attributes of optional VNFs are (2Gbps, ST),
(1Gbps, MT), (1Gbps, ST), (2Gbps, MT), (4Gbps, ST), and
(4Gbps, MT) [40], [41], respectively. The duration of idle
state is to 2 seconds according to our previous work. Other
parameters are the same as that in the MILP. To obtain
good statistical confidence of results, the simulation is run 20
times for each traffic load and we take the average. In each
simulation run, 10,000 demands are generated.

B. Performance Comparison: MILP and Heuristics

Fig. 5 shows the cost of different schemes, which is nor-
malized to the largest value achieved by Best-Availability. We
observe that MILP can reduce the cost by over 10%, 11%,
and 14% on average compared with Low-Latency, CPVNF,
and Best-Availability Algorithms, respectively. Moreover, CE-
VPS achieves close-to-optimal results, where average gap is
4.7%. Best-Availability has the worst performance, as it prefers
to select instances with earliest finish time, even it is in a
different zone incurring data transmission cost.
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Fig. 5: Normalized cost.

TABLE II: Avg. Running Time of Different Schemes (s).

Number of demands 2 4 6 8 10 12
MILP 5 65 431 4412 20431 -

CE-VPS 0.099 0.102 0.112 0.119 0.119 0.117
Low-Latency 0.083 0.083 0.083 0.086 0.088 0.091

CPVNF 0.100 0.098 0.109 0.113 0.112 0.111
Best-Availability 0.096 0.109 0.110 0.121 0.978 0.112

Table II compares the running time of different schemes. We
find that, with increasing number of demands, time consumed
by MILP increases significantly. It spends over 5 hours on
10 demands, which becomes impractical to be employed.
However, all heuristic approaches obtain results with around
100ms.

C. Performance Comparison of Different Heuristics

The performance of our proposed CE-VPS heuristic and
three baseline algorithms are evaluated according to CPU
resource cost, data transmission cost, average latency, and
average number of used VMs per service demand. These
results are plotted with a confidence level of 95%.

In Fig. 6(a), results show that CPU resource cost increases
almost linearly with traffic load for all schemes. Compared
to Best-Availability, CPVNF, and Low-Latency schemes, CE-
VPS can reduce CPU resource cost by about 23%, 48%, and
78%, respectively, at traffic load of 500 Erlang. The benefits
come from the fact that, in CE-VPS, an optimal zone with low
price of CPU resource is found to serve the demand. Moreover,
in Low-Latency, a VM is established for each demand to host
all required VNFs, achieving a highest cost of CPU resources.

Data transmission cost is compared for different schemes
in Fig. 6(b). Note that data transmission costs of CE-VPS,
CPVNF, and Best-Availability schemes are much higher than
costs of CPU resources. However, CE-VPS achieves much
lower transmission cost than CPVNF and Best-Availability
schemes, and the reduction can reach as high as 76% and 88%,
respectively, at traffic load of 500 Erlang. For Low-Latency,
there is no transmission cost incurred, but total cost of CE-
VPS is still lower than that of Low-Latency.

Next, we evaluate the performance in terms of average
number of used VMs per service demand for different schemes
in Fig. 6(c). In Low-Latency, one VM is set up for each
demand, hence the value always equals to one. CE-VPS also
achieves a low VM usage, meaning that the frequency at
which VMs hosting required VNF instances are reused by
multiple demands is much higher than in CPVNF and Best-
Availability schemes, which contributes to decreasing the cost
of booting new VMs and installing new VNF instances. The
frequent reuse benefits from the fact that: 1) scheduling of
VNFs can be conducted more efficiently when VNF attributes
are considered; and 2) idle state promotes the reuse of VNF
instances among multiple demands.

Average latencies of different schemes are also compared,
where Low-Latency achieves the best performance as the
transmission latency between different VMs is avoided. How-
ever, latency reduction between Low-Latency and CE-VPS
is only about 3% on average, since for CE-VPS, latency
requirement will be checked before the demand is finally
served. Even compared with CPVNF and Best-Availability,
Low-Latency scheme only reduces latency by about 4%, at
traffic load of 500 Erlang. With increasing traffic load, average
latency of each scheme increases almost linearly. This is
because, as average data size of service demands increases,
a proportional increment of both processing and transmission
latencies is incurred.
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Fig. 6: Simulation results of different schemes.

D. Performance Comparison for Different Network Capacities

Higher network capacity may reduce the transmission la-
tency and improve reuse of VNFs by multiple demands.
Hence, we evaluate performance of different schemes for
different network capacities in terms of cost and latency in
Fig. 7. In GCP, with more CPU cores, VM can have a higher
egress network capacity (see Section VI-A), and such scheme
is denoted as “Changeable” in results. Other fixed network
capacities, i.e., 20, 15, 10, 5, and 2.5 Gbps, are also considered.

From the results, we find that, with higher network capacity,

total cost can be reduced for CE-VPS and CPVNF. Specifi-
cally, for CPVNF, CPU resource cost can be reduced by about
13% when network capacity increases from 2.5 Gbps to 5
Gbps, while for CE-VPS, reduction is about 6%. Moreover,
cost decreases much slowly when network capacity increases
from 10 Gbps to 20 Gbps, which implies that a network
capacity of 10 Gbps is enough to guarantee quality of service.
Note that CPVNF and CE-VPS with changeable network
capacity achieve comparable (or even better) performance
compared to that with fixed network capacity of 15 Gbps.
This indicates the importance of adjusting network capacity
flexibly on reducing transmission cost.
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Fig. 7: Total cost (bars) and average latency (curves) for
different network capacities.

With respect to average latency, we find that Low-Latency
remains on the same level with different network capacities.
But latency can be reduced by about 11% for CPVNF and
by about 6% for CE-VPS when network capacity increases
from 2.5 Gbps to 5 Gbps. Performance improvement becomes
unremarkable when network capacity is greater than 10 Gbps.
The phenomenon indicates that it becomes a bottleneck when
network capacity is very small, where service demand can
suffer a similar magnitude of transmission latency to VNF
processing latency. In this case, performance of both latency
and CPU resource cost will deteriorate significantly.

E. Performance Evaluation under Different VM Booting Time
and VNF Installation Time

To evaluate the effect of VBT and VIT on performance in
terms of cost and latency, we run simulation under different
parameters. Factors α and β lead to different times of initial
VBT and VIT, respectively, e.g., α = 2 represents VBT is
40ms (initial time is 20ms). The results are shown in Figs.
8(a) and 8(b).

We find that all schemes consume more CPU resources for
increasing VBT, and the increment is more significant for
Low-Latency. For CE-VPS, data transmission cost increases
more remarkably for a longer booting time. This is because,
to provision a demand with a strict latency requirement, an
active VNF instance (even in a different zone) is preferred
to be selected as booting a new VM will induce a significant
latency. But, in CPVNF, available time of VMs and computing

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on May 30,2020 at 20:31:27 UTC from IEEE Xplore.  Restrictions apply. 



0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2992504, IEEE
Transactions on Communications

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

� � � � � � � � � � � �
0

2

4

6

8

1 0

1 2

1 4
 

To
tal 

Co
st (

$)

F a c t o r  o f  V M  B o o t i n g  T i m e  

 L o w - L a t e n c y - C P U  C P V N F - T r a n s .
 C P V N F - C P U

 C E - V P S - T r a n s .
 C E - V P S - C P U

1 5

1 7

1 9

2 1

2 3

1 4

1 6

1 8

2 0

2 2

2 4

C P V N F L o w - L a t e n c y

Av
era

ge 
La

ten
cy 

(se
con

d)

C E - V P S

(a) Under different VM booting time

� � � � � � � � � � � �
0

2

4

6

8

1 0

1 2

1 4
 

To
tal 

Co
st (

$)

F a c t o r  o f  V N F  I n s t a l l a t i o n  T i m e  

 L o w - L a t e n c y - C P U

L o w - L a t e n c y

C P V N F

 C P V N F - T r a n s .
 C P V N F - C P U

C E - V P S

 C E - V P S - T r a n s .
 C E - V P S - C P U

1 5

1 7

1 9

2 1

2 3

1 4

1 6

1 8

2 0

2 2

2 4

Av
era

ge 
La

ten
cy 

(se
con

d)

(b) Under different VNF installation time

Fig. 8: Total cost (bars) and average latency (curves) of
different schemes.

resource consumption are both considered, leading to a slight
increase of data transmission cost, which is similar to CE-VPS.

It can also be found from Fig. 8(a) that service demands
suffer a longer average latency when VBT increases, and
performance of Low-Latency is significantly affected by VBT.
Specifically, when α = 4, CE-VPS achieves average latency
close to Low-Latency.

Effect of VIT on performance for different schemes is
shown in Fig. 8(b). We find that VIT has a more notable
influence on performance than VBT. For CE-VPS, data trans-
mission cost rises a lot when VIT becomes longer. Specifically,
when β = 4, total cost of CE-VPS becomes very close to Low-
Latency. In CPVNF, CPU resource cost almost remains the
same while data transmission cost increases slightly with VIT
being longer, since it tries to achieve a trade-off between CPU
resource consumption and latency performance. Moreover, the
effect of VIT on CPU resource cost is more vital for Low-
Latency.

Average latency for the three schemes increases when β
factor becomes larger, because for demands that are latency-
insensitive, required VNFs are more likely to be executed in
a VM with fewer CPU resource allocated. It should be noted
that the low-latency advantage of Low-Latency over CE-VPS
disappears when β equals 4.

Thus, we conclude that both VBT and VIT have significant
impact on the performance in terms of CPU resource cost,

data transmission cost, and average latency. Specifically, Low-
Latency, for each service demand, sets up a new VM and
initializes required VNF instances, and this affects negatively
its performance, both in terms of cost and latency (VIT has
more impact than VBT). CE-VPS, instead, minimizes the costs
of CPU resource and data transmission by attempting to re-
use existing VNF instances and to avoid data transmission
among different zones. As CE-VPS also ensures that latency
requirement is satisfied, a superior trade-off between latency
performance and cost can be achieved.

As a whole, we show that re-using existing VM/VNF in-
stances allows to more effectively satisfy latency requirements,
especially for latency-sensitive applications, e.g., the emerging
VR gaming. In turn, this indicates that it is desirable to have
technologies for rapid VNF booting and to deploy VNFs in
public clouds with short VBT.

VII. CONCLUSION

Cloud computing allows SPs to deploy VNFs into high-
performance VMs in public cloud datacenters operated by
CIPs. When deploying VNFs in cloud, the SP aims to
minimize the cost paid to lease computing and networking
resources, while satisfying diverse latency requirements of dif-
ferent service demands. The optimization problem addressed
in this study, namely the “VNF placement and scheduling
in public cloud networks (VPS-CD)”, is different from other
conventional versions of the VPS problem. In VPS-CD, we
incorporate the impact of several realistic factors which are
typically neglected in existing VPS solutions, e.g., VNF
threading attributes, VM booting time, and VNF installation
time. A solution to the VPS-CD problem has not been investi-
gated before until now. In this study, a cost-efficient VPS-CD
scheme is proposed, and to formulate the VPS-CD problem,
a MILP and an efficient heuristic are designed for small-scale
and large-scale networks, respectively. Our results confirm the
importance of developing VNFs with short installation time
and of using algorithms (such as VPS-CD) which promote the
reutilization of existing VM/VNF instances. Compared to two
baseline schemes, Best-Availability and Cost-Efficient Proac-
tive VNF Placement (CPVNF), both total cost and latency
can be reduced by CE-VPS. Also, a better trade-off between
resource consumption and latency performance is achieved
by CE-VPS when compared to a conventional Low-Latency
scheme.
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