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Abstract

The existence and stability of the Landau equation (1936) in a general bounded
domain with a physical boundary condition is a long-outstanding open problem.
This work proves the global stability of the Landau equation with the Coulombic
potential in a general smooth bounded domain with the specular reflection bound-
ary condition for initial perturbations of the Maxwellian equilibrium states. The
highlight of this work also comes from the low-regularity assumptions made for
the initial distribution. This work generalizes the recent global stability result for the
Landau equation in a periodic box (Kim et al. in Peking Math J, 2020). Our meth-
ods consist of the generalization of the wellposedness theory for the Fokker—Planck
equation (Hwang et al. STAM J Math Anal 50(2):2194-2232, 2018; Hwang et al.
Arch Ration Mech Anal 214(1):183-233, 2014) and the extension of the boundary
value problem to a whole space problem, as well as the use of a recent extension
of De Giorgi—-Nash—Moser theory for the kinetic Fokker—Planck equations (Golse
et al. Ann Sc Norm Super Pisa Cl Sci 19(1):253-295, 2019) and the Morrey esti-
mates (Bramanti et al. J Math Anal Appl 200(2):332-354, 1996) to further control
the velocity derivatives, which ensures the uniqueness. Our methods provide a new
understanding of the grazing collisions in the Landau theory for an initial-boundary
value problem.
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1. Introduction

The Landau equation, which was proposed by Landau in 1936, is a fundamental
mathematical model that describes collisions among charged particles interacting
via Coulombic force. Most significantly, this model describes the dynamics of a
large number of particles when all collisions tend to be grazing. The equation takes
the form

aF+v - ViF=Q(F, F), (n

where the unknown F = F(t, x,v) is a non-negative function. For each time
t 20, F(t, -, -) represents the density of particles in phase space. Throughout this
research, the spatial coordinates are x €  C R> and the velocities are v € R,
where Q@ C R3 is a bounded domain. The Landau collision operator Q is defined
as

def

Q(F,G)(v) =V, - {/ p(v—v)[F)V,G(v) — G(v)VvF(v’>]dv’},
R3

where the collision kernel for the Coulombic particle interactions

def z F4 _1
#(2) ={I——®—}-|z|
lz[ Izl
is a symmetric and non-negative matrix such that ¢;;(z)z;z; = 0.
The Landau equation is a limit case of the Boltzmann equation

atF+U'VXF= QB(FaF)’
with the Boltzmann collision operator

def

Qp(F.G)(v) = /3 dv, /2 do B(v — vy, 0)[F(0)G(v}) = F0)G(v,)],
R S

in the sense of the phenomenological arguments by Landau that solutions to the
Boltzmann equation tend to solutions of the Landau equation if all collisions tend
to be grazing; in order words, B(v — vy, o) tends to be more singular for (v —
Vs, 0) ~ 0. The examples of such physical potentials include the inverse-power-law
potential and other long-range potentials, whose dynamics can further be described
via the Boltzmann equation without the classical angular cutoff assumptions; i.e.,
B(v—vs ) ¢L lloc (82). It is worth mentioning that the dynamics that the Landau
equation describes are different from those of the Boltzmann equation with the
classical angular cutoff in the sense that the former describes the dynamics of
grazing collisions whereas the latter describes the dynamics neglecting grazing
collisions. More detailed study of connection with the Boltzmann equation is given
in the literature [2,4,16,17].

The Landau equation is very interesting not just in itself but also in that we
hope we can have a better understanding on the Boltzmann equation without the
classical angular cutoff assumptions in the case when grazing collisions are not
neglected.
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1.1. Historical Remarks on the Well-Posedness Theory

The well-posedness theory for the Landau equation is strongly related to a
priori estimates on the non-linear Landau collision operator Q(F, F) and the
regularity conditions of the solutions. Unfortunately, the only “easily-granted” a
priori estimates that one can expect from the Landau collision operator are the
physical L'-type conservation laws. Historically, this difficulty that arises from the
lack of strong a priori estimates of the solutions has been resolved via the following
techniques:

e (Spatially homogeneous equation) The brief list of the results that considered
the spatially homogeneous situation includes [1,7,8,10,11,18-20,26-28,31,
32,60,63,64,66,69,69].

e (Renormalized equation) One can also consider renormalizing the equation and
obtain additional a priori estimates. The brief list includes [22-24,46,65].

e (Linearized equation nearby the Maxwellian equilibrium) The list of results
includes [9,12,33,36-38,44,48,49,59,61].

All of the results listed above are the wellposedness theory on the simple torus or
the whole space. In the case of a boundary value problem in a nontrivial domain,
DuaN et al. [25] have recently developed independent machinery to obtain global
solutions in L3°, framework for the Landau and the non-cutoff Boltzmann equation
in a finite channel with the boundary.

1.2. Introduction to an Initial-Boudary Value Problem for the Landau Equation

Our main concern in this paper is the global wellposedness and the decay of
the weak solution to the Landau equation in a general bounded domain with the
specular reflection boundary conditions in the nearby-equilibrium setting without
employing high order Sobolev norms. One may say that the Landau equation,
which models the behavior of charged particles, is intrinsically an equation for the
particles in a bounded domain. In spite of the importance of the theory for the initial-
boundary value problem, no global wellposedness theory has been developed for
nontrivial physical boundary conditions due to the difficulties arising nearby the
boundary. When the particles approach the boundary of a bounded domain Q  R3,
we must impose a specific boundary condition for the probability density function
f(t, x, v). The boundary assumptions that we impose are as follows:

1.2.1. Boundary Conditions Throughout this paper, our domain = {x :
¢(x) < 0} is connected and bounded with ¢ (x) being a smooth function. We
also assume that V¢ (x) # 0 at the boundary ¢(x) = 0. We define the outward
normal vector n, on the boundary 92 as

def VZ(x)

ny = . (2)
Ve
We say that €2 has a rotational symmetry if there exist vectors xo and w such that
{(x —x0) x @} -ny =0 (3)

for all x € 0Q2.
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Throughout this paper, we will denote the phase boundary of 2 x R> as y o
9Q x R3. Additionally, we split this boundary into an outgoing boundary y,, an
incoming boundary y_, and a singular boundary yq for grazing velocities, defined
as

y+d§f{(x,v)e§2xR3:nx~v>0},
y_déf{(x,v)eQxR3:nx~v<0}, “4)

0 (e v) e QxR iny v =0).

In terms of the probability density function F, we formulate the specular re-
flection boundary condition as

F(t,x,v)|l,_ = F(t,x,v—2nyc(ny -v)) = F(t, x, Ryv) ®))

for all x € 02 where

R.v def v — 2ny(ny - v).

1.3. Linearization and Conservation Laws
We will study the linearization of (1) around the Maxwellian equilibrium state
F(t,x,v) = p@) + 12 @) f (1, x,0), (©6)
where, without loss of generality,
3 2
n() = (@)~ 2"

Itis well-known that under the specular reflection boundary condition (5), both mass
and energy are conserved for the Landau equation (1). Without loss of generality,
we assume the mass-energy conservation laws hold for # = 0 in terms of the
perturbation f:

/ f(t,x,v)ﬂdxdv:f
QxR3

Qx

lv|? (2, x, v)/mdx dv = 0. 7
R3

Additionally, we further assume a corresponding conservation law of angular mo-
mentum for all # 2 0 if the domain has a rotational symmetry:

/ {(x = x0) x w} - vf(t, x,v)/udxdv =0. (8)
QxR3
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1.4. Main Theorem and Our Strategy

We may now state our main result as follows:

Theorem 1. (Main theorem) There exist ¥’ and 0 < ey < 1 such that for some
O =0 if fo satisfies

I folloo, = €0, Il forlloc,s + 1 Dv follos,s < 00, C))

where fo def —v-Vyifo+ Afo fo and Ag is defined in (18).

o (Existence and Uniqueness) Then there exists a unique weak solution f of (5),
(13), and (14) on (0, 00) x Q x R3.

o (Positivity) Let F(t, x, v) = p(v)+ /() f(t, x, v). If F(0) = 0, then F(t) =
0 for every t 2 0.

e (Decay of solutions in L*> and L>°) Moreover, for any t > 0, 9y € N, and
¥ 2 0, there exist Cy.p, > 0 and lo(¥9) > 0 such that f satisfies

sup  E(f(5)) = C227Ey(0),
0<s<0

—90/2
t
If @)z < Co.00E0+00/2(0)' (1 + 19_0> ’

and

£ @)lloo.s S Co.oo(1 417N follo.s-+io-

o (Boundedness in C% and WLOO) In addition, there exist C > Qand0 < a < 1
such that f satisfies

17 coa(ooepqey) < € (Iforlloo + 1 folloe.0)
and
190 1l 10 ey S € (orlloo.o + 100 folloo + I floe.0)

We will now make a few comments on Theorem 1. Our main concern through-
out this paper is on the study of (low-regularity) global well-posedness for the
Landau equation in a general bounded domain with a physical boundary condition;
namely, the specular reflection boundary condition. The Landau equation has been
extensively studied in either a simple periodic domain or the whole domain (see
[3,5,9,12,18,33,36-38,48,49,59,61,69]), and these were via employing Sobolev
norms of sufficiently high orders. However, in a bounded domain, the solutions
cannot be smooth up to the grazing set [40] even though we have the diffusion term
in v variable. Hence some new mathematical tools involving much weaker norms
must be developed. As the first step, a L2 — L framework has been developed to
construct the unique global solution in a periodic box in [44]. Our work generalizes
[44] to the problem on a general bounded domain with a more physical boundary
condition, the specular reflection boundary condition.
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Our starting point is to linearize the Landau equation (1) around the perturbation
(6). Then the first step is to construct a weak solution to the linearized Landau
equation (13), as the notion of a weak solution is no longer simple if we consider a
nontrivial boundary. An alternative form of the linearized Landau equation is given
as

Wf+v -Vif=Agf +Kgf. (10)

for some given function g, where all terms in A ¢ f contain at least one momentum-
derivative of f. Then, in Section 2 through Section 5, we first consider constructing
weak solutions for the linearized equation

Wf+v-Vif =Af, (11)

without the presence of the lower order term K ¢ f- The wellposedness for the
linearized equation (11) is then obtained via regularizing the problem, constructing
approximate solutions, and showing L' and L estimates for the adjoint problem
to the approximate problem. This method is a generalization of the work [40] and
[39] for the Fokker—Planck equation with the absorbing boundary condition.

Once we are equipped with Theorem 2, i.e., the wellposedness of (11) with
the specular reflection boundary condition in the sense of distribution, we may
associate a continuous semigroup of linear and bounded operators U (¢) such that
f () = U(¢) fois the unique weak solution of (11). Then, by the Duhamel principle,
the solution f of the whole linearized equation (13) can further be written as

t
fO=U®fo +/0 U(t — s)Kg f(s)ds. (12)

After we construct the notion of solutions to the linearized Landau equation, we
continue developing further estimates as in the following diagram (Fig. 1):

We make a few comments on the diagram. One of the major difficulties behind
the L°° theory for the initial-boundary value problem for the Landau equation arises
from the fact that one must obtain the boundedness of a higher-order derivative norm
[|Vy f||Le in order to prove the uniqueness. It is worth comparing it with the L*
wellposedness theory for the initial-boundary value problem for the Boltzmann
equation with angular cutoff [34], which does not involve the estimates on the
higher order derivative norms.

Since our goal throughout this paper is to construct a L global weak solution
to the nonlinear Landau equation with the specular-reflection boundary condition,
the main approach that we take is mainly the L? — L> bootstrapping after the
L? energy estimates. In order to do this, we first obtain the L? decay estimates in
Section 6, motivated by the constructive method in [70] where some extra efforts
are put into the corresponding elliptic problem with certain boundary conditions.
The key idea for the L> — L> bootstrapping is to flatten the general C! boundary
and to adapt the mirror extension of the boundary so that our argument can be
analyzed as the one in the whole space.

However, in order to close the wellposedness argument for the nonlinear prob-
lem, we must have the boundedness of ||V, ||~ as we discussed above. The key
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idea that we base this on is to follow so-called Morrey estimates [6] (what we call as
Sp estimate throughout this paper), which results in the boundedness of ||V, f|| Lo
from the boundedness of the C%* norm and the L bounds of the terms in the
initial data. Hence we also adapt the L> — C%¢ bootstrap via recently developed
so-called De Giorgi-type methods: local Harnack-type arguments from [29,30,42],
and the uniform L% — C%* bootstrap from [44]. With all of the ingredients ready,
we close the global wellposedness argument for the nonlinear Landau equation in
a bounded domain with the specular reflection boundary condition.

Regarding the De Giorgi—-Nash—Moser iteration methods, we briefly summarize
the recent developments. The theory for elliptic or parabolic equations in divergence
form [14,15,51,52,54] has been extended to the study of hypoelliptic PDEs of
divergent types to obtain Holder regularity in [6,13,21,29,42,43,45,47,50,55-58,
67,68]. The full summary of the story is introduced in [53].

1.5. Notations and Function Spaces

We may now introduce the notations and the function spaces that we use
throughout this paper. Below is the table of notations:

e Domain:

Q C R}: bounded domain with smooth boundary

0r L0, T1x QxR 5 (r,x,v)

e Phase-boundary:

Y Lraa x R3
Vi def {(x,v) €y : £(v-ny) > 0} outcoming/incoming set
Y0 def {x,v) €y :v-n, =0} grazing (singular) set
(ny : outward unit normal at x € 92)
2T 0, 77 x y
T def

2y =10,T] x y+

e Trace:
def def

yf = f|y’ J/:I:f = f|)/;t

e Spaces & norms:
L? (Ei) défLP(zi; lv-n,| dS, dv dz)
P def,po, .
LP(y+) =L (y+: [v-ny|dSy dv)

def
Iy 170 é/f [y fIP [v-ny| dSy dv
Y+
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o Weighted spaces & norms:

def def
w =0+, 1f15, éf w??| £17 do,
0= Jo

def

A1 =/ w??| f17 dx dv.
’ QxR3

|f|(2m9 déf/Rs w?? [aij8if8jf+aijv,~vjf2] dv,
def

LF12 =// w?? [oijaifajf+aijvivjf2] dvdx.
’ QxR3

| floos =supw” () f (), I fllccs = sup w’ () f(x,v).
R3

QxR3
def def
[fl2 =1f120. 1 fll2 = 1120,
def def
I fle =1flo0o, 1 flle = 1 flle0.
def def

|floo =1floc,0. I flloo = I1f llc.0:

e L2 inner products & L? energy:

g & / fodv, (fg) % f fedxdv,
R3 QxR3

def

e)e ™ [ [oasajs+ allu, fe] dv,
R3

def

(fs 8o —f/ [oijaifajg—i-aijvivjfg] dvdx,
QxR3

def

t
Es (f (1)) =|f(r)|§,§ + /0 |f<s>|§,0dS-

1.6. Reformulation

1.6.1. Linearization We linearize the Landau equation (1) around the perturba-
tion (6). This grants an equation for the perturbation f (¢, x, v) as

O f+v-Vof +Lf =T(f, f), 13)

and
f0,x,v) = folx,v), (14)
where fy is the initial data satisfying the mass-energy conservation laws:
[ o= [ e ogE=o
QxR3 QxR3
The linear operator L is further defined as

L=—A—K, (15)
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where the linear operator A consists of the terms with at least one momentum
derivative on f as

AFE 2o | o0, 1+ v 11} = 0109, £1 = v, f + 1o .

and the linear operator K consists of the rest of the operator L which does not
contain any momentum derivative of f as

KfE =2 {0« {10, 1 + v 11} ]}

This is because the momentum derivative d; f inside K f can always be moved to
w'/? and outside the convolution by the chain rule and a property of a convolution
operator. On the other hand, the nonlinear operator I' is defined as

def

Plg, £150 [ {67 1201} 0, ] = {0« 1win' g1} 0, 1

— 9 “¢>"f . [ul/za,'g]} f] - {d)’j * [vml/zajg]} /. he

where the diffusion matrix (collision frequency) o,ij is defined as
o (v) def OV xu = / &Y (v — v )u@)dv'.
R3

We also denote the special case when u = u as

ij — U i i/,
ol =0/, o =0’vj.

1.6.2. Alternative Formulation In Sections 2-5, where we prove the wellposed-
ness of the linear problem, we use an alternative representation (17) of the Landau
equation:

Wf+v -Vif=Agf+Kgf. (17)

where all terms in A ¢ J consists of the terms which contain at least one momentum-
derivative of f while K, f consists of the rest as follows:

- def

Aot S oy [0 i+ 121} 0, 1]
— {0t et o f — {1 201 0
.V, - (06Vf) + g - Vuf. and (18)
def

Kof S Kf + 00" f —ov; f
— o {975 2081 1+ {87 w2001} .
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1.6.3. Weighted Equation We will also utilize the extra weights on v variable

when we show the L™ decay estimates. If f satisfies (17), then the weighted

. def . . .
function f? = w? f satisfies the following equation:

w - _
A7) = 3 f' +v -V f' = A0 + KL, (19)

where the terms are defined as

Y w A+, @eR)
—p def = aw? _ij n Vuw?
Ag = Ag _ZFO—G 8j = Ag —zwLeO'G on,

- 0
Agf = VU . (O’vaf) + (Clg - ZVU)LQUG) . va

=:Vy- (an,,f) +a§ -V, f, and

Kgf = nggf‘i‘(z 209G

dwlojw’ i ayw? i s i duf ) g
— % T 0;0g — i 9 I

w

For some estimates, we will also utilize the homogeneous part of the weighted
equation only:

h+v-Vih = Agh. (20)

1.7. Further Difficulties and Ideas

1.7.1. Further Difficulties of the Boundary Value Problem In the paper [44],
the authors worked on a simplest periodic box. When generalizing it to the bounded
domain case, we would encounter some major difficulties of “getting things uni-
form” as we approach the boundary. More precisely, in the proof of the L* estimate,
we transfer the regularity from v to ¢ and x by an averaging lemma, which is based
on some Fourier analysis methods (e.g. the Fourier transform) and only makes sense
in the whole domain. Also, for the Holder estimate, the local estimate requires a
full neighborhood at each point in the bounded domain including the boundary.
Additionally, the S? estimate is in general developed in the whole space as well.
All of above would become technically difficult if we have to directly work on a
closed domain with boundary.

1.7.2. Extending Outside the Boundary To overcome these difficulties, we con-
sider a local-flattening of the boundary and a proper extension of the interior domain
beyond the flattened boundary, so we can see that the boundary extension still keeps
the modified equation in a similar form. Then this would allow us to see that the
previous arguments for the whole space case can be applied to our extended domain.
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1.7.3. A Few Principles When designing the proper extension, we cannot just
choose an arbitrary “smooth” one. There are some guidelines we should follow:

e First of all, the transformation-extension at the boundary is supposed to be
compatible with the original specular reflection boundary condition, making it
a well-defined and continuous extension in the whole space.

e Secondly, the transformed equation with respect to the new variables is expected
to be in the same form as the original one, at least the characteristics/transport
operator should be invariant under change of coordinates.

e Moreover, we should check the (Holder) continuity of the highest-order coef-
ficient to make sure the existing theory can apply.

1.7.4. Our Strategy: The Mirror Extension of the Locally Flattened Domain

In Section 7, the authors implement the (local) flattening of the boundary and
observe how the original equation is converted via the boundary flattening and a
proper extension. It turns out that, for the specular reflection boundary condition,
a reflection-type extension (or so-called the mirror extension) allows one to enjoy
a similar kinetic equation to the Landau equation in the whole space situation, and
hence one can apply previously known techniques for the Landau equation in a
whole space or in a periodic box. The authors believe that the work developed in
Section 7 would suggest a new method of approaching to the specular-reflection
boundary value problem for varied diffusive kinetic equations, including the Landau
equation, the Fokker—Planck equation, and the Boltzmann equation without angular
cutoff.

2. Linear Problem

As the start of the study of the Landau boundary value problem, we first construct
a weak solution of the linearized problem.

2.1. The Landau Initial-Boundary Value Problem

2.1.1. A Homogeneous Equation Since the operator A ¢ f contains all terms
with the derivatives of f, we will first consider constructing weak solutions for the
homogeneous equation

Wf+v-Vif =Agf 1)

with the same initial condition (14) and the following boundary condition, as in-
troduced in Section 1 above (12):

2.1.2. Specular-Reflection Boundary Condition We can rewrite the boundary
condition (5) as

y-f =R[y+f]

in terms of the specular-reflection operator R defined by
Ry f](t.x,v) = vy (1. x, Ryv)

for any (¢, x,v) € »T,
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2.1.3. Basic Estimates We would like to remark that (17) is in the form of a class
of kinetic Fokker—Planck equations (also known as hypoelliptic or ultraparabolic
of Kolmogorov type) with rough coefficients (cf. [29]):

hf+v-Yaf=V,-(AV,f)+B-V, f +Cf
When ||g|| is sufficiently small, we have the following results regarding the co-
efficients:

def . . . . o
A= oG (t, x, v) is a 3 x 3 non-negative matrix (but not uniformly elliptic in v)

satisfying (cf. Lemma 2.4 in [44])
0< A+ ISAW S A+)7'L

B &of ag(t, x,v) is a uniformly bounded 3-dimensional vector with (cf. Ap-
pendix A in [29])

2/3
IBlglloo < Ngl2 < 1

cd K, is an operator bounded on L*° with ||C||z_ > < 1. (cf. Lemma
2.91n [44])

2.2. Notion of Weak Solutions

We first give the notion of weak solutions to the Landau initial-boundary value
problem (21), (14), and (5).

Definition 1. (Weak solutions) f € L°°([O T1; LY N L2 x IR3)) is a weak
solution of the Landau 1n1t1al boundary value problem (21), (14), and (5) if for any
test function ¥ € C/)) ((0 T) x @ x R¥)NC([0, TT x @ x R?) such that ¥/ (¢)
is compactly supported in © x R3 for all t € [0, T] and with the dual specular
reflection boundary condition

v+ = R¥[y-v]
ie., v+, x,v) = y_y¥(t, x, Ryv) V(t,x,v) € ET, 22)

it satisfies that the function
t // f@, x,v)¥, x,v)dx dv
QxR3

is continuous on [0, T'], and for every ¢ € [0, T,

// f(t,x,v)w(t,x,v)dxdv—// fo(x, v)¥ (0, x, v)dx dv
QxR3 QxR3
t
=/f/ f(faxav)l:atlff-l-v'Vxlﬂ—VU-(agl//) (23)
0 QxR3

+ V- (06Vw) | dx dvdr.
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2.3. Main Theorem

The main theorem of Section 3-5 concerns the global well-posedness of the
weak solution to (5), (14), and (21).

Theorem 2. (Well-posedness of weak solutions) Let T > 0and fy € L' NL>®(Q x
R3) be given. Then there exists a unique weak solution f € LOO([O, T];
L'NL>®(Q x ]R3)) of the linearized Landau equation with the specular-reflection
boundary condition (5), (14), and (21) in the sense of Definition 1. Moreover, it
satisfies the L°° bound

ILf Ol Lo @xr3y = I foll Lo@xr?)

and the L' bound

If Dl @xrs) = IfollLi@xr3)

foreacht € [0, T].

2.4. Ideas for the Linear Problem

Our goal is to establish a well-posedness theory for the Landau initial-boundary
value problem, in particular, the existence of weak solutions to the linearized Lan-
dau equation. For that purpose, we adapt the mechanism of a priori estimates for
weak solutions, followed by a limiting process based on the compactness and weak
convergence of approximate solutions. More precisely, we will follow the steps
outlined below:

(1) Design a sequence of regularized approximate problem and solve the problem
by using the method of characteristics combined with a standard fixed-point
argument.

(2) Derive the uniform L> and L' estimates for weak solutions of the approximate
problem by studying its adjoint problem to exploit the maximum principle
property.

(3) Pass to the limit in the approximate problem based on the weak compactness,
which is ensured by the corresponding uniform boundedness.

3. Regularization & Approximation
The first step for constructing a weak solution is to regularize the problem (21),

(14), and (5), so that the resulting approximate problem is relatively easier to solve,
allowing us to find a sequence of approximate solutions.
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3.1. Regularization of the Problem

3.1.1. Parametrization Near the Boundary We follow the parametrization in-
troduced in Section 3.2 of [39]. Suppose we have defined the local (flattening)
charts near the boundary {(p,-; QN Bs; (x,-)}. Since 02 is compact, we can choose
X1, X2, , X, € 0K such that 9Q C |J7_, By, (x;). Take 89 > O to be the maxi-
mum value satisfying

{xeQ:dist(x, 0Q) < 8o} C | B, (). (24)
i=1

Then divide Q into two parts. Let 2,4 be a tubular region near the boundary where
the flattening coordinates is well-defined:

Qg  {xeQ: dist(x, 92) < S},
def =
Qin = Q\Qpa.
For (x, v) € Qpg X Rg, define

x, & dist(x, 99),

def
v = v-ng,

(25)

where ¥ € 92 is the boundary point closest to x, and n; is the outward unit normal
vector at ¥ € 9. Let us first fix x € 9. In a small neighborhood Q2 N Bs_ (x),
we take a local coordinate x| (i1, (42) and denote the inward unit normal vector
at each boundary point xj (w1, u2) by N(u1, 2). Then we choose §; > 0 small
enough such that

X = x(1, p2) + XL N (@1, u2), v =wiug + wouz + vy N(uy, n2),
are well-defined in (2N Bs, (x)) X R3 where u; e giﬂ'l‘_ (w1, n2) forms an orthogonal
basis of the tangent plane Ty, 02 at each x| (11, o).
Then the singular set of the phase-boundary can also be represented in terms
of x; and v by

yodzef[(x,v)eQxR3:xL=vL=O].

3.1.2. Cutoff Away from the Grazing Set for the Transport Term We first
need to regularize the transport term v - V; f to avoid possible obstacles coming
from the singular boundary set (e.g. grazing collisions), especially in the analysis
of the adjoint problem (see the proof of Lemma 7).

Lete € (0, min{&p, %}) be a small regularization parameter, where &g is given
in (24), be fixed. Recall from (25) that x| and v represent the normal components
of x and v, respectively, when x € Qp4q. We choose a nonnegative cutoff function
Ae € C°(R) away from the origin which is monotonous on (—oo, 0) and (0, 00):
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0, if |s] < et
re(s) = { smooth, if &* < |s| < 2&*
1, if |s| > 2¢%.

For (x,v) € Q x R?), define

Bu(v) = {Ag(vl)v, if x € Qg

v, if x € Qi
and
_fre(x),if x € Qpa
e () = { 1, if x € Qi
0, it x <e
= { smooth, if else
1, if x; >2Y% or x € Q.

We make a smooth truncation away from the grazing set by replacing the term
v - Vi f with

{Be) + [v=B:W)In: ()} - Vi £,

which formally converges to v - V; f as & approaches 0.

3.1.3. “Discretization” of the Diffusion Term To handle the second-order dif-
ferential operator, we first diagonalize (standardize) the coefficient-matrix A =
oG (t, x, v) by making a change of variables. Since A is positive definite, it is con-
gruent to the identity matrix. Then we design a discretized approximation of the
Laplacian as a difference-quotient in the integral form:

of 2
05LF1(1 x. v) ;/ [t x, veu) — £t x, 0)|Ew) du,

R3

where £(u) € CX° (R?) is a nonnegative bump function satisfying

[ ewau=1.
R3
/ uiEw)du =0, (G=1,2,3),
R3
/ uiuiEw)du = &;, (i,j=1,2,3).
R3
We may construct such &(«) by setting

Eu) = EQur, un, u3) 2 & (u1)E (u2)E3 (uz)

with each & (u;) € C2°(R) being a nonnegative even bump function and for each
ie€{l,2,3},

/ & (ui)du; =1,
R
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/ u;& (u;)du; =0,
R

/ u?g; (up) du; = 1.
R

From Taylor’s formula, we can see that Qf [ f] formally converges to our diffu-
sion term V, - (O‘G Vo f ) up to a congruence transformation. For simplicity, we may
adapt the notation Q°[ f] and assume that Q°[ f] — V,-(ogV, f) as & — 0.

It is worth pointing out that with the discretized diffusion operator Q°[ f] de-
fined in this way, we are able to follow the method of characteristics to construct an
approximate solution and show the existence by the fixed-point argument. It is also
convenient to carry out the “transfer of derivatives” from one factor to the other
with the integral representation.

Furthermore, the subtlety of this approximate operator lies in that, on one hand,
it preserves some “positivity/ellipticity” of the Laplacian, which plays a key role
in the derivation of the maximum principle and L° estimate; on the other hand, its
mean-zero property (the fact that | fssz3 Qz [v]dx dv = 0, an inheritance feature
of the original elliptic operator in divergence form) also guarantees the L' estimate
of the solutions; see the proof of Lemma 7.

3.1.4. Modified Specular Reflection Boundary Condition: A Dirichlet Bound-
ary Condition In order to get the trace estimates to control the “boundary term”
in our construction (see the proof of Lemma 5), we have to modify the original
problem by a Dirichlet boundary condition (or so-called inflow boundary condi-
tion) y_ f* = &R [y+ f ”_1] for a sequence of approximate solutions f" with
n € N and o, < 1, because for the specular-reflection case (¢ = 1), the boundary
contributions of y_ and y will cancel each other out in the estimates.

Letn € Nand a € (0, 1) be fixed, and approximate the specular reflection
boundary condition by a modified one:

v "= (1—a)R [y+f”*‘] Y (x v exl, ifn>2,
and y_ f1 = 0.

3.1.5. The Approximate Problem To sum up, we choose and fix¢ > 0,n € N
and a € (0, 1). Then we consider the approximate (regularized) equation

O[O + {Be (V) + [V—=Be ()N (N) ] - Ve f&O" =B -V f50" = QF[f54"]

(26)
with the same initial condition
o0, x,0) = folx, v), @7
and the modified specular reflection boundary condition
y-for = (=R [y oo ifn 22, (28)

and y_ f&%1 = 0.
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Note that the approximate equation (26) is essentially a transport equation
combined with the “jump process” Q°[ f], where the transport term is truncated
in a small neighborhood of the grazing set whose area is of 0(85). Also, the
approximate problem (26)—(28) formally converges to the original problem (5)-
(21) as both ¢ and a go to 0 and n — oo.

. . . def

In the sections that follow we will first construct (weak) solutions F' = fean
to the approximate problem and obtain uniform a priori estimates for those ap-
proximate solutions.

3.2. Method of Characteristics

Since the left-hand side of (26) is a first-order differential operator, we can solve
the approximate problem (26)—(28) by the method of characteristics.

3.2.1. Characteristics Denote by

(T(s), X(5), V() & (T(s; 1, x,v), X (55 1, x,0), V(53 1, x, v))

a solution of the (backward) characteristic equations for s < ¢:
First, solving

dT(s)

I, T@t)=t
o ()

gives T(s) = s, and so the equations of (X (s), V (s)) read

dx
DB (V@) H [V - B (VO (X0). XD =x @9
d‘:lis) = —B(s, X(5), V(s)), V() =v (30)

e The backward stopping-time Due to the cutoff function away from the singular
boundary and the modified specular reflection boundary condition, it could
be too complicated to write out the solution of the backward characteristics
explicitly. To get around it, for a given (¢, x, v), we define typ = #o(t, x, v) €
[0, T] to be
(i) The time when the particle starting with (¢, x, v) first hits the boundary 92

along the backward characteristics:

to e max {r € 0,t]: X(r) =x — f; {ﬂs(V(S)) + [V(S) - ﬂs(V(S))]Us

(X (s))} ds € 89}, if it exists.
(i) Otherwise (if there is no such value i.e.,the particle never hits the boundary
02 back in time until 7 =0 ), then set typ = 0.
o The Jacobian We next record and calculate the Jacobian Jo(s; t) for fo <s <t
of the transformation

C: (X(t), V(t)) =(x,v) — (X(s), V(s)),
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which is given by

Sty & AX@OVE)
YT xO. V)

dx av

where (X (s), V(s)) is the characteristics defined in (29) and (30).

Geometrically, Jc (s; t) measures the rate of change of the unit volume in the
phase space along the characteristics, and it is bounded near 1 in terms of ¢ and T,
as shown in the following lemma:

Lemma 3. (Estimate of the Jacobian) Lets € (1, 1) C [0, T, and (x, v) € QxR3
be given. Then the Jacobian J¢(s; t) satisfies the estimates

¢=CT < o=CU+edl=s| < |Je(s; )] < eCUFeN=s| < ,CT (31)
and
1—0(T) < |Je(sin| £ 1+ 0(T), (32)
where O(T) = CTeCT,for some C > 0 independent of x, v, T and ¢.

Proof. We denote the right-hand side of (29) by W, (X (5),V (s)) for brevity, where

W, 0) € Be(v) + [v—Be(v)Ine (x).

Differentiating the characteristic equations (29) and (30) with respect to (x, v) by
the chain rule yields a first-order system of homogeneous ODEs of dimension six

AX(s) | 9X(s)

d ax a ViWe| VW We

ds V()| av(s) - '
s s -V,B| —-V,B

(X($).V(5)
(33)

where we call the coefficient-matrix M(s).
Observe that the Jacobian matrix is a matrix-valued solution of (33) on [7g, 7].
By applying the Liouville’s formula, its determinant J¢ (s; ¢) satisfies the identity

Je(s;t) = Jo(t; 1) exp(/s tr [M(7)] dr) , (34)
t

where Je (t; 1) = det(Isx6) = 1, noting that (X (¢), V(1)) = (x, v).
Now it remains to compute and estimate the trace of M(s), and the sum of its
diagonal entries

tr [M(0)] = [V - W, =V, - B](7, X (1), V(1))
= [V(T) - ﬂs(v(f))] : Vxns(x(f))
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— (V- B)(z, X (1), V(1)).

For the first term, since it survives only near the grazing set and 1, depends only
on the normal component of X (1),

ne
BXJ_

V@ = (V)] Vene (X (@) | = [v= )] (V(D)

=0(@EMH01/e) = 0(&Y).

(x(©)

Also the second term is uniformly bounded recalling the definition of B ey o (1, x,v)
in (18). So we get (31) from (34).

Finally, (32) follows from (31) with Taylor’s expansion of the exponential func-
tion. O

3.2.2. Mild Solutions For a fixed (¢, a, n), let F def f&4" denote the approxi-

mate solution. Also, denote the given function G = f&%"~! foreach fixed (¢, a, n).
With the definition of the characteristics, (26) can be rewritten as an ODE (via chain
rule and (29) and (30))

d &
aF(s, X(s), V(s)) = Q°[F](s, X(5), V(5)).

Integrating this equation from fy to 7 in s along the characteristics, we give the
following definition of the mild solutions represented by an explicit formula:

Definition 2. (Mild solutions to approximate problem) F & feenr e L ([0, TI;
L®(Qx ]R3)) is a mild solution of the approximate problem (26)—(28) if it satisfies
that for all ¢ € [0, T,

t
Fit.x,v) = fo(X(0). V(10)) + / O [F1(s. X(s). V(s)) ds
o (35)

= T[F](, x,v),

where

fo(X (@), V (10))
_{ fo(X(0), V(0)), if o =0 and X(0) € Q
| v=F(t0. X(00). V(10)) = (1—=a@)y4+G(to, X (10), Rx (1) V (10)). otherwise.

3.3. Construction of Approximate Solutions

Now we aim to construct weak solutions to the approximate problem by first
showing that a mild solution in the sense of Definition 2 indeed exists. We therefore
need to deduce some a priori estimates concerning the trace of the approximate
solutions, especially in view of the expression for fy (X (t0), V(to)) in the formula
(35).

Thanks to the modified specular reflection boundary condition, we are able to
bound the trace term by performing a formal procedure of the L? estimate and
finally letting p go to oco. In fact, the required regularity here is already assured
when used in the context of the fixed-point argument.
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Lemma 4. (Trace estimates) Foreachn € N, the solution %" to the approximate
problem (26)—(28) has trace values satisfying the estimate

1
YWB | 4y 1= (1 —a)P\v»
Ny o ey = e( ’ 2) I foll Lrxr3) <m ., (36)

and
£, < (&7
Nyefo ey S eV || foll o @ xr3)- 37

Proof. Multiply the approximate equation (26) by p(f&%™)P~!  integrate over
Q x R3, and then use the divergence theorem (i.e., integration by parts), we get

d
DO, g+ / (v F24) |Bo () | Sy d
Y+
_/ (V—fsga,n)p|,3£(v)'nx| ds, dv
y_

< % B O g + 2||f“"<t)||L,,(M3
Then the Gronwall inequality yields that we have
||f8 “ n(t)”Lp(QXR3 + ||y+.f8’a’n||€])(2+)
v, B+ 221
<y foan g+ el BEET pran e

foreacht € [0, T]. Wenote that[[y— f>“" ||,z ) = (1=a)?lly+ £ I g, -
Then, by induction, we further have that

1—(1—a)1’">

4p
g,a,n P < Vv'BJrjz)
Ny+f ||Lp(2+) = e< ”fO”Lp(QXR% 1—(—ay7

Thus, we have

1= (1—ayP"\7
1—(1—a)1’>

VWB | 4
7+7
Ny fO ey = €< )T I foll Lr@xr3) <

This proves the L” bounds of the traces for | < p < 00.Since0 < 1—a < 1, we
can further pass to the limit p — 0o and obtain

4
4T
Ny fOO oz S 6(82) Il foll oo (xR3)-

This proves (37) as [|y— & |rs_y < v+ £&“"YlLr(s,) forany I < p < 00
andn = 2. O



The Landau Equation with the Specular Boundary Condition 1411

As a consequence, we can see that the L norm of the traces for &% is bounded
independently of n. As we can see from the proof above, only when p = oo is the
bounding coefficient controlled by T', otherwise it could blow up as n — oo and
a — 0 1in any short period of time. This observation suggests that we can work in
a space with the L°° norm for the specular reflection boundary, which requires the
limitn — ocoanda — 0.

In the following lemma, we will show the existence of a mild solution to the
approximate problem (26)—(28) by the fixed-point theorem and a standard contin-
uation argument:

Lemma 5. (Existence of mild solutions to approximate problem)
For any given constants ¢, a > 0,n € N, a given T > 0 independent of €, a and
n, and a given initial distribution fy € L' N L®(Q x R3), there exists a unique

mild solution F < fean e C([0, T1; LY x R)) N L*®([0, T1; L%(Q x RY))
of the approximate problem (26)—(28) in [0, T'].

Proof. We first construct a solution local in time by a fixed-point argument. Let

x &f {F e C([o, T\]: L(Q x R3)> n L°°([0, T\1: L®(Q x R3)> :

sup [[F(0)|lzee = 2l follzee, sup [[F (0|1 = 2||f0||L1}
1€[0,T1] 1€[0,T7]

be our work space, and it is obviously a complete metric space. See also the right-

hand side of (35) for the definition of 7[F](z, x, v). Now we aim to show that 7

maps & to itself and is a contraction, if 71 = Ti(¢, a, n) > 0 is sufficiently small.
First, forall F € X,

4 8
|Q°[F1(s, X(5), V()| £ FIF )z | E@) du £ = | follz=,
& R3 &

recalling the expression of Q°[F]. Together with the bound for the term of fy by
using Lemma 4, we get for all ¢ € [0, T1],

ITIFIO < Nl folle + Ti|Q°[F]|
8T
< SO ol + = follz

= 2 follz=,

provided T is chosen in such a way that €T —i—% < 2, where C(¢) = ;iz ~
0(8%) is given in (37).! This means that

sup (I TIFI@®) Lo = 2| follzes.
1€[0,T3]

1 Note that the trace estimate (37) is actually uniform in the iteration process generated
by the contraction mapping 7, and therefore the applicability can be justified.
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We go on to estimate the L! norm of 7[F](¢) for any t € [0, T1]:

ITTFIO N < / /Q . | fo(X (t0). V (t0)) | dx dv

t
+f/ / |Q8[F](S,X(S), V(S))|dsdxdv
QxR3 Jiy
— I+ 11,

where the first integral

1=[f | fo(X (t0), V (10)) | dx dv
QxR3

< T // | fox, v)| dx dv,
QxR3

by a change of variables (x, v) +— (X (10), V(to)) and Lemma 3 for the bound of
its Jacobian, where the constant C > 0 can be found in (31). For a similar reason,
the second integral can be estimated as follows:

t
11=// / |Q°[F1(s, X(5), V(5))| ds dx dv
QxR3 Jry

2 t
3l s

+|F (s, X(s), V(s))|]g(u)du ds dx dv

4 t
< —2€CT1 ||g||L1/ f/ |F(s, x,v)|dx dvds
& 0 QxR3

4
=Ny sup [F(s)lp
£ s€l0.7}]

[IA

A

8T cr
|
T ol

Thus if 77 is further made small enough such that eCh (1 + %) < 2, we then
have

8T
sup | TIF1(0)|lp1 < €N (1 + —2) I follt < 21l foll 1
tel0,T1] &

For the continuity intime of || 7[F](¢)|| .1, we argue by the absolute continuity of L
norm and the dominated convergence theorem, observing that X (s) = X (s; t, x, v),
V(s)=V(s;t,x,v), and fo = ty(¢, x, v) are continuous in . So we see T[F] €
C (10, T11; L' (2 x R?)). All of these above imply that 7[F] € X and hence 7
maps X into A

Secondly, for all Fy, F> € X and ¢t € [0, T1], similar arguments yield

I7TF11() = TRl = ITTF1 = F21(0)ll e
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<0+ T |Q°[F1—F|

4T,
< — sup | F1(t) — Fa(t)] o<,
€7 1€[0,T]

4T,
ITIF@) = TR0l £ —5¢T sup [[Fi(6) = Fa(@)l 1.
& t€[0,T1]

Note that the first term of 7 [F; — F»] vanishes, again due to Lemma 4 for the case
when 7y > 0. Since % <1/2 < 1and %eCT' < 1/2 < 1 with our choice of T;
above, we conclude that 7 is a contraction.

Therefore, by the Banach fixed-point theorem (i.e.,contraction mapping prin-
ciple), there exists a unique mild solution in X on the time interval [0, 77] for such

Ty = Ti(¢) that both e€ 71 % < 2and N (1 + %) < 2 are satisfied.
For the global existence, since 71 = Tj(¢) does not depend on the initial data

fo, by a continuation argument, we can extend the existence time interval to an
arbitrary time 7 > 0 independent of (¢, a, n). O

4. Uniform a Priori Estimates

In this section, we will obtain the uniform estimates for the approximate solu-
tions, which is the prerequisite for the construction of weak solutions by passing to
the limit the approximate solutions.

The main ingredient of the proof is the maximum principle, a property that
has been extensively studied in the analysis of elliptic, parabolic, and even “hypo-
elliptic” problems. Here we exploit this property and adapt it to the corresponding
set-up of our problem.

4.1. Weak Solutions to the Approximate Problem

We first introduce the definition of weak solutions to the approximate problem
and show the existence of the weak solutions.

Definition 3. (Weak solutions to approximate problem) F & feern e C([O, TI;
LY(Q x R¥)) N L>([0, T]; L®(Q x R?)) is a weak solution of the approxi-
mate problem (26)—(28) if for any test function ¥ € Ctly’xl”vl ((0, T) x 2 x R?) N

C ([0, T] x Q x R3) such that v (¢) is compactly supported in € x R? for all
t € [0, T'] and with the dual modified specular reflection boundary condition

v+ = A—a)R* [y-v]
ie, yp¥(t, x,v) = (1—a)y_v(t,x, Ryv) V(t,x,v) € =7, (38)

it satisfies that for every ¢ € [0, T],

// F(t,x,v)l//(t,x,v)dxdv—f/ Jo(x, v)¥ (0, x, v)dx dv
QxR3 QxR3
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t
= / f/ F(t, x, U)|:3t1ﬁ + Vi - ({,38(1’) + [v—ﬂs(v)]ﬁa(x)}1ﬂ>
0 QxR3
—V, - (BI//) + 8%/ [w(t, x,v—eu) — Y(t, x, v)]é(u) du:| dxdvdr
R3

—/ (Be(v) - ny)y Fy dSy dv de. (39)
EI

Here we introduce a new notation Q¢[1/] for the adjoint operator

def

O [Y](t, x,v) = —/R3[w(t,x,v—su) — Y, x,v)]EW) du.

Remark 1. The reason that we adapt the modified specular reflection boundary
condition (38) for the test function v is that we can have

/ (B:(v) - ny)y Fyr dS, dvdr
2[

— (=) [ i) mpa (40 = S, dvde

as n — 0o when we go back to the original specular reflection boundary problem.

Then we prove the existence of weak solutions to the approximate problem via
showing that the mild solution from Lemma 5 is indeed a weak solution in the
following lemma. The proof is a multi-dimensional generalization of the proof
in [41] for one-dimensional Fokker—Planck equation with the inflow boundary
condition.

Lemma 6. (Existence of weak solutions to the approximate problem) Let T > 0

and fo € L' N L®(Q x R3). Then there exists a weak solution F def feen e
C([(), T1; LYQ x ]R3)) N L°°([0, T1; L°°(Q2 x R3)) of the approximate problem
(26)—(28).

Proof. We will show that the mild solution F f &a.n (Definition 2) obtained
from Lemma 5 is indeed a weak solution (Definition 3) of the approximate problem
(26)—(28) by deriving the weak formulation (39) from formula (35).

To be specific, we start by choosing a test function i € C' as in Definition 3
and defining the forward stopping-time t; =11 (¢, x, v) to be the minimum value of
T 2 t such that X (t; 1, x, v) € 992 for each given (¢, x,v) € (0, T] x Q X R3.
Also, recall that 7y is defined to be the backward stopping time of the trajectory.
Then we proceed as follows: first, we compute

def// / (5, X(5), V(s))
QxR3

(X (s), V(s))
3(x, v)

ds dx dv

o {w(s X(s), V(s))
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1 8
= F(s, X(s),V —
//§sz3 /to (S (%) (S)) as

(X (s), V(s)
{¥(s. X (), V(9))} %

5l
+ // / F(s, X(5), V(s))
QxR3 Jry

(L X(5), ZV(s)
d(x, v)

ds dx dv

{w(s, X(s), V(s))

51
[ [ Fexofa+ (180 + v-p@mneo)) - v
QxR3 o

—B~Vv1ﬂ]dsdxdv

} ds dx dv

3]
+ // / F(s, X (5), V() (s, X(5), V(s))
QxR3 o

(X (s), V(s))
a(x,v)

~V,B|-V,B

(X (). V()

ds dx dv,

1415

by (33). Then note that {(s, x,v) : (x,v) € Q2 X Rt <s < 1} = {(@s,x,v) :
s € (0,1), V(s) € R3, X (s) € Q}. Therefore, we take a change of variables

(s,x,v) =
(s, X(5), V(s)) and obtain

t
I = // / F(s,x, v)[atllf + Vi - ({,BS(v) + [v—ﬁs(v)]ng(x)}w>
QxR3 Jo

~V, - (By) [dsdx dv

=[] rexofor v (504 v-pomw)v)
0 QxR3

~V, - (By)|dx dvdr,

by the chain rule with (29) and (30).
On the other hand, we observe

def " 0
11 _//ssz3/z0 fo(X(lo),V(to))a

X(s), V(5))

[I/f(s,X(s), V(s))a( 30, v) ] ds dx dv

_ d
=[/ fo(X (o). V(ro)){w(n, X(t), V(1)) (
QxR3

X(1), V()

d(x,v)
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(X (1), V
— (10, X (10), V(m))%} dx dv
(X (1), V(1))
3(x, v)
(X (), V
- // (y-F¥)(10, X (10), V(to))M dx dv
{QxR3}N{to>0} d(x, v)

(X (0), V(0
- ff (X, VO (0. (0, () KOV O) g,
(QxR3)N{1o=0} d(x,v)

:/:/Q . fO(X(IO), V(lo))W(tl, X(t1), V(fl)) dx dv

=// Jo(X (1), V(1)) ¥ (t1, x, v) dx dv
QxR3

~ [ b b Fpascavar— [[ ot o)po.s v avan,
I QxR3

where in the last equality we made the change of variables (x, v) (X (1), V(n ))
for the first term and (x, v) +— (X (t0), V(to)) for the third term with the definition
of fo. Furthermore, the second term in the last equality was obtained via the change
of variables (x, v) = (f, Sx ), V (tp)) with

(X (1), V(1)) (X (10), V(t0)) 9(t0, Sx(10): V (10))

a(x, v) ~ 0(to, Sx () V (t0)) a(x,v)
a(to, S , V(1
— B V) ey a’iz‘”v) ()
for the second term as 1, (X (tp)) = 0O at the boundary.
Lastly, we observe that
111 dif/f / (/ Q°[F1(x, X (1), V(7)) dt)
QxR3 In)
(X(s) V(s))
X a {W(s X(S) V( ))W ds dxdv
4
Z// O°[F](r, X (1), V(1))
QxR3 Jry

9 (X (s), V(s)
X/ s {W(st(S), V(S))(B(x—,v))} ds dr dx dv

(X)), V
// f IFI(® X (@), V(ﬂ){W(n,X(n),vm))M
QxR3 3(x, v)

(X (1), V(1)
d(x, v)

=[] [ xan ven) - fxa. vi)
QxR3

— Y (r. X (@), V(D) }dr dx do
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(X (), V
“Y(n, X (1), V(tl))%

1
- / f O°[F](z. X(v), V(1)
QxR3 Jry

X (1), V
Y(n X (D), V(r))%

dx dv

dr dx dv

IX@), V()
= F(t, X(@),V ,X(@), V() —=dxd
//{QXR3}ﬂ{t1_t} (t ® (t))w(t ®) (t)) a(x,v) v

+/f v+ F(t, X (1), V(1)
{Q2xR3}N{1; <t}

a(X (), V(¢
Y (L X (1), V(h))%

- //Q fo(X(t0), V(10)) ¥ (t1, x, v) dx dv

xR3
t
_// / Q°[F1(r, x, V)Y (r,x,v)dr dx dv
QxR3 Jo

=// F(t,x,v)l/f(t,x,v)dxdv—i—/ |B(V) - ny|y4 FyrdSdvdr
QxR3 P

dx dv

- // Fo(X (t0), V (t)) ¥ (t1, x, v) dx dv
QxR3

t
—/ // F(t, x,v)0¢[¥]1(z, x, v) dx dv dr.
0 QxR3

In the first step we use the Fubini theorem to interchange two integrals. The fourth
equality is due to a substitution using (35). The next step is by the change of variables
(x,v) — (X (1), V(tl)) for the first term and (z, x, v) — (r, X(1), V(t)) for the
third term. Also, the second term in the last equality was obtained via the change
of variables (x, v) — (f1, Sx (), V (t1)) with

(X (1), V(1)) (X (1), V() 9(11, Sxyy, V(1)

d(x, v) 0@, Sxa, V() d(x, v)

At Sxap. V()
da(x,v)

= B:(V(t1)) - nx)

for the second term as 1, (X (t1)) = O at the boundary.

From the representation formula (35) of a mild solution, we may equate I with
11 + 111, which leads to the verification of the weak formulation (39) in the time
interval [0, ¢]. This completes the proof. O

4.2. Adjoint Problem

We will use duality argument to obtain the uniform L° and L' estimates for the

. . def . .
approximate solutions F' = f&%" To achieve that, we choose the smooth solutions
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of the adjoint problem as test functions in the weak formulation (39) of Definition
3 (see the proof of Lemmas 8 and 10).

Remark 2. Although these smooth solutions of the adjoint problem may not be
compactly supported, since they can be approximated by test functions with com-
pact supports as in Definition 3, they can still satisfy formula (39) of Definition
3.

Definition 4. (Adjoint (backward) problem of approximate problem) Let Yyr €
C (2 x RR3) be a smooth function satisfying the compatibility condition

vr(x,v) =0,
on {(x,v) € 2 x R¥:x] + |B.(v)|* <8, for some § small}. (40)

The adjoint equation of approximate equation (26) with the terminal condition and
dual modified specular reflection boundary condition is as follows:

def

£y E oy + Vi ({B:0) + v—=Be@Ine 0}y )
— Vo (By) + 0°[¥1=0

OF[Y1(t, x, v) “:fgiz /R [V, x, v—eu) — Y@, x,0)]E@du (@1
Y (T, x,v) =Y (x, v) (42)
v+ =(1—a)R*[y-v] 43)

Lemma 7. (Adjoint Problem) Let Y7 € C°(S2 x R3) be a smooth data at t =T

satisfying the compatibility condition (40).

(1) (Existence & Regularity) Then there exists a smooth solution € C °°((0, T)
xQ2xR3)NC([0, TT; L'(Q x R}))NL>®([0, TT; L>(Q x R?)) to the adjoint
problem (41)—(43) backward in time.

(2) (Max/Min principle, Non-negativity & L estimate) Moreover, withnon-negative
terminal data Y > 0, then = 0in Q7 = [0, T] x Q x R3. Generally, we
have the maximum principle:

max || = max |[¢r],
Or QxR3

and consequently the L™ estimate:

¥ llLe0r) = VT || Loo@xr3)-
(3) (L' estimate) When Yr = 0, ¥ is also integrable in (x, v) for each fixed
1€[0, T1, and the L' norm |4 (1) | 1 oxr3) = [fqyrs ¥ (. - -) dx dv does not

increase backward in time, i.e.,% SJawrs ¥ (@, -, )dxdv 2 0, forallt € [0, T].
In particular,

// ¥ (0, -, ) dx dv 2// w(T, -, )dxdv.
QxR3 QxR3
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Proof. (1) Existence & Regularity

@

(0

For the existence of a mild solution
Ve c<[o, T1: LN(Q x R3)) n LOO([O, T1: L®(Q x ]R3)) ,

with an analog of formula (35), we apply a fixed-point argument similar to
Lemma 5.

To prove the regularity (smoothness) of the solution, since ¥r € C* and
satisfies the compatibility condition (40), we can get the integral equation cor-
responding to the derivatives of ¢ by differentiating the integral representation
for v itself. Then again follow a similar procedure as in the proof of Lemma 5
to show that the solution is indeed smooth and thus is a classical solution.

(2) Max/Min principle, Non-negativity & L> estimate For the case 7 = 0
(together with all previous assumptions on y¥7), we will show the non-negativity
of ¢ as follows:

®

Assuming first “ﬁ_gl/f < 0” with “Y(T) = 7 + k _(k > 0, small)” iPstead of
(41), (42) and (43), we will show that “yy > 0in Qr = [0,T] x Q x R3.”
Define

T, définf{Tl €[0.T]: ¢ >0 in Qr.r 2 [T}, T] x Q XR3}.

Since V|;=7 = Y7 + k = k > 0, by continuity of v, we have T, < T, so

T, € [0, T). Also, since ¢ =0 in Q7, 7 and smooth, its continuous extension

attains the minimum in Qr, 7. We may assume (by contradiction) that this

minimum value is 0, since otherwise ¥ > 0 in QT by the definition of 7, and

thus we are done.

We claim that “the minimum O cannot be attained at Q7, 7\{t =T} x QxR

by arguing that £y > 0 otherwise. More precisely, we break it down into the

following cases:

e If“Min =07 is attained at some interior point (to, xo, vo) € (Ty, T)x 2xR3

or at some (T, xg, vg) with (xg, vg) € 2 X R3, then at this point we have
Y = 0,v = Ve = Vb = 0 so that

39

Ve (18- + o=@ e}y ) =0,
V,- (BY) =BV, + (V, - B)y =0,
and Q°[¥] > 0 by the definition of Q¢[vr].
o If “Min = 0” is attained at some incoming boundary point (o, Xo, Vo) €
[T, T) x y—, then at that point &y = 0,% = V¥ = Osothat V- (By) =
0, and again Qa [¥] = 0. Also, we have instead

Ve (1B:) + 0=Be@Ine 0}y ) = o) - Ve 20

by observing that 8, (v)- Vi = | Be(v) | Dz, where the directional deriva-
tive (with respect to x) Dz ¢/ 2 0 in the direction of v at the minimum point
with (xg, vg) being in the incoming set.
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e If “Min = 0" is attained at some outcoming boundary point (ty, xgo, Vo) €

[Ty, T) x y4, then the minimum is also attained at the point
(to, X0, Rxyvo) € [T, T) x y— on the incoming boundary by the boundary
condition (43), which reduces to the previous case.

e If “Min = 0” is attained at some “grazing” boundary point (to, X9, Vo) €

[T%. T) X o, then again at that point 8, = 0,% = V,¥ = 0s0V,-(By) =
0, and Q¢[¥] = 0. Moreover, since B (v) + [v— B (V)]n:(x) = 0 in a
neighborhood of the grazing set {(x, v) : [x1|, [v.| < &}, we also have

Ve ({8 + =B}y ) =o0.

In all the cases above, we would have £y > 0 at some point, which is a
contradiction. Thus the claim holds.

Combined with the fact that =47 +k > 0 attr = T, we have ¥ > 0 in
Or, 7- Therefore, T, = 0 by the definition of 7 and the continuity of v
(because if T, > 0, then by the continuity of ¥, ¢ >0 in Qr,—s 7 for some
8 > 0, which contradicts the definition of 7 ), and hence we obtain ¢ > 0
in QT.

(i1)) Now back to the general case: “re < 0” with (42) and (43), we then show
g

that “yy = 01in Or =[0,T] x Q x R3” (by reducing to the model-case
of (i) with the aid of auxiliary functions), and subsequently “ming; ¥ =
ming, p3 Y7 = 07 as follows. Choose L > 0 sufficiently large such that

Lz (U_ﬂs(v)) “Vine(x) +V, - B
forall (¢, x,v) € Qr. Let

vh i x,) Ey, x, ) + [k + k(T =] T
for k > 0 small. Then
L‘swk _ C_slﬁ — kel T
=L+ (v=B:) - Vene(¥) + Vi - B} [k + k(T —1)]e" "
S Loy —kePT=D < kel T—0 <,

where
¥l = Wlier +k =y +k =k > 0.

Also, with i satisfying the boundary condition (43), we can repeat the
arguments in the model-case (i) for wk with some modifications of the
outcoming-set case, which leads to a contradiction as well.

Therefore, applying the result of (i) to X, we get ¥ > 0 in Q7. Taking
the limit &k — 0, since W‘ — Y, we obtain ¥ 2 0 in QT, and thus
ming, ¥ = 0. On the other hand, notice that ming, ¥ < ming, ps Y7 =
0, soming ¥ = ming, ps Yr = 0.
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From the result of (ii) applied to “M — ¢ and “y — m”, respectively, where

M maxg, w3 Y1, m def mmngs Y7, and that L8y = 0 implies £°(M —

¥) < 0and £° (w m) < 0, we can also get as a corollary (without the as-
sumption “¥r = 07) that max g, || = maxg, p3 [¥r|. Then the L™ estimate
¥ llLe0r) = YT | Loo(xr3) follows.

(3) L' estimate If /7 > 0, then we know ¥ > 0 in Q7 by the above. For each
t € [0, T'], we have

// w(rxwdxdv_// 3, dx du
QxR3 QxR3

= // - ({Be@) + [v =)0 (0} ) dx dv
QxR3

+// v, - (BY) dxdv—/f O°[¥1dx dv (by (41))
QxR3 QxR3
—// Y (1, x,0)(Be(v) - ny) dSy dv

IQXR3

—(f/+//y) Y (Be(v) 1) dS, dv

-] // V(B (v) - ny) dSy dv (by (43))

= —a//7 Y (Be(v) - ny)dSydv = 0.

The third equality is due to integration by parts in x for the first term and in v for
the second term. Also, note that [[q g3 Q°[¢]dx dv = 0. The last inequality is
due to the non-negativity of ¢ and that B, (v) - ny < 0 on y_.

From the result above we can tell that the L' norm

1V (Ol L1 @xr3y) = //gz . Y, -, )dxdv

does not increase backward in time. Therefore,

// 1//(0,-,-)dxdv§// W (T, -, ) dx dv.
QxR3 QxR3

4.3. Maximum Principle & L°° Estimate

We now go back to our original approximate Landau problem and establish
the following maximum principle for weak solutions, which provides the result of
uniform L estimate for approximate solutions.
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Lemma 8. (Maximum principle & L estimate for weak solutions of approxi-

mate problem) If fo € L®(Q2 x R?), then the weak solution F o fe4m of the
approximate problem (26)—(28) (Definition 3) satisfies that for all t € [0, T,

|F(t, x, )| £ 1| foll oo (xr3)
up to a zero-measure set on 2 X R3, which means that

||F||Loo([o,T];LOO(QXR3)) § ||f0||L°°(Q><R3)'

Proof. We will only prove (by contradiction) that “F(t, x, v) = | foll poo(xr3)
up to a zero-measure set on 2 X R3,vr e [0, T'].” The other side “—F (¢, x,v) <
I foll Lo (@xm3) 1-€,F (2, X, v) > =l foll L= (@ xr3) up to a zero-measure set on €2 x
R3, Vt € [0, T]” can be proved analogously.

Suppose that there are « > 0 and ¢, € (0, T'] such that

F(te, x,v) > || follLe + & (44)

on a set with positive measure, say, A C 2 X R3. Then for each given § > 0 small,
we can choose a ball B C Q x R3 such that

m(BNA) > m(B)- (1 —29) (45)

and m(B) is independent of § (cf. Lemma 8 of [40]).
Let o(x,v) € C°(Q x R?) be a function satisfying ¢ 20, ||@|| L~ < oo, and
condition (40) such that

suppy C B and // pdxdv=1. (46)
QxR3

By Lemma 7, there exists a smooth solution ¢ € C °°((0, ty) X 2 X IR{3) to the

adjoint problem (41)—(43) with the terminal condition ¥, (x, v) def Y (ty, x,v) =
@(x, v) such that v > 0 and

// 1//(0,x,v)dxdv§// Y(ty, x,v)dxdv = 1. 47)
QxR3 QxR3

Let F be a weak solution to the approximate problem in the sense of Definition 3,
then from the weak formulation (39) with test function ¥ chosen to be the solution
of the adjoint problem (41)—(43) (Definition 4) obtained above. Then we have that

// F(t,x, )¢, x,v)dxdv = // Jo(x, v)¥ (0, x, v)dx dv, (48)
QxR3 QxR3

forall 7 € [0, T]. Now we estimate [ [, g3 fo(x, v)¥ (0, x, v) dx dv and
[Jowrs F(te, x, v)¥ (ty, x, v) dx dv, respectively, and reach a contradiction. By
(46), (47) and the non-negativity of i, we have

// Jolx, v)¥ (0, x, v)dx dv
QxR3

49)
< ||fo||Loo//Q O] dsdo < ol
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Moreover, by the assumption (44) on F at t =t,, our choice of B with (45), and
Y, = o satisfying (46), we obtain

/[ F(ty, x, V)Y (ty, x,v)dx dv
QxR3

A B\A

— 1 Fllp o, 71x2xR3) - 1@l oo (@xr3) - m(B)S
(Il follzee 4+ &) - (1 = ll@ll Lo - m(B)S)

— [Flizee-llgll Lo - m(B)S
I follLe + Kk — C8,

1Y

1A%

where C depends on | foll oo (@xr3)» 1 F 1| Lo (0, 71 x@xR3)» 191l Lo (@ xR3)> and m (B).
On the other hand, combining (48) with (49) and (50), we have

I folle + K — C8 < // F by x, )Y (15, x, v) dx du
QxR3

= // folx, V)Y (0, x, v)dx dv
QxR3
= [ follzoe.

(51)

Thus if § is chosen sufficiently small in such a way that C§ < «/2, we then get a
contradiction. Therefore, the original claim holds. O

As a direct consequence of the L™ estimate (Lemma 8), we also deduce the
uniqueness of the approximate solutions.

Corollary 9. (Uniqueness for weak solutions of approximate problem) Let F; o

ff ) & f; *“ be two weak solutions of the approximate problem (26)—(28) with

the same initial and boundary conditions. Then F1=F, in L*° ([0, T1; L*®(Q2 x ]R3)).

Proof. Since the equation (26) and boundary condition (28) is linear, Fy ©r 1—F
is a solution of (26) with the initial condition Fy|;—¢9 = 0 and the same boundary
condition. Then applying the L* estimate (Lemma 8) to Fy yields || F] — F> ||~ =
0. O

4.4. L' Estimate

Next, we also present the L' estimate for the approximate solutions, as a dual
result of Lemma 7 as well. Let us remark that although it can be formally derived via
integration by parts, here we are only allowed to work from the weak formulation
because the regularity has yet to be shown.
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Lemma 10. (L' estimate for weak solutions of approximate problem) Let fy €

LYNL® (2 x R3) be given as an initial data, and F def fe4™ aweak solution of the

approximate problem (26)—(28) (Definition 3). Then its L' norm is non-increasing
in time, i.e.,for each t € [0, T],

IFOL1@xrs) = follLi@xrs)-

Proof. Lett, € [0, T]be given. Let¢(x, v) € C(Q2x R3) be a function satisfying
l¢llze < 1 and the compatibility condition (40). By Lemma 7, there exists a smooth
solution ¥ € C*((0,#,) x Q x R?) to the adjoint problem (41)~(43) with the

terminal condition ¥, (x, v) def ¥ (s, X, v) = @(x, v) such that

||W||L>°(Q,*) § ||Wt*||L00(QX]R3) = ||</)||L0<>(Q><]R3) § L. (52)

Since F is a weak solution to the approximate problem in the sense of Definition 3,
from the weak formulation (39) with test function i replaced by the solution of
the adjoint problem (41)—(43) (Definition 4) obtained above, we have

// F(te, x,v)o(x,v)dxdv = // fo(x,v)¥ (0, x,v)dxdv. (53)
QxR3 QxR3

It follows from (52) and (53) that

F k9 ) ) d d S o0 s d d
//ssz3 (T, x, V)(x, v)dxdv = [[¥ll (Qt*)//QXR3 | folx, v)| dx dv 1)

I foll L1 (@xr3)-

[IA

Since the terminal function ¢ € C°(Q x R?) with [|¢||z <1 can be arbitrarily
chosen (as long as it satisfies condition (40)), we can take a sequence of such
functions {¢} such that

wr(x,v) — Sgn[F(t*’ X, U)] X{(xr,0):x +1B: (0) 225}

as k — oo (for some 6 small). Then by the Lebesgue’s dominated convergence
theorem and (54),

/L . |F(t*,x,v)| -X{(X,v):xf+|ﬂa(v)‘223} dx dv
X

= lim // Flte x, 0ge(r, v)dr dv < | foll 1 e
QxR3

k—o00

Again, since the above inequality holds for any small 6§ >0 and for any ¢, € [0, T'],
we finally obtain || F(1)[| 11 (o xRr3) < I foll L1 @xmrs) forevery r € [0, T]. O
5. Well-Posedness for the Linearized Landau Equation

Finally, we give the proof of well-posedness for the original Landau initial-
boundary value problem and will further discuss some additional results.
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5.1. Proof of Theorem 2: Existence, Uniqueness, and L' N L™ Estimate

We are now ready to prove the main theorem:

Proof of Theorem 2. The proof consists of the following four steps.

Step 1: Passing to the limit: f*%” o f. We first obtain the weak limit of the
approximating sequence { %"} as a candidate for a weak solution by the weak
compactness (Banach—Alaoglu theorem), which is ensured by the uniform estimates
of the approximate solutions established in the previous section. From the uniform
L estimate (Lemma 8) and L! estimate (Lemma 10), and from taking the limit in
the weak-* topology as ¢, a — O andn — 00, we obtain that a sequence of { f5%"}
converges weakly to f in LOO([O, T); L' N L®(Q x IR{3)). Again it follows from
Lemmas 8 and 10 that f satisfies the L°° bound

1 2o (0.7 Lo (@xR3)) = I foll o (@) (55
and the L! bound

Il o, 711 @xk3y) S IHfollLt@xrs)- (56)

Moreover, by the Lebesgue’s dominated convergence theorem, we have for each
10,71,

f/ fg’“’"(t,x,v)w(t,x,v)dxdv—>// @, x, 0¥, x, v)dxdv
QxR3 QxR3
(57)

and

t
/// fo" (T, x, v)¥(r, x, v)dx dvde
0JJaxr3

!
- /// f(r,x,vV)¢¥(r,x,v)dxdvdr (58)
0 QxR3
ase,a — 0.

Step 2: Weak continuity of f(1): 1 — [[o ps f(z,x, V)Y (¢, x,v)dxdv. Leta
test function v (¢, x, v) be given and #1, o € [0, T']. Notice that for the sequence of
approximate solutions %", it holds that

// fEOm ()Y (ty) dx dv — // fEO ()Y (1) dx dv
QxR3 QxR3
= f/ FECr @ [v ) — ¥(r)]dx dv
QxR3
+ /f [fo%" (1) = 20" (1) |9 (12) dx dw.
QxR3

Since f&4" € C([0, TT; L'(2 x R?)) N L*>°([0, T1; L>°(K x R?)) has the uni-
form L estimate (Lemma 8) and L! estimate (Lemma 10), both terms on the
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right-hand side can be made small uniformly in ¢ and a if |f; — fz] is suffi-
ciently small; i.e.,we have shown that 7 = [[ s & (1) (1) dx dv is “equi-
continuous”. Also, since f&%" converges in weak-* topology to f by taking
e,a — 0 and n — oo, we deduce the weak continuity of f(¢). In particular,
[Jaurs f @OV () dx dv is well-defined for every 7 € [0, T].

Step 3: Weak formulation (23) Note that for the test function ¥, as ¢ — 0, we
have

Ve ({B:@) + 0= B O WY (7. 5, 0)) = Vo (00 (7, %, v)
=v- VxW(Tv X, U),

and

def 2

O5[¥1(z. x, v) € ;fR [V (. x, v—ew) — Y (z, x, V)W) du — AP (2, x, V),

in L'((0,1) x @ x R3), for each ¢ € (0, T]. In addition, as a — 0,
v+¥ = (1-a)R*[y-y] - R*[r-v]. (59)

Combined with (57) and (58), we see that the limit f satisfies the weak formulation
(23) of Definition 1 by taking &,a — 0. Therefore, summing up Step 1-3, we
obtain that f is indeed a weak solution of (21) with (5) and (14), this concludes the
proof of the existence.

Step 4: Uniqueness With the L' N L™ estimate (55) and (56), we can eas-
ily get the uniqueness of the weak solution in a similar manner to the proof of
Corollary 9. O

5.2. Well-Definedness of the Trace

Additionally, a classical trace result by Ukai [62] also assures us that the trace
functions y4 f©%" are bounded in L independently of ¢, n and a in light of the
uniform L bound for 44", so that they have enough regularity to pass to the
limit. This allows us to take a subsequence such that

e.a,n

vef —> gr=y+f

weakly-* in Lm(EjTE), in which sense the trace y+ f is well-defined.

5.3. Recovering the Initial-Boundary Condition

Let us rewrite the linearized Landau equation (21) as L, f = 0, where L,
denotes the linear Landau operator

ngdZacatf‘i‘v'fo_ag'va_vv'(UGVUf)'

Suppose that the following Green’s identity is valid for the solution f and any
as the test function in Definition 1 with y, ¢ = R* [y_lp] on E_{:

(Lo fo¥) o + (LY o
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= /Q R}[(fl/f)(t,x, v) — (f¥)(0,x,v)]dxdv + L,nyw(v'"x)dsx dvdr,

where (-, -) o, stands for the natural duality pairing defined as the integration of the

product over Q; o (0, 1) x Q x R3. The adjoint operator reads

Lo E 0y —v- Ve + Vy - (ag¥h) — V- (a6 Vo),

and the boundary term is written out as
/ vfyy(v-ny)dSy dvde
21
= /’ v Sy lv-ng|dSy dvdr — /, - fy-¥lv-nyg|dSy dvdr
bl bl

=/ V+fR*[V—w]|v~nx|dedvdr—/ y-fr-¥lv-ng|dSy dvdr
= =

/2[ (Rl f] = v fly-vlv-ny| Sy dvde.

Taking into account that f is a weak solution to the problem (5), (14), and (21) in the
sense of distributions and satisfies the weak formulation (23), it is straightforward
to deduce that

/Q o= FO]y @ dxdy +f [R{yf] = v=fly=¥lv - ny|dSy dvdr =0

!

for any ¥ as in Definition 1. Therefore, f verifies the initial condition f (0, x, v) =
fo(x, v) and the specular reflection boundary condition y_ f = R [y+ f ] as de-
sired.

The above result implies that, for any test function of Definition 1 without the
dual boundary condition (22), the weak formulation (23) can be replaced by

// [fO¥ (@) = fowr ()] dxdv +/ vy (u-ny)dS, dvde
QxR3 >t

s -t
0 QxR3
+Vy- (UGva)] dxdvdr

for all t € [0, T], where y+ f satisfies the boundary condition (5).

6. L? Decay Estimate

Thanks to the work in the previous section, we are now equipped with the
wellposedness of (11) with the specular reflection boundary condition in the sense
of distribution. So we may associate a continuous semigroup of linear and bounded
operators U (¢) such that f(¢) = U(t) fp is the unique weak solution of (11). Then
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by the Duhamel principle, the solution f of the whole linearized equation (13) can
further be written as

t
f(t)=U(t)fo+/0 U(t — 5)Kq f(s)ds.

The main question in this section is whether we can further obtain the L? decay
estimates for the solution f. For the notational simplicity we use f to denote £,
solutions to the whole linearized equation (13), throughout this section.

For the L? decay theory, we will work directly on the bounded domain € and
obtain the estimates by following a constructive method in the same manner as
Proposition 4.1 of [70], that is, by choosing test functions suitably, the L? norm
of macro-components can be controlled by the micro-components. Particularly, to
handle the boundary terms, we choose the Burnette functions as orthogonal bases
for the micro-components, so that the boundary integral can be reformulated in a
more delicate way.

Remark 3. The proof is actually a variation of the one in Section 4 of [44] modified
for specular reflection boundary case. In particular, we need to instead consider the
existence of solutions to the elliptic problem with certain boundary conditions,
under additional assumption of conservation law of angular momentum (8), in case
the domain 2 has any rotational symmetry. Alternatively, we might also adapt
the semigroup-compactness method/contradiction argument in [34], although the
former method is more preferred.

Throughout this section, we consider the following linearized Landau equation

f+v-Vif+Lf=T(, f). (60)

The initial-boundary condition of f is given by

:f(O,x, V) = fo(x,v), ifx € 2 and v € R?, oD

ft,x,v) = f(t,x,v—2(-ny)ny), if x €9 and v-n, <O0.

We note that the linear Landau operator L, given by (15), is a self-adjoint nonneg-
ative operator in L2. The null space N of L is spanned by

; . lv|?
w2 vl pl? (j=1,2,3), Tu”z,

which are known as the collision invariants. We normalize these invariants and
define

xo = u'’?,

xj=~wip!? =123 62
2(v)> -3

xa = ——=p'"%

/6
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Then we define the projection to the null space N by P as follows:
4
Pf =Y "(f xx) xx (63)
k=0

where (g, h)déf ng gh dv. We will also use the following Burnette functions of the
space N :

Aj(v) = V2v) 20 (64)

fﬁ

and

Bu(v) =2 <v’<u’ — %mz) N (65)

where k, j = 1,2, 3, and §i; = 1 if k = [ and = 0 otherwise.

6.1. Technical Lemmas

For the nonlinear collision operator I'(f, &), we have the following known
estimates:

Lemma 11. (Theorem 2.8 of [44]) Let " be defined as in (16). For every v € R,
there exists Cy such that

Hw? Tlg1, g21, 83)] < Colgiloolg2lo,0 18310, (66)

and

(0" Tlg1. 21 83)| = Colgilligallo,o gl (67)

Proof. The proof for (66) is the same as the one for (2.11) in Theorem 2.8 of [44].
Then we use (66) and Holder’s inequality and obtain

‘(w”F[gugz],gs)‘ =f (w? Tlg1, g2], g3)| dx
Q

< / Cylg1loolg2lo,918310,0 dx
Q

= Coligilloollgzllon ligsllo.o-
Thus we have (67). O

Also, we have the coercive estimate on L:

Lemma 12. (Lemma 5 in [33]) Let L be defined as in (15). Then there is § > 0,
such that

(Lg, g)y = 8|(I — P)g|2.
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6.2. Macro—micro Decomposition

Then we can obtain the L? decay estimates for the solutions f to (60):

Theorem 13. Let f be the weak solution of (60) with initial-boundary value con-
ditions (61), which satisfies the conservation laws (7), and (8) if Q2 has a rotational
symmetry. Suppose that ||g||lec < € for some & > 0. For any 9 € 2~'N U {0}, there
exist C and ¢ = €(¥) > 0 such that

sup  Ep(f () < C22E»(0), (68)
0<s<00
and
12 t —k/2
1/ @l2 = Coi (€545 ®) (1 + %) (69)

foranyt > 0and k € N, where Ey(f (1)) is defined in (1.5).

In order to prove this theorem, the key estimate that we need to establish is the
following proposition. Here we estimate P f in terms of (I — P) f:

Proposition 14. Assume ||glloc < € for some ¢ > 0. Let f be a weak solution of
(60) and (14) with (7), and (8) if Q has a rotational symmetry. Then there exist C
and a function |n(t)| < C||f(t)||%, such that

t t
/ IPF(D)I2ds < n(t) — n(to) + Cf I — PYF(D)2.
10 0]

Using this proposition, we will obtain the coercivity of the linearized Landau op-
erator L later.

Proof. The proof will be given in 7 steps as follows. The definition of a weak

solution to (60) is defined in (72). The rest of this section is devoted to the proof of

Theorem 13. In terms of the macro-micro decomposition, we define
a(t,x) = (f(t, x,v), xo)
bi(t,x) = (f(t,x,0), x;), J=1,2,3,

(70)
c(t, x) = (f(t, x,v), x4),
d(tax’ U) = (I - P)f(tv X, U),
where the generators {x j}‘j‘.zo are defined in (62). Then we have
3 .
f=laxo+ Y blxj+ecxs| +d (71)

j=1

The conservation laws of mass and energy (7) implies that

/adx:O
Q



The Landau Equation with the Specular Boundary Condition 1431
and

/cdyzo.
Q

We will derive the estimates of a, b, ¢ in terms of d. We write the linear Landau
equation (60) in the following weak formulation:

t
f {Wf(f)—lﬂf(s)}dde—/ / fo.ydxdvdr
QxR3 s JOxR3

t
=/ / (v - Vi) fdxdvdr
s JOxR3

—/t/fwdydr—/t/ Y(Lf)dxdvdr
s Jy s JQxR3

t .
+/ / Yl(g, Hdxdvdt & I+ b+ I + Iy, (72)
s JOxR3

where dy &f (v-ny)dScdv, and ¥ € C®NL2((s, 1) x © x R3) is a test function.
In Step 1 through Step 3 below, we consider a ¢-mollification of the functions
a, b, and c so that they are smooth in 7. For notational simplicity we omit the explicit
parameter of the regularization.
Step 1. Choosing a test function y» = ¢ (x)./u in (72). In this case, we have
JVRLf = [ J/rT(g, f)=0. Thus we have

t+e
/[a(l+8) —a@®)]e(x) :/ /(b~Vx)¢(x)-
Q i Q

Therefore, by letting ¢ — 0, we have

fqbatadx:/(b-vx)(bdx.
Q Q

By taking ¢ = 1, we have
/ ora(t)dx =0
Q
for all £ > 0. On the other hand, for all ¢ (x) € H'(2), we have

VQMX)Bde S BNl g1

Therefore, for all r > 0,

I13:a@ll g1 S Nb@]2-
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Since fQ dradx = 0 for all # > 0, by standard elliptic theory, there exists a unique
weak solution @, to the following Poisson equation

—Ad, =0sa(t), in Q,

00,
™ =0, on Q2 (73)
/ o, dx =0.
Q
Moreover, we have
Vi@l = [@allgr S I8:a ()1l -1 S Ib@ 2. (74)

Step 2. Choosing a test function v = ¢ (¢, x) x;, in (72). The left-hand side
of (72) is equal to

t+e
(LHS) = / / 3b' (t, x)p (7, x) dx dr.
t Q

On the other hand, note that

\/6 3 1
Vi = | 9 — By | —,
v v ( o (xo0 + 3 )(4)-|-k§=1 kP k)\/§

where By; is defined in (65). Thus,

3

t+e 1 «/6 1
I = —0;¢d|la + —c dxdr—}—/ / (Bgi,d)d;dxdr,
1 /t /Q«/z l¢[ 3 ] Qk 2 i J

1

because P By; = 0. Additionally, from the fact that (Lf, x;) = 0, we have I3 = 0.
Therefore, we have

t+e _
f / b (t, x)¢ (7, x) dx dt
t Q

t+e 1
= —0i¢|a + dxd'c+/ / Bk, d)ojdxdr
/'. /Qﬁ l [ 25 V2 o
t+e
+/ ff«b)@ dydr+// ¢xiT (g, f)dxdvdr.
t y QxR3

Therefore, by taking ¢ — 0, we have

. 1
o;b' dx:/—a- dx—i—/ B, )9, dx
Lt ¢ Q«/zl¢ Z ki

+/ foxi d’”+/ oxiT (g, f)dxdv.
)4 QxR3
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Now for fixed t > 0, let ¢ = CID}‘J where <I>§7 is a solution of the following Poisson
equation:

—A®, = 9,b(t), in 2,
®p-n= 0, ondQ (75)
0 ®p = (0,Pp - n)n on 92.

The existence of such solutions is given in Appendix A of [YZ]. Then after sum-
mation on i = 1, 2, 3, we have that the boundary integral I, is equal to

3
Z/fmi;dyzzfzf / (@ - m)(v-m)?p!/? f dvdS, = 0.
i=1 7Y Q2 Ju-n>0

By Lemma 11, we have

H / / 61T (g, )(1) dx dv
QxR3
Thus,

3 3 3
Z/ IV, @2 dx = Zf —AD, D! dx = Z/ @i d,b" dx
i=1 Y% =17 =1

S Ve ®@slla(llallz + llellz + ldll2 + [Igllool [ f11o)-

= Cligllsoll flloll@xille = lgllooll fllo 12

Together with ||®p ||z < ||V Ppll2, we have
NPpllg1 < (lallz + llellz + 1ldll2 + gllool [ f1lo)- (76)

Step 3. Choosing a test function v = ¢ (¢, x) x4 in (72). From (72), we have
t+e
(LHS) = / / orc(t, x)¢ (7, x)dx dr.
t Q

In this case,

3
- 3 /30
vVip = %(akqs)xk + o thpAr,

k=1
where Ay is defined in (64). Then we have

t+e 3 3 /30
n=[" | (%bvxwdeZTammkm) dx dr,
t Q k=1

and I = 0. Additionally, from the fact that (Lf, x4) = 0, we have Iz = 0.
Consequently, we have

3
/qb(x)atc(t) =£/ b(t)-qubdx—i-/ Z@3k¢(Ak,d>dx
Q 3 Ja Qi 6

+f/ T (g (D)4 dx dv.
QxR3
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Note that

S A2Vl

3
| S asian
Q

k=1

Also, by Lemma 11, we have

H// #T' (g, [)(1)xadx dv
QxR3

Now for fixed ¢ > 0, let ¢ = P, where . is a solution of the following Poisson
equation:

= ligllooll flls llpll2-

—A®, =d,c(t) in 2,

D, (77
=0on 092.

on

Then
f |Vx<I)c|2dx=/ —ACDCCDCdx:/ ®,.9,cdx
Q Q Q
S Ve ®@cll2(11b112 + 1dl2 + 11811l £ o)
Therefore, for all r > 0,
NPcllgr S 1Pl + [ldl2 + 11gllocll f1lo- (78)

Step 4. Estimate of c. We choose a test function
3
¥ =y =2(20P = 5) Vv Vige = VIO 4590,
j=1

where A is defined in (64) and ¢, is a solution of the following Poisson system:

—A¢. =c(t) in 2,

. (79)
09 =0on 0€2.
n

‘We have

t
_f // v-Vxx//fdxdvdr:—// WO — Y fO)
0 QxR3 QxR3
1 1
+/O //QXR}@l/ffdxdvdr—/(; /)/Wfd)/dt
+ft // yI'(g, f)dxdvdr.
0 QxR3

(80)
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Note that we have

3
v Vel = ) 05ber V20 Q- 5) Vi

Jok=1

=537 Ao ya + V2 Z b (I = PYW I 2P = 5) /),

Jj.k=1

as the integration of an odd function is zero. Therefore, the left-hand side of (80)
is now equal to

'
—f vV fdxdvde
0

—5[713/2// A¢ccdxdr—«[2// k¢cd vFud 2[v)? —5)/u)dxdr

J.k=1

t
=5«/§713/2/ /czdxdr+K1,
0 Ja
where, for any ¢ > 0,

t 1 t
|K1|§82/ ||c||§dr+—2/ lld]5 d.
0 &= Jo

We will now estimate each term on the right-hand side of (80). By the estimate
(78), we have

oY fdxdvdr

<Z//|a Be(Aj, d)|dx dt

5_/0 18z @cll111d 112 dT

QxR3

t
5/0 (16112 + lldl12 + l1gllool [ fllo)d]|2 dT

¢ t
582/0 ||b||%dr+Cg/0 (1113 + 11811211115 .

By the boundary conditions of ¢, and f, we have

/Ot/nydydt

3
= Z/ 3 pe </ +/ )(v.n)ﬁvf(2|v|2—5)ﬁfdvdsx
=1 0Q v-n>0 v-n<0

3
= Z/ a,qu/ (v - V207 2v|> = 5) /L f dvdS,
j=1 0Q v-n>0
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3 .
+Z/ a,qu/ - n! Q| = 5) /i f dvds,
j=1 0Q v-n<0
3 .
= Z/ aj¢>c/ (- m)V2v7 2v|* = 5) /i f dvdsS,
=1 Y] v-n>0

3
+Z/ a,»¢>0/ (—v - V2! =2 - m)n))2v|* — 5) /i f dvdS,
=1 0 v-n>0

3
=22f aqjc/ (- m*V2C P = 5) i f dvds, =0,
j=1 v-n>0

IQ on
Also,

//Q . YT (g, fdxdv E Cliglool flloliclz £ ellell3 + CellgllZ Il £ 112
R

For a small ¢ > 0, we can absorb 82||C||% on the RHS to the LHS. Altogether, we
have

t
/ le@)I?ds < € / (=Vef () + Ye f (0)) dx dv
0 QxR3
t
+/0 C: {1l + 1g1% 1 £12} +elpl3ds. 8D

Step 5. Estimate of b. Now for fixed > 0, let ¢ = ¢,’; where ¢,’; is a solution
of the following Poisson equation:

—A¢p = b(t), in Q,
¢p-n =0, onodQ (82)
Onpp = (9u¢pp - n)n on 32,

The existence of such solutions is given in Appendix A of [YZ]. Now set

3
2
Y=Yy =2 hviv - Zacpb '”' m
ij=1
3 3
i Vo i
=D 0yBij = )~ i xa, (83)

i, j=1 i=1

where Bj; is defined in (65). Then we have

v vw—yﬁ/ZZM xi +2 Z 0% (1 — PYW' v/ v /),

i=1 i,j,k=1
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as the integration of an odd function is zero. Therefore, the left-hand side of (80)
is now equal to

t
—/ v- Vi fdxdvdr
0

= 3/22/ /b’A¢>bdxdr—2 Z //8 qﬁbvvf kfd dxdr

i,j,k=1
=7r3/2//|b|2dxdt+1(2,
0 JQ

where, for any ¢ > 0,

t 1 t
|K2|§82/ ||b||%dr+—2/ lld|]5 d.
0 &~ Jo

We will now estimate each term on the right-hand side of (80). Note that ®; = 0;¢.
An integration by parts, (83), and (76) yield that

/[ // Yd, f dx dvdr
0 QxR3

t
5/ /(||C||2+IIdIIz)II3er¢>bII2dxdr
0 JQ

t t
582/0 ||a||§dr+csf0 el + 1112 + g 2 I1F112) dr.

Also, we have

/I/Wfdydt

// Zaqs vl i — Zaqsbz'”' Vi) @en) fdvds, dr

i,j=1

//Zzw W /i - n) f dvds, dr,

Vi j=1

because the integration on v - n > 0 cancels out the integration on v - n < 0 for the
latter sum. Define

3
KZO:/R* Z 9 (,b ivjﬁ(v-n)fdv.

ij=1
Using coordinate change, we let n = (1, 0, 0) without loss of generality. Then we
have

K20 =31¢b/ WY VIS dv + Z 3; ¢b/ vliv/ i f do

i,j=2

3
+y (alqsg /R3(v1)2vj\/ﬁf dv+9;¢; /R3(v1)2vj\/ﬁf dv) .

Jj=2
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The first two integrals in Koo is odd in v! and the specular reflection boundary
condition of f gives f(v) = f(—v', v2, v?). Thus, the first two integrals are zero.
The third integral in K5 contains 9 ¢1’; fori = 2, 3 and this is zero by the boundary
condition that 9,¢p = (0,,¢p - n)n = (81¢;, 0, 0). The last term in K»( contains
0j ¢,} for j = 2, 3 and this is zero because ¢>,l = 0 on 9£2 by the boundary condtion
¢p - n = 0. Therefore, K9 = 0 and hence

/Ot/ytﬁfdydrzo.

Also,
f/g VT ) dxdv = Cliglol fllo 16l < ellbl; + Cellglsol /-
X

For a small ¢ > 0, we can absorb £2||b||% on the RHS to the LHS. Altogether, we
have

t
/ Ib(s)Pds < € / (= f(1) + ¥ £ (0)) dx d
0 QxR3

t
+/0 Ce {11c1B+ 1141 + g% 11712} + elal 3 + 113) ds.
(84)

Step 6. Estimate of a. We choose a test function
3 3
¥ =va == (2P = 10) V&Y 0;0av20) = = 3 (V104; = 51,)3;6a.
j=1 j=1
where A is defined in (64) and ¢, is a solution of the following Poisson system:

—Ag =a(t) in Q,

3 (85)
2 =0on 9%2.

n
Note that we have

3
vV == Y 0%0a V20 2P - 10) /1

jk=1

52 3 .
== Adaxo = V2 Y 87gall = PYWSY QI = 10)/50),

Jjk=1
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as the integration of an odd function vanishes. Therefore, the left-hand side of (80)
is now equal to

t
—/ v-Vyyfdxdvdr
0

5\/5 ! 2 : ! 2 k. j 2
= — [lall; dT + V2 Z 5k Pald, V'V 2v|" — 10)/u) dx dt
2 Jo 0o Jo ’

Jok=1
52 [!

=—/ llal)3 dt + K3,
2 Jo

where, for any ¢ > 0,

t l t
|K3| < 82/ llall3 dr + —2/ lld||5 d.
0 & Jo

We will now estimate each term on the right-hand side of (80). By the estimate
(74), we have

/t// Yo, fdxdvdr
0 QxR3

t t
5/0 ||8r¢a||H1(||b||2+||d||2)df5/0 (16112 + l1d112)||b]]2 dT

t
S/O (11B113 + 11d113) dr.

By the boundary conditions of ¢, and f, we have

/Ot/wadydz

:ﬁi/ 3; e </ +/ )(v-n)vj(2|v|2—10)ﬂfdvd5x
j=1 aIQ v-n>0 v-n<0

= ﬁi/m dj e /U_M(v -n)v! 2v|* — 10) /i f dv dS,
=

+~/§_23;/m dj e /v.n<0(v-n)vj(2|v|2— 10) /e f dv dS,
iz

= ﬁi/dﬂ dj¢e /U.M(v v/ 2v)? — 10) /i f dv dS,

iz

3
+J§Z/ aj¢6/ (—v-n) (v = 2(v-m)nd) 2> — 10)/jaf dvdS,
=1 Q2 v

-n>0

Q on

3
=2f22/ 3@/ -2 QP2 — 10) /i f dvds, = 0.
=1 a v-n>0
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Also,
f/ - YT (g, Hdxdv = Cliglsll flisllalla < ellall3 + CeligliZ Il £1IZ.
Qx

For a small ¢ > 0, we can absorb 82||a||% on the RHS to the LHS. Altogether, we
have

t
/ la(s)[13ds < Cf (=Va f (1) + ¥q f(0))dx dv
0 QxR3

t
+/0 Ce {lla1B + 1g1% 712 + 1813} ds. (86)

Step 7. Proof of Proposition 14. We will combine (81), (84), and (86) as
follows. In order to avoid any confusion, let us denote the ¢’s that appear in (81),
(84), and (86) €., €p, and g4, respectively. We choose sufficiently small §, > 0 such
that the coefficient C,, in (86) multiplied by §, is less than % Here &, > 0in (84)

is chosen such that &, < min {%“, H Then we take (86) x§,4+ (84) and obtain

. 1 8a ! 2 b 2 d
mm{Z’?}fo (llallz + 11b]12) ds
< c’/s2 R3(—waf(r) —Unf () +Ya f(0) + ¥, f(0)) dx dv

t
+f0 ¢ {1 + 1gIZN 713 + el | ds. (87)

Finally, we choose sufficiently small §, > 0 such that §,C” < % Then, we choose

sufficiently small &, > 0 in (81) such that ¢, < %81, X min {%, %"} Then we take

(81)+3, x(87) and obtain

t
/ IPFI2 ds
0
< ¢y /Q O = U0 = Ve 0+ Y fO) 4 £ O)
e F(0)) dx dv

13
+C~//0 (10 = Py £ + 1) 120 G112 ds

< Co /Q LSV f O =90 f ) = Ve )+ Yaf O) + v O)
+ Y f(0))dx dv
t
+C"” fo [+ 18121t = P FOIZ + 18I IPF@IZ ] ds. (88)

Now we choose sufficiently small &’ > 0 with ||g(s)||2, < &’ for all s such that
C" x |lg(s)|1% < %, so the || Pf||2 integral on the RHS can be absorbed in the
LHS. Now we define
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def

n() & — /Q WO+ Y0+ e (@) drdv.

Then |n| < || f] |%. This completes the proof for Proposition 14. |

Using this proposition, we can obtain the following coercivity of the linearized
Landau operator L:

Corollary 15. Assume ||g|lco < € for some & > 0. Let f be a weak solution of (60)
and (14) with (7) and (8). Then there exist a constant O < 8’ < 1/4 and a function
0 < n(t) = Cll f®)I3, such that

t t
/ (LIf (O], f(x)dr = & </ If @l5dT — @) - n(S)}> . (89

Here C > 0 is the same constant as the one in Proposition 14.

Proof. By Lemma 12 and Proposition 14, we have

t t
/ (LLf@], f(x)dT 2 5/ I — P)f(f)||c2rdf

P)f()l5dx

= 1+C

1+C/ I = P)f(Dll5dT

zal /||<1—P>f<r)||§dr

+51+—CC (/ IPf(@)l3dT — {n(t) — n(S)}>

_ 1+—c (/O 1R de — (@) — n(s)}).

Now the main ingredient, the coercivity of L, is ready for the proof of Theo-
rem 13. Then the rest of the proof for Theorem 13 follows by standard weighted
energy estimates with extra weight w”, which is exactly the same as the proof for
Theorem 1.2 of [44] except that we replace the spatial domain T3 by €.

O

7. Proof of Theorem 1: L2 — L% — Hoélder— SP Estimates and Global
Well-Posedness

Since we would like to construct an L? and L global weak solution to the
nonlinear Landau equation, the strategy is basically to follow the same L% — L™
framework as in [44] with some additional treatment and modifications for the
boundary. The modifications involve a delicate (yet natural) change of coordinates
flattening the boundary and then adapt the mirror extension, so that the various
estimates can be applied to our extended solution in the whole space. For the sake
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of simplicity, we include only the ingredients specific to the specular reflection
boundary problem, while refrain from repeating the same arguments in the original
paper, although the applicability is checked and explained.

In this section, we will look at a reformulation of the linearized equation (17)
to bootstrap L>° and Holder estimates from L2 solutions using the machinery
developed for a class of kinetic Fokker—Planck equations by [29], thereby deriving
the S? estimate to get the uniqueness. Our goal is to carry out this kind of procedure
in the bounded domain with the specular reflection boundary condition.

7.1. Extension of Solutions to the Whole Space

In this subsection, we will show step by step the way of extending our equa-
tion satisfied on a bounded domain with specular-reflection BC to a whole space
problem.

7.1.1. “Boundary-Flattening” Transformation Let

d: QxR - H_ xR3

ef /= (90
(x,v) > () & ($), Av) )

be the (local) transformation that flattens the boundary, where

- a N
A (2] pg
ox
is a non-degenerate 3 x 3 Jacobian matrix, and the explicit definition of y = (f)(x)
will be given below. Let

~ def > -_ _
fe.y.w)y = £ o7 pow) = f(.¢7'(»), A7 w) = ft.x,v). (O
denote the solution under the new coordinates.

Remark 4. Ttis crucial that we define our transformation @ for both (x, v) variables
in this certain form so that it preserves the characteristics and the transport operator
as explained in the above section (see also the Section 7.1.3 below for more details).

Suppose the boundary 92 is (locally) given by the graph x3 = p(x1, x2), and
{(x1,x2,x3) € R? & x3 < p(x1, x2)} € Q. Inspired by Lemma 15 in [35],% we
define y =¢(x) explicitly as follows:

Y1
o' 2| = G y2) 3G, )
3

2 The authors of this work used spherical-type coordinates to make the map almost globally
defined; here we just prefer the standard coordinates for simplicity.
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V1 —pP1

= »2 +y3-|—p
p (Y1, y2) 1
Y1 —Yy3-p1 X1
= |n—y-pp]=]x
o +y3 X3

where we denote by p = p(y1, y2), pi = 9ip(y1,y2),i=1,2, and

> def
11, y2) = (y1, 2. 001, ¥2)) € 9Q

= def 97

017 = 50 = (1,0, p1)
_ def 97

i = % =0, 1, p2),

then the (outward) normal vector at the point 7j(y;, y2) € 0% is chosen to be

> def > >
A1, y2) = 917 X d21i = (—p1, —p2, 1).

1443

From the above definition we can see that the transformation 5 is “boundary-
flattening” because it maps the points on the boundary {x3 = p(x1, x2)} to the
plane {y3 =0}. We also remark that the map is locally well-defined and is a smooth
homeomorphism in a tubular neighborhood of the boundary (see Lemma 15 of [35]

for the rigorous proof).
Directly we compute the Jacobian matrix

o =[]

(917 + y3-01i1; 921] + y3-0ai; |

l—y3-p11  —y3-p12  —p1
—=y3-p12  1=y3:p0 —p2

o1 02 1
on 92: y3=0 N N
— 20 [l 90 i)
1 0 —p
=10 1T —p
o1 p 1
So we can write out &D_l as
o (y,w) +— (x,v)
def ;=_ _
= (@', A7 'w)
wi I—=y3-p11 —y3-pr2  —p1\ (wi
wy | = | —y3-o12 1=y3-0220 —p2] | w2
w3 o1 02 1 w3
(I=y3p11) - w1 — Y3012 - W2 — 1 - W3 |
= | —yipn2-wi+(—=y302) - wa—p2-w3 | =: |2

p1- w1+ P2 w2+ w3 U3

92)



1444 YAN GUO ET AL.

Restricted on the boundary 92 i.e.,{y3 =0}, the map becomes

v
vl =wi-0+wy- 0yt ws-n
v3
L 0 —p1\ fwi wy — p1-w3
=10 1 —p||w]= w2 — P2 W3
pr p2 1 w3 pr-wi + p2 w2 + w3

Now we are ready to show the key feature of the transformation é—preserving
the “specular symmetry” on the boundary: it sends any two points (x, v), (x, Ryv)
on the phase boundary y = 92 x R3 with specular-reflection relation to two points
on {y3 =0} x R3 which are also specular-symmetric to each other. In other words,
we have the following commutative diagram (when x €92 i.e.,y3=0):

bow) —2 e ()

I
-1
(yv Ryw) I (X, va)v
from which we can equivalently write
A (Ryw) = Ry (A" 'w), if y3=0.

This can be verified either geometrically by noticing that
n=0911n x 31, S0
AN (Ryw) = A~ wy, wo, —w3) = wy - 317} + wa - i — w3 - 7
= Re(wi - 017+ wy - 02 + w3 - ) = Rx(A_lw);
or arithmetically using the definition Ryv = v — 2(ny-v)ny.

Having this property, the specular reflection boundary condition on the solutions
is also preserved:

f@, y,w)y = f(t,y, Rw), on {y3=0},

where R def diag{1, 1, —1}, which allows us to construct the mirror extension (as in
the next subsection) that is consistent with this restriction (and thus is automatically
satisfied).

To conclude this part, we take down more computations for later use:

dx -1
5 |:8(x,v)i| oy | dw A1 |03
Do ! = = = ,
w )" afa

a(y, w)

TH
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—YV30u1- W1 — Y3012 W2 —Y3PIR W1 — V3P W2 —P11- W — P12 W2

—pi1-w3 —p12-w3
=\ V3P W1 — Y3012 W2 —Y3PIR W — Y30 w2 — P12 W — 022 W2 |,
—p12-w3 —p22-w3
P11 W1 + P12 w2 P12-w1 + p22-w) 0

1 vk
= )
=[v3-(p11022—012) + ¥3- (20102012 — 03 P11 — PT P22 — P11 — P22)
+ (1 +03+1)]"
(1+p3) — y3-p2 —p1p2 + y3-P12 p1+ y3-(02012—P1022)
—p1p2 + ¥3-p12 (I+p7) — y3-p11 02+ y3-(p1p12—P2p11)

—p1+y3-(p1p22—p2012) —p2 + y3-(p2011—P1P12) I —y3-(p11+p22)
+3-(p11p22— %)

Cc & ATp!
y2-(p} +0%,) y2-on(piit+p)  v3-(e1on+e2e12)
—y3-2p11 + (03 +1)  —y3-2012 + p1p2
=] ¥-prlpr+p2) y2-(ph+p3,) y3-(p1p12+p2022) |,
—y32p12+p102  —¥3-20m + (p3+1)
y3-(proti+pp12)  y3-(p1p12+p2p22) pr+o3+1
1
cl=aaT = . C*. 93
det(C) 93)

Remark 5. Here we just assume p is (locally) smooth enough and its derivatives
remain uniformly bounded, so that all the coefficients of transformed equations
where the above matrices appear will keep roughly the same size as the original
ones.

7.1.2. Mirror Extension Across the Specular-Reflection Boundary After flat-

tening the boundary, we then “flip over” f to the upper half space by setting
z df [ f@, vy, w), if yeH_

t9 /’ ' = ~ . T ) 94

F@. Y, w) { f@ Ry, Rw"), if y'eH, 4

where R diag{1, 1, —1}. Combined with the corresponding partition of unity, we
are able to define our solutions in the whole space.

Remark 6. The above construction of extension coincides with the specular re-
flection boundary condition, which in turn makes it a well-defined and continuous
extension across the boundary. This observation suggests that, unfortunately, we
cannot apply the same kind of extension to other boundary condition cases.

Also, it is worth pointing out the necessity of “continuity of f across the boundary”

lies in that, on one hand, it ensures f is indeed a solution (at least) in the weak sense

in the whole space (see Section 7.2); on the other hand, g o £ will appear in

the coefficients of the linearized equation through the iteration argument process,
and we require some kind of continuity of the second-order coefficient for the S”
estimate (see Section 7.3).
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7.1.3. Transformed Equations By using the chain rule with our definition (90)
and (91) of the transformation @, we first compute the transformed equation satis-
fied by f in the lower half space:

Wf=0f
0% = (47 w) {47V F + ] 7]
=w'(ATTAT), 4 (A7 ) (A[5]4) Vi

:w-Vyf—l—(ABw)-wa,
4 Vol = i (ATVf) = (AGF) - Vi f.

and
Vo - (06Yf) = Vi - ([AEGAT]wa) .
See (93) for explicit definition of A, B, and

def (

ag(t Yy, w) = ag (y, w)) =ag(t, x,v),

oG(t, y, w) o og(t, 1y, w)) = oG (1, x, v).

Based on our construction of the extension (94), we then go on deriving the
equation satisfied by f for the upper half space:

w-vfz( w) R f wT(RTRT)Vy f =w' - Vy f
BRw’) Vo f = (RABRW') - Vi f
= (RAGy) - Viw f

)
W' ([RAﬁgA R]Vw/f),

A) € ARY) = Ay,

= def
B(y', w") = B(RY', Rw') = B(y, w),
and a,, oG are a,, oG defined with (z, y’, w’), respectively. )
Summing up the above computations, we now obtain that f satisfies (point-

wisely) the following equation(s) in the lower and upper space, respectively:

3,]F+w/‘vy’fsz"(Avw’f)"'B'vw'f’ (95)

3 We use the column vector convention in the matrix operation expressions.
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where the coefficients A and B are piecewise-defined as

~ def

A= AGGAT, if yeH_
Ay wH & T T S 96)
A= RAGGATR, if y'eH,
~ def ~ .
B = ABw' + Ady, if yyeH_
B,y w) % ¢ g RNCT

BY RABRw + RAa,, if y'eH,
Remark 7. Thanks to our design of the form of transformation (90) and exten-
sion (94), the transport operator of the equation remains invariant after change of
variables, which is vital for our future analysis.

It is also worth noting that the new second-order coefficient A preserves the posi-
tivity of og, and thus the hypo-ellipticity of the equation, since A and R are non-
degenerate. In fact, the second-order term would also be invariant if A= D(ﬁ was
an orthogonal matrix; i.e, ATA=AAT =1, but that is not necessary in general and
actually unrealizable.

7.1.4. Adding the Weights Since the velocity weight plays an important role in
closing the L esitimate, we need to consider the weighted equation (20), which
has just one more first-order term. Thus we can simply replace its coefficient a,
with ag, and the rest apply the same way as above.

7.1.5. Recovering the Inhomogeneous Term K g f To avoid technical tedious-
ness, we prefer to work in the whole space all the way to the end and obtain estimates
for extended solutions to (17) as well, using Duhamel’s principle introduced in (12).
So we need to transform the term K g f also. And it is conceivable that the estimates
for K g f after transformation should still hold valid as in Lemma 2.9 of [44], which
is all that desired by later arguments.

7.2. Well-Definedness of Extended Solutions in the Whole Space

After doing the extension, it is important to make sure that across the boundary
the equation(s) (95) are satisfied by f in some proper sense (at least in the weak
sense). That means f should satisfy the following weak formation of equation (95)
in the whole space:

[[. [Goro - o] gy aw’
R3xR3

t
T [ R M S e e
0 R3xR3

Normally a weak formation is obtained by multiplying the equation by some
suitable test function ¢ and then integrating by parts over the domain where the
equation(s) are defined i.e.,(0, #) x (H_UH,) x R>. This process yields

[ 1o - Goo] o' aw
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t
- / //~ {f[(as +w'-Vy)p —B - V] = Vur f - (Awa)} dy’ dw'ds
0 QxR3

t
— / / fody ds
0Jy
~ def ~ def

Here & % H_U Hy, 7 S 9Q x R? = (0H_U 0H,) x R3, and dy = (w'-
ny)dsSy dw’.

Remark 8. The only boundary-integral term I & fé / 7 fody ds above comes

from integration by parts in y’. Note that integration by parts in w’ does not produce
any boundary terms.

Compared with the above definition, this is equivalent to saying that we have
to be sure the boundary term vanishes:

/f¢d)7= <// +// )f(p(w’-nyr)dSyrdw’zo,
% AH_xR3 M xR3

which is indeed true since
F(ty], ¥4, 0= w') = £(t; ¥), v5, 0+ w'),

due to continuity of f across the boundary, while the normal vectors at same point
of outer and inner boundary are of opposite directions

ny (Y3=0-)om_ = —ny (y3=0+)|5m, .

plus the coincidence of y’-derivative term (transport operator) on two sides.
Therefore, we can now conclude that f is a (weak) solution to the equation (95)
in the whole space.

7.3. Continuity of the Coelfficients Across the Boundary

The L™ estimate, Holder estimate, and S? estimate are based on a reformulation
(17) or (19) of the linearized equation, which is of the form of a class of kinetic
Fokker—Planck equations (also called hypoelliptic or ultraparabolic of Kolmogorov
type) with rough coefficients (see [29]):

f+v-Vf =V, AV f) +B -V, f +Cf.

The properties of the coefficients used in [44] for the estimates to hold are as
follows: if || g|loo 1s sufficiently small,

A(t, x,v) o oG : 3 x 3 non-negative matrix, but not uniformly elliptic, 0 <
A+ < A@W) < (04w~ (Lemma 2.4 in [44]); uniformly Holder
continuous if g is so (Lemma 7.5 in [44]).

B(z, x, v) def a, : essentially bounded 3d-vector, [IB[gllloc S ||g||gé3 < 1

(Appendix A in [29]).
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c¥ K : L — L™ operator, ||C|| Loz <1 (Lemma 2.9 in [44]).

The ellipticity and boundedness of the new coefficients after extension are easy
to check (look back the transformed equations in Section 7.1.3).

We are left with one main task: checking the Holder continuity of the second-
order coefficient A across the boundary, which is necessary only for the S” estimate
(see Theorem 7.2 and Lemma 7.5 in [44]).

A direct computation on (96) gives

G = ’det(A_l)‘ . (/l+;11/2§) :
B @) = o| "1 — o (w0,

P, w) = WTATA w)y~ 2.1 — (wTA~TA= w) =32 [A‘lwaA_T] ,

= w'Cw) 2.1 = @"Cw) 2[4~ ww A7T], and

~ T _ /TR /
Aly,w)=e 0 Ay wh) = e RORY
Then we have

A= AG; AT

= ‘det(A‘l>’~ {(w/TRC_‘Rw/)_l/Z[RAATR] - (w/TRéRw/)_3/2~[w/w/T]}
« (+i"2).

Since A is already Holder continuous in both lower and upper spaces, it suffices to
ensure that it is continuous across {y; =0}:

A(s y], . 0= w') = A ], v5. 045 w),
for which we only need to verify

def

(2) For A(y, w) def wl'Cw, Ay, w') = wTRCRW,

A1 ¥, 0= w') = A(y1, v3, 045 w)
(3) For A(Y) & AAT = ¢!, A(y) & RAATR = RCIR,
A(Y1. ¥5.0—) = Ay}, 5, 04).

The first claim is quite straightforward from the expression of A, while the latter
two are less obvious. but it should become clear by writing out the matrices C and
C~ !, with the observation that there are no constant terms for y3 in four entries
€13, €23, €31, c32 of matrix C, so thatat y3 =0 we have c13 =c23 =c31 =c¢32 =0. This
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means C will remain unchanged after both left-multiplying and right-multiplying
by an R. The same argument applies to C ~! (corresponding to A), which also reads
(when y3=0) as

0
C Yym0 = 0 | = RC™'Rly;=0.
0 0] =*

Of course, we also need the assumption that g is Holder continuous, which will

be satisfied by applying the Holder estimate to g & £ in the iteration process.

Remark 9. The Holder continuity of A across the boundary plays a key role in
successfully closing our arguments. It is not trivial at all and again due to our par-
ticular choice of the transformation as well as the structure of the Landau collision
kernel.

Remark 10. However, the first-order coefficient B is actually discontinuous at the
boundary {y; =0}. Fortunately we do not require this condition in our case thanks
to the presence of a higher-order term (cf. the one for the Boltzmann equation
[34,35]).

7.4. Modifications of the Original Proofs

With everything prepared, we finally provide the specific ways to modify the
original proofs in Sections 5-8 of [44] for the whole space problem:

e The whole space problem for Landau is difficult but there is no need to resort
to it. We only need to extend beyond the boundary, to apply L°°, Holder and
S? estimates in the domain containing the boundary, for the extended Landau
equation.

e We split the domain €2 into two: near the boundary and away from the boundary.
Near the boundary, we flatten the boundary and mirror reflection then we apply
[GIMV]. Away from the boundary, we follow [KGH] for with I replaced by
Q, for some ¢ > 0. So, we show local Holder continuity of solutions even near
the boundary by extending the domain into a whole space.

e The arguments in Sections 5-8 still hold for the whole-space case by replacing
each T3 with R3, as the original De Giorgi—Nash—Moser iteration for kinetic

Fokker—Planck equation in [42] also works for the choice of cylinders Q, def
[—2,,0] x B(0; R,) x B(0; Ry).

e Forthelocal L? — L estimate in Section 5.1, we can justlet the cutoff function
be independent of x, since only the truncation in v is essentially required.

e That being so, we also need another version of Lemma 5.8 with cylinders O,
nested in all three variables as in Section 6 (see Lemma 11 of [29]) to deduce
Lemma 6.5.

e After obtaining the estimates and well-posedness results for f in the whole
space, we come back to f in the end by taking restrictions.
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7.5. Conclusion: Applicability of the Previous Arguments to the Whole-Space
Case

By designing a suitable “boundary-flattening” transformation, we are able to
extend our solutions to the whole space for the specular reflection boundary condi-
tion case while preserving the form of transformed equation to the largest extent.
Now that the well-definedness of extended solutions and conditions on the coeffi-
cients of new equation are checked, we can conclude that the whole-space problem
fits into the existing L?> — L™ framework without obstacles. This allows us to
apply various techniques in the paper [44] and finally go back to obtain the desired
results for our bounded-domain problem.
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