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Abstract

Consider the Landau equation with Coulomb potential in a periodic box. We develop
anew L? to L*® framework to construct global unique solutions near Maxwellian with
small L* norm. The first step is to establish global L* estimates with strong velocity
weight and time decay, under the assumption of L* bound, which is further controlled
by such L? estimates via De Giorgi’s method (Golse et al. in Ann. Sc. Norm. Super. Pisa
ClL. Sci. (5) 19(1), 253-295 (2019), Imbert and Mouhot in arXiv:1505.04608 (2015)).
The second step is to employ estimates in S, spaces to control velocity derivatives to
ensure uniqueness, which is based on Holder estimates via De Giorgi’s method (Golse
et al. in Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 19(1), 253-295 (2019), Golse and Vas-
seur in arXiv:1506.01908 (2015), Imbert and Mouhot in arXiv:1505.04608 (2015)).
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1 Introduction
We consider the following Landau equation:

OF +v-V.F=QF,F)=V,- { / dv —V)FOV)V,F() — FW)V, F()]dv' }
R3

FO,x,v) = Fy(x,v), (1.1)
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where F(t,x,v) > 0 is the spatially periodic distribution function for particles at
time ¢ > 0, with spatial coordinates x = (x;,X,,%;) € [-z, 7] = T* and velocity
v = (v;,V,,;) € R3. The non-negative matrix ¢ is

iy =46, — -2 Ly
P =4 6 NE ™. (1.2)

As in the Boltzmann equation, it is well known that Maxwellians are steady states to
(1.1) [13], etc. Let u be a normalized Maxwellian

u(v) = e, (1.3)

and set

F(t,x,v) = u(v) + ' PWF (@, x, v). (1.4)

Then the standard perturbation f(z, x, v) to u satisfies
fitv-of +1f =T(.0), (1.5)
f(07 X, V) =f0(x7 V)’ (1 6)

where f; is the initial data satisfying the conservation laws:

Soeov)\/u = /T} . vifolx,v)y/u = /w N e A/u=0. (1.7

The linear operator L and the nonlinear part I" are defined as

T3xR3

L=-A-K, (1.8)

Af = M_l/zai{ﬂlﬂaij[a_,f +vifl} = ai[aijajf] - O'ij"i"jf + al-aif, (1.9)
Kf i= = PO ulg + {u210,f +vif 11T}, (1.10)

Tlg.f1 := o[{¢7 = [u'/2g1}0,f1 — {7 = [vu' g1} 0,f

; ; 1.11
= 0[{¢7 = [u'0,81}f1 + {7 = [vu'20;8)}f . (10

Define the weighted norm and weighted energy associated with (1.5):

wi=A+PD, I, = [ wlPdv, NI£I0, = W [f|Pdxdv.
P R3 P TxR3
(1.12)

A2, = //T - w?[619,£0f + o¥vif*|dvdx. (1.13)
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lfloo,ﬂ = sup ng(V)f(V), Il f||oo,.9 = Ssup W&(V)f(x, V). (1.14)
R3 T3xR3
o := oo NSl =11 Fll20s
flo = flsor Wl =1 fll505
fleo := fleoos I flleo 2=l fllco05 (1.15)

EF@) 1= 21 FOIR, + /0 11 £ ds.

Here we introduce the main result.

Theorem 1.1 (Main result) There exist &' and 0 < g, < 1 such that for some 9 > 9’

if f, satisfies
1follws < €00 Nl forlleos + 1D follos < 0, (1.16)

where fy, i=—v-V.fy +Af  fo- then there exists a unique weak solution (see Defini-
tion 4.1) fof (1.5), (1.6) on (0, 00) X T3 X R3 such that

(1) if FOO) := u(v)+ \/ﬁ(v)fo >0, then F(t) := u(v) + \/ﬁ(v)f(t) > 0 for every
t>0.

(2) Moreover for anyt >0, 9, €N, and 9 > ¥, there exist C, Cy o, l0(8p), and
0 < a < 1such that f satisfies

sup & < C2%°£,(0),

0§s5poo 9 (f(5)) 9(0) (1.17)

"2
I @l < C&,30€8+190/2(0)1/2<1 + 8—) : (1.18)

0
I f@Dll o, < Cog,(1+ DN foll o 941, (1.19)
Il f”C“((O,oo)>GT3><R3) < C(Ilf()tlloo,19 + “f()”oo,:‘))’ (1.20)
and

”Duf”Lw((o,oo)xTBxRB) < C(”fOt”oo,& + 1D, foll o9 + ||f0”oo,19)' (1.21)

Motivated by the study of global well-posedness for the Landau equation in a
bounded domain with physical boundary conditions, our current study is the first
step to develop an L? to L® framework with necessary analytic tools in a simpler
periodic domain. There have been many results for Landau equations in either a
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periodic box or whole domain [2, 3, 6-8, 13, 15-17, 22, 23, 25-27], in which high-
order Sobolev norms can be employed. On the other hand, in a bounded domain,
even with the velocity diffusion, the solutions can not be smooth up to the grazing
set [19]. New mathematical tools involving weaker norms are needed to be devel-
oped. In the case of Boltzmann equations, an [? to L™ framework has been devel-
oped to construct unique global solutions in bounded domains [14].

Our work can be viewed as a similar L? to L® approach for the Landau equa-
tion. Our techniques are inspired by recent remarkable progresses of [10, 11, 20],
in which a general machinery in the spirit of De Giorgi, has been developed for the
Fokker—Planck equations, even for the Landau equation [20], to bootstrap L™ and
Holder space C%* from a L*> weak solution. Unfortunately, to our knowledge, there is
still no construction for L* global weak solutions to the Landau equation.

Our paper settles the global existence and uniqueness for an L weak solution with
a small weighted L* perturbation of a Maxwellian initially. Our method is an intricate
combination of different tools. Our starting point is a design of an iterating sequence

(at +v- Vx)fn+l - _Lfn+l + F(fn’fn+l)
EAf'"(fn+l)+Kf“(fn+l)7

where all terms in Ay, (f"™*) contain at least one momentum derivative of f" or f"*!,
so that f" appears in the coefficients of the Landau operator for f"*!. The crucial
lemma states that if || /||, is sufficiently small, the main part of A, (f"*1) retains the
same analytical properties of the linearized Landau operator A.

We first establish global energy estimates and time decay under the assumption
f"is small, in Sect. 4.

Let us consider the linearized Landau equation with a given g:

of +v-Vf +Lf =T'(g.f). (1.22)

Theorem 1.2 Suppose that ||g||, < €. Let 9 € 27'NU {0} and f be a classical solu-
tion of (1.6), (1.7), and (1.22). Then there exist C and € = €(8) > 0 such that

Oiup Ey(f(s)) < C22'9519(0)’ (1.23)
and
1/2 £\ k2
1Ol < Cox(Enes @) (14 7) (1.24)

foranyt> 0and k € N.

It is important to note that, thanks to the nonlinearity, the velocity weight can be
arbitrarily strong. The proof of this step is a combination of energy estimates with
positivity estimates for Pf [9, 13] and a timedecay estimate [25], but in the absence
of high-order Sobolev regularity.

We next bootstrap such an L? bound to an L*® bound.
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Theorem 1.3 Let f be a weak solution of (1.6), (1.7), and (1.22) in a periodic box
and 9 € NU {0}, 9y € N. Then there exist €, [y(8y) >0 and Cy4 such that if g
satisfies

sup [lg)ll <€

0<s<00

then

1O llso18, < Co,(L+ D folleo g, (1.25)

It is important to note that even though there is a finite loss of velocity weight,
we are still able to close the estimates thanks to the strong gain of velocity weight in
(1.24). The proof of such an L* estimate locally in x and v is an adaptation of recent
work of [11, 20]. It is well known that the Landau operator is delicate to study and
estimate for large velocities. Together with the maximum principle of the Landau
operator as well as strong time decay for L? norm in (1.24), we are able to control
the ‘tails’ of solutions for large velocities, and obtain global (in x and v) L* estimate.

Unfortunately, unlike in the Boltzmann case (see [14]), to establish the conver-
gence of {f"} and more importantly, uniqueness of our solution, such an L* bound
is not sufficient due to the presence of velocity derivative in the nonlinear Landau
equation. We need to further control ||V, f"||,, as in Lemma 8.2, which follows
from Sp estimates established in [5, 24]. One crucial requirement for such Sp esti-
mates (as the classical W?? estimate in the elliptic theory), is the C%* estimate
(uniform in x and v) for the coefficients containing f”. We establish

Theorem 1.4 Let f be a solution of (1.6), (1.7), and (1.22). Then there exist €, 9, C,
a > 0 such that if g satisfies

sup [lg®)ll <&,

0<s<oo
then we have
1 fll ce(0.00xmixmsy < Cfo)s
where

C(fy) = C(Il forlloors + 1 follsos)- (1.26)

Again, we follow the methods in [10, 11, 20] to establish such an estimate
locally in (x, v), and use a delicate change of coordinates (6.16) locally to cap-
ture precisely the isotropic behavior of the Landau operator, thanks to Lemma 2.4
and our strong weighted L™ estimates to obtain uniform C%* estimate. It is well
known that the Landau equation is degenerate for |[v| — oo and our strong energy
estimate provides the control of velocity (tails) of the Landau solutions. An addi-
tional regularity condition || f|l,¢ < +oo is needed for such a Holder estimate,

@ Springer



J.Kimetal.

but no smallness is required. A further bound || fy, [l o < +00 is needed to apply
the S, theory in a non-divergent form.

Such an L? to L*® framework is robust and is currently being applied to the study
of several other problems in the kinetic theory.

2 Basic Estimates

For the reader’s convenience, we summarize and modify some basic estimates. We
will adapt techniques in [13].

Proposition 2.1 There exists a uniform constant C such that for every function f and
a constant 9 € R, we have

1 fll2.9 < Cll fll oo 942

Proof
2 _ 9 2
1By = [ ot erceiaan
T3xR3
= // w )W )f(x, v))*dxdy
T3xR3
<N fllasen // w4 ()dxdy
T3xR3
< C|l flleo.9425
for some constant C > 0. O

Lemma2.2 (Lemma 2 in [13]) Let 9 > =3, a(v) € C®(R3\{0}) and b(v) € C*(R?).
Assume for any positive multi-index p, there is Cy > 0 such that

|0,a(v)] < Cylv*~7,
10,b)| < Cpe™ 1",

with some 73> 0. Then there is C; > 0 such that
|95la # bIW)| < Cyl1 + [v]]*.

For the reader’s convenience, we will use the following notation in this paper.

ol(v) 1=V xu= / G (v = VHu()dv', .1
R3

i — U I — 5l
/=0, o =0 2.2)
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For every v, v € R3, define
D,(vyy) = vTO'u(v)v 2.3)

and P, is the projection onto the vector v as

3
V; .
Pg:= Z(gj,vj)W, 1<i<3. 2.4)
=

Lemma 2.3 (Lemma 3 in [13]) Ifu = uor \/_, then
D,(viv) = A,(W|P,V|* + L, = P )v|*. (2.5)
Moreover, there exists C such that
201+ D < A0 < O+
and

%(1 D < ) < C+ D)

We can derive upper and lower bounds of eigenvalues for o + ¢ N by adapting
ideas in the proof of Theorem 3 in [13].

Lemma 2.4 Let g be a given function in L®((0,c0) X T> X R?) and G = u + \/ﬁg.
Let o, be the matrix defined as in (2.1). Then there exists 0 < € < 1 such that if g
satisfies

sup [|g()lle <&, (2.6)

0<s<o0

then 1
Dg(viv) 2 75((1 + WDZIPVIE+ (1 + DA = PV,

Dg(viv) <2C((1 + D P VI* + (1 + )T = P)vI?),

for every v € R3. Thus 65(v) has three non-negative eigenvalues. Moreover, A(v),
eigenvalue of 65(v), has the following estimate

20+ <40 < €+
for some constant C > 0.

Proof Letu = \/ﬁg. Then we claim that there exists C’ > 0 such that
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ID,(vin)| < C'lIgllo((L+ VD3P VIP + (L + WDTHAI = POV, (2.7)

Consider

D, (vv) = Z /2 o vyl (v = v/ )g(V )d
ij V>|v

+ Z / vivj¢ij(v - v’)\/ﬁ(v/)g(v’)dv’
= Javi<m

=)+ D).

Note that for 2|v'| > |v|, \/ﬁ(v’) < C'ulv /H)u(v/4). Therefore,

01 < Cu( el [ ¢U<v_vr)ﬂ<vz>dv,
R3

2.8)
< (3 )l VP
To control (1), we expand ¢¥(v — V') to get
i i p 1 i
$Iv =) = ¢1w) = D9 0N, + 5 D b ),
k k1l

for some ¥ in a line segment of v and v — /. Then we have

an = v, VI )g()dY

iy 21V |<v|

= D v D % ) viA/HO g0 Y
V1Y 2

2 1<Ivl

i
+ % 2/ ViV Z 0" WV A/ u(V)g(V)dY
ij 2Vl ol

=D, + U, + D).

Since
Y divw = Y ¢y, =0,
i J

we have
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D, | = (d - PV)V)Tqb(V)((I —-P)V) V/r( g )dv'
21 |<v| (2.9
< Cligllee (X + VD7 =PI

Note that

Y 0wy, = 0.
ij
Therefore

Dyl < |3 (U =Pv) 0b) (A = P,yv) / . Hv;\/ﬁ(v')g(v’)dv’
2V Ly

k

2122 (P 0 = P,)v) / Vim0
k

2V <l

< Cligllo + D> (1t = POV + [P VIIU = P)v])
< Cligll (L + WD IP VI + A+ DT = POVI). (2.10)

Since v is in (v,v —V') and 2|V'| < |v|, we have |v|/2 < || < 3|v|/2. Therefore,
0y Y () < C'|v|~>. Thus we have

[(D;| < C'liglle(1+ VD72 VI 2.11)

Combining (2.8)—(2.11), we have (2.7).
Now we can compute D;(v;v). Since € > 0 is a given small enough constant,
from (2.5), (2.7), we have

Dg(viv) > %«1 + DRV + (1 + ) = PV,
Dg(viv) <2C((1 + D P VI + (1 + )7 = P)v]?).

Therefore,

%(1 +hh P <a<2cd + )7l

Let

lf|[,,9 :—/ wz'g[aijdifajf+aijvivjf2]dv. (2.12)
R3

Lemma 2.5 (Corollary 1 in [13]) There exists c = cy > 0, such that
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2125 = ctlw’[1 + 1772(P,0,8}15 + IWI1 + WII™'/2{11 - P,1og} 3
+ w1+ 17 2gl3).

Define

(f.8) :=/fgdv, f,8) :=/ fedxdv. (2.13)
R3 T3xR3

For any real-valued function f(v), we define the projection onto the

span{/p, vy/p, [vI*y/u} in L*(R?) as
Bf := (a0 +v b0+ (WP - 2 )e ) ) V. 2.14)
where

A

RV

R A

T vy

- (. (V1P = 3/2)y/n)

TV = 3/2)y/m (VP = 3/2)/m) 1

&

Lemma 2.6 (Lemma 5 in [13]) Let L, K, and ¢' be defined as in (1.8), (2.2), and
(1.10). Let 9 € R. For any m > 1, there is 0 < C(m) < oo, such that

[(w**0,0'g,, 82)| + [(WKg,, 8,)]

c 172 172
< =181l69l82l00 + C(m){/ |W’981|2dV} {/ |w'9g2|2dv} .
m [vl<C(m) [vl<C@m)

Moreover, there is 5 > 0, such that
(Lg,g) > 5|( —P)gl.

Lemma 2.7 (Lemma 6 in [13]) Let L, A, and K be defined as in (1.8), (1.9), and
(1.10). Let 9 € R and || = 0. For small 6 > 0, there exists C5 = C5(9) > 0 such
that

~(w'Ag.8) 2 IgI} 5 — 6lsl; , — Cslusl.
|(w2'9Kg1,g2>| < {5|gl|w9 + C5|M81|2}|gz|a,@.

Thus we have
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1 y 3
318l0s = Colely < (wLe. &) < Slel7  + Cylal;.
For the nonlinear estimate in Theorem 3 in [13], they estimated

(w*T'(g). 8,1, 83)

in terms of ||g;|l, ¢ and ||g;l, ¢ for i = 1,2,3 and § > 0. To get such an L? estimate,
they need a higher order regularity like ||DZgi Il and ||D;gi lpofori=1,2,3,8 >0,
la| + || < Nand N > 8.

The following lemma is a refinement of Theorem 3 in [13]. First, the range of 9
is extended to R. Second, we estimate the nonlinear term in terms of || - ||, || - I,
and|| - ||, o without a higher order regularity.

Theorem 2.8 Let I be defined as in (1.11).

(1) Forevery 9 € R, there exists Cy such that

|<W219F[81 .81, 83)1 < Gylgy |oo|g2|o',19|g3|o',19’ (2.15)

and

|(W28F[g1, 81.83)| < Coligi o llgallsllgsllog- (2.16)

(2) There exists 8 < 0 such that for any 9 < 9,

|(#Tlg1. 821 83)| < Cymin{lg 1. 1111160 185 o + 1085211855

2.17)
Proof

(1) By the integration by parts, we have

|(w*"Tlg;, 21,8301 < 10" {7 * [1/ug 119,82, &3))
+ |(W2'9{(3j¢ij * [v/1ug 1182, 0:83)]
+ |(6iw2‘9{0j¢ii * [v/ug 11820 83)1
+ (0w {7 = [vi\/1g 1) 820 83)]
+ |(w2‘9{0j¢ij * [Vi\/;gl]}82783>|
+ (W {7 [0,{v;\/1} 81182 83)]
+ (W {7 [viy/1g11)0,85. 83)]
+ (W {7 [vi\/ug11)82. 0,83)]
+ (W {7 [1/1g11}10;82.0,83)]
=)+ UD+ -+ (IX),

(2.18)
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where ¢ is the matrix defined as in (1.2). Clearly, [0;w*’| < Cy(1 + |v])~'w??
and by Lemma 2.2, we have

|67 5 [/ugi 11 + 17 5 vin/ugi 1| + 167 v /ug 1| + 197+ [0;{vin/u)gy I
< CU+ D18 s

10,07 5 [\/ugi1l + 10,07 # v\ /ug 1l < CA + VD 2llg, lloo-
Therefore, by Lemma 2.5 and the Holder inequality,

() < Cylg || W1 + V) 20,85, W' (1 + [v]) 7'/ 2g3)]|
< C19|gl |oo|gz|a,s|g3|a,19,
(D) < Clgyloo [ (1 + V)™ 285w (1 + V) ™20,85)]
< Clgilolglsslgsls.ss
() + (V) + (V) + (VI) < Cylg 1o | (1 + V)7 2gy, W (1 + v])™/%g3)]
< Cylgilolgrlsslesls.s-

By (2.7) and the Holder inequality,
(VID) < Clgy s / w|(1+ DT2IP08 ] + (1 + DT = PO (1 + VD)™ g5 ]dv

< Clg1 0182150183595

(VIID) < Clg | / w1+ V)72, l|(1 + VD 2IP,0g5 ] + (1 + [v)™V2|(I = P,)d;g5|dv
< C|gl|oo|g2|a,19|g3|a,8’

and

(1X)gC|g1|oo/w2@|(1+|v|)—3/2|Pvajg2|+(1+|v|)—1/2|(1—Pv)ajg2||
X |(1+ D2 |P,0;g5] + (1 + [v)) ™21 = P,)dg5] |dv
< Clg1lel8215.018315.0-

Thus we obtain (2.15). By applying the Holder inequality to (2.15),
|(w"Tlgy 821, 3)| = / |[(w*T(g,. 851, g5)1dx

s/%mmwwmww
< Cyligillullealloligsll,

Thus we have (2.16).
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(2) By the integration by parts again, we have

|(W*Tlgy, 851 3] 1= (W {7+ [u'/?¢,110,85, 9,83)]
+ (W { P [viﬂl/zgl]}ajgz’g3>|
+ (W {7 5 (170,811}, 9,85)]
+ (W {7 5 [viu'0,8,1} 85, 83)] (2.19)
+ (0w {7 = [1'°g,1)0,25. 83)
+ (0w (@7 * [1' 20,811} 25, 85)]
= (i) + (i) + - + (vi).
By the Holder inequality and the integration by parts, we have
[({B7 s [ I+ 1T vy P D]+ [T 5 (120 I0] + [({d7 = v 20,811}
< Cy(1+ v~ min{|g; |, €1 150}

Let & := -2, then by applying the Holder inequality to (i) and Lemma 2.5, we
have

() £ Cymin{|g;lr, 181159}

/ w2 (1 + |v])™'0;8,(1)0;85(v)dv
[R3

12
< Cymin{|g;l54. 18159319821 </3(1 + |V|)2‘9+1dv>
R

1/2
X (/ w1 + |v|)_3|6l~g3|2dv>
R3

< Cymin{|g; 159, 18116.9}1Dv82 1183159
Similarly,
@) + (@id) + -+ + (vi) < Cymin{|g, |59, 181150} (8210 + 1D1821c0)18315.9-

Therefore, by the Holder inequality again, we have
| (w"TTgy. 21, 85)| = / |(w*T'(g. 851 83)dx

< / Cymin{[g |59, 18115911821 + [D,82100)183 5 9dx
< Cymin{|lg;ll.9, 1811159 N2l + 11Dy&2 )83 15,9

O
Lemma 2.9 Let K be defined as in (1.10). Then there exists C = Cy > 0 such that for
every N,M > 0,

W KF Il ooy < ClLL oo roscs)s (2.20)
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||W0K1|v|>Mf”L°°(T3><R3) < C(l +M)_l “ f19”L°°('IT3><R3)’ (221)

and

C
||W9Kf||L2(1ﬂ><R3) hS CN2||f ”LZ(WXW ﬁ”flg”marﬁxu@-*y (2.22)
Proof After the integration by parts, we have

WKf = —w' u™1 20, (ulep” x {u'P10f +vif 111}
= 2w 27w (W' PLof +vif T = w'u'Plog" = {u'2[0f + v 1}]
= 2wy P17 s (' P] = 2w v P[]
+ 2wV 210,07 5 (2] — W ' P[0, 5 (vyu'2f)]
+w W 2[0,97 % Q' 2] = w2107 (u' )]
=W%MHW*@M%N+M%MH%MMM@H
meww*ww%ﬂ—wwﬁ%w*me
= 4wy, ;41/2 [pY = (vw™ 2] + 2w'9v,»;41/2[()j¢ij s Wl 2F9]
— w2 (0,7 s (vyw ™ ' 2F0)] = wP P[0T (w2 F0)]
=)+ U+ I+ (VD).
Applying Lemma 2.2 to (1) + (/) + (1), we have (1) + (1) + (II) < C|| f?|| jo(r3xmsy-
Note that 0,7 = (u'/?f) = =8z u'/?f. Thus we also have (VI) < C|| f* || o (rixgsy-
Therefore, we have (2.20).

Since every convolution term of Kf contains u'/2, we have (2.21).
For (2.22), clearly we have

C
s Kflly < 5 1 lle (2.23)

Now we will estimate |1, .ywKfll,. First, consider [|1},oyv,w’u'/?[0,¢" =
(W_'g,ul/zf )] ||L2(T3><[R3)

.. 2
[ty 2 (0,7 5 ot 20 |

2
:/ / </ ajrj)ij(v—v/)v,-wS(v)y1/2(v);41/2(v’)w_'9(v’)f'9(v')dv/> dvdx
T J )<

2
[ ([ Yo [ [ ([ Yo
T3 J|v|<N 1/N<|v=V'|<2N T3 J|v|<N [v—V'|>2N
S L (L0 e
T3 J|v|<N |[v=v'|<1/N

= (i) + (i) + (iii).
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An 2 to L~ Framework for the Landau Equation

Since |9;¢7(v = V)| < Clv =/ |72, by the Minkowski and Holder inequalities,

1/2 2
i) < /; (/I - <// e lv— v’|—4WZ&(v)vl.z#(v)w—zé)(v/)y(v/)(f&)Z(V/)dv> dv’) dx
T3 V' |<3N 1/N<|v=V'|<2N

1/2 2
= / / w—3(v’)/41/2(v’)fv9(v’)</ lv— V’|_4W28(V)Vi2u(v)dv> A
T3 \JIVI<3N 1/N<|v=V'|<2N
< C/ (/ M1/2(v’)(fx?)2(v’)dv’> (/ / [v— V,|_4W2’9(v)v?/4(v)dvdv’>dx
T3 |V |<3N W1<3N J1/N<jy—v! |<2N

< N 0113

Note that if [v] < N and |v —V'| > 2N, then |v'| > N. Since the integrand of (ii) con-
tains a Maxwellian and |v'| > N, for every f > 0 we have

C
.. B 92
i < 55 1 12
Finally,
g 1
(i) < L 112, // / y(v)(/ lv— v’|-2dv'> dvdxdr < C— || f°I1%.
T3x[0,00) J R3 [v=v'|<1/N N
So we have

. B C
a1 210507 5 " k21 < NIl + 1 Pl (2.24)
In a similar manner,

" _ C
1w’ u 210,07 5 ™ w21, < ENIL A + 1 F Nl (225)

and
e i L7 5 e w2010 < NPT+ 1 e 226)
Note that
W&Iul/z[aijd)y‘ s (w0 2F0)] = wP 2= 8w /29
= —8xuf’.
Thus,
Iy 1210587 % W= ! 2f10, < CILFP (2.27)
From (2.23)—(2.27), we have (2.22).
So the proof is complete. O
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3 Maximum Principle

To get L*™ estimates, we rearrange (1.5) as follows:
ﬁ+v'vxf=Aff+Kff7 (3.1)
where

Af 1= 0l{¢" * [u+u'gl)o]
—{¢7  vu'Pgl}of — {7 = [u'*0,g1}0,f (3.2)
=1V, (65V.f) +a, - Vf,

I_(gf :=Kf +0,0'f — o-ijvl-v}-f

e i (3.3)
— @7 * [u'081}f + {7 * [vu' 0,81}
If f satisfies (1.22), then for every 9 € R, f¥ := w'f satisfies
9 9 _ 7909 | 1
off +v- V. f* =A% + Kf,
f19(0) — W19f0 =: f19’
where
owlow?® . aw® . aw' . gnd
9 I ! J ij y ij J ij i i 9
Kof =wiKof + <2 29 %6 5 % T %% T g% ) G4
_ - ow? .
9 . _ i ij
Ag ‘_Ag - ZWO'GGJ-. (35)

Note that Ag = A, and f0 = f. In this section, we first define a weak solution for
h+v-Vh= Agh (3.6)

and obtain the well-posedness and the maximum principle of the weak solution for
(3.6). Due to the lack of regularity, we cannot use a direct contradiction argument
for the weak solution as in the case of strong solutions. Therefore, we first construct
a smooth approximated solution and then pass to the limit to obtain the maximum
principle for the weak solution.

Remark 3.1 1f g € C!, f € C?, and ¢ € C? with a compact support in R*, then

/W (AN + K (D)o = =(f @), + /W [=0,0240 9,00 — (a, - V,0)f

+(Kp +0i0'0 — 0,{¢" * [u'20,81} o + {d" x vu' 0,81} ) f ] dv.
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An 2 to L~ Framework for the Landau Equation

Definition 3.2 Let A(t,x,v) € L*((0, c0) X T3 x R, w?(v)drdxdv) be a periodic func-
tion in x € T3 = [—7, z]° satisfying

t
/ // (aijaihajh)(s, x, v)dxdvds < oo,
0 JTxr?

where o is defined as in (2.2). We say that £ is a weak solution of (3.6), with 4(0) = h
on (0, 00) X T3 x R? if for all # € (0,00) and all ¢ € C,;;'((0,00) X T?> x R?) such

1.,V
that @(z,x,v) is a periodic function in x € T3 = [—z, z]® and ¢(t, x, ) is compactly

supported in R3, it satisfies

// h(t, x,v)p(t, x,v)dxdv — // hy(x, v)@(0, x, v)dxdv
T3xR3 T3xR3

vw?
= h(s,x, V| dp+Vv-Vo—|a,+2——0c5 ) -V, 0 )(s,x,v)
(0,HXT3XR3 ‘ § wd

=V, h(s,x,v) - (65V,9)(s, x, v)] dsdxdv,
3.7
where o is defined as in (2.1) with G = u + u'/?g.

Lemma 3.3 Assume (2.6). Let 6; be the matrix defined as in (2.1) with G = u + u'/’g.
Let 9 e NU {0}, 6 >0, and h be a classical solution of (3.6). Then there exist
C=C),0< e < 1suchthat if||g||, < €, then

t
sup [[A()I7, + / // (670;h0;h) (s, x, v)dxdvds < C@)||AO)I7,. (3.8)
0 T3xR3

0<s<t

Proof Multiplying (3.6) by & and integrating both sides of the resulting equation, we
have

t
// l(hz(r,x,v)—hz(o,x,v))dxdv= / // (A%h(s, x, V))h(s, x, v)dxdvds.
T3xR3 2 0 T3xR3 8

3.9)
By Lemma 2.4, we have
C'670,hd;h < 6%0,h0;h < Co¥0,hdjh, (3.10)
for some C. By Lemma 2.4 and the Young inequality, we have
ow’ —1, i 1/2¢ i 1241/2
W(;G(ajh)h <C+|v]) (Gcaih()jh) (o-Gh )
3.11)

i -1_§2
<eo;0hoh+ C (1 +|v]) osh
< e670,hdh + C.1°.

In a similar manner, by (2.7) and the Young inequality, we have
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[{ % v *g1}(@0)h] < Cligll oD, (V, h:v)' /(67>

) 3.12
< ec¥0,hoh + e’ G-12

and
{7 * [u'/?0,g1}0;hh| < ec"0,hd;h + eh. (3.13)

Thus from (3.9)-(3.13), we have

t
// hz(t, x, v)dxdv + / // (o-ij aihajh)(s, x, v)dxdvds

T3xR3 0 T3xR3
t

< // hz(O, x,v)dxdv + € / // (o-ijaihdjh)(s,x, v)dxdvds

T3xR3 0 T3xR3
t
+C, / -// h2(s, x, v)dxdvds.
0 T3xR3

Absorbing the second term of the RHS to the LHS and applying the Gronwall ine-
quality to the resulting equation, we have (3.8). O

Lemma 3.4 Assume (2.6). Then there exists a unique weak solution to (3.6) which
satisfies (3.8).

Proof We approximate g by g° € C* and h, by h € C* such that [|g° ||, < 18l e»
1791l < llgllo and

Consider
Oh® +v -V, =A%,

14
B0, x,v) = hj)(x,v). G4

By Lemma 2.4, o; > 0. Since o > 0, it is rather standard (for instance, by add-
ing regularization s(Vm,)zm, for some large integer m, then letting € — 0, if neces-
sary) that there exists a solution A° to the linear equation (3.14). Since g° and hg are
smooth, we can derive a similar energy estimate for the derivatives of h° by taking
derivatives of the above equation and multiplying by the derivatives of h° and inte-
grating both sides of the resulting equation as in [13]. For more details, see [13].
Therefore, h° is smooth.

By (3.8), ||h5(s)||i2 is uniformly bounded on 0 < s < ¢. Therefore, there exists &
such that h% — h weakly in L2. Multiplying (3.14) by a test function ¢, integrating
both sides of the resulting equation, and taking the integration by parts, we have
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// K (t, x, vV)o(t, x, v)dxdy — / )(x, (0, x, v)dxdv
T3XR3 T3XR3
Fy VW8
= he(s,x,v)| 0,005, %, V) +Vv -V @(s5,X,V) = | Ay +2——05s | - V, @
(0,)XT3xR3 # wd

V, - (og V‘,(p)>dsdxdv,

(3.15)

where G° = p + 1/ug®. Since h® — h weakly in L?, taking § — 0 in (3.15) we have
(3.7). Therefore h is a weak solution of (3.6). The second assertion is an analogue of
Lemma 3.3. Let 4 and & be weak solutions to (3.6). Then 4 — £ is also a weak solu-
tion to (3.6) with zero initial data. Therefore, we have supy. ., [|(h — }Nz)(s)lli2 =0.
Thus we obtain the uniqueness. O

Before we derive the maximum principle for weak solutions, we establish the
maximum principle for strong solutions. We first derive the maximum principle for
strong solutions in bounded domains. The following technique is similar to that in
[18] and [19]. Let

Mgh =0, +v-V,—ANh.

Lemma 3.5 Assume (2.6). Let h € chl: 2([O T] x T3 x B(0; M)) be a perlodlc func-

tx,v

tion satisfying /\/l h < 0. Then h attains its maximum only att = 0 or |v| =

Proof Let us assume that max, , ,ci0.7x13xB0.0) 7(t: X, ) > 0 and MPh < 0. Sup-
pose that A attains its maximum at an interior point (¢,x,v) € [0, T] X T3 x B(O:M)
or at (7, x, v) with (x, v) lying in the interior. Since o; > 0 by Lemma 2.4, we
have 0,h >0, V,h=0, and V,h =0 while ¢ ga,.jh <0 and A(z,x,v) > 0. Thus
M‘gh(t x,v) >0 and this gives a contradlctlon

In the case of M'gh <0, define h* := h — kt for k > 0, then /\/l'gh" < 0. Thus we
have

sup hk(t, X,v) = sup hk(t, X, V).
(t.x,v)E[0,TIXT3XB(0;M) =0 or |[v|=M
Taking k — 0, we complete the proof. O

Lemma 3.6 Assume (2.6). There exists ¢ € C™12([0,T]x T3 x R3) with ¢ > 0,
which satisfies Mg(p > 0and @ — oo as|v| = couniformly int € [0, T].

Proof Define

o(t,x,v) 1= o(t,v) = a,(t) + ay(D|v]*. (3.16)

Then
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Mo = al(0) + DIV = 20,0V, - (66v)
3

2 2y 2 i
- az(t)ag‘v— az(t)Wa v

= /() + O = 20,(1)9,6v; — 2a, (D)o

aiwtg U
_ 2a2(t)ag V= 2a2(t)W0' vj.

Note that

10,6%] < Cligllo(1+ D72 |6kl < Cligllo(1+ V)7,
-1 ow’ -3
lagl < Cliglle (X + [vD™", and ——c"v; < Cligll (1 + [vD™.
W
Choose @, (f) = a,(¢) := exp(kt). Then ¢ > 0. Moreover,
Mg(p > Mk + v —CA+ ) =CcA+ DA+ vD) =0
for a sufficiently large k. O

Lemma 3.7 Assume (2.6). Let h € Cl’l’z([O, TIx T3 x R3) be a periodic function

1,x,v
satisfying ./\/lgh < 0. Then h attains its maximum only att = 0.

Proof Fix A > 0. Let ¢ be a barrier function obtained in Lemma 3.6. Define
n*(t,x,v) 1= h(t,x,v) — Ap(t, x,v), then ./\/l‘g()n’1 < 0. Thus we can apply Lemma 3.5
on the domain [0, 7] X T3 x B(0;M). Then we have

n’l(t, x,v) < sup r]’l(t, x,v), for(t,x,v) € [0,T] X T x B(O;M).
t=0 or |v|=M

Note that

n*(0,x,v) = h(0,x,v) — A9(0,x,v) < h(0,x,v) < sup h(0, x, v).

X,V
For a sufficiently large M, we have

ni(t, x,v) = h(t,x,v) — Ap(t, x,v) = h(t, x,v) — AMa,(t) + ay(HM?) < sup h(0, x, v)

for|v| = M. Thus

n'l(t, x,v) < sup h(0,x,v), for(¢,x,v) € [0,T] X T % B(O;M).
Since M is an arbitrary large enough constant, we can take M — oo. Then we have

n*(t,x,v) < suph(0,x,v), for (t,x,v) € [0,T] x T x R>.

pAY
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Taking 4 — 0, we have
h(t,x,v) < sup h(0, x, v).
X,V

Thus we complete the proof. a

Now we will derive the maximum principle for weak solutions.

Lemma 3.8 Assume (2.6) and g € C° and ||hyl|, < 0. Then the weak solution to
(3.6) satisfies

sup [|h(0)|l o < 17l o- (3.17)
t

Proof Approximating g by g® € C* and h, by h) € C* as in Lemma 3.4, we can
obtain a smooth solution /° to (3.6). Thus by Lemma 3.7, we have

s s
sup [|1° (Dl < hgllee < l17g |-
t
In a similar manner to Lemma 3.3 we can derive an energy estimate for #° — h® and
we can show that 4° is a Cauchy sequence in L?. Therefore there exists & such that

|h® — hll;> — 0. In a similar manner to Lemma 3.4, we can show that & is a weak
solution. Since sup, ||2°()]l < lhllo and ||#® — Al|;2» — O, we can obtain (3.17). O

4 L2Decay
In this section, we will establish a weighted L? estimate for (1.22). We will adapt
techniques in [9, 13, 25].

As a starting point, we prove that (1.22) has a unique weak solution globally in
time. Define the inner product associated with weighted norm (2.12) and (1.13):

(f,8)y i= / [Giiaifajg+6ijvivjfg]dv, 4.1)
R3

f.8), := // [O'ij()ifajg + aiivivﬂ”g]dvdx. 4.2)
T3XR3
Definition 4.1 Let f(z,x,v) € L®((0, 00) X T3 x R3, w®(v)drdxdv) be a periodic func-

tionin x € T? = [—x, ]? satisfying

/0 I FII2 yds < oo. 4.3)

We say that fis a weak solution of the Landau Egs. (1.6), (1.22) on (0, 00) X T3 x R3
if for all 1 € (0,00) and all @ € C,3' ((0, 00) x T x R?) such that g(t,x,v) is a

Lx,v
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periodic function in x € T3 = [~x, z]* and ¢(t, x, -) is compactly supported in R?, it
satisfies

/ [t x,v)p(t,x, v)dxdy — // oG, M@0, x, v)dxdy
T3xR3 T3xR3

=-(f,9), + /// (s, x, (0,005, x,v) + v - V, (s, X, V) — a,(s,x,v) - V, (s, x,v)
(0,HXT3xR3

+ Ko(s,x,v) + 6iai(;s,x, V)p(s,x,v) — di{tj)if * [yl/zdfg] 1, x, v)@(s, x, v)
+ (¥ = [Viﬂl/Zafg]}(s,x, V)P($, X, V) = 6,124 (8, X, VIO, (5, X, v)9;p(s, X, v)|dsdxdy.
“4.4)

Moreover if g =f, then we say that f is a weak solution of the Landau equation
(1.5), (1.6) on (0, 00) X T3 X R3.

Let f(¢) = U(t, s)f, be a solution of the following equation
Li+v-of= Agf,
f() =Uls, )y = fo,

where Ag is defined as in (3.2). Then by the Duhamel principle, the solution of
(1.22) is

(4.5)

£ = UG, 0)fy + / UG O f(2)dr. 4.6)
0

Lemma 4.2 Assume (2.6). Then there exists a unique weak solution fto (1.22) in the
sense of Definition 4.1 with f(0) = f,, which satisfies

sup || f($)lleo < COI folloo-

0<s<t

Sketch of proof 1t is clear from (4.6) and by the Gronwall inequality. O

Let P be the projection onto the span{/u, vy/u, |v[*\/u} in L*(R?) and a;, by,
and ¢, are coefficient functions as we defined in (2.14). We will prove the positivity
of L. By Lemma 2.6, L is only semi-positive;

(Lf.1) = CIld =Py

Now we will estimate Pf in terms of (/ — P)f. The following lemma is an adaptation
of Lemma 6.1 in [9].

Lemma4.3 (Lemma 6.1 in [9]) Assume (2.6). Let f be a weak solution of (1.6), (1.7),
(1.22). Then there exist C and a function 5(t) < C|| f(©)||?, such that

/ IPf ()l Sn(t)—n(s)+C/ I =P @I
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Proof For every periodic test function y, f satisfies

g SRR T
s T3xR3 s T3xR3
=—// wf(t)+// wf(s)+/ // | = wL{ - P)f +yT(g.f)|.
T3XR3 T3XR3 K T3XR3

“.7
By convention, we denote a(t,x) = af(t,x), b(t,x) = bf(t,x), and c(t,x) = cf(t,x),
where a, bf, and ¢, are defined as in (2.14). We note that, with such choices

n(0) = = [ [rauge wf(®dxdv, and y = p(v)¢(z, x) for some |p(v)| < exp(—|v|>/4) and
lp@®ll, < Clla@®ll, + 16O, + llc@)]l2)- Thus,

1/2
[n(n] < IIf(t)Ilz(/ p(V)|¢(t,X)|2dde>
T3XR3

1/2
= CIIf(t)I|2</Tp |¢(t,x)|2dX>

< Cll fOllll¢Oll,
< Cllfoll5.

Without loss of generality, we can take s = 0.
Step 1. Estimate of V,A~'0,a = V 0,¢,. Choosing a test function y = d)\/ﬁ with
¢ dependent only on x, we have (note that f \/ﬁLf = / \/ﬁl“(g, =0

t+e
A% 27:/ [a(t +€) —a®)]p(x) =27V 27r/ / b - V)pM).
N t K

Therefore,

poa =2z / b V9.
T3 T3

First, take ¢p = 1. Then, we have /W d,a(t)dx = 0 for all # > 0. On the other hand, for
all p(x) € H'(T3), we have

‘ / ¢(x)0,adx
T3

Therefore, for all > 0, [|d,a()|| 1) S 1b@],- Since fT3 d,adx = 0 for all > 0,
we can find a solution of the Poisson equation with the periodic boundary condi-
tion —A®, = d,a(t). Let ¢, be a solution of the Poisson equation with the periodic
boundary condition —A¢, = a(t). Then @, = d,¢p,. Moreover, we have

IV0,0,ll = [Pl S N19,aDll gy S NB@- 4.8)

S b1l -

Step 2. Estimate of VXA‘16,H=VX(),¢2. Choosing a test function y =
$(xX)v;\/1, we have
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NG / (bt +€) - b0
T3

t+e t+e d
- %m/Z/ / dpla+c] +/ // 3 v /H0,p(I — P)f
t T3 t T3xR3 j=1
+e
+ / // vl (g, )/ 1.
t T3xR3
Therefore,

/ 0,b(p = / 0;pla(n) + c()] +
+ // ¢V,-F(f»f)(t)\/ﬁ}-
T3xR3

By the Holder inequality and Theorem 2.8,

d
// 2 v Hop = P (o)
T3XR3 j=1

< CIA+ h™2a =Py @13

{ //T*XR% Z I\/pajd)(l - P)(»

d
I+ )= 2 vivj\/ﬁ()j(;b
2

j=1

S I =PYoll, IVl

and

H //T . ¢v,~F(g,f)(t)\/F” < Clgllal Al lvanll, < Nellll £11, bl

For fixed ¢ > 0, we choose ¢ = ®, where <I>j] is a solution of the Poisson equa-
tion with the periodic boundary condition —A®; = 9,b,(1). Let ¢} b_e a solution of
the Poisspn equation with the periodic boundary condition —A¢), = b,(z). Then
@, = 9,¢,. By the Poincaré inequality,

/ |V, 0,8 (t)]*dx = / |V, @ | 2dx——/ A, @ Dl dx
< {1V, @013 + 1L 113}
+ C a3 + lcN3 + I = POl + g I fD1I2}
< Cel|V, @112 + CAlla®dll5 + llc@)ll
+ 1 = PO + llgOIZ I FOII2

for every € > 0. Now, we choose small £, such that Ce < 1/4. Then we can absorb
the first term in RHS to the LHS. Then we have for all # > 0,
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IV,0,0,0ll> < CAlla®lly + llc®lly + 1 = POl + 18Ol FOII, -
4.9)

Step 3. Estimate of V,A7'9,¢. =V .0,¢. Choosing a test function y =
¢ (Iv[2 = 3) /1, we have

2ava / POt + ) — ()]
™
3 t+e t+e 5 3
=—zr\/2/ /b-w—/ // (U =Py (VP =3 ) /- V.00
2 t IE t T3xR3 2
1+e
> 3
* / //T L 9ren(i =3 ) Vi

Therefore,

/ H(x)0,c(1)
T3

2 , 3
=/ b -Vo+ I-P -= -V
/TS (0 Vi Ty //M}( @ (IvF =3 ) Vi - Ve

2 , 3
I'(g, - = .
= //My @NO(IF -3 ) ya

Similar to Step 2,

// (=1 = 3 ) VA V.06 < €T = PYOIL IVl
T3xR3

|[]. orena(ie-2) vl < et .l
T3xR3

For fixed ¢ > 0, we choose ¢ = ®,., where @, is a solution of the Poisson equa-
tion with the periodic boundary condition —A®, = d,c(f). Let ¢, be a solution of
the Poisson equation with the periodic boundary condition —A¢, = c(). Then
@, = 0,¢,.. By the Poincaré inequality,

/ |V.0,0.(t)|*dx = / |V, @, |*dx = — / A @ D dx
IE 1K 1K
< eIV, @3 + 1113}
+ CAIBOI + I =PYON + g% N fOI2)
< Cel|V @15 + C A3 + 1T =PYOI + leZ I FON2 .

and

Therefore, for all ¢ > 0,

IV.0,0. D, < CAUDDI, + [T =P DI, + 8Dl FDI 3 (4.10)
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) Step 4. Estimate of c. Choosing a test function y = (|v|* — %)\/ﬁv V... we
ave

__n\/_//Ad)c— // u/f(t)+// wf(0)
T*xR? TIxR
2 2 )y, \/u0,0,,
+§~/0 ,//WISX[Rs <|V| 2)\/’1\/; t zd)Lf
+/ // vV =P
0 T3xR3
_/ // vL( =Py + / // WG, f).
p T 0 T3xR3
) R // wf )
T3xR3 T3%R3
2 0,0ib.b,
+Z///W WP = 2 Vo0,

ij=1

t , 5
= 2 )vi\/u0,0ip (I — P
" ;/(; //:U:3><[R3 <|V| 2>v’\/ﬁ t l¢c( )f
+/ // vV —Pf
0 T3xR3
_/ // wLI =Py + / // wI(g.f).
0 T3xR3 0 TOxR?

Note that f (|v|2 - g) [v|2u = 0. Therefore, the third term of RHS is zero. Moreover,

d
5
; //1T3><R3 <|V|2 — E)",‘\//_‘azaid)c(l - P)f

< CIV,0,@ NI = P)fll,
< CCANPN + 11T =Pl + llglloo L F 1l DIT =PI,
< ellbll3 + C AN = PYIZ + llglZ N F112),

t
/ // vV - P < CllC”z”(I— P)f”ﬂ < 6”6‘”% + Cg”([_ P)”i’
0 T3xR3

// wL(I - P)f = // Lol - Py
T3XR3 IR

< ClIV. @M1 = P)fl,
< Cliello I =Pyfll,

<éllel? + C Il - P)|I?
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and

// W) < Cliglloll FllNcll, < ellell; + CollglZ N A2
T3XR3

For a small € > 0, we can absorb ||c||§ on the RHS to the LHS. By (4.10), we have

/ lle@I*ds < Cn(@) = n(0)) + / CANT =PYIZ + gL F1Z} + ellbll3ds.
0 0
4.11)

Step 5. Estimate of b. We will estimate (6ij¢2)bl- foralli,j=1,...,d,and (0J-j¢§7)bi
fori #j. ' '
) We first estimate (d;¢,)b;. Choosing a test function y = [(v;)? — %] 1O, we
ave

B Z/ // Vi [(Vi)2 - l] ﬁdUWJ—/ // [(Vi)z - 1]\/56,%’;1‘
IRAIARS 2 0 M 2
=—// ll/f(l)+// wf(0)
T3xR3 T3xR3
—/ // II/L(I—P)f+/ // wI'(g./).
0 JTxR3 o Mrixms

Note that fori # k

(4.12)

[ o =3]u= [ |05 = Yoru=o

and

1 1
T
Therefore,
t s 1 '
[ wlwr 3]V
Ji 0 T3xR3
t 1 .
- ZA %3xR3(V1)2 [(vi)2 - z] Halj(l);bl
t , 1 '
" Z,“/o //vw 0 = 5 | Viaydl - Py
1 . t : A
= 5”\/;/T3 0, b; + Z,“/o //T3><R3 v [(V,-)2 — 5] \/ﬁa,jdy’b(l - Py,

(4.13)
and
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(v ) — \/‘ oy, = P)f

<c/ 1Bl - PYfIl,

T3><[R3

< ellbll3 + CId - P)fIIZ.
4.14)
Moreover

/Ot //WXW [(Vi)z . %] \/ﬁatajd’]J ) /t //1T3><R3 (vi)z B l]”a’af'q%<|"|2 - §)c
/ //TW [(V V- \/_ 9,0, — PYf.

By (4.9),

(00 - 3] VRoaas

< / Ce{llally + lielly + 1A =P ll, + 1 Il A1, }
0

T3xR3

x {llell, + Gyl = P)fIl, }
< / [CANT =PI+ Ngl: I £ + llcli?} + ellall?.
0

(4.15)
In a similar way to Step 4,
// WL~ P)f < bl + CII7 - P @16)
T3xR3
and
// WTe.f) < ellbl2 + ClIgl% 11 FI12. @17
T3xR3

Combining (4.12)—-(4.17),

[ sl

< Cn@) —n0)) + /0 [CANT =PI+ Ul FIZ + llell3 ) + etllall3 + 1B113}:

(4.18)
Now we estimate (d;¢;)b,. Choose test function y = [v[>v,v;1/ud;¢; for i # j. Then

A N Y e A R
1 JO T3XR3 0 T3xR3
=- // vi + // w0 - / // wLUI P + / // wI(g.f).
T3xR3 T3xR3 0 T3xR3 0 T3xR3

(4.19)
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Note that

Z/ // vilVIPvivin/ud
1 J0 T3XR3
- / // VIP )\ ul0;yb; + 0,8, b;] (4.20)
0 T3xR3
+Z/ / vl|v|2vivj\//_461jd)2(l—P)f.
7 J0 JJTIXR3

From (4.18),

/ // RO RV A
0 T3xR3

SC(n(t)—n(O))+/ [CANT =PYIZ  + g2 N 25 + Nell3} + etllalls + 121531,
0
421

and

< /0 Cliblllid = P,

Z/ // vllvlzvivj\/ﬁa,jd)Z(l—P)f
T Jo JJTxRe

S/[6I|bII§+CgII(1—P)fII§]~
0

4.22)
Moreover, by (4.9)
/ // |v|2vivj\/ﬁ6,0jd)§)f‘= / // [vI*viv;\/u0,0;¢},(I — P)f
0 T3xR3 0 T3xR3
S/ CAllally + llclly + 1T =P)fll, + gl fll, HIT =PI,
0
< / [CANT =P)FIIZ+ N2 AIZ} + e{llall5 + licll3 .
0
(4.23)
Similar to (4.16) and (4.17),
// WL~ P)f < ellbl + ClI7 — P 424)
T3xR3
and
// WT(e.f) < ellbI2 + C gl 1 FI12. 4.25)
T3XR3

Combining (4.19)—(4.25) yields
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/ 0,i¢bbi

< Cn(®) —n0)) + /0 [C AT =PI+ LN A2+ llell5 } + eCllall; + 1611531
(4.26)

From (4.18) to (4.26) for small e, we can absorb ||b||% term on RHS to the LHS.
Then we can conclude that

/ lb(s)lI*ds < C(n(r) — n(0)) + / [C A =PI+ N2 A1 + licll3 } + llall31ds.
0 0
4.27)

Step 6. Estimate of a. Choosing a test function
w = (v =5V Vb \/u,

we have

[ wr=swwopir- [ [ i -smoas.ir
0 T3XR3 0 T3xR3
- // i)+ // W (0) - / // WLA ~P)f + / // YT f).
T3xR3 T3xR3 0 T3xR3 0 T3xR3

(4.28)
Note that

J =51 = 3Jostu=o.
Therefore,
/0 //T3XR3(|V|2 = 5)vv,0;¢b\/ uf
) / // (=90 k0 bt / // IV = 5)vw;0yb,y/uld = P)f
0 T3xR3 ; .

(4.29)
and

/ // (V1P = 5)v,05,/ul — P)f| < / Cllall, Iz - P,
0 T3xR3 0

< / (ellall? + C,II( — PYIP].
0

(4.30)
Moreover, by (4.8)
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/ // (VP = 50,000 /i
0 JTixms

<

/ // (VP = )2 10,0 b
0 JTxRrs

/ // (VP = 5)vi0,0i /i - P)f
0 T3xR3
< / Clibll, {11511, + Clld = Pyf]l, )

0

+

t
S/o CUIBl; + 1A =PfII2 ).

4.31)
Similar to Steps 4 and 5, we have
// L~ P)f < ellall2 + C. [ — P 432)
T3xR3
and
// WT(e.f) < ellall2 + ClIgl 1| FI2. @33)
T3xR3

Similarly, from (4.28) to (4.33) for a small €, we can absorb ||a||% on the RHS to the
LHS. Then we have

/ lla(s)|I*ds < C(n(t) — n(0)) + / CANT =PYSIZ + IO LOIZ + 1b()]I3 }ds.
0 0

(4.34)
Combining (4.11), (4.27), and (4.34), we have

/0 t IBFII2 < Cn(r) = n(0)) + /0 [CE{n(I— PN + g N FI12 }ds
¥ /O CIPoIds
< C(n(r) = n(0)) + /0 [ C AN =PY I + le@IZ I =P (s)]I2 fds
¥ /0 (€I, + OlIBF©Ids.

Note that C, = Ce™!. Choosing &, = &, we have C,||g(s)[|2, < C.e? = Ce < 1/4 s0
that ||Pf ||i term on the RHS can be absorbed to the LHS. Thus we complete the
proof. O

Corollary 4.4 Assume (2.6). Let f(t, x, v) be a weak solution of (1.6), (1.7), and (1.22)

in the sense of Definition 4.1. Then there exist a constant 0 < &' < 1/4 and a func-
tion 0 < (1) < C|| f®)||2, such that
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t t
/ (LIf(D)].f(z))dr > & < / | F(DI2dr — {n(r) — n(s)}>. (4.35)
Proof By Lemma 2.6 and Lemma 4.3,
t t
/ L@ f@)r > 5 / I - Py (o))2de
c [ > (A >
> 6—/ II(I—P)f(r)IIUdf+6—/ 7 = P)f ()2 de

> 1+C/ I =P @l d¢+5—C</ IBf ()l dT—{Vl(t)—n(S)}>

= 1L ([ nromza - o - non)

O

Remark 4.5 Note that in Lemma 2.6, we can take 6 > 0 sufficiently small. Therefore
we can also take 5’ small enough.

Now we will prove Theorem 1.2. The proof is a modification of Theorem 5.1 in
[25].

Proof of Theorem 1.2 We will prove

Cx t
Y ({{Mf(z)u;ﬂg,z—||f(s>||§ﬂ9,2}+58,2& / ||f<r)||§,&,2dr>—5'{n<r)—n(s)}

0<8<29

<c, / el ll F@I2 dz

(4.36)

by the induction on 9.
Basis Step (8 = 0). Multiplying (1.22) by f, integrating both sides of the resulting
equation, by Theorem 2.8 and Corollary 4.4, we have

%{||f(f)||§ — 13} +5’</ Il f@II2de = {n(0) —'1(5)}> < C/ lg@ oIl F()I2d7.
Inductive Step. Suppose that (4.36) holds for 9 — 1/2. Multiplying (1.22) by w?’f,

integrating both sides of the resulting equation, by Lemma 2.7 and Theorem 2.8, we
have

%{Ilf(t)llgﬂ - ||f(s)||§,,9} +[ (%”f(r)”f__g - Csllf(f)llidf) < Cs[ ||g(T)||oo||f(T)||§49dT
4.37)
Multiply (4.37) by 602'2% and add it to (4.36). Then we have
9
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C '
> (—{Ilf(t)llw/z A2 5+ 520 / |If(f)||§’9/2df)—5'{11(0—11(5)}

0<9<29-1

029 1

[ rol3, - IIf(S)II28}+/ <—|If(f)ll,,3 Cs”f(f)”idT)]

028 1

<Coip / L@l FIE,_, e + / le® Nl FOI2,

Note that || - [l 9-12 < Il - ll,9, I * l5.9-12 < II - ll5,9- Choosing sequences of C7,,
8529, and Cy such that

Ci=1, 8y,=8, Cy=C,

CF = 00291 (4.38)
g 2C,
P if§ =0
8529 = ‘Z@,z&—lv if29=1,...,9-1, (4.39)
%, if § =29,
9
and
5029-1
C19 = C19—1/2 + T, (4.40)
we have (4.36) for all 9.
Note that from (4.38)—(4.40), we have
5/
50/( = _, fork = 1,2, oo ,219.
C<Cy=C+ ) T<c+5’<c+1
0<d<29-1
&' . &'
—— << =——,
229(C+1) ¥ " 22C
and
s _ 00261 _ C_i;
29,29 — 4C19 - 2 .
Lete = Z’LC” By Remark 4.5, we can choose §’ small enough such that
9
&'n(1) < —|| SOl = || SOl (441

From (4.36), we have
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c ) ! Cc*
SOl + 5= / @I dr < 2 F@I2+ Y S IO,

1<8<29
1 & )
< <Z + E) ”f(s)llzﬂ
1 2
< Ellf(s)llz’@'

(4.42)
Taking s = 0 and dividing by @ both sides of (4.42), we have

2I|f(f)||§,l9 +/ IIf(r)IIi,SdT < éllf(O)llﬁ,l9 < C22'9|If(0)II§,9.
0 9

Therefore, we have (1.23).
Fix 9, k > 0, by the Holder inequality and (1.23),

||f||§,,9 = /Wwf2
=/<w2<19_%)f2>m<w2<19+‘5(>fz>m
N N (4.43)
< </ Wz(&—%)ﬂ)”‘ </ w2(8+§)f2>k+l

k
2=
k+1

i
S ” ‘f||2,3—l/2 (C228+k519+k/2(0)) ke
By Lemma 2.5,
I fllgs = N+ D™l = 1l fllago1 o (4.44)

Combining (4.36), (4.43), and (4.44), we have
Ccx
Y (170, ~ 1O ,,) + {51701 =80 } - {S1FOIE -5}

1<9<29

6219219 !
<2 / L FOI2 dr
< 529,28 ! 2 d
=72 ILF @Dl 2d7
k+1

0y909 [ -1 2
<=2 [ (e 0) T SOl (4.45)

Let

C:
0 = {310 -0} + Y, LIl

1<9<29
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Then

29 Cc*

C* 1 =
SNFDI5, <30 < <5 + ,921 7“’>||f<z>||§,g SIfOI,  (@46)

Combining (4.45), (4.46), we have

6219 |29

Y0 =y(s) < = / (€224, () () T dr.

Therefore, we have

1 -1 kil 1 _1 kel
Y < _55219,219(C228+kg19+k/2(0)) nE < —W(CZM"&%,{/Q(O)) ()T
o 4.47)
Multiplying (4.47) by -1y~ ¢, we have
_1 1 -1
% (y @) k) = 2219Ck(C228+k53+k/2(0)> g
Integrating above over [0, ¢] yields
-1 t -1 -1
YO 2 S (C2PEy 1 n(0) 7 4+ 3(0) 7
t 1 -3
> S5 (C28,,,,0) 7 + (IFOI,)
_1
> (C22*KEy 1 n(0) (t + 1)
- 229C k)
Therefore,
2 2 r\7*
IFOIZ, < 530 < Cpapap©@(147)
9
where we use (4.46) in the first inequality. Thus we complete the proof. O

Theorem 4.6 Assume (2.6). Let 9 € 27'N U {0} and f be a classical solution of (1.7),
(4.5). Then there exist C, e(9) > 0 such that if ||gl|, < €, then

sup Ey(f(s)) < C22£,(0), (4.48)
0<s<co
and foranyt > 0,k € N,
£\K/2
I fDllpe < C&,k5&+k/2(0)<1 + Z) . (4.49)
Sketch of proof The proof can be done by choosing I' = 0 in Theorem 1.2. O
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5 L2 — [~ Estimate
5.1 Local L2 — L* Estimate

In this section we will derive a local L* estimate for A.
9 . _ 19
/\/lgh .—(0t+v-Vx—Ag)h, 5.1

where ;\g is defined as in (3.5).

Here we will refine the results about the L? — L°° ,estimate in [20]. Comparing
with [20], we have an additional term a, - V f — 2=~ ALY o0 and a diffusion matrix
of /\/ll9 which is not uniformly elliptic. Moreover to get an L? — L* estimate for
T3 x R?, we need to know the local L2 — L* estimate more explicitly.

Define Q, := [~t,,0] x T?> x B(O;R,), for t, > t,., and R, > R, . The following
estimates are refinements of Lemmas 4-6 and Theorem 2 and Theorem 7 in [20].

Lemma 5.1 (Lemma 4 in [20]) Assume (2.6). Let h be a non-negative periodic func-
tion in x satisfying /\/l;?h < 0. Then h satisfies

/Q |Vvh|2§C/Q n?, (5.2)
1 0

1A 2100, _C/ 1, (5.3)
0

||h”L°°L2L2(Q) S C/ (54)
Qo

for some g > 2 and C = C(RO)(I e (RO—)> CRy) = C'(1+R,)"

Proof Consider a test function ® € C®(R x T3 x R3), periodic with respect to x and
@(t,x,v) = 0 for |[v| > R,. Multiplying (5.1) by 2h®? and integrating the resulting
equation over R = [—f, s] X T3 x B(O;R,) for some s € [—¢;, 0], we have

/ 9,(h*)®* + / vV, (h)D?
R R

2 2360y 2 v, (") 24,2
<2 [V, (65V,mh®* + | a,- V() -2 6V, (D,
R R R W

where o; is defined as in (2.1) with G = u + u'/?g. Using the integration by parts
and the positivity of 6, we have
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/ 0,(H*®?) + 2 / (V,h- 05V h)D?
R R

9
= / s <6l(<1>2) +v-V (@) -V, - (<1>2ag) +2V, - <<1>20'G—VV(W )>>
R

wh

—4/h<I>VV(I>-aGVVh
R

V, 9
S/7£Q”®5+VWM¢5—va¢%Q+2Vw<¢%G‘%w>>
R w
+ / (Vb 06V, W)@+ C / (V,® - o5V, D).
R R
Thus we have

/a,(h2q>2)+min(1,(1+R0)—3>/ |V, h|2®?
R R

< C'max(1, (1 + Ro)_l)<|I0;<I>I|oo||<I>|Ioo + RollV, @l 1Pl

v, (w?)
V‘,-<0' o )

Choosing @ such that (-, x,v) = 0 and ® = 1in Q,, we have

> 1 1 1
hz(s)dxdv+/ |V, h]* < C(R )(1 + + + > / %3
/TJXB(O;R') R ’ o=t Ry—Ry  Ry—-R)*/ Jr

Especially,

. 1 1 1 5
sup / K (s)dxdv < C(R )(1 + + + > / h?.
sel-1,01 JTIxBOR,) 0 fh—t, Ry—R;,  (Ry—R)?*/ Jo,

Therefore, we prove (5.4). Choosing s = 0 in (5.5), we have

/|Vvh|2§C(R0)<l+ LN ! 2>/h2,
o ty—t,  Ry—R, ~ Ry—R)*) Jo,

so we obtain (5.2). Moreover, the Sobolev inequality implies (5.3). O

+ 1Pl laglloo 1V, @lleo + R 1V, - lloo

v, (w?)

HIV, @2, + 19l IV, Pl 7

2
+ 2l

)

c

jIs

Lemma 5.2 (Lemma 5 in [20]) Assume (2.6). If h is a weak solution of (3.6), then
DRI, o < ClIAIZ,

1/3,112 2
DRI, | < CllAIZ

(5.6)

for some C = C‘(Ro)<1 + L+ L4 ;>

o=t Ry—R, (Ro—Ry)?
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Proof Let R: = @ and Q1 = Q. Define truncation functions y, and y,,, such
2 2 2

that

1, if (¢, x,v) € Qy,
£1=9 0, if (1,x,v) € 0,
2

X

1
2

_ 15 lf(t,x,V)EQl,
Lo, if(xy) € QS

Leth, = hy, fori =1, % Then we have

(0,+v-V)h =V, -H +H, in(—c0,0]xR°,

H, = y,05V,h1,
2

vV, (w?)
Hy=-V, 1 'O'vah; + “1}1% +x0a, -V, - 2)(17 oGV hys

a, =0, +v-V)y,
where o; is defined as in (2.1) with G = u + u'/>g. By Lemma 5.1,
1 Holl 2wy + 1H 27y < C”h“B(QO)

with C as in the statement. Applying Theorem 1.3 in [4] with p =2,r =0, f =1,
m =1,k = land Q = 1yields (5.6). O

Lemma 5.3 (Lemma 6 in [20]) Under the assumptions of Lemma 5.1, there exists
p > 2 such that

llAll? <CliAll

2
L2L212(0)) L2(Qy) (5.7

with the same C as in Lemma 5.1.

Proof The proof is exactly the same as in the proof of Lemma 6 in [20]. We omit the
proof. O

The following lemma is a consequence of Lemmas 5.1 and 5.2. We omit the
proof.

Lemma 5.4 Under the assumptions of Lemma 5.2, we have
WAl 0,y < CllPllL20,)

with the same C as in Lemma 5.1 and s = 1/3.

Lemma 5.5 (Theorem 2 in [20]) Under the assumptions of Lemma 5.1, there exists
q > 2 such that
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1111740, < CllAIIL g, (5.8)

with the same C as in Lemma 5.1.

Proof The proof is exactly the same as in the proof of Theorem 2 in [20]. We omit
the proof. a

Lemma 5.6 (Theorem 7 in [20]) Assume (2.6). Let h be a non-negative subsolution
of (3.6). Then, there exists m > 1 such that

1 m
. i ) 1l 0,
min(t, — ., (Ry — R)?)

“h”Lm(Qoo) < C(Ro)m<1 +
where Qg = [—1y,0] X T?> X [-Ry, Ryl and Q, = [~t,,,0] X T3 X [-R, R ].

Proof Letk :=q/2 > 1. Since|h|?, g, > 1, is also a subsolution of (3.6), by Lemma
55

2
(17| < ClllAl%]

2
Iqu(Q:x+l) L0,

~ 1 1 1 . .
where C, = C(RO)(I Fo— et e ) Changing | - [|, to | - I yields

Kq, (|2 K qn ||12K
” |h| ”Lz(QnH) S Cn ” |h| | LZ(Qn)'

Let g, := ", then after iteration we have

n
9,112 K/ 2k"
A1, < TT CL 101G,
=

Changing || - [l to|l - I, » we have

n n—1
2 K" 2 _ K 2
1Al g, < H Coi 11120 = 1_! G Al g,
7= J=

Choosing t, — t,,; = a(ty —t )n"*and R, — R,,; = B(R, — R, )n"2, we have

n

o 1 e
co<c |1+ -
i = < < min(t, — ¢, (Ry — Ry,)?) > >

Thus,
= Kk Im m 1 "
[[c <cmewy) <1+ , 2)
=0 min(t, —t,, (Ry — Ry)?)
for some m > 1. So the proof is complete. O
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Lemma 5.7 Assume (2.6). If h, = max {h,0}, where h is a subsolution of (3.6), then
h, is a subsolution.

Proof Approximate a convex function Q(h) — A, and then use the convexity of Q(h)
such that Q’(h) > 0 and Q”(h) > 0. Applying Q(h) to Eq. (3.6), we complete the
proof. O

Let i be a weak solution. Then since |h| = h, — h_ and h, = max {h,0} are sub-
solutions (maximum of two subsolutions is a subsolution) and A_ = max {—h,0} is
a supersolution (minimum of two supersolution is a supersolution), we can apply
Lemma 5.7 to both /2, and —A_. Thus we obtain:

Lemma 5.8 (Theorem 7 in [20]) Assume (2.6). Let h be a subsolution of (3.6). Then,
there exists m > 1 such that

! i
min(t, — f, (Ry — R)?) (@

where Qy = [~1y,0] X T3 X [—Ry, Ry] and O, = [~1,,,0] X T> X [-R . R,

Al oy < C(Ro)m<1 +

5.2 L2 — L[> Estimate for (1.22)

We now consider (1.22) and let f be a solution of (1.22). Then we split f into two
parts:

I = ey sy =1 f + o

Let U(t, s)h be a solution of (3.6) corresponding to the initial times s with the ini-
tial data h. Then

t

t
=1 U 0)fy + / Ly U DK f (2)de.
0

To obtain the L™ estimates for f;, we will give some basic estimates for I_(g.

Lemma 5.9 Let K’g be defined as in (3.4). Suppose that g satisfies the assumption in
Lemma 2.4. Then there exists C = Cy > 0 such that for every N,M > 0,

7 9
”Kgf“LW(WxW) < C”f ”Loo(waS), 5.9)

”K;?1|v|>Mf”Loo(1r3x|R3) <cd+m! ||f‘9||Lmq3xR3), (5.10)
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and
. C
I N2 croxiey < OV Nl 2oy + L PPl mom)- (5.11)

Proof Note that

B0 — wWOR 25iwgang g 9w o’ i _ 9 i\
of =WKJS+ 20 %67 9 %7 %% T T %

=wKf +0,6'f" —v-ovf’ — 0, {7 x (081} + {7 * [v;u' 0,81 }f°

owow® . aw' . aw’ . ow?
1 1 [ ;
<2 J U i i J J.5V i i 9

w29 Gy Gy TG 9 e
=wKf + () xf?,

where ¢, K, 6, o' are defined as in (1.2), (1.10), (2.1), and (2.2) withG = u + u'/?g.
Since w?Kf satisfies (2.20)—(2.22), it is enough to estimate (7).
By Lemmas 2.2 and 2.3, we have

(DI < 10,00 +1v- ov] + [0{¢7 # w0810} | + [{ 8+ v 29,810}

owlow? w ow’ owd
J iy Yy ij J ij i i
+ 2 w2 G + wd ot wd diog| + wd G
<Cc(+vhn
So, we complete the proof. O

Now we can obtain the L* estimates for f:

Lemma 5.10 Assume (2.6). Let f be a weak solution of (1.6), (1.7), and (1.22) in a
periodic box in the sense of Definition 4.1, then there exist C, f > 0 satisfying the
Jollowing property: for any Z, s,k > 1, and 9,1 € N U {0}, there exists Cy; such that

Jicaro]

~ (5.12)
< Co (Z) A+ 5 N ol gar +

Cc 9,
— su SO
15 75 s’e(s—pl,s)”f( Mo

Proof By the Duhamel principle,
||1|\;|<Zskf'9(5)||po Sz Uls, s = DFP(s = Dl =

1-¢
+/ 11<ze UGs,s = 1+ DKf(s = 1+ )] odr
0

1
+/ 11} <z UGs, s — 1 + T)I_(gf(s —1+7)|dr
1

—&

= (i) + (i) + (iii),
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where K? is defined as in (3.4) and ¢ is a constant which will be chosen later. By
Lemma 5.8, there exists m > 0 such that

1/2

1
() < C(zsk)’”</ UG, s — DfP(s — 1)||§ds’>
0

By Theorem 1.2 and Lemma 3.4, for every integer /, there exists C; such that

UG, s — DfP(s = Dll, < Cll (s — Dll, = Cll f(s = Dl

s—1

-l
=) ol

< Co 1+ 97N follpgpr-

<1+

Thus

(i) < Cy(Z")" (1 + 97N foll .-

By the maximum principle and (5.9),

(i) < Ce sup || ()l -

s'e(s—1,s)
By Lemma 5.8,

11} <z Uls, s = 1+ T)I_(gf(s - 1+7)l,

w s ) 12
sc(zﬁ)’”(ui) (/ ||1,V|<wU(s’,s—1+T)K§f(s—1+r)||§ds'> .

s—1+71
By (5.11) and Theorem 1.2, for any N > 0,

- l-¢ " 1 m s _ , 1/2
(u)sc/O (zs") <1+m> </ ||K;9f(s—1+1)||§ds> dr

—1+7

1

<qaﬂ%1+ﬁm/%WWWm—1+m|+1w%w4+ﬂu)M
> £ o 2 N ©o

m 1 mn — C
< (zs") <1 + ;) <Cs,zN2(1 +9) 7 follpors + N ,Sup )||f8(S')||oo>-

s'e(s—1,s
Choose ! = 1 4+ Zs*and N = (1 + Zs*)>"*!. Then
. .. /i _
m+mnwmsgxaﬂa+wmhhw+77ﬁ sup 1 25l o
s'e(s—1,s)

where ff = 6m + 2 > 0. O

Based on the above results, we will prove Theorem 1.3.
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An 2 to L~ Framework for the Landau Equation

Proof of Theorem 1.3 Choose € as in Lemma 2.4. By Lemma 5.10, there exists / such
that

Therefore by the Duhamel principle, the maximum principle, and (5.10),

- C
9 < 2 90 )
st/ "), < CorzU4 97 Mhllogws + 7 sup 176

I+ Dl < NUG+ 1) ()] oo

1
+ / “U(n +1,n+ S)I_{:(l‘v‘<z(”+s)kf(n +5)+ 1|),|>Z(,,H>kf(n + s)) HLmds
0
1
<0l + Cs,z,z/ <(1 +14+ 97 folloow
0

C 9,/
— ap (s>||m)ds
T+ Z01+ 5K e

1
+/ A+ Zn+ 7 2 + )l . ds
0

<N e + Copr M+ W) M follpgyr + €20 sup 1)l

s'€[n—1,n+1]
After iteration,

12+ Dllge < 1 Dlle + Copz P,A+ N fyll g

n=1
n

+Cz7' YA sup £

=1 s€(0,n+1]

Choose large k and Z such that —k < —land CZ~' 3> 7D < g, where £, will be
determined later. Then

I 72+ Dl < I Wllgs + Copzll follposr + €0 sup ; [FAO][
+

s€[0,n

Since n is an arbitrary integer,

sup 1 I N < NP Dllge + Couzll follgrr+ €0 sup N1 F(9)]lo-

s=1,2,...n+ s€[0,n+1]

By the Duhamel principle, the maximum principle, and (5.10),
t
172G+ Dl < WU+ L ()] + / |ve+en+ 9K+ 9|, ds
0
4 -
<1l + / Ko+ 9| ds
0

<1l +C /0 e+ _as
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fort € [0, 1]. By the Gronwall inequality,
I f*n+ D)l < ClLfP )l forall € [0, 1].
Therefore,

9 4 -9
sup ]Ilf Ol < Cll foy Iz + Coyll follo,940 + Ceg [soup ! I £l o
s€|0,n+

s€[0,n+1

Now, we choose a small g, satisfying Ce, < 1/2, and then absorb the last term on
the RHS to the LHS. Then, we have (1.25) in case of d, = 0 by taking [,(0) = L.
By (5.12), there exist C, [;(9,) such that

el Olle < CA+D70 follogrr, oy + I Fllcos):
Thus, by Proposition 2.1, we have
1 Dlleo.s < M j<anf Ollog + 1M/ Ol

<cl+ t)_l% <||f0||2,.9+11(80) + Osup I f(s)”co,s) +Cd + l)_&U” 1Iv|2(1+t)f(t)”oo,8+8o
<s<t

<CA+n" <||f0||2,.9+1|(s“) + sup ”f(s)”oo,|9+v9“>
0<s<t

-9

<C+0p 0(||f0||2,8+ll(80) + ||fo||z,3+30+10(o) + ||f0||oe,8+80)
-9

<C+0p 0||f()||eo,19+ln(19n)s

Lemma 5.11 Assume (2.6). Let f be a strong solution of (1.6), (1.7), and (1.22) in a
periodic box. Let p > 0 and p > 2 be given constants. Then there exist | € Nand Cy
such that

t 1/p
2 -2/
( /0 ||f<s>||§,ﬂds> < Cp AT (M follco + W follzpar) """
< Cﬂ,ln(”fO”oo,ﬂ + ||f0||2,ﬂ+1)-

Proof By Theorems 1.2 and 1.3, there exist/ € N and Cﬂ,, such that

I flap < Cpy (1 + S)_l||fo||2,ﬂ+l’
I Moy < Cpuy (1folleo + 1folpss)-

(5.13)

By the interpolation, we have

_ -2
HFOIP < (Cpp U+ )Ny (ol + 1follopad)”
Taking the integral over s € (0, o), we have the first inequality of (5.13). The sec-

ond inequality of (5.13) comes from the Young inequality, then we complete the
proof. O
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5.3 12 — [~ Estimate for (4.5)

We will derive another type of L? — L estimate to obtain a uniform Holder estimate
for a weak solution of (1.22) in the sense of Definition 4.1. The proof is similar to
the case of Subsect. 5.2.

Let us multiply (4.5) by w?, then i := wf = f9 satisfies

@ +v-V,—ADh=Kn, (5.14)

where

owlow? . aw' . aw' . oud
K9 — v g _ Y i _ j_ i
th— (2 3 o, 9 o 0 0,0 o a, h. (5.15)

Similar to Definition 4.1, we can define a weak solution of (5.14).
Then we split f? into two parts:

= ey +F sy =2 fi + o

Let U%(t, s)f, be a weak solution of (5.1) in the sense of Definition 3.2 corresponding
to the initial data f;, with the initial time ¢ = s, then we have

t
[ = 1,0, U@ O + 1,0y / Ut K’ (v)de
0

t
=1, U (1, 0)f) + /0 1, U, T)kgf'g(r)dr.

Lemma 5.12 Assume (2.6). There exists C = Cy > 0 such that

”i(ngHL""(PxW) < C”f8||L°°(T3xR3)’ (5.16)
||i<g'91|v|>Mf19“Loo('[|'3xR3) < C(l + M)_l ” fslle(‘u'SXR}), (517)

and
||kgf'9||L2(1r3xR3) < C||f19||L2(1T3><R3)- (5.18)

Proof Since

w9o.w? W w? 9
K= <2a’w L B L B PV L )"9
&

w20 G 8 TG T8 TitG T T e e

and by Lemma 2.2,
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diw‘q()-w‘9 N o.w’ ow’ . ow’

J ij y ij J ij [ i -1
o o 7 o5+ e diog| + e a, <CA+|vh.
So the proof is complete. O

Lemma 5.13 Assume (2.6). Let f be a weak solution of (4.5) in a periodic box in the
sense of Definition 3.2, then there exist C, § > O satisfying the following property:
forany Z,s > 1,9, and k > 0, and l € N, there exists Cy, such that

“1|v|<ZSka(s)”oo

B _ (5.19)
< Coy(28) A+ 97N fyllogrs

c 9,
+ sup || /() oo
1 +Zsk s'e(s—1,s) «

forany s > 1.
Proof By the Duhamel principle,
Iz Ol < WLy UG5, 5 = DF (s = Dl

1-¢
+ / 1<z U (sis = 1 + T)i(;gf‘g(s - 1+7)|dr
0

1
+/ 1<z U (s 5 = 1 +T)i(§f3(s— 1+ 17)| dr
1

—€
= (@) + (@) + (D).
By Lemma 5.8, there exists m > 0 such that
s 1/2
(i) < c(zﬁ)’"(/ 1 1U°(s s — (s — 1)||§ds’>

By Theorem 4.6 and Lemma 3.4, for every integer /, there exists C; such that
107" s = Df*(s = Dll, < ClLAGs = Dl = ClLfGs = Dl
s—1\"
) Willg

l
< Co (L4 9N follogarr

<1+

Thus
(D) < Cyp(26)" W+ 97 foll oo
By the maximum principle and (5.16),

(iiiy < Ce sup || f*( o

s'e(s—1,s)

By Lemma 5.8,
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I yyeze U755 = 1+ DK s = 1+ Dl
1 m s=1+7 B 1/2
< C(Zsk)m(l + 1—_r> (/ ||1|V|<22SkU8(S,,S -1+ T)K:f(s -1+ T)||§ds')

By (5.18) and Theorem 4.6, for any N > 0,

1/2

1-¢ m 1-7
(i) < c/ (Zsk)m<1 + L) (/ IK2FO(s — 1 +T)||§ds'> dr
0 0 &

1-7

1

m ol
<c(z)"(1++) / Cllf* s = 1+ Dllde
0

m 1\" _
< (2" (14 2) Costt + 97 Wflapr
Choose ¢! = 1 + Zs*. Then

9!
——= sup [ /()]s
1 +Zsk s'E(s—1,5) «

(@) + (@) + (i) < Cyy(Z5) (L + 97N fyllogs +
where f = 2m + 1. a

Theorem 5.14 Assume (2.6). Let f be a weak solution of (1.7), (4.5) in a periodic box
in the sense of Definition 3.2. Then there exists | such that for every § > 0,

IOl < Clf s + Coll follogar < Cllfollso,s4s, forany £> 0, (5.20)

where Iy = [ + 2.

Proof By Lemma 5.13, there exists / such that for / > [,

Therefore by the Duhamel principle, the maximum principle, and (5.17),

— swp [/l
1+ Zsk s'e(s—1,s)

1|v|<zskfg(5)||Lm < Cyur(L+ )7 follpgrs +

I+ Dl < N0+ L) )l
0
+ /1 |07+ 1o+ DR (1 e 1 5) + Vs a0+ )| s

1
<17l + Ca / 14920yl
0

C

—— su £l o ds
1 + Z(I’l + S)k s'E(n+s—1,n+s) «

1
+ / A+ Zn+ 9 P+ 5 ds
0

< f‘g(n)”Lw +Cy, (1 + n)_2||fo||2,l9+1 + C(an)_l sup . [ f‘g(s,)”oy

s'€[n—1,n+

@ Springer



J.Kimetal.

After iteration,

n

120+ Dl < NP Dlle + Cypz DA+ D2 follg4

n=1

+CZ—12 D sup | O]l

s€[0,n+1]

Choose large k and Z such that k(—1) < =1 and CZ~' 3 7#*CD < ¢, where € will
be determined later. Then

I £+ Dllge < NPl + Couzll follgrs + € sup IIf'g(s)II

se€[0,n+1

Since n is an arbitrary integer,
sup 1)l < N Dl + Copzllfollogsr+€ sup 1)l
s=1,2,...n+1 s€[0,n+1]
By the Duhamel principle, the maximum principle, and (5.17),
t
Il £+ D)l < NUP(n+ t,n)fP ()| o + / “U’g(n +t,n+ s)f(gf’g(n + s)”Lmds
0
t
< || £ N 7900
<1+ [ R

<Pl +C A t [P+, as

By the Gronwall inequality,

Il £+ Dl < Cll fP ()|, forall 2 € [0, 1].

Therefore,
sup I 2N < Cll o + Coull fylln,g40 + Ce o IIIf“’(s)II
NS n+ NS l’l+

Now, we choose small ¢ satisfying Ce < 1/2, and then absorb the last term on the
RHS to the LHS. Thus, we obtain the first inequality of (5.20). The second inequal-
ity of (5.20) is a consequence of Proposition 2.1. O

6 L to Holder Estimate
6.1 Local Holder Estimate
In this section, we will derive a local Holder estimate for (4.5). We redefine Qg (z) :=

(to - st fo] X B(xo; R3) X B(Vo; R), zp = (lo»xo, V())s and Or = QR((O7 0,0)).
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Since we consider the local properties of the solution on the interior part, we
can use the technique in [10] for our modified operator Al,. In this subsection, we
assume that g satisfies the conditions in Lemma 2.4.

First, we introduce a De Giorgi-type lemma.

Lemma 6.1 (Lemma 13 in [10]) Assume (2.6). Let O := 0,,4(0,0,-1). For any
(universal) constants 6, € (0, 1) and 6, € (0, 1) there exist v > 0 and 9 € (0, 1) (both
universal) such that for any solution f of (4.5) in Q, with |f| < 1 and

Hf21=9}n0Qy 4l 26,104l
If <01n QI > 6,0l
we have
HO<f<1-39}nB; XB;x(-2,0]] > v.

Proof The proof is exactly the same as [10]. We omit the proof. O

Lemma 6.2 (Lemma 17 in [10]) Assume (2.6). Let O := 0,,4(0,0,-1) and f be a
weak solution of (4.5) in Q, in the sense of Definition 3.2 with |f| < 1. If

I{f <0} N QI > 6,10l
then

supf <1-4
Qi3

for some A € (0, 1), depending only on dimension and the eigenvalue of o.
Proof The proof is exactly the same as [10]. We omit the proof. O
The following lemma can be derived by the previous lemma.

Lemma 6.3 Assume (2.6). Let f be a weak solution of (4.5) in Q, in the sense of Defi-
nition 3.2 with |f| < 1. Then

supf —inff <2—- 41
08 08

for some A € (0,2), depending only on dimension and the eigenvalue of o.
By the scaling argument, Q, and Q, 5 can be replaced by Q,, and Q, /g.

Lemma 6.4 Assume (2.6). Let f be a weak solution of (4.5) in Q,, in the sense of
Definition 3.2 with |f| < 1. For any subset Q C R, define

OQscf:= sup f({.x',V)— inf f({,x V).

(' X' V)EQ (' X V)EQ
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Then for everyr < 1,
Oscf < <1 — i)Oscf
O 2/ 0,

for some A € (0,2), depending only on dimension and the eigenvalue of o.

Proof Define

supg, f+ ianZr f >
> .

F(t,x,v) := 2 F(2t, rx, rv) —
Oscf
0y,
Then F satisfies
Fo+v-oF=A]F,
A~ng(t, x,v) :=V (6507, PPx, )V, E(t, x,v)) + rag(rzt, rx,m) -V F(t,x,v),
and then apply Lemma 6.3. O

Now we establish the Holder continuity at v = 0.

Lemma 6.5 (Holder continuity near v = 0) Assume (2.6). Let f be a weak solution of
(4.5) in Qg(ty. Xy, 0) in the sense of Definition 3.2. Then there exist a uniform con-
stant C > 0 and a constant a € (0, 1) depending only on dimension and the eigen-
value of o, such that

C
I 1l a0y, agtormoon < ﬁ” Tz (0 t0,5,00)
forevery R < 1.

Proof We first prove

[f (s, y.,w) = f(0,0,0)] _ C
Sup P S E”f”l‘w(Qk)
(8.;W)EQg/16 (|S| + |y| + IWI) R

Define Ochf as in Lemma 6.4 and

o(r) :=r"% OQscf R
where a;, > 0 can be chosen later. By Lemma 6.4,

Oscf < (1 _ %)Oercf. 6.1)

0./16

Choose aj such that 16% (1 - %) < 1. Then by (6.1),
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r
— ) =r %16% Osc
(ﬂ< 16 > Q,/4(z‘,x,v)f

< 16“0(1 - %)r“’oOercf
< @(r).
Therefore, we have
sup @(r) < sup @(r)

0<r<R/16 R _cR
16 -

6.2)

16%

<2

sup  [f(#,x,v)|.
R% (tx,v)EQR

If (t,x,v) € Q, then |t| + |x| + |v| > r*. Therefore, for 3a = a, and r < R/16, by
(6.2),

sup s,y w) = £(0,0,0)] _ [ (s, v, w) = £(0,0,0)|
GomeQrs sl + 1yl +wDe (symea,reOr/16) (S| + [y] + [w])®
< [/ (s, y, w) = £(0,0,0)|
< sup
(5,y,w)€Q,,r(0,R/16) r*
< sup  @(r)
re(0,R/16)

§£ sup |f(t, x,v)|.
R (1 xv)e0,
(6.3)

Now we consider the general case. For any (7,, x,,v,) € Qg/3,(f, %), 0), define the
translated function

F(T,X,V) =f(t,x,v),
T=t-t, X=x—-x,—-1Tv,, V=v—-v,.
Then F satisfies
OpF+ V- -VyF =V, Et,x,v)VyF) +a,t,x,v) - V,F.

Therefore, by (6.3),

F(s,y,w) — F(0,0,0
up |F(s,y, w) — F( )l < C; sup  |F(t,x,v)]|
(5.3 W)EQx, 16 (sl + Iyl + [whe R™ (txV)EQR,

for every R, < 1. Since |v,| < R/128,
(t,x,v) € Or/ea(tys X, v,) implies (T, X, V) € Qg /3,

and

(T,X,V) e QR/2 implies (t,x,v) € Qg(t,, x,, v,).
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Therefore, by (6.3)

V‘(I’xa V) _f(t*7x*7 V*)l
sup
(tx,V)EQR 64 (1,X,V,) (lt - t*l + |x - X*l + Iv - V*Da
tLx,v) —f(t,,x,,v,
<A+wDh* sup £t 9) — £t %, 0]
Qv (LH VDI =t ]+ [x —x, |+ [v—v,])*
sup |F(T,X,V)—F(0,0,0)]
T xV)eQyy (L + IV DIT| + X +v,T| + [V])*
F(T,X,V)—-F(@0,0,0
<C su |F( ) — F( )|
Txvegy, T+ X+ [V]D*

<C

<S ap IFT.XV)
R% (1.x.v)e0y),

< % sup  |f(t,x,v)|.
R% (11 1)e0,

So the proof is complete. O

6.2 Global Holder Estimate

In this subsection, we will derive a Holder continuity for the solution of (1.22). Let
f(t, x, v) be a weak solution of (1.22) in the sense of Definition 4.1. Then

7 . f@x,v), ift >0,
f(t’x’v)“{fo(x,w, if —1<1<0

satisfies
fit+v- V)f—Agf = 8(t,x,v),
where A, and K, is defined as in (3.2), and (3.3),

~ _J -V, —Af Wolx,v), ift <0,
8t x,v) = { Rftxv), if1>0.

Since U(t, s) is the solution operator of (4.5). Then f satisfies

t
f@O =U@-Dfy + / U(t, 5)S(s)ds.
-1
Fisrt, we will obtain a uniform Holder continuity of U(#, s)f. Finally, we will derive a
uniform Holder continuity of f(¢).
As a starting point, we introduce a technical lemma to obtain a uniform Holder
continuity of U(#, s)f.
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Lemma 6.6 Let (t,,x,,v,) ER, XR*x R, N=1/2<|v,| <N+1/2, m>9 and
O be an orthonormal matrix. Define

(1 + v, )72 0 0
D:= 0 (1 4+ v, ])71/? 0 , (6.4)
0 0 (A + v, D712

X:=D'0"(x-v,(t-1)), X,:=D'0"x,, V:=D'0"(v-v,),
o i= QAN r = QNI ry = (24+N)S .
Then if (t,x,v) € Q,o(t*,x*,v*), then (t,X,V) € Q,l (t.,X,,0). Moreover, if
(t, X» V) € Q128r1 (t, X*, 0)7 then (t, X, V) € Q128r2(t*, .x*, V*).

Proof If (t,x,v) € Q,ﬂ(t*,x*, v,), then

)
[t —t,] <rg sy

IX-X,|=ID7'0"(x — x, = v.(t — 1,))]
<SQ+NPr + (N +1/2)r))
SQ+NAQ+N)+ (N +1/2)Q2 +N)™")
<24 NP2Q 4+ N
<r,

and
VI =|D7'0" (v —v,)
<2+ N,
<r.
Conversely, if (, X, V) € Q128r1 (t,X,,0), then
|t —1t,] < (128r))% < (128r,)
and
[v—vs%|=|0DV| < (1/2+N)""?r, <128r,.
Since 1287, < land (1/2 4+ N)~'/2(1 + N) < 128(2 + N)'/2, we have
|x —x,| = [0ODX = X,) + v, (t — 1,)]
<(1/24 N2 + N
<(1/24+ N2+ Ny
< (128’2 + N)r ™33
< (128r,)°.
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So the proof is complete. a

Lemma 6.7 (Uniform Holder for (4.5)) Assume (2.6). Let f be a solution of (4.5) in
Q,(ty. Xy, Vo). Then there exist 9 > 0, 3, > 0, Cy, and a € (0, 1) depending only on
dimension such that

lf(t’ X, V) _f(t/7x/’ V,)l
sup ; ; e < Cll flleoys < Cs”fo”oo,gwo-
(tx,v),(t' X' V)EQ, (ty,X0:Vo) (lt — | + |X — X | + |V -V |)
(6.5)

Proof By the integration by parts,

a,-V.f= —{gbij * [Vl-,ul/zg]}aff— {d)ij * [M1/2djg]}6‘f
= —({¢7 = vu' g1} + {7 * [u'*0,81} ) of
= —(2{¢7 = ' g1} + {@7 = [0,(u'*D1})0f
= —(2{¢" * viu' g} + {0¢" + [u'g1})of
= =2 (o, Vo) — a,.a"\f/pgajf.

Let N :=|vgl
To obtain (6.5), we split the proof in two cases; |(¢, x,v) — (', x',V/)] < (2 + N)™"
or |(t,x,v) =, %, V)| >@2+N)> for some m>0 to be determined later.
For the first case, we will consider a new center (f,,x,,v,) € @, such that
@ xv), [, xV) e Qp+nyn(tis X, v,). Note that N = 1/2 < v, | <N +1/2.
Therefore, it is enough to prove that for every (¢,, x,, v,) € O, (fy, X. Vo)
lf(t’ X, V) _f(tls-x,’ V’)|

sup S Cll flleos
() X VVEQ 3y (1%, 0N g g ) (1T = T+ [x =X | + [v = V/[)® *

(6.6)
and

lF@, x,v) —f{,x' V)|
sup , , < Cll flla
(t.x,v), (' X V)YEQ, (ty.x0.vp)s (lt = | + |x - X | + |V -V |)

[t=' |+ |x=x' [+ ]v=V |[>(24+N) ="

6.7)

We first focus on (6.6). Consider the the following translation

Ft,y,w) 1= f(t,x,v),

where x = y +v,(t —t,), v = v, + w. Then it is easy to check that f satisfies

Of +w -V, =V, - 66V, + 0 +w) - @ 5,V - > a,.(}if/;ga}f,
i

where 65(1,y,w) 1= 05, x,v), 6,ty,w) =0,xv), and 6'\/;g(t,y, w) =
o \/;g(t, x,v). Let O be an orthonormal constant matrix which will be determined
later. Next consider
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f@.&v) =1t y,w),
where y = O, w = Ov. Then we have
o (t,y. w) = 0f (1, £.v),
WVt yow) = D w0, (& v))

9¢

=Y w0, F(t, &, V)=
,»Zk % ay;

_ 6.8)
=) 0ywd, f(t.&,v)
ik

= D (O"wy - 9. J (1, &)
k

=V ij‘(ts fa V)’

where Oy is the (i, k) component of O. We used the following formula to derive the
third equality in (6.8),

98, _ 0%, 0y, _

ay; 0y; "

Similarly,

6-G(t’ Y, W)wa(t’ Yy, W) = Z 6-2;(1" Y, W)awf(t’ év V)
Jj

y 3 (6.9)
=) 6Lty w)0,0, F(t.&.v).
Jik
Define 65(1, &, v) := OT64(t,y, w)O. Note that
065(1,¢,v) = 65(t,y,w)O. (6.10)

Then by (6.9) and (6.10), we have

V,, - Gty WV, v, w) = Y 0, (541, w0, (1., )

if
=Y 0,,(045%(t,y.w)0, f(t.£,))

ik

= ' 0,,(0,65:(t,&,v)0, F(t,& V)

ik
= Z OiIOzjav*(&ij(ta g V)aka(f, &v)
ikl

=10, GE(t,E V)0, J(t,& V)
k.l

=V, - (G5t E, VIV (T, E V).

@ Springer



J.Kimetal.

In the last equality, we used oTo=1. Similarly, define & \/ﬁg(t’ E,v) 1=
0T6\/ﬁg(t,y, w)O, then
v, - (6\/;g(t, v, W)Vw]_‘(t, Yy,w) =v, (05’\/;g(t, ¢, V)Vj(t, &, v))
=(0"v,) - (B, /(1. & VIV J (1., v)
=V, (B /(1. EVV (1.8, v)),

where v, = OTv,,
W @ (Y WV, F(t 3, w) = - (06 17, (1, E VIV J (1 €,))
= (0"W) - (B, (1, £, VIV (1, £,v))
=V (8 /(1. &MV J (1, E V),
and

Z 08 (3w, (13, ) = Za 67 (63,00, F(1.£.v)

= Z aw O’ ([ Yy, W)O k()ka(t, 57 V)

ij.k

=Y 0,0,5"_ (t.y,w)0;0, F(t.£,v)

ij.k,l \/_
= 2,050 (.60, J1.6v).
k,l

Therefore f satisfies
7 7 - . ~ 7 . N 7 — ~lk 7
of +v- V‘ff— V, 65V + v, +V) (Uﬁgvuf) ;ald\/l_lgakf.

We split 65(¢, £, v) in three parts.
55(t.€.v) = 0"6,(0)0
+0"(5,(w)—5,0))0
+0"6 5, (1.7, w)O
Choose orthonormal vectors 0, = v, /|v,|, 0,, 05 and
0 .= [01 0y 03] .

Note that

* *

[V,
v, =0Ty, =| 0 [.
0
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Moreover 6,(0) has a simple eigenvalue 4,(v,) associated with the vector v,, and a
double eigenvalue 4, (v, ) associated with vi. Therefore,

L) 00
6= 0 AW() O
0 0 A0,
Note that 4,(v,) and A,(v,.) satisfy

1

cU+MT < A40) < CA+N7,
1 (6.11)
E(1 +N)P < A, <CA+N)L
Since 0vk(aﬂ)’7(v) < C(1 + |v])72, by the mean value theorem,
1(,)7(w) = (5,(0)] < CA+N) Q2 +N)™
Therefore,
5,)7] < CA+N)?Q+N)™.
Define
D,(v,V) :=vie, V.
Then we can easily check that
ID, (v, V') < D, (v, v /2D, V)] 2.
Since|v —v,| < 2+ N)™and o, =v,/|v,|, we have
I—P)v
= P yoy| = [PV
v,
_=v4v +v=Py,|
v,
v—v.]+|v—Py,l
< o - (6.12)
=+ 1P, =)l
v,
[v—v,] _
=2——<CR+N)™.
[v,|
Note that
63" = 0] f,(o;. (6.13)
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Therefore, by (2.7),

[CHNES 1D /g 01:)]
< Cliglle (L + D10 P + (L + VD7 = Poy )
<Cllgllo(T+M+ A +N)'Q+N)")
< Cliglle(1+N)72,

(6.14)

and for (i, j) € {(1,2),(1,3),(2,1),(3, D},
1(85)7] < |D\/ﬁg(01;")l1/2|D\/gg(0k;v)|1/2

_ _ _ 1/2
< Cllgll oo (1 + N2 (0 + VD3P0 2 + (1 + W)~ 1T = Pog %)
< Cliglle (1 +N)2(1 + Ny™'/2
= Cllgll(1 +N)72,

where k = 2 or 3. Finally, fori,j =2 or 3,
133)7] < ID /(0 21D (0] 2
= Cligllo (1 + VD IP0, 1> + (1 + V)7 = P)o,I?)

X (1L + D3 IP,o > + (1 + WD = Poyl?)
< Cligllo(1 +N)™"

1/2

Finally, consider the dilation matrix D as in (6.4) and the dilated function
Ft,X,V) :=f(t,&,v),
where £ = DX, v = DV. Then we can easily check that F' satisfies
0,F +V-VyF =V, -(EV,F)+ (v, +Vv)'DZ,V,F + Z dy, 250y, F,
k.

where £ =3, +3%, +2%;, %(t,X,V)=D"'6,t&v)D™! for i=1,2,3. Then by
(6.11), we have

<SEN)'LC (E) =0fori#)

al-

and
I(Z,)7] < C(L+N)2+N)™",
I(Z3)] < Cligll-
Moreover, since |[v| < (2 + N)™™,
ID(v, + V)| < |Dv,| + |Dv]|
<A+N)2rca+N2Q+N)™,
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and since 9, 63(v) < Cligll(1 + N)™2, we have
|0y, 25| = |d; ' d; 10y, 65v)]
< d;'19, 5,
< gl + N2,
where d,s are the kth diagonal element of D. Choose m >4 such that
[(Z)7], |(v, + VVIDZ,| < e < 1. If ||g||, < &, then any eigenvalue of T is bounded
above and below uniformly in N. Therefore, by Lemma 6.5, there exist a constant

C > 0 uniformly in N and a constant a € (0, 1), depending only on dimension such
that

|[F(t,X,V)—=F({, X', V|
su
X X Ve, 1,.x.0 (=1 + X = X[+ |V = V')

(6.15)
< _C” fll
(r] )3(1 (QIZSrl (l*"i*’o))’

where X, = D7'¢,, &, = 0"y, y; = x, — v,t, and r, is defined as in Lemma 6.5. Note
that

1 [t x,v) = f(7', 5, V)]
—_— sup
(1 + N)(I (l‘,X,V),(l’,x/,v’)EQ,U(t*,x*,v*)an(tO,xo,vo) (It - t,I + |)C - xll + |V - vll)a

lf(t’ X, V) _f(t,’ X’, V’)l
< sup ' / ! Na’
(2 WEQ, (1, N0y (gxgry) (2 + N =1'[ + |x = X'| + [v =V'])

(6.16)

where r;, and r, are defined as in Lemma 6.6. Moreover, we have

C+N)t=C|+x=X|+|v=V]
=Q+MN|t—1|+|0DX +v,(t—1t,)—(ODX' +v,{t —t,))| +|0ODV +v, — (ODV' +v,)|
>Q2+N)|t—1|+|0DX - X")| = |v ||t =1| + |ODV = V)|
> |t—1|+|0DX - X")| + |OD(V — V)|
> (14Nt =1+ X = XD+ (V= V).
6.17)
By (6.15), (6.16), (6.17), and Lemma 6.6, we have
lf(t, X, v) _f(t,’x,’ V’)l
sup
(€).' X V)EQ, (1,50 )NQ, (1) (C+Mt=t+x=x|+|v=V]*
|F(t,X,V)—f(, X', V)]
< sup .
XV X VEQ, (,.X,.0 (1 + NP 2(|t =1/ + [(X = X)) + [(V = V'])e
(6.18)

Combine (6.15), (6.16), and (6.18). Then we have
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lf(h X, V) _f(t/, x/v vl)l
Sup / / ! |\
(L) (1 2 WVEQ, (1o, w N0ty gy ([E = | + [x =X | + [v =)

lf(t’ X, V) _f(t,’x/’ V/)l

<@2+N)” sup
()2 WEQ, (1,2, w000, (g xgvg) (2 H N)E = 1| 4+ |x = x| + [v = V)*
(2+N)* sup |[F(t,X, V)= f{', X", V)]
T (14 N)-3e/2 X X Ve, 1,.X,0 (=1 + X = X[ +|(V = V'|)*
__CCHMT gy,
T (LN (e G (O (6.19)
By Lemma 6.6,
I Fll200,ns,, X 09 S W Fll Lo, 1.t (6.20)
Choose m > 9 such that 128r, < 1. Then we have
-9 9
”f”Lm(QIZSIZ(I*VX*’V*)) S C(l +N) ”(1 + |V|) f”Loc(legrz(t*,x*,V*)) (6 21)
< CA+NNA+ D f s
for every 9 > 0. Finally combining (6.19)—(6.21), we have
Uc(t’ X, V) _f(t,’x,’ V’)I
Sup / / A4
(t,x,v),(t’,x’,v’)eQ,O(t*,x*,v*)ﬂQ](to,xo,vo) (lt —t | + |x - X | + |V -V |)
C(1 + N)y*-? 9
1+ |v ©
< TG I+ VDSl (6.22)
< C(L+ N5 25 (1 o)f
= C(L+N)""2" || (1 + )*f o
where 9 > 0 will be determined later.
To prove (6.7),
lf(t’x’ V) _f(t,ax,’ V’)l
Sup ! / /
(t,x,v),(1' X' V)EQ, (ty,X0vp) (lt — | + I)C — X | + |V -V |)a
|t=t' |+ |x=x' |[+|v=V |[>(2+N) "
< 2(2 +N)Sam”f”L""(Ql(lU.xU,vo)) (623)
<2CA + NP1 + |V|)8f||Loo(Q(z0,x0,vo;1))
<20+ NP+ VDS |l -
Now choose
9 > 3am. (6.24)

Then from (6.22) to (6.24), we prove (6.6) and (6.7). Therefore, we have
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lf(t’x’ V) _f(t’vxlvv/)l < C”f”
sup < 9
()@ 3 0, (o) ([E =P + [x = x| + [v =V'|)* ®

By Theorem 5.14, we have (6.5). O
Now we will prove Theorem 1.4.

Proof of Theorem 1.4 Since f satisfies (1.22), we have
fitv-Vf—Af=Kf. (6.25)
Define

7 _ ) ftx, ), ift >0,
ft,x,v) = {fo(x,v), if - 1<1<0.

Consider S(t,x,v) = (3, +v -V, — ;\g)f‘. Then fort < 0,

S(t.x,v)=(0,+v-V,—A)f
=Wv-V, - ;\f(])fo(x, V)
= _f()t’

where f;, was defined in Theorem 1.1. Since f is a weak solution of (1.22) in the
sense of Definition 4.1, forz > 0, S(z,x,v) = K f(t.x,v). Thus, £ satisfies

fz"‘V'Vx}?—Ag]NC:S(l,x,v).

Since U(1, s) is the solution operator ford, +v -V, — Ag = 0. Then f satisfies

t

Ft) = Ut~ 1)y + / Ut )3(s)ds.
1

Let 0 < € <1 be given. Note that by Lemma 6.5, there exists a > 0 such that
U(t, —1)f(=1) is uniformly Holder continuous on (0, 00) X T3 x R3,
Forevery() S t2 S tl’ltl _tzl + |.X:2 —x1| + |V2 _Vll = é,
[f (s xp,vy) = [ty X, v2)]
< WU, =Dfg) . v)) = (Ulty, = 1)) (x5, v,)|

+ / WUty $)S())(x;, v, )ds

—gx

+ / (U, )3y, v)) = (Ulty, $)8(5))(x5,v,) ) ds

+ / : (U, )3()xp, vy) = (Ulty, )8(5))(x5, v,) ) ds

1
<)+ D+ D) + (V).
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By Lemma 6.7, there exist 9, [, C and Cy, such that
() < (Cllfolleo.g + Cogll foll2,011)E
By Lemma 3.8, (1.25), and (5.16), there exists /; such that

(n < ésuop 1K)l < CE sup I F&I < Celll folleo + Nl foll2s,)-

Note that for s < 0,

1309 < Cll forllsors- (6.26)

||S(S)||2,9 < C||fo[||2,19’ (6.27)
and for s > 0, by Lemma 5.9 and Theorems 1.2 and 1.3 there exists /, such that
18609 < CCL+ 92U follngrs, + 1 follo.s4s,) (6.28)

and

812,941 < CU + 97U folla,944, + 1olleo 941, (6.29)
Therefore, by (6.26) and (6.29), we have

am <& sup I3l

SE(t,—E%,1,)
< CElforlloo + 1ollay, + Mfollcoy,)-
For—1 <s <t, — &% we have

1) = (& + 1= &9+ [x; — x| + [v; — v,
=t =t = L+ &% + |x; = x| + vy — vy
Sl,
Itz—(t2+1—§a)|+|xZ—xZ|+|V2—V2| ZI—EaS 1.

Therefore,
(t,x,v;) € Q(t + 1 — &%, x5, v,) C (5,00) X T> X R?,
for eachi = 1, 2. Therefore by Lemma 6.7, there exist J, /, C and Cy, such that
(U1, 9)S()(x1,v1) = (U, )S() (x5 v2) < (ClISS) o 9 + Cy SS90,

for—1 < s <t, — €% Therefore, by Lemma 6.7, (6.26), (6.28), and (6.27), (6.29), we
have
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0
vy < / ((U(t1, )8())(xp, vy) = (U(ty, $)8()) (x5, v) ) ds

1

+ / ((U(t1, )8())(x 1, vy) = (U(ty, $)8(5)) (x5, v) ) ds

0

< Cf“( sup (IIS(S)IIOO,,9+IIS(S)I|2,19+1)+/ (IIS(S)IIOO,(9+IIS(S)IIZ,.9+z)dS>
0

se[-1,0]
< Céa(”fOt”oo,& + 1 forll040 + Ul foll2940, + ||fo||oo,s+10)/ooo(1 + s)_zds>
< CE (I forllos + W forllz g + N ol s, + N follcosss, )-

Now we update 9 to 9 + 2 + max{[, [, }. Then, by Proposition 2.1, we have

[F(t1, %1, v)) = f(ty, X, )| < (1) + () + (D) + (IV)
< CE (I forllog + 1 folloog )-

Thus we complete the proof. O

7 Holder Estimate and SP Bound

Let fbe a weak solution of (1.22) in the sense of Definition 4.1. Define

7 _J ft,x,v), ift>0,
Fbxv) = {fo(x, ), if —1<1<0.

Then f satisfies
B} S —0,0670,f +a,-V.f+Kf+Jf, ifr>0,
af+V'fo—02’;0Vi,vf={ ,VG ffy g auf W sf N 0
: V- V=0, O Voo if —1<r<
_ —oviagavf‘gr a, -V f+Kf +If, ift>0,
o+ 0,07 s 0o if —1<1<0,
(7.1)
where o is defined as in (2.1) with G = y + u'/%g and
Kif = =u o {ul¢" « {u'/*1of +vif1}]} a2

= 2w 5 {pP1Of + 1] — w2 [0,7 % {P10f + 1Y
and

Jf = =v-ovf = {7+ [u' 20,81} + {# * viu' P08l }f +96'f.  (7.3)
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Lemma 7.1 Forevery f > Qand p > 3,
Cp,ﬂ
IK Sl 2 uspyi<nsny < 7(”](”[/’ +1IDfl ), (7.4)
where K, is defined as in (7.2).

Proof Since K is defined as in (7.2), it is enough to show that

H#(V) / v = V1P RO )
R3

<Al
IJJ

By the Holder inequality,

p
/ ,u”(v)(/ lv — v’|’9ﬂ(v’)h(v')dv/> dvdxdt
(0,00)XT3xR3 R3
o p/r
< / ﬂp(v)< / v (v’)dv’> < / hP(v’)dv'>dvdxdt
(0,00)XT3XR3 R3 R3
< / WY1+ |v])*dy / < / h”(v’)dv’)dxdt
R3 (0,00)XT3 R3

= C,lIll7,.

Clearly, we have

W of lpustvisnsty < (€ + NN F N ruscpuisnssy < CrPINA + IVDPFl riusivins1)-
(7.5)

Theorem 7.2 (Theorem 3.3 in [5]) Let Q be a bounded open set in R7 and let f be a
strong solution in Q to the equation

3
Y oltx v, S+ =h,
ij=1
whereY = —0, — v - V. Suppose that o is uniformly elliptic,
6"l coery < C (7.6)

and f,h € IP. Then o, ,f € Ly, Yf €L and for every open set Q' CC Q there

exists a positive constant ¢, depending only on p,Q',Q, a, C and elliptic constant of
o such that

19, /@y < el fll ) + 1l @)
¥l @y < el fllg + 12l p)-
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Remark 7.3 Especially, from [5]
C] = CZ(A] ) 12)03(diSt(Q/9 Q)’ a, C’ p)’

where 4, 4, are the smallest and the largest eigenvalues, respectively. More pre-
cisely, there exist C > 0 and &’ > 0 such that

c(A,4y) = max |F8ivvj(x, v, < COT" + A7,

[x]24|v|2+]7]2=1
where I'°(¢ ' oz) is a fundamental solution of
3
Y ol@,E v, f+Yf =0 1.7)
ij=1 ‘

and o is a Lie group operation corresponding to (7.7) for some C > 0.

Remark 7.4 Since f(t,-,v) is a periodic function on T3, we extend it to a periodic
function on (3T)3. Note that

”f”p;(’ﬂ]'% = 27”‘]‘””(‘[3)
Define
I fllsry 2= Il fllpy + IDS @y + ID Wy + X Nl )

whereY = —0,—v-V,_.

Lemma 7.5 Assume (2.6). Let f be a weak solution of (1.6), (1.7), and (1.22) in the
sense of Definition 4.1. Suppose that g satisfies |||l cu(o coxixry < C' for some
0 <a <landC > 0. Then there exist 9 > 0, p > 3, Cy , v, such that

||f||sn((o,oo)><TS><R3 < C(”fo;”oo,,g + 1D foll o9 + ”fo”oo,,g)- (7.8)

Proof Since ||g| co(0,00xTixr?) < C 0¢ satisfies (7.6). Apply Theorem 7.2 to (7.1)
with Q" = Q' and Q = Q,, where

Q=Q ={t>0xeT,n< v <n+1},
Q=Q :={t>-1,x€3T,n-1/2<|v| <n+3/2}.

Letog, K}, and J, be defined as in (2.1), (7.2), (7.3). Then, we have

1 Wy, < 27 (10,020,110, gy + g - Vof 1, gy + IKLS + 1

X l]
HIV -V, - Gav V)fonu(( 1,0)X3T3xB(0;n— 1/2n+3/2)))

where B(z;r), r,) := B(z;r,)\B(z;r). By Lemma 2.3 and Remark 7.3,
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(41, 4,) = Cn*
for some a > 0 and
c3(dist(Q',Q), @, C,p) = C, -
Therefore,
¢ = Cycpht
for some a > 0. Let

Q) ={t>0,xeT n—-1/2<|v| <n+3/2}.

Then by Remark 7.4,

1 0y < (Cacpit “)”(Ila afllU(Q,)+||a V‘f||U(g, +||K1f+JAf||”](Q,

. ol P
HIW - Vi =069, holl, ((~LOXT3XBO:n— l/2n+3/2)))

(7.9

where Q:, ={t>0,xeT?n-1/2<|v| <n+3/2}). Note that by the standard
interpolation, we have

C
1D, g, < €N, 6, + SIAUL g (7.10)

Let f > 2a + 4 and €' = ¢, which can be determined later. Then by (7.4), (7.5), and
(7.10), we have

2 CocVIKS + I L1,
P ,pa—p) P BeP
< Y Craca P (A ey * IO iy + 1+ DDA )

< Cpacyp? (I + WV, (o oy + 1D,

< (Cpacpe, NA+ WIYLIP

L((0, oo)xIr*xR*)>

L7((0,00)XT3xR?) t& ||DWf”U’((O,oo)><'I]'3><R3) (7.11)

for some g,. Similarly,
a . _ ij

Z(Ca,apn Y- v, GGaV V)fo(x V)HU(( LO)XT3xB(0;n—1/2.n+3/2))

< D Cocp " PNA+ WY -V, =000, oI

< Coep N0V =030, I,

L (T3%xB(0;n—1/2,n+3/2))

(7.12)
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Choose &' = en™%*2) small enough. Since ||dviag||°o < C.lla,lle, < C, by (7.10) we
have

3 Cocr¥ (10,650, 5 + Ny V.S g, )
=2, -1 2, 1
< Y Cacy) (e IDUAIL, g + € LI, )
=2, 2a+2—
< Y Cucy (e8P IDA I g, + W2 DU+ DIVAIL, o, )

P BriIP
< Cpac? (EIPMI, ey + CMA+ DAL, (o)

(7.13)
Combining (7.9)—(7.13) and absorbing ||D,,f|| term on RHS to the LHS, we have
p
I f” 87((0,00)XT3xR3)
< Cpac? (I + DI, iy + 10 Vo= 000, 611, )

< Cpac? (I + IV, iy + Mol + IDSIL )

Finally, by Lemmas 2.4 and 5.11, the standard interpolation, and Proposition 2.1, we
have (7.8). O

Here we introduce some regularity results in S” norm.

Theorem 7.6 (Theorem 2.1 in [24]) Let f € SP(R7), with1 < p < .

2p—14 14

(1) If2p > 14 and p < 14, then f € C'(R7), withy = >

() ifp> 14, thend, f € C*(R7), with § = pTM
Define ||| (¢, x, v)|| = p, where p is a unique positive solution to the equation

x> P

LI el BRIl S |

ot S p?
and
(r,&, V) ot x,v) = (t—T,x — &+ (t — T)v,v — V).
Now we can deduce the following lemma.
Lemma 7.7 Assume (2.6). Let f be a weak solution of (1.6), (1.7), and (1.22) in the

sense of Definition 4.1. Suppose that g satisfies ||g|| ce(0.coixTixr3) < C for some
O<a<landC>0.

If 2p > 14 then, letting a; = min { , 2”}'%14 }, there exist 9 >0 and C=Cy, ¢,
such that
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lf(t’x’ V) _f(T7 5’ V)l
ll(z, & v)~to(t, x, I

for every (t,x,v),(t,&,v) € (0,00) X T3 x R3, (¢, x,v) # (7, &, V).

< C(Iforllsos + Do llsos + 11 follcos)

If p > 14 then, letting a, = 17—714’ there exist 8 > 0 and C = C&a’c’p such that

|avf(t’ X, V) - 0Vf(r, 5’ V)I
ll(z, & v)~to(r, x, v)[I*
for every (t,x,v),(7,&,v) € (0,0) X T3 x R3, (¢, x,v) # (7, &, V).

< CIforllcos + 1D Sfoll o9 + 1 follcors)

Proof It immediately follows from Lemma 7.5 and Theorem 7.6. O
Remark 7.8 If r = t and & = x, then ||z, x, v) " o(t, x, V)|| = |v — VI.
By Remark 7.8 and Lemma 7.7, we have

Lemma 7.9 Assume (2.6). Let f be a weak solution of (1.6), (1.7), and (1.22) in the
sense of Definition 4.1. Suppose that g satisfies ||l ce(o.cox1ixr3) < C for some
0<a<landC>0.Let p =14, then there exist d > 0 and C = Cy , ¢, such that

IDf Nl (00omrixes) < €I forllsos + 1D ollcos + 1 foll0)-

8 Proof of Theorem 1.1

In this section we will use an iteration argument to prove the existence and the
uniqueness of the weak solution of (1.5)—(1.7) in the sense of Definition 4.1. We
first construct the function sequence as follows. Define f©(z,x,v) 1= fy(x,v). Since
fo(x, v) satisfies (1.16), by Lemma 4.2, we can define fV as a solution of (1.6), (1.7),
and (1.22) with g = f©. Moreover, by Theorem 1.3, f() satisfies the assumption in
Lemma 2.4. Thus we can also define f® as a solution of (1.6), (1.7), and (1.22) with
g = fU. Inductively we can define a function sequence f for n > 0.

Lemma 8.1 There exist C,9, > 0, and 0 < g, < 1 such that if f, satisfies
Il folleo,s < €0

then

sup || f"Dllo.s < Cllfollso.5,-

neN, >0
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Sketch of proof 1t is clear by applying Theorem 1.3 to £ inductively on 7. O

Lemma 8.2 Let f, be a given function satisfying (1.16). Let f, and f, be weak solu-
tions of (1.6), (1.7), and (1.22) in the sense of Definition 4.1 with g =g, § =g,
respectively. Suppose that g, and g, are uniformly Holder continuous functions sat-
isfying (2.6). Then we have

1 2 1 ! 2
2061 =00+ (5 = Ce) [ 001 =R s

t !
< /0 C(||f2||W+||Vufz||w>min{||(g1—gzxs)ll;ﬁ,ll(gl—gzxs)llf,ﬂ(,}d.wc /O Iy =I5 5.

8.1
where 8 < 0 is a constant defined as in Theorem 2.8. Therefore by the Gronwall
inequality for every t, > 0,

1 n n n n
sup S [|(F"Y = fU)@)llp 5 < €@ Cety sup P = fGg (8.2)

te(0.,y) s€(0,1y)
Proof Note that f}, f,, g;, and g, satisfy
oy =) +v-V.(fi =)+ L(fy =) =T(g./i —f2) + (g1 — 82,55

Multiplying the above equation by wzg(f1 —f>) and integrating both sides of the
resulting equation yields

%”(fl —2)Oll25 +[) (Wsz(fl =), (fy _fz)(s)>d5
= [ (#6006 =106 - 505+ [ (5T = 05006~ L) )as
0 0

= / ) + (ID))ds.
0
(8.3)
By Lemma 2.7, we have

(WHLE = £)6). (= £)S) = 5165 =I5 = CllGy =S,

N —

Since g, satisfies (2.6), by Theorem 2.8, we have

) < Cllg @I =S
< Cell(f; =G 5

Since we want to control (f) in terms of ||g; —gll,5 g —&ll,3 and
I(f; = f2)(9)]l, 5 we have to show that

IVifall < 0.
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Since g, is uniformly Holder continuous by Lemma 7.9, D, f, is uniformly bounded.
Therefore by Theorems 2.8 and 1.3, Lemma 7.9, and Young’s inequality, we have

(1) < C(Iflleo + 1V 1) min{liGe; = 82X 5. 11 = 80l 5167 =Sl 5
< C(Ilfallso + 1V lls) (min { gy = 822 5, 1Ce1 = )OI 5 | + Cell i =2 5 )-

Then we have
L - 2 oL - 2 ds—C I — 2 d
SN =R+ 5 [ 16 =HIOI4ds = C [ 16 =R ds

< /0 t (Cellth =GN 5 + C.(Ifalle + 1, ale)
xmin { (g1 = &)1 5., g1 = 8)GIZ,, } )ds.
Therefore we have (8.1). O
Proof of Theorem 1.1 Proof of (1)

Existence Let ¢, be a given positive constant and § < 0 be a constant defined as
in Theorem 2.8. Since f; satisfies (1.16), by Theorem 1.4, £ is Holder con-
tinuous uniformly in n. Therefore, by (8.1) we have

IGFD = FDI
. t
e R e Ry B A CTAR
0 0

for some C and C’. Then we will show that

eCnto(C/t)n
n!

I = D)0, < (8.4)

for every t € (0,¢,) and n > 1 by the induction on n. Suppose that (8.4) holds for
n =k, then

eCklo (CI t)k+1

7 ! (k) _ flk=1) 2
c /0 I =401, s <

fort € (0, ¢,). Therefore, we have

etho (Cl t)k+1

(k1) _ (k) 2
¢ T, < k+1)!

t
+C / I = FOYWIR s
i ,

for every t € (0, #,). Then by the Gronwall inequality, we have

ethO(Clt)k+l cr eC(k+])t0(C/t)k+l
G+ =T G+

”(f(k+l) _f(k))(t)”%,so <
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for every t € (0, ¢,). Thus we have (8.4) for every n € N. Moreover, we have

. (n) _ pn—=1) —
Al/l_r)r;Z sup ||(f f )(0”2,,90 =0.

= o<i<iy
Thus f™ is a Cauchy sequence in L*([0,1,] X T? x R3, wdtdxdv). Let
f=1lim,__ f™. Then by (8.2), fis a weak solution of (1.5)—(1.7) in the sense of
Definition 4.1.

Uniqueness Suppose that fand g are weak solutions of (1.5)—(1.7) in the sense
of Definition 4.1. Then by (8.1), we have

Qw—gmﬁ%+(%—&)/nv—@mﬁ%msc/ﬁw—@m@%m
0 0

Since Ce’ < 1/4, we have

=01, <€ [ 16 - 90, 05

Therefore, by the Gronwall inequality, we have
IiF = I3, =0

for every t € (0, ¢,).
Since 1, is arbitrary, we conclude that the weak solution of (1.5)—(1.7) in the sense of
Definition 4.1 uniquely exists globally in time.

Proof of (3) We can apply fto Theorems 1.2-1.4, and Lemma 7.9. Then we have
(1.17)—(1.21).

Proof of (2) Let F = u + \/ﬁf, where fis the weak solution of (1.5)—(1.7) in the
sense of Definition 4.1. Consider

0,F+v-V.F=QF,F)= aj’;av[ij + 87 F>. (8.5)

Similar to Definition 4.1, we can define a weak solution to (8.5) and we can easily
check that F' is a weak solution to (8.5). Since f satisfies (1.19), by Lemma 2.4, o
is a non-negative definite matrix. Therefore, in a similar manner to Sect. 3, we can
obtain a weak minimum principle for (8.5). Thus, if F(0) > 0, then F(r) > 0. O
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